
Marshall University Marshall University 

Marshall Digital Scholar Marshall Digital Scholar 

Theses, Dissertations and Capstones 

2021 

Peer-to-Peer Energy Trading for Networked Microgrids Peer-to-Peer Energy Trading for Networked Microgrids 

Jonathan David Warner 

Follow this and additional works at: https://mds.marshall.edu/etd 

 Part of the Digital Communications and Networking Commons, Electrical and Computer Engineering 

Commons, and the Environmental Engineering Commons 

https://mds.marshall.edu/
https://mds.marshall.edu/etd
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages


PEER-TO-PEER ENERGY TRADING FOR NETWORKED MICROGRIDS 
 
 
 
 
 
 
 
 
 
 
 
 
 

A thesis submitted to 
the Graduate College of 

Marshall University 
In partial fulfillment of 

the requirements for the degree of 
Master of Science 

In 
Electrical & Computer Engineering 

by 
Jonathan David Warner 

Approved by 
Dr. Tarek Masaud, Committee Chairperson 

Dr. Taher Ghomian 
Dr. Pingping Zhu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Marshall University 
May 2021  

 



APPROVAL OF THESIS 

We, the faculty supervising the work of Jonathan David Warner, affirm that the thesis, Peer-To
Peer Energy Trading For Networked Microgrids, meets the high academic standards for original 
scholarship and creative work established by the Electrical & Computer Engineering Masters 
program and the College of Engineering and Computer Sciences. The work also conforms to the 
formatting guidelines of Marshall University. With our signatures, we approve the manuscript for 
publication. 

�·· 
��.. •· .. . 

Dr. Tarek Mas�ud, CSEE Committee Chairperson Date 

Dr. Taher Ghomian, CSEE Committee Member Date 

Dr. Pingping Zhu, CSEE Committee Member Date 

ii



iii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2021 
JONATHAN DAVID WARNER 

ALL RIGHTS RESERVED 



iv 
 

 
ACKNOWLEDGMENTS 

 

I want to thank all the people who helped and supported me to achieve this milestone. I 

cannot begin any acknowledgement without first thanking my parents, David and Denise, whose 

love, support, and encouragement have carried me through every stage of my journey. I must 

also thank my brother, Tim, for being my inspiration to overachieve and my life-long target to 

outperform. I also want to thank my many friends who have encouraged, counseled, and 

accommodated me on this journey. Lastly, I want to thank my adviser, Dr. Masaud, who has 

provided me with and guided me through many opportunities to grow as a researcher and a 

scholar. 

  



v 
 

TABLE OF CONTENTS 
 

List of Nomenclature ...................................................................................................................vii 

List of Tables  ..............................................................................................................................viii 

List of Figures ..............................................................................................................................ix 

Abstract ........................................................................................................................................xi 

Chapter 1: Introduction ................................................................................................................1 

 1.1. Background ...............................................................................................................1 

 1.2. Literature Review......................................................................................................5 

 1.3. Contributions.............................................................................................................10 

 1.4. Thesis Outline ...........................................................................................................11 

Chapter 2: Peer-to-Peer Energy Trading In Distribution Networks: An Overview .....................12 

 2.1. Introduction ...............................................................................................................12 

 2.2. Peer-To-Peer Energy Trading Mechanism ...............................................................16 

 2.2.1. Game Theory .............................................................................................18 

 2.2.2. Auction Markets.........................................................................................19 

 2.2.3 Constrained Optimization ...........................................................................20 

 2.3. Blockchain-Based P2P Trading ................................................................................21 

Chapter 3: The Proposed P2P Energy Trading Model.................................................................27 

 3.1. Islanded Operation Mode – Multiagent Model .........................................................27 

 3.1.1. Seller and Buyer Identification ..................................................................28 

 3.1.2. Price Adjustment and Contract Matching Mechanism ..............................29 

 3.2. Grid Connected Operation Mode – Multiagent Model .............................................35 

 3.2.1. Formulation of the Optimization Scheduling Problem ..............................35 



vi 
 

 3.2.2. Energy Trading and Price Adjustment Model – Model I ..........................36 

 3.2.3. Energy Trading and Price Adjustment Model – Model II .........................41 

 3.3. Two-Phase Blockchain Consensus Protocol .............................................................43 

Chapter 4: Simulation Results .....................................................................................................48 

 4.1. Islanded Operation Mode – Multiagent Model .........................................................48 

 4.2. Grid Connected Operation – Multiagent Models......................................................57 

 4.2.1. Model I .......................................................................................................57 

 4.2.2. Model II .....................................................................................................62 

Chapter 5: Conclusion..................................................................................................................68 

 5.1. Future Work ..............................................................................................................69 

 5.2. Outcome Publications ...............................................................................................69 

References ....................................................................................................................................71 

Appendix A: Approval Letter from the Office of Research Integrity .........................................80 

Appendix B: Tabulated Data .......................................................................................................81 

Appendix C: Simulation Codes ...................................................................................................83

 

 

 

  



vii 
 

LIST OF NOMENCLATURE 

Sets: 
𝑚𝑚 Seller 
𝑛𝑛 Buyer 
𝑟𝑟 Price adjustment round 
𝑡𝑡 Hour 
 
Parameters: 
NL Net load 
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum generation capacity 

of microgrid 
𝑪𝑪𝒑𝒑𝒑𝒑 Maximum storage capacity of 

microgrid 
𝑪𝑪𝒈𝒈 Cost of generation for DG 
𝑪𝑪𝒑𝒑𝒑𝒑 Cost of peak plant generation 
𝑪𝑪𝒃𝒃𝒑𝒑𝒑𝒑 Cost of battery storage 
𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄 Energy and load curtailment 

cost 
𝑪𝑪𝒑𝒑𝒔𝒔 Energy and load shedding cost 
𝑺𝑺𝑺𝑺 Startup cost 
𝑺𝑺𝑺𝑺 Shutdown cost 
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum generation limit of 

DG 
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum generation limit of 

DG 
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒅𝒅𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum discharge power 

from BSS 
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒅𝒅𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum discharge power 

from BSS 
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum charge power to 

BSS 
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum charge power to BSS 
𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎 Minimum state of charge of 

BSS 

𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎 Maximum state of charge of 
BSS 

𝑷𝑷𝒕𝒕𝒎𝒎𝒕𝒕,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum capacity of utility tie 
line 

𝑃𝑃𝑝𝑝𝑝𝑝 Maximum energy from peak 
generation 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 Maximum energy to curtail 
𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 Cost of spinning reserve energy 
 
Variables: 
𝑷𝑷𝒈𝒈 Generation of DG 
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑 Power charged to or discharged 

from BSS 
𝑺𝑺𝑺𝑺𝑪𝑪 State of charge of BSS 
𝑷𝑷𝒈𝒈𝒄𝒄𝒎𝒎𝒅𝒅 Power exchanged with the 

utility 
𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟 Power from spinning reserve 
𝝀𝝀𝒈𝒈𝒄𝒄𝒎𝒎𝒅𝒅 24-hour dynamic utility price 
𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Fixed utility price 
𝑷𝑷𝒎𝒎𝒕𝒕𝒕𝒕 Amount of power to be traded 
𝒄𝒄 Binary variable describing the 

dispatch of DG 
𝒚𝒚 Binary variable describing 

startup status 
𝒛𝒛 Binary variable describing 

shutdown status 
𝒅𝒅 Binary variable describing 

discharge state 
𝒄𝒄 Binary variable describing 

charge state 
𝝀𝝀𝒑𝒑𝒕𝒕𝒔𝒔𝒔𝒔 Desired selling price 
𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢 Desired buying price 

 
 
  



viii 
 

LIST OF TABLES 
 
Table 3.1     Price adjustment and contract execution algorithm - islanded 

operation ................................................................................................................33 

Table 3.2     Price adjustment and contract execution algorithm - grid-

connected operation model I ..................................................................................41 

Table 3.3     Price adjustment and contract execution algorithm - grid-

connected operation model II.................................................................................43 

Table 3.4     Two-phase blockchain consensus protocol .............................................................47 

Table 4.1     Amount of power traded in each contract over the 24-hour time 

horizon ...................................................................................................................52 

Table 4.2     Validation of obtained results in comparison to results from the 

literature .................................................................................................................57 

 
  



ix 
 

LIST OF FIGURES 

Figure 2.1     Microgrid concept ..................................................................................................12 

Figure 2.2     Group of interconnected microgrids forming a microgrid network .......................16 

Figure 2.3     Prosumer definition ................................................................................................17 

Figure 2.4     General blockchain structure ..................................................................................22 

Figure 3.1     System model (islanded operation) ........................................................................28 

Figure 3.2     Flowchart of the proposed trading model (grid connected operation) ...................37 

Figure 3.3     System model (grid connected operation) ..............................................................38 

Figure 3.4     pBFT two round voting process with faulty node tolerance ..................................44 

Figure 3.5 Flowchart of the proposed model ...........................................................................47 

Figure 4.1     Number of executed contracts and amount of traded power in the case 

of 10 interconnected microgrid system ...................................................................50 

Figure 4.2     A successful price adjustment process for a selected block ...................................51 

Figure 4.3     Variation in the computation time with respect to the change of the 

number of microgrids in the network .....................................................................53 

Figure 4.4     Variation in the number of executed contracts with respect to the 

change of the number of microgrids in the network ...............................................54 

Figure 4.5     A sample of generated blocks containing contract data .........................................55 

Figure 4.6     The change in average validation time with respect to the change of 

the number of microgrids in the network................................................................56 

Figure 4.7     24-hour dynamic energy prices ..............................................................................59 

Figure 4.8     Excess and deficit power to be traded from seven networked 

microgrids ...............................................................................................................59 



x 
 

Figure 4.9     Amount of deficit power vs. satisfied deficit power resulting from the 

peer-to-peer trading model......................................................................................60 

Figure 4.10   Comparison of the model trading price to the utility price ....................................61 

Figure 4.11   An example of the price adjustment process of two buyers and two 

sellers ......................................................................................................................62 

Figure 4.12   A sample of generated blocks containing contract data .........................................63 

Figure 4.13   Comparison of energy deficit to traded energy ......................................................64 

Figure 4.14  Comparison of the model trading price to utility price ...........................................64 

Figure 4.15  An example of price adjustment process of two buyers and two sellers .................66 

Figure 4.16  Total energy traded in each hour, including primary and spinning 

reserve power  .........................................................................................................67 

Figure 4.17  A sample of generated blocks containing contract data  .........................................68 

Figure 4.18  A sample of generated blocks including a spinning reserve contract 

block........................................................................................................................68 

 

 

 
  



xi 
 

ABSTRACT 

Considering the limitations of the existing centralized power infrastructure, research interests 

have been directed to decentralized smart power systems constructed as networks of 

interconnected microgrids. Therefore, it has become critical to develop secure and efficient 

energy trading mechanisms among networked microgrids for reliability and economic mutual 

benefits. Furthermore, integrating blockchain technologies into the energy sector has gained 

significant interest among researchers and industry professionals. Considering these trends, the 

work in this thesis focuses on developing Peer-to-Peer (P2P) energy trading models to facilitate 

transactions among microgrids in a multiagent network. Price negotiation mechanisms are 

proposed for both islanded and grid-connected microgrid networks. To enable a trusted 

settlement of electricity trading transactions, a two-stage blockchain-based settlement consensus 

protocol is also developed. Simulation results have shown that the model has successfully 

facilitated energy trading for networked microgrids.
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CHAPTER 1 

INTRODUCTION 

This chapter will include a discussion of the background and motivation which inspired 

the undertaking of this research. Additionally, this chapter includes an extensive literature review 

of the topic, and a summary of the thesis scope and contributions. 

1.1 Background 

For decades, energy consumers have relied on the large-scale power grid to supply 

electrical power for their homes and businesses. The power grid has traditionally consisted of 

utility-owned and operated electric power generation plants connected to high voltage 

transmission lines delivering electricity up to hundreds of miles away from the power source. 

The highly centralized nature of these power grids has been a significant concern for system 

reliability and resiliency, where a single-equipment failure can have extensive effects on the rest 

of the grid, leading to localized power disruptions, generation outages, and even large-scale 

blackouts [1]. Additionally, the power grid has traditionally relied on conventional, non-

renewable energy sources such as coal and natural gas. These fossil fuels, in addition to being a 

depleting resource, have been shown to contribute greatly to environmental pollution and 

growing crisis of climate change [2]. 

In recent years, the concept of a smart grid has begun to emerge which aims to alleviate 

and eliminate many of the concerns of the traditional power grid. Smart Grid is the term for the 

next generation of the power grid which is currently being researched, developed, and deployed 

around the world. The Smart Grid includes many technological upgrades and additional control 

features to the grid including smart meter technology, smart appliances, and a focus on 

renewable energy and other energy efficient resources [3]. The goal of the Smart Grid is to 
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optimize the economic and operational efficiency of the grid by improving grid reliability and 

demand response flexibility. Because of this emphasis on efficiency and integration of renewable 

energies, it is common for the future smart grid to be imagined as a system of interconnected 

smart microgrids [4]. IEEE standard 1547.4 has confirmed that representing large power grids by 

a group of interconnected microgrids significantly enhances the reliability, resiliency, and 

sustainability of the network [5]. Thus, significant attention has been paid to the concept of 

networked microgrid operation in recent years.  

