1,531,637 research outputs found
Audio Inpainting
(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published version: IEEE Transactions on Audio, Speech and Language Processing 20(3): 922-932, Mar 2012. DOI: 10.1090/TASL.2011.2168211
Virtual Audio - Three-Dimensional Audio in Virtual Environments
Three-dimensional interactive audio has a variety ofpotential uses in human-machine interfaces. After lagging seriously
behind the visual components, the importance of sound is now becoming
increas-ingly accepted.
This paper mainly discusses background and techniques to implement
three-dimensional audio in computer interfaces. A case study of a
system for three-dimensional audio, implemented by the author, is
described in great detail. The audio system was moreover integrated
with a virtual reality system and conclusions on user tests and use
of the audio system is presented along with proposals for future work
at the end of the paper.
The thesis begins with a definition of three-dimensional audio and a
survey on the human auditory system to give the reader the needed
knowledge of what three-dimensional audio is and how human auditory
perception works
Deep Learning of Human Perception in Audio Event Classification
In this paper, we introduce our recent studies on human perception in audio
event classification by different deep learning models. In particular, the
pre-trained model VGGish is used as feature extractor to process audio data,
and DenseNet is trained by and used as feature extractor for our
electroencephalography (EEG) data. The correlation between audio stimuli and
EEG is learned in a shared space. In the experiments, we record brain
activities (EEG signals) of several subjects while they are listening to music
events of 8 audio categories selected from Google AudioSet, using a 16-channel
EEG headset with active electrodes. Our experimental results demonstrate that
i) audio event classification can be improved by exploiting the power of human
perception, and ii) the correlation between audio stimuli and EEG can be
learned to complement audio event understanding
Weakly Labelled AudioSet Tagging with Attention Neural Networks
Audio tagging is the task of predicting the presence or absence of sound
classes within an audio clip. Previous work in audio tagging focused on
relatively small datasets limited to recognising a small number of sound
classes. We investigate audio tagging on AudioSet, which is a dataset
consisting of over 2 million audio clips and 527 classes. AudioSet is weakly
labelled, in that only the presence or absence of sound classes is known for
each clip, while the onset and offset times are unknown. To address the
weakly-labelled audio tagging problem, we propose attention neural networks as
a way to attend the most salient parts of an audio clip. We bridge the
connection between attention neural networks and multiple instance learning
(MIL) methods, and propose decision-level and feature-level attention neural
networks for audio tagging. We investigate attention neural networks modeled by
different functions, depths and widths. Experiments on AudioSet show that the
feature-level attention neural network achieves a state-of-the-art mean average
precision (mAP) of 0.369, outperforming the best multiple instance learning
(MIL) method of 0.317 and Google's deep neural network baseline of 0.314. In
addition, we discover that the audio tagging performance on AudioSet embedding
features has a weak correlation with the number of training samples and the
quality of labels of each sound class.Comment: 13 page
MEDIA PEMBELAJARAN FILTER SINYAL AUDIO UNTUK MATA PELAJARAN TEKNIK AUDIO
Penelitian ini bertujuan untuk mengetahui desain, unjuk kerja, dan tingkat
kelayakan Media Pembelajaran Filter Sinyal Audio sebagai media pembelajaran
mata pelajaran teknik audio pada jurusan Teknik Audio Video di SMK Negeri 3
Yogyakarta.
Penelitian ini merupakan penelitian Research and Development. Objek
penelitian ini adalah Media Pembelajaran Filter Sinyal Audio yang dilengkapi
modul pembelajaran. Tahap pengembangan produk meliputi 1). Analisis, 2).
Desain, 3). Implementasi, 4). Pengujian, 5). Validasi, dan 6). Ujicoba pemakaian.
Metode yang digunakan dalam pengumpulan data meliputi 1). Pengujian dan
pengamatan unjuk kerja, 2). Angket penelitian. Adapun validasi media
pembelajaran melibatkan dua ahli materi pembelajaran dan dua ahli media
pembelajaran dan ujicoba pemakaian dilakukan oleh 33 siswa.
Hasil penelitian menunjukkan bahwa unjuk kerja Media Pembelajaran
Filter Sinyal Audio sudah sesuai dengan tujuannya sebagai media pembelajaran
filter audio. Hasil pengujian rangkaian AFG dapat menghasilkan sinyal keluaran
dengan tiga bentuk gelombang yaitu sinus, gigi gergaji dan kotak dengan
frekuensi antara 10 Hz–30 KHz. Rangkaian frekuensi counter dapat menghitung
frekuensi antara 10 Hz–25 KHz dan dapat membaca amplitudo dengan rentang
antara 0,3 Vp-p–10 Vp-p. Masing-masing board rangkaian filter dapat bekerja
dengan baik pada rentang frekuensi antara 20 Hz-20 KHz. Hasil validasi isi oleh
ahli materi pembelajaran memperoleh tingkat validitas dengan persentase 81,77%
dengan kategori sangat layak, validasi konstruk oleh ahli media pembelajaran
memperoleh tingkat validitas dengan persentase 87,5% dengan kategori sangat
layak. Sedangkan dalam uji pemakaian oleh siswa di SMK N 3 Yogyakarta
mendapatkan validitas sebesar 78,5% dengan kategori sangat layak.
Kata kunci: media, pembelajaran, filter, sinyal audi
- …
