373 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Networked Multiagent Reinforcement Learning for Peer-to-Peer Energy Trading

    Full text link
    Utilizing distributed renewable and energy storage resources in local distribution networks via peer-to-peer (P2P) energy trading has long been touted as a solution to improve energy systems' resilience and sustainability. Consumers and prosumers (those who have energy generation resources), however, do not have the expertise to engage in repeated P2P trading, and the zero-marginal costs of renewables present challenges in determining fair market prices. To address these issues, we propose multi-agent reinforcement learning (MARL) frameworks to help automate consumers' bidding and management of their solar PV and energy storage resources, under a specific P2P clearing mechanism that utilizes the so-called supply-demand ratio. In addition, we show how the MARL frameworks can integrate physical network constraints to realize voltage control, hence ensuring physical feasibility of the P2P energy trading and paving way for real-world implementations

    Peer-to-Peer Energy Trading for Networked Microgrids

    Get PDF
    Considering the limitations of the existing centralized power infrastructure, research interests have been directed to decentralized smart power systems constructed as networks of interconnected microgrids. Therefore, it has become critical to develop secure and efficient energy trading mechanisms among networked microgrids for reliability and economic mutual benefits. Furthermore, integrating blockchain technologies into the energy sector has gained significant interest among researchers and industry professionals. Considering these trends, the work in this thesis focuses on developing Peer-to-Peer (P2P) energy trading models to facilitate transactions among microgrids in a multiagent network. Price negotiation mechanisms are proposed for both islanded and grid-connected microgrid networks. To enable a trusted settlement of electricity trading transactions, a two-stage blockchain-based settlement consensus protocol is also developed. Simulation results have shown that the model has successfully facilitated energy trading for networked microgrids

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    An Agent-Based Model to Study Competitive Construction Bidding and the Winner\u27s Curse

    Get PDF
    Reverse auction theory is the basis for competitive construction bidding process. The lowest bid method is utilized for selecting contractors in public projects. The winning contractor having the lowest bid value could be cursed when the submitted bid value results in negative profits. This is caused by many factors such as the contractor\u27s estimation accuracy and markup. This is addressed in this paper by providing a model simulating the construction competitive bidding and the occurrence of the winner\u27s curse. To this end, the authors show the extent to which the winner\u27s curse affects the status of contracting companies. The objectives are to understand the characteristics of the competitive bidding phase in construction and to study the behavior of contractors subject to competitive bidding and the occurrence of the winner\u27s curse. As such, the authors implemented a two-step methodology that incorporates (1) developing a general simulation model involving a population of contractors and projects using agentbased modeling for the competitive bidding process and (2) analyzing the results of the simulation model. This model should provide a better understanding to the construction profession as in contractors, project owners and Departments of Transportation of how decisions are made in this bidding environment

    Exploring auction based energy trade with the support of MAS and blockchain technology

    Get PDF
    This document describes a simulation of the local energy market with support of multi-agent approach and blockchain technology. The investigated points include blockchain technology and its applications, Ethereum platform and smart contracts as a tool for storing data of operations and creating assets, multi-agent approach to model the local energy market. The document explores building a solution for proposed problem with blockchain technology, agent interactions on the simulated market and auction models, that provide sustainability and profit for the local energy market overall

    Multi-Agent Systems

    Get PDF
    This Special Issue ""Multi-Agent Systems"" gathers original research articles reporting results on the steadily growing area of agent-oriented computing and multi-agent systems technologies. After more than 20 years of academic research on multi-agent systems (MASs), in fact, agent-oriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agent-oriented models and technologies. In particular, the 17 contributions cover agent-based modeling and simulation, situated multi-agent systems, socio-technical multi-agent systems, and semantic technologies applied to multi-agent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agent-based models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/Multi-Agent_Systems_2019
    corecore