Microgrid is defined by the US Department of Energy as “a group of interconnected 

loads and distributed energy resources within clearly defined electrical boundaries that acts as a 

single controllable entity with respect to the grid. A microgrid can connect and disconnect from 

the grid to enable it to operate in both grid-connected or island mode” [5]. Microgrid applications 

have been developing steadily over the past few years and deployment of microgrids are 

anticipated to increase even more in the near future, especially with an increasing interest in the 

use of smart grid technology.  

The most important aspect of any power grid operation is the ability to maintain 

generation-demand balance at all times. However, due to the intermittent nature of the renewable 

energy sources present in the microgrids and the unique energy demands of each grid, all 

microgrids will have different energy profiles. It is an essential principle of any grid operation to 

maintain a generation-demand balance. However, for any given interval in a 24-hour day, some 

microgrids will be experiencing energy deficit conditions where generation is less than demand, 

while others may be experiencing energy surplus conditions where generation is greater than 

demand. Therefore, in order to maintain real-time balance of local power generation and 

demand, microgrids may seek to establish energy trading coalitions to share energy resources. 
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Coalition formation and the energy trading mechanism used to assure adequate power sharing 

among networked microgrids are crucial elements to the success of the interconnected microgrid 

network. Energy trading helps to ensure generation-demand imbalance is mitigated as much as 

possible based on available resources while also minimizing microgrid operation costs by 

maximizing the economic efficiency of the microgrid network. 

  Centralized energy trading models are relatively simplistic and convenient; however 

they are hard to scale for a large number of entities. Furthermore, centralized trading schemes 

make networks highly susceptible to cyber-attacks [6]. Because of these drawbacks, the 

emergence of Blockchain and the great amount of attention given to it has led to a tremendous 

amount of interest in using the technology within information infrastructures to assure secure and 

decentralize energy trading [6]. In the U.S., the Brooklyn Microgrid project is an example of a 

first generation successful peer-to-peer blockchain system operating through smart meters, where 

prosumers are able to trade energy based on pre-determined bid prices [7].   

As previously noted, the concept of blockchain is becoming a popular choice for secure 

transactions in decentralized networks. First proposed in 2008, a blockchain is a simple growing 

list of public records known as blocks which are securely linked to one another to form a chain. 

The original application of the blockchain was to provide a distributed public transaction record 

for the Bitcoin cryptocurrency, but the concept has been adapted to be used in any case where 

transactional security is a concern. The primary advantage of the blockchain is its distributed, 

decentralized structure, which allows for direct peer-to-peer interaction without the concern of a 

potentially compromised central entity. The blockchain also employs a consensus method, 

whereby blocks must be validated by varying means before being appended to the blockchain. 
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  Due to the immutability of the blockchain record and the consensus methods used to 

validate information appended to the chain, blockchain is a perfect candidate for tracking 

financial transaction records [8]. These blockchains are constructed as digital ledgers, where 

each block contains the details of a financial transaction. The data contained in a block includes 

the identification of the parties participating in the transaction, the amount of goods being 

transacted, the timestamp of the execution of the transaction, and an alpha-numeric string called 

a hash, which is taken from the previous block. This data is input into a hashing function, 

generating a new and unique hash which is appended to the block, separate from the transaction 

data. All information is then updated synchronously to the entire network so that each peer (node 

in the network) keeps a record of the same ledger. The next block includes the hash from the 

previous block as part of its data and generates a new hash, which is then used by the next block. 

Therefore, the blocks are chained together by these uniquely generated hashes. If any of the data 

in a chained block is modified, the hash associated with that block will change, no longer 

matching the hash used in the next block and thereby breaking the chain. Because of its 

consensus method, integrity of the data recorded in the ledger can be guaranteed without a 

trusted third party [9]. Various consensus algorithms have been developed such as Proof of Work 

(PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS), Ripple Protocol Consensus 

Algorithm (RPCA) and AlgoRand [9]. The consensus algorithm is the most important factor of 

the entire blockchain system, not only because it is the primary method of blockchain security, 

but also because the efficiency of the consensus algorithm is the primary factor influencing the 

blockchain's performance. 
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1.2 Literature Review 

In the existing literature, numerous models have been developed for Peer-to-Peer (P2P) 

energy trading with and without considering the integration of blockchain technology, which can 

be classified into three main areas: game theory models [10] – [13], auction models [14] – [17], 

and analytical models [18] – [20]. Researchers in [10] propose a novel game-theoretic model for 

P2P energy trading using direct interaction between prosumers with a particular consideration for 

demand response capability and privacy. Price negotiations are modeled as a non-cooperative 

game, with a novel iterative algorithm developed to reach price equilibrium. The work proposed 

in [11] suggests a strategy for energy storage allocation utilizing a Stackelberg game. In this 

strategy, each participant submits an initial bid price which is evaluated by a central, third-party 

participant. The third party then calculates a target price between the minimum and maximum 

bid prices which seeks to maximize the average cost savings among participants. After the 

selected target price is proposed, participants may adjust the amount of energy storage allocation 

they are willing to purchase, which would in turn affect the target price calculation. The target 

price and participant energy storage amounts are continuously updated until an equilibrium is 

reached where all bids are finalized and payments are exchanged. A primary drawback of the 

proposed strategy is the requirement of a centralized entity to control price adjustments for 

trading. Additionally, the economic efficiency is not maximized for each participant. The model 

proposed in [12] formulates a cooperative game to solve energy trading with bilateral decision 

making. In this model, buyers and sellers determine their maximum and minimum acceptable 

costs and maximum and minimum acceptable payoff. The game is solved when an appropriate 

bilateral price is determined for both parties. The efficiency of the model is shown for energy 

trading between single seller single buyer and single seller multiple buyers; however, the model 
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is not extended to scenarios which consider multiple sellers in the marketplace. The work in [13] 

proposes a Stackelberg game-based dynamical pricing strategy for energy sharing. A central 

trading operator sets the buying and selling prices for the microgrid, while the energy prosumers 

are able to determine their level of energy consumption from the microgrid and from the utility.  

Researchers in [14] propose an energy market auction for a community microgrid. The 

community microgrid establishes trading between its prosumers in an effort to purchase energy 

at a price below the utility price. The utility participates as an infinite energy source in the 

market, therefore excess generated power in the microgrid will remain unsold if it cannot beat 

the utility price. Additionally, the proposed trading market is conditioned for noniterative 

bidding, which does not allow for energy prices and bids to be dynamically updated to encourage 

trading. In [15], an iterative double auction price adjustment mechanism is proposed in an effort 

to maximize social welfare. A third-party energy broker entity acts as an auctioneer, determining 

the execution of energy trades based on buying and selling prices submitted by participants. In 

this way, the third-party entity ultimately determines the final trading price and amount. 

Researchers in [16] propose a continuous double auction-based electricity market utilizing a 

predictive trading optimization model. In this strategy, an optimization problem which 

determines optimal grid operation is integrated into the auction model in order to optimize the 

bidding behaviors of buyers and sellers. This optimized auction model relies on market pricing 

predictions based on historical transaction data.  The work in [17] proposes a multiagent method 

for energy trading utilizing a strict reverse auction bidding scheme. In this method, an aggregator 

acts as a central entity interfacing with generation entities in the microgrid which bid to fulfill the 

microgrid demand with the aggregator having control over the selection of bids. If the available 

energy supply is higher than the demand, the aggregator lowers the purchasing price and accepts 
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updated bids from willing participants. This process continues until only one participant remains 

and the trade is executed at the final price. The primary drawback of this work is also the 

reliance on a central trade control entity.  

The work in [18] develops a P2P linear programming trading model for applications in 

decentralized and centralized storage energy markets. The model is designed as a multi-energy 

management strategy with a goal to minimize electricity costs in the trading community. The 

authors admit that price determination is highly dependent on the assumed consumption costs, 

which in the proposed modeled are determined from grid prices. Authors in [19] propose an 

optimization model for the operation of PV systems in the context of P2P energy trading. The 

proposed model is designed as a mixed integer linear programming model used to optimize 

operational decisions of a distributed energy market which allows P2P energy trading. In this 

way, the pricing mechanism for energy trading is directly incorporated in the optimization 

problem. Research in [20] proposes a dynamical pricing model for energy sharing considering 

the supply and demand ratio of shared PV energy. Prosumers calculate desired prices in an effort 

to minimize economic and inconvenience costs. Buyers attempt to match their prices to the seller 

price, with both updating their prices iteratively based on the cost function until converging on 

their finalized prices. If prices do not match, the excess demand is satisfied by the utility. None 

of the trading models proposed in [10] – [20] consider costs associated with islanded microgrid 

operation, such as energy curtailment and load shedding. Additionally, the existing models fail to 

consider other factors which influence the buying and selling prices such as spinning reserve and 

energy storage costs.  

In terms of integrating blockchain technology, few studies have focused on developing 

decentralized energy trading using blockchain technology [21] – [25]. For instance, the work in 
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[21] proposes a two-layer algorithm for blockchain-based energy trading negotiation and 

transaction settlement among grid connected networked prosumers. The first layer is a contract 

chain, which contains data related to the energy transaction. The second layer is a ledger chain, 

which tracks the trading balance of the microgrid network. Because the data in these two chains 

directly influence one another, the immutability of their records is further ensured by a high 

frequency verification mechanism between corresponding blocks in each chain. Researchers in 

[22] suggest the use of a smart contract method based on energy tokens, where the energy token 

represents a unit of power at a fixed price. This work shows that utilizing blockchain for smart 

contract allows automatic execution of energy trading contracts in a secure, decentralized 

network. Authors in [23] extend the energy token method by using a linear time-based value 

depreciation model for the energy tokens. This method stimulates energy trading by 

incentivizing the buying and selling of tokens within a time limit. An incentivizing method 

utilizing Nash bargaining theory is presented in [24]. In [25], the impact of applying load 

management on reducing the energy cost bought from a blockchain-based peer-to-peer energy 

trading market is studied. PoW is used as the blockchain consensus method in this work. 

     System security is crucial to the successful operation of interconnected energy trading 

systems, and recently proposed models have turned to blockchain technology to address these 

concerns [8, 26-30]. The work in [26] proposes a blockchain model for detecting data corruption 

produced by third party intrusions based on a collaborative intrusion detection approach. The use 

of blockchain as a means of intrusion detection removes the security risk of a central authority 

while improving the speed and accuracy of detection. A modified blockchain approach utilizing 

directed acyclic graphs is proposed in [8] to ensure the preservation of security in networked 

microgrids in order to minimize operational costs. The proposed method additionally includes a 
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data restoration technique for the event of a corruption on the blockchain due to third-party 

intrusion. A unified energy blockchain based on consortium blockchain for secure peer-to-peer 

energy trading in industrial internet of things is presented in [27]. This unified energy blockchain 

utilizes a traditional proof of work consensus method to validate blocks on the chain. To ease the 

limitation of execution time, a credit-based payment scheme is also proposed to stimulate fast 

peer-to-peer energy trading. To increase the system security and privacy, differentially private 

energy trading auction using consortium blockchain for microgrids systems is proposed in [28]. 

This model seeks to increase the security and privacy of traditional auction-based peer-to-peer 

trading by utilizing consortium blockchain technology. Researchers in [29] propose the use of 

consortium blockchain to ensure privacy protection of direct transactions between microgrids. In 

an effort to improve the efficiency of blockchain transactions, the use of practical byzantine fault 

tolerance (pBFT) is proposed as an alternative to traditional consensus methods in this work. 

Peer-to-peer energy trading based on Blockchain implementation using Hyperledger Fabric 

considering different energy transaction scenarios and crowdsources is presented in [30]. This 

work considers blockchain utilizing a modified pBFT consensus method but requires a central 

managing entity in large-scale crowdsourced implementation. 

     Based on the conducted literature review, it was found that there are three aspects that 

need further investigation: 

(i)  How the energy trading price and amount is determined for both islanded and grid-

connected microgrid networks. 

(ii)  Once a trading transaction is completed, there is a need to develop more secure energy- 

and time-efficient consensus algorithms to settle those transactions in the blockchain. 

Additionally, the existence of malicious nodes that might invalidate the voting process of 
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the consensus mechanism and manipulate the recorded data need to be considered in the 

algorithm’s development. Otherwise, the blockchain system may become insecure, 

unreliable, and inefficient. 

(iii)  In spite of the numerus advantages of using blockchain in developing a trustable trading 

environment, the concern of network privacy is still a primary concern restricting 

blockchain implementation, especially in peer-to-peer- trading mechanisms. 

1.3 Contributions 

To resolve the above challenges, the work in this thesis focuses on developing P2P 

energy trading models to facilitate transactions among microgrids in a multiagent network. Price 

negotiation mechanisms are proposed for both islanded and grid-connected microgrid networks. 

Additionally, a two-stage blockchain-based energy trading algorithm for a group of networked 

microgrids is considered to ensure the security of the energy trading mechanism. The two-stage 

algorithm develops an energy trading-based smart contract mechanism in stage one, and a 

transaction settlement method is developed in the second stage. The contribution of this work 

can be summarized as follows.  

1.  Development of a pre-conditioned smart contract-based energy trading mechanism to 

allow microgrids to establish coalitions, negotiate the electricity trading price, and the 

amount of energy to be traded. Significantly distinguished from the work in the literature, 

this method is uniquely developed in such a way that the pre-determined smart contracts 

are executed autonomously in a blindly traded energy marketplace, where peers do not 

share their data, including the energy prices during the trading process. This contributes 

to the need to develop more privacy-preserving negotiation mechanisms for peer-to-peer 

trading oriented processes. 
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2.  Distinguished from the work in the literature [16] – [26], this work proposes a new 

blockchain-based contract settlement protocol utilizing a two-phase consensus algorithm 

consisting of pBFT and a modified PoS to ensure system security, energy and time 

efficiency.  

3.  The proposed algorithm establishes a price adjustment mechanism for islanded operation 

and two distinct price adjustment mechanisms for grid-connected operation of microgrid 

networks. In contrast to the work in the literature, the cost of microgrid local resources 

(storage cost, curtailment cost, load shedding cost, and spinning reserve) are considered 

in the price adjustment process to incentivise the P2P energy trading. 

1.4 Thesis Outline 

This thesis is structured in five chapters. Chapter 1 provides background and motivation, 

literature review, research contributions, and a thesis outline. Chapter 2 contains an extended 

discussion of peer-to-peer energy trading applications for networked microgrids and blockchain 

technology. Chapter 3 presents the proposed energy trading model for the networked microgrid 

applications, including the development of the pricing mechanisms for islanded and grid-

connected operation and the blockchain-based settlement protocol. Chapter 4 details the 

simulation of the proposed models with an extensive presentation and analysis of the obtained 

results. Additionally, the results of the simulation are compared against existing solutions found 

in the literature. Finally, Chapter 5 provides the conclusions of the thesis work and proposes 

future research to extend the work contained in the thesis. 
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CHAPTER 2 

PEER-TO-PEER ENERGY TRADING IN DISTRIBUTION NETWORKS: AN 

OVERVIEW 

2.1. Introduction 

The United States Department of Energy defines a microgrid as, “a group of 

interconnected loads and distributed energy resources within clearly defined electrical 

boundaries that acts as a single controllable entity with respect to the grid. A microgrid can 

connect and disconnect from the grid to enable it to operate in both grid-connected or island 

mode [5].” Fig. 2.1 shows a schematic diagram of the microgrid concept. From this definition we 

can identify three major distinguishing characteristics of a microgrid: (1) microgrids exist at the 

distribution level, consisting of distributed energy sources serving localized loads, (2) microgrids 

are capable of operating both with and without a connection to the power grid, and (3) 

microgrids have a layer of intelligent control, enabling the microgrid to actively manage its 

resources to operate successfully whether it is islanded or grid connected. 

  

Figure 2.1. Microgrid concept 
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As mentioned previously, the prevailing method of energy distribution for the last 

century has consisted of large-scale, centralized energy production facilities generating and 

transmitting power over long distances up to hundreds of miles away from the generation. To 

mitigate losses over these long distances, power is transmitted at very high voltages up to 750 

kV. Stepping up to this voltage requires large, expensive step-up transformers at the generating 

facilities, and similarly expensive step-down transformers to gradually step down from 

transmission to distribution voltage, and then finally to residential service levels. According to 

the US Energy Information Administration, the amount of power lost in transmission and voltage 

transformation is on average 5% of the total energy production [31]. Microgrids avoid the issue 

of transmission power loss altogether by relying on distributed generation technology (DG). DG 

can be defined as small energy generating resources installed at the distribution level. DG is 

already localized to the loads it serves, and therefore requires little to no power transmission to 

deliver energy to the consumer. 

An additional drawback of the current power grid system is the centralized nature of the 

power grid. Large-scale utility generation plants service thousands of individual customers 

through a small number of transmission lines, the loss of which would impact those customers. 

Conversely, the islanding capability enables microgrid to maintain the power supply during 

power grid outages, and reliably supply power to its local loads. 

The second unique characteristic of the microgrid is its ability to operate with or without 

a connection to the power grid. When the microgrid has a connection to the power grid, it is said 

to be grid-connected. This grid connection gives the microgrid the ability to exchange energy 

with the grid, either by purchasing energy from the grid in the event that the microgrid cannot 
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generate enough energy to satisfy its demand, or by selling energy to the grid in the event that 

the microgrid has generated more energy than it has demand. When the microgrid is 

disconnected from the power grid, it is said to be islanded, or operating in islanded mode. A 

microgrid operating in islanded mode does not have the capability of exchanging energy with the 

grid, and therefore must rely on its own generation to satisfy the local demand.  

Islanded operation can be either voluntary or involuntary. In the majority of voluntary 

cases, the microgrid is islanded because a connection to the grid is impractical, such as when the 

microgrid is servicing loads in a remote community [4]. Additionally, a microgrid can choose to 

enter islanded operation when the utility grid experiences disturbances. A microgrid may be 

involuntarily islanded due to a loss of the tie line between the microgrid and the power grid as a 

result of equipment failure or a severe weather event [4]. Also, a system blackout in the power 

grid could be considered an involuntary islanding. Fig. 2.1 illustrates the ability of a microgrid to 

operate in either grid connected or islanded mode. 

The third unique characteristic of the microgrid is the ability to intelligently control its 

energy resources to maximize the efficiency and increase the deployment of renewable 

distributed energy sources (RES). As mentioned previously, microgrids are equipped with an 

array of local energy sources (energy storage, dispatchable generation units, controllable loads, 

etc) which can be utilized to accommodate the variable nature of renewable generation. 

Microgrids manage its local resources in one of two primary ways: centralized control or 

distributed control. The microgrid utilizes a central controller which is tasked with scheduling 

the dispatch of the all the various energy sources and managing all the loads in the grid [32]. For 

distributed control schemes, the microgrid relies on the local control of each resource in the 

microgrid [33]. Distributed schemes are often structured as Multi-Agent Systems (MAS), where 
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each resource is equipped with a controller agent that coordinates the generation or demand of its 

resource among the other agents in the grid [34]. 

To achieve optimal management and scheduling of microgrid local resources in both 

control schemes, it is imperative of the microgrid operator to forecast the grid energy profile, 

which include demand and renewable generation forecast. In addition to its ability to forecast, 

the microgrid must also be equipped to respond to real-time forecasting errors and sudden 

contingency scenarios, such as an unscheduled islanding. Microgrid controllers must be able to 

self-stabilize through voltage and frequency control to ensure the microgrid remains operational 

[35]. 

Beyond the operational characteristics and concerns of a single microgrid, much research 

attention is being paid to the operation and interaction of groups of microgrids. Due to the 

rapidly increasing deployment of microgrids, a primary focus of microgrid research is now 

turning to the microgrid network. Networked microgrid is a large group of interconnected 

microgrids which may operate cooperatively among themselves while still remaining distinct 

from the utility grid as shown in Fig. 2.2. The ability of networked microgrids to operate 

cooperatively leads to increased energy efficiency, reduced emissions, and lower energy 

consumer costs [36]. Additionally, transitioning the utility power grid toward a system of 

microgrid networks provides more efficient, and reliable smart grid [4].  
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Figure 2.2. Group of interconnected microgrids forming a microgrid network 

2.2. Peer-to-Peer Energy Trading Mechanism 

Peer-to-Peer (P2P) energy trading represents direct energy trading between peers. For 

networked microgrids applications, energy is traded among all microgrids (peers) in the network 

to achieve a desired social welfare (e.g., reliability or economic benefits). P2P markets can also 

be defined as energy exchange platforms that create a transactive energy market for all peers to 

bid and offer for transacting energy. P2P energy trading in the microgrid network service 

towards achieving generation-demand balance while reducing the instances of load shedding and 

energy curtailment, thereby improving the energy and economic efficiency of each microgrid.  

In P2P energy trading markets, participants known as prosumers buy and sell energy 

from one another in an effort to gain economic and reliability benefits. A prosumer is an 

emerging category of energy consumer which not only consumes energy but also has the 

capacity to produce energy through installed distributed generation (most commonly renewable 

generation) as illustrated in Fig. 2.3. The primary energy source of the prosumer is therefore its 

own generation, and any energy demand above the generation capacity of the prosumer must be 

sourced from external generation, such as the power grid. Conversely, if the amount of energy 
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produced exceeds the prosumer demand, the prosumer can sell the excess energy. In this way it 

becomes easy to define a microgrid as an energy prosumer, which utilizes its own generation to 

satisfy loads, while also being able to exchange energy with external entities [37].  

 

Figure 2.3. Prosumer definition 

For reliability purposes, each prosumer aims at achieving demand-generation balance. 

However, due to fluctuations in both renewable generation and demand, achieving generation-

demand balance becomes a challenging task. Therefore, there are three distinct scenarios exist 

for the prosumer: (1) when generation-demand balance is achieved, (2) when generation is less 

than demand, and (3) when generation exceeds demand. In the first scenario, the prosumer has 

satisfied all of its loads and has no remaining energy, therefore no action is required. In the 

second scenario, the prosumer was not able to satisfy all of its loads and therefore must seek to 

purchase additional energy or be forced to shed his unsatisfied load. In the third scenario, the 

prosumer has not only satisfied all of its demand, but it also has excess energy which it may seek 

to sell at a profit, store in an energy storage system, or curtail. P2P energy trading between 

prosumers seeks to resolve the energy deficits and surpluses of scenarios (2) and (3). 
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Among the numerous P2P models developed in the literature, three primary techniques 

are employed [37]: 1) game theory, 2) auction markets, and 3) constrained optimization.  

2.2.1 Game Theory 

Game theory has been defined as the mathematical study of the interaction among 

rational decision makers. The modern development of game theory was heavily influenced by its 

use among mathematicians and economists as a tool for determining the optimal equilibrium 

among game participants [38]. In basic terms, game theory analyzes the decision-making process 

among game participants in competitive situations for which the actions of one participant both 

effect and depend on the actions of the other participants. Therefore, game theory has become a 

popular technique for developing P2P trading models where each participant is seeking to 

optimize their situation. Two general categories of games exist: cooperative games and non-

cooperative games [38]. 

In cooperative games, participants are motivated by both their self-interests and the 

interests of one, multiple, or all other participants in the game. Participants operate under 

coalition, making decisions that benefit all coalition members while fairly distributing revenue. 

Cooperative game P2P trading models involve situations where trading participants sacrifice 

their individual economic optimization to achieve an equilibrium which satisfies a larger group 

of trading participants [39]. In cooperative games, the optimal trading price is not always 

achieved. 

In non-cooperative games, all participants seek to optimize their situation based on their 

self-interests without directly communicating among other members [38]. The end goal of a non-

cooperative game is to achieve a Nash equilibrium, which is a stable state wherein no game 

participant can improve their standing by deviating from their current states. The most popular 
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non-cooperative game strategy utilized in P2P trading is the Stackelberg game. In the 

Stackelberg game, a single participant is designated as the leader and makes the first decision, 

and all other participants have the benefit of optimizing their decision based on the leader’s 

initial decision [40]. If the game is dynamic, all participants then update their decisions 

strategically to arrive at an equilibrium. In practice, this trading model would involve the leader 

offering an initial price, and all other participants providing counter-prices. After the initial set of 

prices is known, participants are able to adjust their pricing strategy to obtain the best possible 

economic outcome, i.e. selling at the highest price a buyer is willing to purchase, or purchasing 

at the lowest price a seller is willing to sell. 

2.2.2 Auction Markets 

Auction refers to the process of buying and selling a commodity by offering bids that 

establish the price at which an auction participant is willing to buy or sell the commodity being 

offered [41]. Traditionally, three types of auctions exist, depending on the number and makeup 

of the participants: forward auction, reverse auction, and double auction [42]. The most common 

type of layman’s auction is the forward auction, where a single seller is offering an item that 

receives bids from multiple potential buyers and the highest bid succeeds. The reverse auction is 

the opposite, where a single buyer accepts bids from multiple sellers where the lowest bid 

succeeds. While both the forward and reverse auction types can be used to develop P2P trading 

models, the most popular is the double auction. 

In a double auction, multiple buyers and multiple sellers participate, where buyers submit 

their bids and sellers submit their asking prices. A third-party market controller then evaluates all 

the bids and selects a price which clears the market; that is, where all sellers who asked below 
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the selected price and all buyers who bid above the selected price succeed in their sale or 

purchase [43].  

Ideally, the selected price is obtained from the intersection of the aggregated supply and 

demand curves of the available bids, known as the average mechanism [11]. However, in 

practice P2P energy trading double auctions can utilize different price determination mechanisms 

which can be designed to comply with a set of system constraints. 

2.2.3 Constrained Optimization 

Constrained optimization is the process of optimizing an objective function with respect 

to one or more variables considering limitations of those variables. For the purposes of P2P 

trading, the objective function is a cost function, which is solved to minimize the decision 

variables. Several optimization techniques have been used to develop P2P energy trading 

models, including linear programming (LP), mixed integer linear programming (MILP), and 

alternating direction method of multipliers (ADMM). 

In mathematics, LP is the method of achieving the optimal scenario in a model 

represented entirely by linear relationships. In other terms, LP optimizes a model defined as a 

linear equation. LP are capable of being solved very efficiently using the simplex algorithm. In 

the case of P2P energy trading, LP is utilized to determine the optimal trading decisions which 

minimize trading costs. This optimization can be done considering a single prosumer, or an 

entire P2P trading market. 

MILP is a special case of integer LP where some variables are constrained as integers 

while other variables are capable of being non-integers. Unlike LP, because of the mixture of 

integer and non-integer variables, MILP problems cannot be solved efficiently using the simplex 
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algorithm. MILP is used in much the same way as LP to develop P2P trading models, with the 

main difference being the number and mixture of decision variable types being solved. 

ADMM is a variant of the augmented Lagrangian method for solving distributed convex 

optimization problems. The ADMM works by decomposing a constrained optimization problem 

into distinct unconstrained problems which can then be solved more easily and adding a term to 

consider the error of decomposing the original problem. In the case of P2P energy trading, 

ADMM is particularly useful for dual price adjustment optimization. 

2.3 Blockchain-Based P2P Trading 

One of the fastest growing technological advances of the 21st century is the continued 

development and application of the blockchain and blockchain technology. A blockchain is a 

digital database of information containing an immutable ledger of transactions distributed in a 

decentralized network [9]. In the simplest terms, a blockchain is a growing list of records that 

cannot be changed that is shared among a group of users.  

A fairly recent concept, blockchain was first proposed in 2008 by an individual (or 

group) using the alias Satoshi Nakamoto and was originally intended as a public transaction 

ledger for the popular cryptocurrency bitcoin [44]. Since its invention, blockchain technology 

has been utilized in many applications, including cryptocurrency, banking, supply chain 

logistics, smart contracts, and energy trading.  

Blockchain takes its name from the structure of its data as a chain of discrete information 

blocks which form a digital ledger. Each block in the chain contains the informational details of 

a discrete transaction record, with each transaction being recorded on a new block in a time-

linear manner [9]. The information contained in each block includes the identification of the 

parties participating in the transaction, the amount of the commodity being transacted, the price 
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of that transaction (if applicable), the precise time of the transaction, and often a nonce, which is 

a random string of numbers. Additional information can be included to suit the particular 

application. Fig. 2.4 illustrates a simple schematic diagram of the blockchain structure. 

 

Figure 2.4. General blockchain structure  

In addition to the transactional information and the nonce, each block contains an alpha-

numeric string known as a hash, which is obtained by inputting the information from the block 

into a hash function (a special mathematical function) which generates a fixed-length hash that is 

deterministic with regard to the input [46]. The hash of the block is then published at the end of 

the block. Furthermore, the next block in the chain will add the previous hash to its block data 

before hashing, which will contribute to the input of the hash function to generate the hash that 

will be published to the end of the second block. The third block will adopt the hash of the 

second, and so on. This process of relating each block by their hashes is where the chain concept 

originates [9].  

When a block is added to the blockchain, all information is then updated synchronously 

to the entire network that shares the blockchain. This ensures that all participants have the same 

blockchain record. If any of the data in a chained block is modified, even by a single character, 
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the hash generated with that block will change. Since the tampered block’s hash has changed, it 

no longer matches the hash found in the data of next block and indicates the tampering of the 

block. In this way, a malicious actor that wishes to tamper with a block would also have to 

update the information in the next block (and also the previous block). However, altering the 

information in the second block will cause hash mismatch between the second and third blocks, 

and so the information of the third block must also be updated. Therefore, altering the 

information of just one block causes an increasing ripple effect. Additionally, since the 

blockchain is distributed among all network participants, the malicious actor would have to alter 

all copies of the blockchain simultaneously. This would require individual access to all 

decentralized machines with a copy of the blockchain, which is also practically infeasible. 

The immutability of blocks, coupled with the decentralized distribution of the blockchain 

record, make blockchain an attractive solution to cybersecurity concerns for financial 

transactions in energy trading [9]. Additionally, blockchains employ a consensus method as a 

requirement for adding blocks to the blockchain, which protects the blockchain from malicious 

actors that would seek to record false information on the blockchain. These consensus methods 

require that a form of proof be provided that the block being added to the blockchain is valid. 

Various consensus methods have been developed, including PoW, PoS, Proof of Authority 

(PoA), and pBFT [16]. 

PoW is the original and most widely used algorithm for determining blockchain 

consensus. By definition, PoW describes a system that requires a not-insignificant amount of 

computational effort to complete a task, which acts as a deterrent to malicious abuse. For 

blockchain applications, PoW relies on the addition of the previously mentioned nonce, where 

blockchain participants called miners guess the nonce value that will produce a hash for the 
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block below a certain target hash value. Determining a nonce value which will satisfy the given 

condition is non-trivial, and the target hash is most often selected such that it requires 

approximately 10 minutes to solve for the nonce. Once the nonce has been solved for, the valid 

hash is broadcast to the network and the validated block is added to the chain. 

PoS was proposed as an alternative to the PoW algorithm, which is both energy and time 

inefficient due to the high computational requirements. PoS works on the basis of “stake”, 

wherein a validator for a proposed block is chosen randomly from a group of validators that have 

a certain level of stake in the blockchain. Individuals who participate in the blockchain and 

validate blocks more often accrue more stake, which in turn gives them a higher chance of being 

selected to validate new blocks.  

Conceptually, tying the validation of new blocks to stake deters malicious actors from 

attempting to accrue high levels of stake in order to manipulate the blockchain, since accruing 

stake also means the individual is increasingly reliant on the accuracy of the chain, therefore 

making it self-detrimental to manipulate the chain. The concept of stake was originally 

established based on cryptocurrency but can also be defined according to the specific blockchain 

application. For instance, when PoS is used for energy trading, stake can be defined as the 

number of blocks the individual has previously participated in. 

PoA is a consensus method typically reserved for permissioned blockchain. In contrast to 

traditional blockchains which are publicly distributed, permissioned blockchains are only 

distributed among a group of trusted peers [46]. Among the group of blockchain participants, 

PoA requires a subset of accounts which have the authority to validate blocks for the blockchain. 

In this way, PoA is a more centralized consensus method since is relies on a controlled group of 

privileged blocks. While this method provides a much faster and more automatic method of 
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validation, it also requires that authorized participants be highly trusted and have very strong 

individual security, since a malicious actor can target these authorized participants in order to 

gain validation privileges. 

Unlike the other consensus methods, pBFT is not a direct proof method. Instead, pBFT 

relies on applying the concept of BFT for the purposes of block validation. BFT refers to the 

ability for a distributed network to reach an assured consensus despite the presence of faulty or 

malicious nodes that propagate false data. The distinguishing feature of pBFT is the use of two 

voting rounds to reach consensus. When a block requires validated, the block is compiled by the 

transacting parties and sent to a participant known as the primary. The primary then broadcasts 

the block proposal to the network. This commences the first voting round, wherein each 

participant broadcasts an acknowledge message to the network that it has obtained the block to 

be validated. This is the first vote, and each network participant is then waiting to receive votes 

from a pre-determined threshold (usually 2/3) of the network [47]. When a participant receives 

the requisite number of votes, it sends a second vote which acknowledges whether it approves 

the block being validated. Once the second vote has been broadcast for more than 2/3 of the 

network the block is validated and the primary appends the block to the chain [47]. In this way, 

the network is capable of tolerating up to 1/3 of network not participating or behaving contrary to 

the other network members. Malicious actors would need to gain control over more than 1/3 of 

all network participants to manipulate the blockchain [47]. 

The blockchain is becoming a popular choice for secure P2P energy trading in 

decentralized networks due to the immutability of the blockchain record and the consensus 

methods used to validate energy transactions appended to the chain [9]. For instance, smart 

contract architectures for decentralized P2P energy trading based on Blockchain is a commonly 
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used method. The smart contract is defined as a computerized transaction protocol that executes 

the terms of a contract [37]. By converting contractual conditions into code and embedding them 

into property that enables self-executing of trusted transactions and agreements between 

different, anonymous nodes without the need for a central authority. For blockchain applications, 

smart contracts are scripts stored on the blockchain with a unique hash [37]. A smart contract is 

triggered by addressing a transaction to it. It then executes independently and automatically in a 

prescribed manner on every node in the network, according to the data that was included in the 

triggering transaction. 
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CHAPTER 3 
 

THE PROPOSED P2P ENERGY TRADING MODELS 
 

3.1 Islanded Operation Mode – Multiagent Model 

The entire interconnected islanded microgrid system is modeled as a distributed multi-

agent network, where each agent (microgrid) is a node of the network. Multi-agent coalition 

refers to a way to cooperate agents to complete a task, where none of them can complete it 

independently [21]. Based on this definition, it was assumed that each microgrid (agent) consists 

of only renewable distributed generation and power demand. Since all microgrids are connected 

to each other and disconnected from the power grid, thus, the grid back up is unavailable. 

Therefore, the task of all microgrid operators in the islanded system is to balance local renewable 

generation and demand. Hence, achieving zero net load is used to measure the level of 

satisfaction of all participants in the P2P trading. It should be noted that the net load is defined as 

demand minus renewable generation. All microgrids in the islanded system share a common 

interest which is satisfying their net load; hence, they agree to work in a collaborative manner to 

satisfy their net load. It is also assumed that each microgrid does not have sufficient non-

renewable local resources (e.g, dispatchable units, storage, controllable loads). Therefore, each 

microgrid is extensively incentivized to participate in the P2P trading to balance their net load. 

This incentive mechanism can be justified based on the fact that reliability benefits are main 

drivers of microgrids operation in islanded mode [48]. Limited capacity of local resources can be 

used only as a back-up if the power exchanged in the P2P trading is insufficient to balance their 

net load. Therefore, it is not required to formulate a scheduling optimization problem since 

dispatchable units, storage and controllable loads are not primarily used to balance the net load.  
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In terms of the model architecture, each node represents a microgrid consisting of 

renewable generators, and power demand, local controller, and trade controller in a layered 

architecture. The renewable distributed generation and power demand are located in the physical 

resource layer. On top of that there is the local controller agent (LCA), which is mandated to 

manage the load and renewable generation data (forecasting hourly net load). In the event of 

energy deficit or surplus, the local controller forwards the information to the trade agent (TA) 

which is tasked with buying or selling energy to satisfy the microgrid hourly net load for the day 

ahead 24-hour time horizon. A graphical illustration of the system model is given in Fig. 3.1. The 

overall trading model is described in detail in the following sections. 

  

Figure 3.1. System Model (islanded operation) 
 

3.1.1 Seller and Buyer Identification  

It is assumed that all microgrids have the capability to forecast their power demand and 

generation for a particular time slot 𝑡𝑡, and is beyond the scope of this work. Hence, the energy 

production and consumption for each time interval 𝑡𝑡 in the time horizon 𝑇𝑇 is generated randomly 
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by utilizing the Mersenne Twister pseudo-random number generator [49], The Mersenne Twister 

outputs a statistically uniform distribution between the upper and lower bounds detailed in 

equations (1), and (2) obtained from [50] with a slight modification. Utilizing the Mersenne 

Twister pseudo-random number generator was based on the fact that for each time horizon 𝑇𝑇, 

there is a maximum value for the renewable generation and electric load, below which the sub-

horizon values are permitted to vary in a quasi-random fashion dictated by a Mersenne Twister 

pseudo-random number generator [51]. 

𝑃𝑃𝑔𝑔(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 �𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 −
𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇

,𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 + 𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇
�                       (1) 

𝑃𝑃𝑢𝑢(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 �𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 −
𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇

,𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 + 𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇
�                       (2) 

The local controller determines the renewable generation-based net load of each 

microgrid by: 

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) = 𝑃𝑃;(𝑡𝑡) − 𝑃𝑃𝑔𝑔(𝑡𝑡)                                 (3) 

where 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) < 0 denotes an energy surplus while 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 (𝑡𝑡) > 0 indicates an energy deficit. If 

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 0 the microgrid has reached generation-demand balance. For all time intervals where 

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 ≠ 0, the local controller notifies the trade controller of the need to buy or sell energy. A 

microgrid with a negative net load is identified as a seller, whereas a microgrid with a positive 

net load is identified as a buyer as shown in equations (4) and (5). 

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) < 0 ⇒   𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢                              (4) 

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) > 0 ⇒   𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢                               (5) 

3.1.2 Price Adjustment and Contract Matching Mechanism 

After determining the remaining net load, the local controller forwards the hourly energy 

deficit or surplus information to the trade controller to interface with the other microgrids 

participating in the local energy trading marketplace. For each round 𝑟𝑟 in the time interval 𝑡𝑡 
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(hourly time interval) in 24-hour day ahead scenario, formulated energy selling contracts are 

offered at fixed prices by microgrids with surplus power, and energy buyers bid for these 

contracts with prices offered by microgrids with power deficit. Both sellers and buyers aim to get 

their contracts matched and executed to satisfy their net load since grid backup is absent. The 

contract matching process is developed as follows: 

 1) Sellers start with high fixed energy prices and make progressively lower offers in an effort 

to match the price of potential buyers after each unsuccessful offering round. Conversely, buyers 

start with low fixed prices and making progressively higher offers in an effort to match the prices 

offered in seller contracts.  

 2) For each round 𝑟𝑟 in the time interval 𝑡𝑡, an autonomous contract matching round is done in 

the marketplace considering the following possible scenarios:  

(i) If 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢 the contract is automatically executed.  

(ii) If 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢, the buyer moves on to the next available contract.  

(iii) If after the first trading round the offered contract did not receive a match from a 

potential buyer, the seller must lower its contract selling price using (6) and the 

buyer must increase the desired purchase price using (7). The contract will 

automatically execute when the buyer and seller prices converge in a future round. 

The contract price adjustment mechanism is developed as follows:  

 1) For time intervals when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0, the microgrid is designated as a seller (𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 is identified 

as 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) and the trade controller authors an energy contract containing the amount of surplus 

power for sale and the price per kW of the power being sold. The seller calculates the desired 

selling price for each contract offering round as shown in (6). 

𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢      (6) 
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It should be noted that 𝑡𝑡 indicates the hourly time interval of the considered 24-hour time 

horizon, and 𝑟𝑟 represents the trading round in hour 𝑡𝑡. Since grid tie is unavailable for the 

islanded microgrid network, the seller initially attempts to sell with a price higher than the utility 

price in the first round (𝑟𝑟 = 1), denoted as 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓, where 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢

𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is designed such that 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 >

𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (the seller intends to sell at higher than the utility price). Therefore, when 𝑟𝑟 = 1, 

𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) is equal to the initial price 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓. To ensure price fairness and avoid price 

adjustment manipulation by the seller, a maximum threshold for 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is specified by the 

marketplace and agreed on by all microgrid operators.  

If the offered contract did not receive a match in the first round, the seller must lower its 

selling price according to (6). The price is reduced considering the operation cost of battery 

storage, curtailment cost, and transmission cost, where the second term in (6) represents the 

battery operation cost for each charging cycle, and the third term represents the energy 

curtailment cost. The cost of curtailment is modeled as a loss of revenue where 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 in 

the first round and 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) for all sequential rounds. It should be noted that curtailment is 

applied only when the surplus power (𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) is higher than the battery charging limit for each 

round (|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| > 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥). Hence, the curtailed amount of power for each round is a 

percentage of the difference between the surplus power and the power charged in the battery 

(𝛼𝛼|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟). It should be noted that 𝜏𝜏 is a binary variable with a value of 0 in the first round 

and 1 in all subsequent rounds for each hour. The fourth term indicates the transmission cost, 

where 𝐴𝐴 is the distance matrix that represents the distance between any two microgrids in the 

network, 𝑖𝑖 is the buyer microgrid index and 𝑗𝑗 is the seller microgrid index; hence 𝐴𝐴𝑢𝑢,𝑗𝑗 is the 

distance between microgrid 𝑖𝑖, and microgrid 𝑗𝑗. The price adjustment process in (6) is developed 

based on the fact that sellers would tend to charge and curtail surplus power to satisfy its net load 
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if they did not sell their excess power. Microgrids are motivated to utilize energy trading to avoid 

these high costs, therefore the seller will go back and adjust its selling price after each round 

until it gets its contract matched and executed.  

 2) For time intervals where 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0, the microgrid is designated as a buyer (𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 is identified 

as 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) and the trade controller enters the marketplace to evaluate potential contract purchases. 

The buyer enters the marketplace with a desired purchase price calculated using (7). 

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔��               (7) 

Since grid tie is unavailable for the islanded microgrid network, the buyer initially 

attempts to purchase power with a price lower than the utility price in the first round (𝑟𝑟 = 1), 

denoted as 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓, where 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢

𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is designed such that 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 < 𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (the buyer intends to pay 

less than the utility price). ). Therefore, when 𝑟𝑟 = 1, 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) is equal to the initial price 

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓. To avoid manipulation of the price adjustment by the buyer, a minimum threshold for 

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is specified by the marketplace and agreed upon by all microgrid operators. In addition, 

all cost parameters (e.g, 𝐶𝐶𝑔𝑔,𝐶𝐶𝑟𝑟ℎ ,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐶𝐶𝑢𝑢𝑐𝑐) used in price adjustment equations are constant and 

determined by the local marketplace in which all peers are trading.  

If the offered buying contract did not receive a match, the buyer will increase its offered 

buying price. The price is increased considering the operation cost of dispatchable units and load 

shedding cost, where the second term in (7) denotes the dispatchable unit operation cost for a 

committed cycle, and the third term indicates the load shedding cost. It should be noted that load 

shedding is applied only when the deficit power (𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) is larger than the backup dispatchable 

unit output power limit for each round (�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 � > 𝑃𝑃𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥). Hence, the amount of deficit power to 
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be shed is a percentage of the difference between the deficit power and the power supplied by the 

dispatchable unit (𝛽𝛽(|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)).  

The price adjustment process in (7) is designed based on the fact that buyers would have 

to get power from back up dispatchable units, as well as applying load shedding to balance its 

deficit net load if they did not buy power. Microgrids with energy deficits are motivated to avoid 

these high costs, and therefore the buyer will go back and adjust (increase) its buying price after 

each round until it gets its contract matched and executed. The complete contract price 

adjustment and execution algorithm is shown in Table 3.1.  

Table 3.1. Price adjustment and contract execution algorithm – islanded operation 

Algorithm 1. Islanded Operation 
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢  
3: 𝑟𝑟 = 1 
4: while contract = FALSE 
5:   if 𝑟𝑟 = 1 

6:    𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 

7:    𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔�� 

8:  else 
9:   𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 

10:   𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔�� 
11:  if 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 
12:  contract = TRUE 
13:  else 
14:  𝑟𝑟 = 𝑟𝑟 + 1 
15: end 

 
 

The blockchain in this work is used only as a secure settlement protocol after the contract 

execution. Even though the autonomous contract execution using blockchain is beyond the scope 

of this work, it can be done as follows:  
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Sellers and buyers prepare their contract condition off-chain, and then they compile and 

deploy their smart contract for possible execution to the local marketplace using an appropriate 

blockchain architecture that supports smart contract and deterministic consensus protocols. 

Hyperledger is a private blockchain software [52] that provides a modular architecture that 

makes it simple to implement smart contracts and deterministic pBFT-bases distributed 

consensus [53]. For instance, the energy trading model proposed in [54] adopted Hyperledger 

platform for implementing the proposed model. Furthermore, to avoid trade manipulation, 

prospective energy buyers do not share their desired purchase prices with energy sellers. Sellers 

that are aware of desired buying prices can manipulate trade by i) overvaluing their contracts by 

holding to a higher price knowing that prospective buyers will raise the desired buying price to 

meet energy demands or ii) under-valuing their contracts in order to undercut competition and 

execute more contracts. The converse is true for buyers manipulating buying prices. Therefore, 

prices should not be shared between buyers and sellers during contract's matching process. This 

can be done by encrypting the data included in the contract before it is broadcast in the 

marketplace. For instance, the confidential transactions technique discussed in [55] can be 

adopted where the buyer and seller have contract s that contain price and other confidential 

information. The technique of confidential transactions is to keep the price amount secret and to 

grant verifiers the ability to check the validity of amounts [56]. In this case, buyer and seller 

perform a two-stage encryption process. At first, buyer and seller perform cryptographic hash 

operation on their contracts to preserve the confidentiality and authenticity of data to each other. 

Then, the buyer adds a public-key or asymmetric cryptography to further protect data from 3rd 

party (intruder) intervention/malicious party. In particular, each of the buyers and sellers 

generate a public-key and a private-key. The buyer then encrypts its (cryptographic hashed) 
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contracts with the public key of the seller. The seller then decrypts data using its own private 

key. Once the seller decrypts the other party's data, its smart contract system performs price-

matching. Note that this price-matching operation contains a smart algorithm that can work on 

the cryptographic-hash (price) amounts from buyer and seller and make a decision [55]. Once 

this contract matching operation is done, it informs the buyers and the sellers about its decision. 

In this way, buyer and seller are not exposed to the price of each other and hence the overall 

confidentiality is preserved. 

3.2 Grid Connected Operation Mode – Multiagent Model 

3.2.1 Formulation of The Optimization Scheduling Problem 

In the first stage of the energy trading model for grid-connected operation, each 

microgrid solves a local energy resource scheduling problem. Since all microgrids in the network 

are independent entities with unique self-interests, each microgrid solves its own local optimal 

scheduling problem with an objective to minimize its operation cost. The scheduling problem is 

modeled as Mixed Integer Linear Programming (MILP) problem. It was assumed that all 

microgrid are connected to each other and connected to the main utility grid. 

min∑ �𝐶𝐶𝑔𝑔𝑃𝑃𝑢𝑢
𝑔𝑔𝑢𝑢𝑢𝑢 + 𝑆𝑆𝑈𝑈𝑢𝑢𝑦𝑦𝑢𝑢 + 𝑆𝑆𝐷𝐷𝑢𝑢𝑧𝑧𝑢𝑢 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑟𝑟𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓𝑃𝑃𝑢𝑢
𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 + 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐|𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢|�24

𝑢𝑢=1          (8) 

The first term of the objective function shown in (8) includes the cost of a dispatchable 

generation unit, followed by the startup and shutdown costs associated with the dispatchable 

generation unit. The fourth term is the operational cost of the Battery Storage System (BSS). The 

fifth term is the cost of energy exchanged with the grid (either purchased or sold), and the sixth 

term is cost the curtailed power (curtailed excess generation or curtailed excess load), where  

𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 is the hourly curtailed net load. It should be noted that 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 is negative for excess 

generation (curtailed power), and positive for deficit power (curtailed load). The net load is 
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defined as the hourly demand minus hourly renewable generation. Each microgrid will trade its 

excess net load 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 with other microgrids to avoid generation and load curtailment cost, hence; 

minimize its operation cost. The objective function is subject to the following constraints: 

𝑃𝑃𝑢𝑢
𝑔𝑔 + 𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 + 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑁𝑁𝐿𝐿𝑢𝑢                            (9) 

𝑃𝑃𝑢𝑢
𝑔𝑔,𝑚𝑚𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑢𝑢

𝑔𝑔 ≤ 𝑃𝑃𝑢𝑢
𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥                                (10) 

𝑦𝑦𝑢𝑢 − 𝑧𝑧𝑢𝑢 = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢−1                                   (11) 

𝑦𝑦𝑢𝑢 + 𝑧𝑧𝑢𝑢 ≤ 1                                       (12) 

𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑓𝑓𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑢𝑢
𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑢𝑢𝑛𝑛𝑐𝑐𝑢𝑢                          (13) 

𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑓𝑓𝑐𝑐ℎ,𝑚𝑚𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑢𝑢
𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥𝑐𝑐𝑢𝑢                          (14) 

𝑟𝑟𝑢𝑢 + 𝑐𝑐𝑢𝑢 ≤ 1                                       (15) 

𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 − 𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟                                  (16) 

𝐸𝐸𝑚𝑚𝑢𝑢𝑛𝑛 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 ≤ 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥                                  (17) 

�𝑃𝑃𝑢𝑢
𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓� ≤ 𝑃𝑃𝑢𝑢𝑢𝑢𝑟𝑟,𝑚𝑚𝑎𝑎𝑥𝑥                                    (18) 

The power balance equation (9) represents the power balance equation of each microgrid. 

Equation (10) ensures that the dispatchable generator operates within its operational limits. The 

constraint (11) ensures that a startup or shutdown only occurs when there is a change in the 

operating state of the generator from ON to OFF and vice versa. Equation (12) ensures that the 

generation unit cannot start-up and shutdown in the same hourly time interval. Equations (13) 

and (14) show the charge and discharge constraints of the BSS, while equation (15) ensures the 

BSS is not simultaneously charging and discharging in the same hourly time interval. Equation 

(16) shows that the SOC of the BSS is affected by the amount of energy charged or discharged 

from the BSS at hour 𝑡𝑡. The SOC of the battery storage system is limited by (17). The constraint 
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in (18) ensures that the power exchanged with the utility grid is limited by the maximum 

capacity of the tie line. 

3.2.2 Energy Trading and Price Adjustment Model – Model I 

After the scheduling problem has been solved, each microgrid has determined its 

remaining net load, modeled as 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢, which represents the surplus or deficit power for each 

hourly time interval t. Each microgrid intends to satisfy 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 by trading in the marketplace to 

avoid generation curtailment cost.  If 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 (surplus power), the microgrid will sell the 

surplus power. Whereas, if 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 (deficit power), the microgrid will purchase power from the 

market to satisfy its deficit load and avoid the high cost of load curtailment. Hence, for each 

hourly time interval, microgrids with excess power will be identified as sellers, and microgrids 

with deficit power will be identified as buyers. Fig. 3.2 shows a flowchart of the overall trading 

model. 

It is worth noting that the deficit and excess power cannot be traded with the utility grid 

because the maximum power that can be traded with the utility grid is limited by the tie line 

maximum capacity limit.   
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Figure 3.2. Flowchart of the proposed trading model (grid connected operation) 

Similar to the system described for islanded operation, the microgrid network is modelled 

as a multi-agent system, where each microgrid in the network represents an agent. Each agent 

(microgrid) includes one local coordination agent (LCA), and one trading agent (TA). The LCA 

performs autonomous energy management by solving a local scheduling problem to determine 

optimal control actions of the local energy resources and the net load to be traded. The LCA 

forwards the net load information to the TA, which is tasked with resolving each microgrid net 

load by facilitating energy trading among marketplace participants. In contrast to the system 

model for islanded operation, in grid-connected operation the trading agent is also capable of 

exchanging energy with the utility grid. A system model for the proposed system is shown in 

Fig. 3.3. 

Yes 

No 
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Figure 3.3. System model (grid-connected operation) 

Before offering their energy contracts in the marketplace, microgrids which will be 

selling energy calculate their initial offering price as a function of their excess power according 

to the developed formula shown in (19). Similarly, buyers calculate their initial offered price as a 

function of their deficit power demands according to equation (20). 

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = �1 +
��𝑃𝑃𝑚𝑚𝑚𝑚

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓                             (19) 

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = �1 −

��𝑃𝑃𝑛𝑛𝑚𝑚
𝑏𝑏𝑏𝑏𝑏𝑏�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓                             (20) 

Equations (19) and (20) are designed in such a way that microgrids with a lower 

magnitude of 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢are more willing to exchange energy at a price closer to the utility prices, 

while microgrids with higher magnitudes of 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢are more motivated to maximize their economic 

benefits (sellers maximizing profits, and buyers minimizing energy purchase cost).  
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Sellers will then publish their initial contracts to the marketplace detailing their power 

available for purchase and the offered price per unit of power. Seller contracts on the 

marketplace are sorted, with the lowest contract price considered first, followed by the second 

lowest contract price, and continuing in that fashion. Trading rounds for hour 𝑡𝑡 begin with buyers 

attempting to purchase power by matching their prices to the initial offering prices of the 

available contracts starting at seller index 𝑚𝑚 = 0. The contract matching process can be 

summarized as follows: 

1) If 𝜆𝜆𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 the contract is a match for the buyer-seller pair (𝑛𝑛,𝑚𝑚) and the transaction will 

be executed at the price 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢.  If 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 then the amount of exchanged power will 

equal 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢, resulting in buyer 𝑛𝑛 fully satisfying its load and dropping from the market for 

hour 𝑡𝑡, while the remaining balance of 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 will remain available for purchase in the 

marketplace. Whereas, If 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 < 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 then the amount of exchanged power will equal 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢, 

resulting in seller 𝑚𝑚 fully depleting its excess power and dropping from the market for hour 

𝑡𝑡, while the buyer 𝑛𝑛 with remaining demand equal to 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 − 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 will continue to purchase 

available power in the marketplace to satisfy its load. 

2) If 𝜆𝜆𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢 < 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢, the contract is not a match, and buyer 𝑛𝑛 moves to the next available contract. 

If after all matching contracts are executed in round 𝑟𝑟 there still exists sellers with surplus 

power and buyers with deficit power, then the remaining sellers and buyers will update their 

prices according to equations (21) and (22), respectively, and begin the next trading round. 

Equations (21) and (22) are designed to motivate market participants to trade by incrementally 

reducing the price of sellers and increasing the price of buyers after each trading round until their 

prices converge. The rationale behind (21) and (22) is that the seller price decreases with the 
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increase in the number of matching rounds, while the buyer price increases with the increase of 

the number of matching rounds.  

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1)                           (21) 

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) + 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1)                            (22) 

The remaining seller contracts are resorted by price low to high, and the buyers then 

attempt to match their prices with available contracts in the same manner for subsequent rounds 

until either ∑𝑃𝑃𝑚𝑚𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 0 or ∑𝑃𝑃𝑛𝑛𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 0. If there is no available energy left in the marketplace, the 

remaining microgrids with energy deficits will curtail their remaining loads. Similarly, if there 

are no willing buyers left in the marketplace, the remaining microgrids with surplus power will 

curtail their excess generation. Table 3.2 depicts the contract offering and matching algorithm. 

Table 3.2. Price adjustment and contract execution algorithm – grid-connected operation model I 

Algorithm 2. Grid-connected operation – model I 
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢 
3: 𝑟𝑟 = 1 
4: while contract = FALSE 
5:   if 𝑟𝑟 = 1 

6:    𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = �1 +
��𝑃𝑃𝑚𝑚𝑚𝑚

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 

7:    𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = �1 −

��𝑃𝑃𝑛𝑛𝑚𝑚
𝑏𝑏𝑏𝑏𝑏𝑏�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 

8:  else 
9:   𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝑐𝑐−1

𝑐𝑐+𝑐𝑐!
𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) 

10:   𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) + 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) 

11:  if 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 

12:  contract = TRUE 
13:  else 
14:  𝑟𝑟 = 𝑟𝑟 + 1 
15: end 
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3.2.3 Energy Trading and Price Adjustment Model – Model II 

The calculation of initial offering prices for buyers and sellers is conducted in the same 

manner as above with equations (19) and (20). Similarly, the contract matching process proceeds 

as described above, with one of two possible outcomes: 

1) If 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 the contract is a match for the buyer-seller pair (𝑛𝑛,𝑚𝑚) and the transaction will 

be executed at the price 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢. 

2) If 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 < 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢, the contract is not a match, and buyer 𝑛𝑛 moves to the next available contract. 

Diverging from the previous model: if after all matching contracts are executed for round 

𝑟𝑟 = 1 there still exist sellers with surplus power and buyers with deficit power, then all 

microgrids still participating will update their prices according to equation (23) for buyers and 

equation (24) for sellers. 

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢��  + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))�     (23) 

 
𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)                    (24) 
 

Buyers calculate their price adjustment considering transmission losses in the second 

term of (23), where the transmission cost is calculated as a fixed percentage of the traded energy. 

The third term in (23) considers the cost of peak plant generation and load shedding, while the 

fourth term includes the cost of load shedding. The binary variable 𝜏𝜏 has a value of 0 when 𝑟𝑟 = 1 

and a value of 1 otherwise. Likewise, the binary variable 𝛼𝛼 has the opposite conditions, having a 

value of 1 when 𝑟𝑟 = 1 and 0 otherwise. The constant 𝛽𝛽 limits the amount of load shedding to 1 

percent of the remaining load. Sellers calculate their price adjustment considering energy 

curtailment in the second term and battery storage costs in the third term. The maximum energy 

available from peak generation is defined as (25), while the amount of energy curtailed is defined 
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in (26), and the amount of energy charged to the battery is limited by (27). Table 3.3 depicts the 

contract offering and matching algorithm for grid-connected operation model II. 

𝑃𝑃𝑝𝑝𝑝𝑝 = 0.1 × 𝑃𝑃𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢                                    (25) 

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = 0.05 × 𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢                                   (26) 

𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥                                    (27) 

Table 3.3. Price adjustment and contract execution algorithm – grid-connected operation model II 

Algorithm 3. Grid-connected operation – model II 
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢  
3: 𝑟𝑟 = 1 
4: while contract = FALSE 
5:   if 𝑟𝑟 = 1 
6:   𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢,𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓

𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)  
7:   𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢,𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓
𝑏𝑏𝑐𝑐𝑢𝑢 �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛

𝑏𝑏𝑐𝑐𝑢𝑢��  + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))� 
8:  else 
9:   𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)  
10:  𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛

𝑏𝑏𝑐𝑐𝑢𝑢��  + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))� 

11:  if 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 

12:  contract = TRUE 
13:  else 
14:  𝑟𝑟 = 𝑟𝑟 + 1 
15: end 

 

After adjusting prices, buyers and sellers again attempt to match prices to execute 

contracts. This process continues until there is no more surplus or deficit energy available in the 

marketplace. If after all buyer and seller contract matches there still exists an energy deficit for 

the final buyer, the final seller will offer an additional amount of energy above the initial contract 

offer by utilizing a spinning reserve. Spinning reserve is the extra generating capacity available 

in a dispatched generator which can be utilized to compensate for power shortages. It is assumed 

that the seller is equipped with a spinning reserve margin from dispatchable generation which 
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can supply up to an additional 20% of the available energy. This additional energy is offered at a 

higher price according to the cost of reserve energy (𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟). If the second selling price is less than 

the penalty cost of load shedding for the buyer and the buyer still needs to purchase energy to 

satisfy its deficit, then a subsequent contract will be executed which transfers to the buyer an 

amount of reserve generation up to 20% of the final seller’s original excess power balance. The 

contract will be executed with an agreed upon price for the cost of the reserve energy. The total 

cost of the reserve contract is defined by (28). The amount of reserve energy exchanged in the 

contract is defined by (29) where 𝑧𝑧 is defined by (30) as a percentage of the seller energy and 

limited to be less than 0.2. 

𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑢𝑢𝑐𝑐𝑎𝑎𝑐𝑐𝑢𝑢 = 𝑧𝑧𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟                                  (28) 

𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢  ,         𝑧𝑧 ≤ 0.2                               (29) 

𝑧𝑧 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
                                      (30) 

3.3 Two-Phase Blockchain Consensus Protocol 

To enable a trusted settlement of electricity trading transactions, a smart blockchain-

based contracts protocol for transaction settlement is developed. The proposed blockchain 

method uses a traditional distributed ledger consisting of blocks of data that are connected in a 

single chain. These blocks of data contain the details of the finalized contract from the trading 

marketplace, including the network address of the buyer and seller, the amount of energy being 

trading, the price per kilowatt of the contract, the timestamp when the contract was executed, the 

hash from the previous block, and a new hash generated using the SHA-256 hashing algorithm. 

Because this ledger chain is a distributed ledger, each node of the network maintains a copy of 

the ledger.  
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Before a block is appended to the ledger chain, it must be validated using a consensus 

method. A two-phase consensus process method is proposed. In the first phase, a pBFT is 

adopted. pBFT has been proposed in recent years as a viable alternative to popular consensus 

methods such as PoW and PoS. Byzantine Fault Tolerance (BFT) refers to the ability for a 

distributed network to reach an assured consensus despite the presence of faulty or malicious 

nodes that propagate false data. The consensus process developed in this work is shown in Fig. 

3.4.  

 

Figure 3.4. pBFT two round voting process with faulty node tolerance 

The pBFT is an optimized application of traditional BFT method, which ensures 

consensus for any network of size 3f + 1 when there exists 2f + 1 validating responses (where f 

denotes the maximum number of faulty nodes). 

The pBFT works by a voting consensus where each node has an equally weighted vote 

value. For each block validation process the following steps are implemented:  

1) Initiate: a random node (microgrid) is selected to be the primary node. The primary node 

broadcasts the proposed block including the contract data to each of the secondary nodes 

in the network.  
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2) Acknowledge: Each of the secondary nodes broadcasts a vote to acknowledge their receipt 

of the proposed block to each node.  

3) Validate: After receiving 2𝑓𝑓 +  1 approval messages, a node will broadcast a validation 

message if the data in the proposed block is valid.  

4) Finalize: When 2𝑓𝑓 +  1 validation messages are received, the block has been validated 

and is moved to the second phase of the consensus process.  

It should be noted that according to traditional pBFT implementation, the network is 

secure for any network of size 3𝑓𝑓 +  1 where f is the maximum number of faulty nodes. 

Therefore, in a system where greater than 1/3 of nodes are faulty (corrupted or non-functioning), 

the pBFT no longer ensures a secure consensus. In the proposed model, the voting criteria is 

modified from the traditional 1/3 fault protection to be 2𝑓𝑓 +  1, because this criteria is greater 

than 2/3 of the network size. While a 2/3 criteria is sufficiently safe, the margin of error is a 

motivating factor for introducing the modified PoS as a second phase of consensus.  

To ensure a high level of security, a simultaneous second phase of consensus is 

conducted using a modified version of PoS consensus. For this consensus method, each 

microgrid is assigned a semi-random value generated using a weighting factor. This weighting 

factor corresponds to the recent history of participation in the energy trading marketplace, where 

microgrids with higher levels of participation are assigned higher weighting factors. After stakes 

values have been generated, the microgrid with the highest stake value during each consensus 

round is chosen as a special independent validator node. This validator node constructs a block 

using the same contract data as was broadcast in the pBFT consensus round and compares its 

block to the one validated using the pBFT consensus. If these two blocks match, the validator 

broadcasts a final confirmation that the block is valid, and it is appended to the public chain. If 
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the two blocks do not match, it indicates a fault that has manipulated the formed block, and an 

notification will be propagated to report a data manipulation incident. The overall two-phase 

consensus algorithm is illustrated in Table 3.3, where each microgrid is described as a prosumer.  

 

Table 3.4. Two-phase blockchain consensus protocol 

In comparison with other common blockchain consensus methods, pBFT shows several 

advantages. Firstly, pBFT has no fixed time requirements before consensus can be reached. PoW 

and the traditional PoS both have fixed time interval requirements before a proposed block can 

be validated. Additionally, pBFT does not require additional resources specific to the blockchain 

creation, instead utilizing existing network technology and processing capabilities to perform the 

block validation function. PoW requires expensive, special purpose computing hardware to 

perform block validation tasks which consume a significant amount of energy and financial 

resources. Furthermore, traditional PoS requires participants to be willing to use expendable 

financial resources in order to wager for validation rights. 

It is important to mention, however, that pBFT-based consensus methods have scalability 

issues regarding its use for a massive number of nodes. However, methods including partitioning 
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the network into smaller groups called federates have been shown to result in improved scaling 

up to 1000 nodes [4].  

The complete two-stage energy trading model which summarizes the trading process for 

all proposed models, including price negotiation mechanism and blockchain-based contract 

settlement, is detailed in the flowchart shown in Fig. 3.5. 

 

 
Fig. 3.5. Flowchart of the proposed model 
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according to desired purchase price.  
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CHAPTER 4 

SIMULATION RESULTS 

4.1 Islanded Operation Mode – Multiagent Model 

The proposed model was simulated using Python 3.6 in Microsoft Visual Studio 

Professional 2017 on a quad-core 2 GHz CPU equipped with 16 GB RAM. For adjusting the 

contract price, the charge cost of the battery storage is considered to be $0.03/kW [57] with a 

charging limit per round of 2 kW. The adopted $0.25/kWh operation cost of dispatchable unit is 

obtained from [58] with a slight modification, considering a ramp rate of 5 kW per round. The 

load shedding cost adopted in in this study is $1.0/kW [59]. The maximum curtailment ratio for 

each round is taken as 1% of the hourly surplus net load value. The load shedding ratio for each 

round is taken as 4% of the deficit hourly net load value. Transmission cost is considered to be 

2.8 × 10−6 $/(kWh. km) [60]. The simulation is carried out with 𝑇𝑇 = 24 hours, 𝑡𝑡 = 1 hour and 

scenarios of 5, 10, 15, and 20 node microgrid networks. Unless otherwise noted, trading results 

for each scenario are similar and congruent, and samplings of results from selected scenarios are 

reported for brevity. 

Using equations (6) and (7), microgrids participating in energy trading successfully 

adjusted their bid prices, executing a total of 216 contracts for a total of 419.63 kW of traded 

power during for the scenario of a 10 node microgrid network, whereas 456 successful contracts 

were executed with a total traded power of 937.17 kW for the scenario of a 20 node microgrid 

network. A graphical representation of each executed contracts for the case of 10 microgrids is 

depicted in Fig. 4.1, where the blue line represents the hourly total amount of traded power. The 

vertical bars show the accumulation of contracts in each hour, where each colored section of a 

bar represents a separate contract and the size of the section representing the amount of energy 
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traded in the contract. Table 4.1 details the data obtained from simulation for the scenario of 20 

microgrids, showing the amount of power traded in each formed contract over the 24-hour 

period. A similar table of data with the results for the scenario of 10 microgrids was used to 

generate fig. 4, and conversely a similar figure could be generated for the scenario of 20 

microgrids using the data from Table 4.1. 

 

Figure 4.1 number of executed contracts and amount of traded power in the case of 10 

interconnected microgrid system 

Fig. 4.2 shows an example of the progressive price adjustments of a buyer and seller 

negotiating an energy contract. In this sample, the desired buyer (microgrid 2) and seller 

(microgrid 5) adjust their prices according to (6) and (7) over successive contract matching 

rounds for one contract. It can be clearly seen that the seller decreases their asking price after 

each round (blue line), while the buyer increases their offered purchase price after each round 

(red line), with a contract match occurring at a price of $0.198/kW. According to the agreed 

upon market conditions, the seller offered their initial selling price at a value of $0.25/kW, and 

buyer sets their initial price to $0.15/kW. With the price of the buyer lower than the price of the 

seller, there is no match in the first round. In the second round the seller decreases their price to 

$0.2329/kW according to (6), and the buyer increases their price to $0.175/kW according to (7). 
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However, there was still no contract price match. Similarly in the third round the seller decreases 

their price to $0.215/kW and buyer increases their price to $0.2/kW with no contract match. 

Finally, in the fourth round the seller reduces their price to $0.198/kW, and the buyer increases 

their price to $0.225/kW. Hence, a contract is executed at the offerd seller price of $0.198/kW 

(for an exchange of 1.69 kW) since the seller price is now less than the buyer price. 

 

Figure 4.2. A successful price adjustment process for a selected block 
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Table 4.1. Amount of power traded (kW) in each executed contract for the 24-hour time horizon 

Contract no 

Hour 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 3.67 0.83 1.87 1.08 0.41 0.24 2.9 0.02 2.28 0.32 7.59 2.55 1.84 1.3 0.1 0.36 3.27 5.64 3.4 

2 3.2 0.15 0.77 1.93 0.19 0.5 0.99 2.78 1.96 0.88 2.56 1.09 0.49 4.2 1.97 0.22 2.26 0.31 1.92 

3 1.67 3.13 3.07 1.3 2.8 0.17 0.43 0.63 0.74 0.73 0.41 4.93 0.26 0.73 2.76 1.96 0.59 2.84 3.03 

4 0.22 2.81 1.05 0.56 1.79 0.18 3.38 1.53 0.62 5.52 1.92 2.35 3.56 0.37 0.3 1.19 2.42 1.77 8.54 

5 1.77 3.67 2.12 0.47 1.9 3.18 0.16 0.17 0.18 2.92 1.83 1.36 1.37 1.98 4.06 5.36 7.24 9.57 4.97 

6 2.44 1.13 2.6 0.32 0.09 1.09 2.7 0.14 1.47 5.5 0.08 0.2 1.21 0.33 0.15 1.98 1.18 5.28 3.56 

7 2.05 0.46 1.23 0.44 0.72 0.24 1.73 1.73 1.02 1.01 2.41 1.02 0.06 1.68 0.9 1.03 2.06 4.21 1.83 

8 0.74 0.85 0.52 2.69 0.32 1.68 4.05 0.85 3.09 1.69 2.14 0.56 3.23 1.03 0.46 0.27 1.32 4.74 4.05 

9 0.82 2.98 0.93 2.34 0.88 0.74 0.16 2.9 0.14 0.63 2.93 1.67 0.32 0.06 2.01 0.88 0.82 0.15 7.04 

10 4.06 0.6 2.02 3.3 1.61 1.45 2.43 1 0.31 1.99 1.77 2.53 3.7 2.7 1.47 0.4 0.9 5.15 3.45 

11 3.29 0.05 2.32 0.54 6.15 1.84 0.13 1.93 0.58 3.07 0.29 6.07 1.01 1.73 4.07 0.37 1.97 3.8 5.83 

12 1.18 2.36 0.07 2.6 3.49 0.32 0.63 2.19 1.62 1.68 0.43 0.72 5.85 0.85 4.32 6 3.5 0.81 3.97 

13 1.89 2.46 1.89 0.07 1.91 1.27 3.48 3.82 1.05 0.79 1.85 0.09 1 1.82 0.96 5.87 3.24 4.51 2.03 

14 2.96 2.32 4.22 0.82 0.44 2.14 2.57 1.01 1.01 1.01 0.16 0.36 0.03 0.86 1.71 2.54 0.97 4.46 2.66 

15 0.79 1.01 3.24 2.96 3.05 0.46 1.1 1.41 0.02 0.03 0.46 1.67 3.08 1.54 4.83 1.23 0.71 4.38 6.46 

16 0.67 2.18 2.09 1.08 1.29 0.51 0.54 3.61 0.1 1.88 0.38 0.04 0.63 2.09 0.24 8.49 4.89 6.5 2.24 

17 0.91 2 0.21 0.43 1.55 1.68 3.1 0.42 3.54 2.2 1.44 6.29 0.7 6.5 5.39 6.47 1.77 3.09 3.22 

18 2.85 2.53 0.01 4.97 0.62 1.22 2.62 3.1 3.04 1.31 2.75 0.49 1.93 0.27 1.84 0.5 6.19 1.91 1.25 

19 2.25 2.39 0.45 0.49 0.01 0.07 0.01 6.68 0.9 0.19 4.22 0.83 0.79 0.47 4.04 2.17 0.6 0.37 3.61 

20 2.32 3.67 0.87 3.12 1.81 1.14 0.81 5.26 0.13 0.12 1.34 1.07 3.69 0.63 4.46 0.26 1.08 4.49 0.5 

21 7.13 0.13 0.94 3.31 0.35 2.49 0.04 3.3 2.03 0.17 1.85 0.66 5.01 2.22 0.07 4.73 2.16 0.07 1.43 

22 4.03 1.39 3.87 0.43 2.65 1.68 2.72 4.92 1.94 6.22 1.48 0.59 3.48 1.34 0.3 7.14 2.69 1.78 4.66 

23 0.37 3.92 1.1 3.06 0.14 2.52 0.96 1.16 6.06 1.74 7.77 6.01 7.01 0.47 4.18 0.67 0.13 0.72 3.8 

24 5.34 0.17 0.13 4.09 1.08 4.19 0.13 2.23 2.75 1.35 2 0.07 1.35 0.48 0.45 7.61 2.8 3.44 4.06 
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Since each instance of offering a price and executing a contract is a discrete 

computational task, the average computation time required to complete discrete tasks required to 

execute a final contract are reported for a varying number of microgrids in the network, as shown 

in Fig. 4.3.  The average computation time to execute all contracts in the case of 20 microgrids is 

found to be less than one second (around 15.25 ms), which demonstrates the time efficiency of 

the proposed trading model. It can also be noted that the average contract matching time 

increases with the increase in the number of microgrids in the network in a nearly linear 

relationship. This is because with an increase in the number of microgrids in the network, the 

amount of traded contracts increases accordingly. The linearity of the increase in contract 

negotiation time shows that the proposed trading model is easily scalable for differing numbers 

of microgrids. This is also depicted in  Fig. 4.4, which shows a similarly linear relationship 

between the number of formed contracts and the number of interconnected microgrids. 

 

Figure 4.3. Variation in the computation time with respect to the change of the number of 

microgrids in the network 
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Figure 4.4. Variation in the number of executed contracts with respect to the change of the 

number of microgrids in the network 

It was found that the model has successfully incentivized efficient energy trading among 

islanded networked microgrids, primarily to satisfy outstanding net loads, and secondarily to 

obtain the economic benefit of trading at a negotiated price. Each microgrid with power deficit 

successfully purchased power to meet demands while microgrids with power surplus sold off 

their excess power hence, demand-generation balance for the islanded interconnected system has 

been achieved and the costs associated with load shedding and power curtailment have been 

avoided. 

After all contract negotiations have been finalized, the details of each contract are 

recorded as blocks, verified using a novel two-phase consensus mechanism, and placed on a 

contract records blockchain. Each validated block in the chain contains (i) buyer and seller 

identification IDs, (ii) the amount of power being traded, (iii) a transaction price expressed in 

$/kW, (iv) the timestamp of the execution of the transaction, and (v) an alpha-numeric string 

called a hash, which is taken from the previous block on the blockchain. A sample of data 

included in two sequentially generated blocks is shown in Fig. 4.5. 
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Figure 4.5. A sample of generated blocks containing contract data 

In order to investigate the impact of the number of microgrids in the network on the 

validation time required for the proposed consensus method, the validation time is measured as 

the time elapsed between transaction submission and block confirmation. The average validation 

time for the validation method was calculated for an increasing number of microgrids, as shown 

in Fig. 4.6. It can be observed that the validation time increases accordingly (approximately a 

linear increase rate) with the increase in the number of networked microgrids. This is due to the 

fact that with an increase in the number of microgrids in the network, there is a corresponding 

increase in the number of executed contracts (see Fig. 4.4), which results in a longer validation 

period. The validation time required to validate all created blocks in a 20 microgrids network is 

found to be around 1.9 seconds as shown in Fig 4.6. 
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Figure 4.6. The change in average validation time with respect to the change of the number of 

microgrids in the network 

To ensure the effectiveness of the proposed model, the obtained results were compared 

with the results of recent work proposed in [21] and [61]. Table 4.2 depicts the full comparison, 

which demonstrates the time efficiency or the proposed energy trading model (less negotiation 

time for the same number of nodes, and improvement in the success rate of the transaction, 

where all deficit and surplus power is satisfied). 

It was found that the proposed method is time efficient compared to more traditional 

methods that applies a direct price negotiation between peers. In traditional direct price 

negotiation methods, both negotiators are fully dedicated to take advantage of the offered 

contracts by the other peer and bring the other peer closer to their offered price. This increases 

the contract determination computation time and might lead to unsuccessful negotiation process, 

which can cause a reliability problem when the grid back up is absent for islanded networked 

microgrids. To provide a brief comparison of the proposed negotiation method with a commonly 

used game theory-based developed algorithm in the literature, the results of the proposed method 

are compared with the result of the two algorithms proposed in [61]. In the case of 20 
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interconnected microgrids, the results in [61] show an average convergence times of 0.025 sec, 

and 0.05 sec, respectively. However, the negotiation method proposed in this thesis offers a 

shorter negotiation time of 0.0155 sec for the same number of microgrids as shown in Fig. 4.3, 

which demonstrates the time efficiency of the proposed energy trading model. 

Table 4.2. Validation of obtained results in comparison to results from the literature 

Comparison Aspects Proposed Model  The Model Proposed in [21] 
Computation time for 
contract determination 

10 ms for six nodes system ~14 ms for six nodes system 
(700 ms for 300 nodes) 

Consensus protocol Less energy and time-
consuming protocol based 
on pBFT and modified 
PoS  

Utilizes a time-consuming 
consensus method contains three 
components: contract-chain, 
ledger-chain, and a high 
frequency verification module 
that requires all nodes to solve 
puzzle problems and vote for 
verification (validation time is not 
reported).  

Comparison aspect Proposed model The model proposed in [61] 

Transaction negotiation time 
(Average convergence time) 

0.0115 sec for 20 node 
system 

Algorithm 1: 0.025 sec for 20 
node system 
Algorithm 2: 0.05 sec for 20 node 
system 

 

With regard to justifying the fast validation time of our proposed consensus method, the 

work in [62] confirms that in networked computer systems a pBFT algorithm can be executed in 

the order of milliseconds. Furthermore, in the modified proof of stake algorithm being proposed 

in the second phase of the consensus process, the stake is calculated automatically based on pre-

existing data without a pre-determined time constraint. Therefore, the PoS algorithm does not 

significantly impact the validation time. 

It is also worth mentioning that although there are many advantages to pBFT-based 

consensus, it has been categorized as communication bound, hence it has a scalability issue when 
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utilized for networks with a very large number of nodes. To overcome these limits without 

sacrificing safety, the method proposed in [63] includes an approach to partition large networks 

into smaller groups called federates; thus resulting in an improved scalability up to 1000 nodes 

[53]. 

4.2 Grid Connected Operation – Multiagent Models 

4.2.1 Model I 

The scheduling problem is modeled as a Mixed Integer Linear Program (MILP) 

optimization problem using IBM CPLEX 12.7, and the energy trading model was simulated for a 

case of 7 networked microgrids using Python 3.6. The generation and load data were modified 

from compiled wind energy and load data for 7 interconnected microgrids with an average 

installed renewable energy capacity of 7.5 MW for each microgrid. Each microgrid is equipped 

with a dispatchable generator with a fuel cost of 61.3 $/MW [64]. The maximum power 

generation per round for the dispatchable generator was assumed to be 0.15 MW. Each microgrid 

is additionally equipped with a battery storage system with a charge and discharge cost of 70 

$/MW [64]. The maximum charging limit per round is considered to be 0.3 MW. The maximum 

capacity of the tie line connecting each microgrid with the utility grid is considered to be 0.5 

MW. A 24-hour dynamic energy price for solving the scheduling optimization problem is 

adopted as shown in Fig. 4.7 [65]. The cost of load shedding and renewable energy curtailment is 

assumed to be 1,000 $/MW.  

After solving the local scheduling problem for a group of seven networked microgrids, 

there was a total excess load of 18.92 MW (positive net load) and an excess generation of -16.97 

(negative net load) over the 24-hour time horizon. Fig. 4.8 shows the total net load to be traded 

for each time interval. The trading model is then simulated for each hour in the day ahead 24-
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hour time horizon. The total amount of power traded over the 24-hour period was 8.85 MW, 

distributed over 58 contracts. The maximum power traded in a single contract was 0.56 MW 

exchanged at 2:00 am, while the minimum power traded in a single contract was 0.0018 MW 

exchanged at 3:00 am. Fig. 4.9 shows the amount of deficit power in each hour that was satisfied 

by the trading model (labelled in orange). Since there is more deficit power than excess power, 

not all deficit power is satisfied, where the remaining deficit power will be curtailed.  

 

Figure 4.7. 24-hour dynamic energy prices 

 

Figure 4.8. Excess and deficit power to be traded from seven networked microgrids 
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Figure 4.9. Amount of deficit power vs satisfied deficit power resulting from the peer-to-peer 

trading model 

The model has successfully facilitated efficient energy trading among the networked 

microgrids, and  reduced the amount of curtailed power, hence, the costs associated with load 

shedding and power curtailment have been reduced. It should be noted that almost all deficit 

power is satisfied through energy trading for early morning hours, namely 2:00 am through 6:00 

am and afternoon hours 11:00 am through 8:00 pm. Conversely, in the morning hours from 7:00 

am to 10:00 am and nighttime hours from 9:00 pm to 12:00 midnight, there is insufficient excess 

generation available to satisfy the demand during these periods. This result correlates well with 

Fig. 4.8, where the total net load of the microgrid network was largely positive (deficit power) in 

the later morning and night, and negative (excess power) in the early morning and mid-day 

through the evening. We can conclude from Fig. 4.9 that, when excess generation is available, 

the proposed trading model is effective to satisfy all deficit net load. It is also worth noting that 

no contracts were executed at 9:00 am, which was a result of no excess generation being 

available in the marketplace during that hour. The total cost of energy trading in the 24-hour 

period was $321.78, with the average contract price of 36 $/MW and average cost of a contract 

at $5.55. The maximum contract price was 63.98 $/MW executed at 3:00 pm, while the 
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minimum contract price was 16.13 $/MW executed at 2:00 am. Fig. 4.10 shows a comparison 

between the final contract trading price and the dynamic utility price. This comparison shows 

that, even without limiting the upper bound of the negotiated price, the pricing mechanism 

consistently arrives at a price close to the utility price at each hour, indicating that the pricing 

mechanism used in the trading model is fair for both buyers and sellers. 

 

Figure 4.10. Comparison of the model trading price to the utility price 

Fig. 4.11 shows an example of the price adjustment of marketplace participants during 

hour 2. During this hour, two sellers offered contracts in the marketplace, seller 1 having 0.64 

MW excess power and seller 2 having 0.157 MW excess power. Two buyers attempted to satisfy 

their loads by purchasing energy from the marketplace, with buyer 1 having a 0.12 MW deficit 

and buyer 2 having a 0.599 MW deficit. The initial selling prices offered were 31.19 $/MW for 

seller 1 and 27.88 $/MW for seller 2. Initial buying prices were set at 21.77 $/MW for buyer 1 

and 18.27 $/MW for buyer 2. No contract matches occurred in the first round, so each participant 

adjusted their price for a second round. During the second trading round, buyer 1 matched with 

seller 2 and a contract was executed which sold 0.12 MW to buyer 1 at a price of 20.91 $/MW. 

This contract fully satisfied the load of buyer 1 and reduced the available power for sale from 

seller 2 to 0.036 MW. Because buyer 1 was no longer participating in the trading and seller 2 still 

had the lowest available contract price, buyer 2 also matched with seller 2, exchanging the 
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remaining excess energy of 0.036 from seller 2 at the same selling price. Since buyer 2 still had 

an unsatisfied load of 0.56 MW, they also match with seller 1 at a price of 23.39 $/MW. A 

contract was executed and fully satisfied the demand of buyer 2. Since Seller 1 still has a 

remining excess power and there are no buyers during this hour, seller 1 curtailed the remaining 

excess power of 0.076 MW. 

 

Figure 4.11. An example of price adjustment process of two buyers and two sellers 

After all contract negotiations have been finalized, the details of each contract are 

recorded as blocks, verified using the proposed two-phase consensus mechanism, and placed on 

a contract records blockchain. Similarly, as with the simulation in section 4.1, each validated 

block in the chain contains (i) buyer and seller identification IDs, (ii) the amount of power being 

traded, (iii) a transaction price expressed in $/MW, (iv) the timestamp of the execution of the 

transaction, and (v) an alpha-numeric hash, which is taken from the previous block on the 

blockchain. A sample of two sequentially generated blocks is shown in Fig. 4.12. 
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Figure 4.12. A sample of generated blocks containing contract data 

For grid-connected operation model I, the test system consisted of a 7-node microgrid 

network. The proposed blockchain settlement protocol was simulated for a system of this size, 

and it was found that the average validation time for a single block in this system was 0.705 

seconds, or 705 ms. 

4.2.2 Model II 

The same scheduling problem, under the same parameters detailed in section 3.2.1, is 

utilized for the second non-islanded trading model. After solving the local scheduling problem 

for the seven microgrid network, there was a total excess load of 18.92 MW (positive net load) 

and an excess generation of -16.91 (negative net load) over the 24-hour time horizon. Again Fig. 

4.8 shows the total net load to be traded for each time interval. 
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Figure 4.13. Comparison of energy deficit to traded energy 

The trading model is then simulated each hour in a day ahead 24-hour time horizon. It 

was found that the model has successfully facilitated efficient energy trading among the 

networked microgrids and reduced the amount of curtailed power. Thus, the proposed model 

improves the operation cost of each microgrid by reducing the high costs associated with load 

shedding and power curtailment. The total amount of power traded over the 24-hour period was 

found to be 9.26 MW, distributed over 59 contracts. The maximum power traded in a single 

contract was 0.599 MW exchanged at hour 2 while the minimum power traded in a single 

contract was found to be 0.0005 MW (0.5 kW) exchanged at hour 8. Fig. 4.12 shows the amount 

of deficit power in each hour that was satisfied by the trading model (labelled in orange). 

 

Figure 4.14. Comparison of the model trading price to utility price 
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The total cost of energy trading in the 24-hour period was $433.17, with the average 

contract price of 47.59 $/MW and average cost of a contract at $8.33. The maximum contract 

price was 74.63 $/MW executed at hour 15, while the minimum contract price was 21.63 $/MW 

executed at hour 3. Fig. 4.13 shows a comparison between the final contract trading price and the 

dynamic utility price. Looking to this figure, it is clear that the proposed model facilitates the 

trading of contracts at prices close to the utility price, indicating that the pricing mechanism used 

in the trading model is fair for both buyers and sellers. 

Fig. 4.14 shows an example of the price adjustment of marketplace participants during 

hour 19. During this hour, two sellers offered contracts in the marketplace, seller 1 having 

0.4179 MW excess power and seller 2 having 0.3744 MW excess power. Two buyers attempted 

to satisfy their loads by purchasing energy from the marketplace, with buyer 1 having a 0.2467 

MW deficit and buyer 2 having a 0.1468 MW deficit. The initial selling prices offered were 

69.39 $/MW for seller 1 and 68.73 $/MW for seller 2. Initial buying prices were set at 48.23 

$/MW for buyer 1 and 50.16 $/MW for buyer 2. No contract matches occurred in the first 10 

rounds, so each participant adjusted their price incrementally to attempt to execute a contract. 

During the 11th  trading round, buyer 1 matched with seller 2 and a contract was executed which 

sold 0.2467 MW to buyer 1 at a price of 67.23 $/MW. This contract fully satisfied the load of 

buyer 1 and reduced the available power for sale from seller 2 to 0.1277 MW. Because buyer 1 

fully satisfied their load deficit, they no longer participated in subsequent trading rounds. 

Additionally, since no other prices matched in round 11, price adjustments continued until round 

16 when buyer 2 matched prices with seller 1. The executed contract traded 0.1468 MW to buyer 

2 at a price of 66.84 $/MW, fully satisfying the load deficit of buyer 2 a leaving seller 1 with a 

remaining excess of 0.2711 MW. Since both seller 1 and seller 2 still have remining excess 
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power and there are no more buyers participating on the marketplace for this hour, seller 1 is 

forced to curtail their remaining excess power of 0.2711 MW and seller 2 is forced to curtail 

their remaining excess power of 0.1277 MW. 

 

Figure 4.15. An example of price adjustment process of two buyers and two sellers 

For hours in which all excess energy was sold in the marketplace but there still existed an 

energy deficit with the final buyer, a final contract was executed utilizing the spinning reserve 

energy of the final seller. For this contract, the amount of energy sold could not exceed 20% of 

the final seller’s net load, according to equations (29) and (30) from section 3.2.3. In total, 13 

reserve energy contracts were executed over the 24-hour simulation which traded 0.359 MW of 

spinning reserve energy, at an average of 7.33 kW of spinning reserve energy traded per contract. 

Each of these contracts was executed at the designated spinning reserve price of 63 $/MW, with 

the total cost of spinning reserve contracts being $22.63, for an average contract cost of $0.45. 

The results shown in Fig. 4.15 show the total amount of traded power for each hour in the 24-

hour time horizon, and highlights the contribution of spinning reserve power in each hour where 
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a spinning reserve contract was executed. As can be seen in the figure, spinning reserve contracts 

(highlighted in red) contributed to the traded energy in 13 of 24 hours. 

 

Figure 4.16. Total energy traded in each hour, including primary and spinning reserve 

power 

After all contract negotiations have been finalized, the details of each contract are 

recorded as blocks, verified using the proposed two-phase consensus mechanism, and placed on 

a contract records blockchain. Similarly, as with the simulation in section 4.1, each validated 

block in the chain contains (i) buyer and seller identification IDs, (ii) the amount of power being 

traded, (iii) a transaction price expressed in $/MW, (iv) the timestamp of the execution of the 

transaction, and (v) an alpha-numeric hash, which is taken from the previous block on the 

blockchain. A sample of two sequentially generated blocks is shown in Fig. 4.12. Whereas Fig. 

4.14 shows a sample of generated block for the spinning reserve contract (Block 2). The block 

contains (i) buyer and seller identification IDs, (ii) the amount of power being traded using the 

seller spinning reserve in MW and as percentage of the seller excess power, (iii) a transaction 
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price expressed in $/MW, (iv) the timestamp of the execution of the transaction, and (v) an 

alpha-numeric hash, which is taken from the previous block on the blockchain. 

 
Figure 4.17. A sample of generated blocks containing contract data 

 

Figure 4.18. A sample of a generated block including a spinning reserve contract block 
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CHAPTER 5 

CONCLUSION 

In this work, multiple Peer-to-Peer (P2P) energy trading mechanisms for groups of both 

islanded and grid-connected microgrid networks are proposed. Additionally, a two-stage 

blockchain-based energy transaction settlement protocol is developed to ensure the security of 

the energy trading transactions. Simulation results show that all of the proposed electricity 

trading mechanisms can efficiently facilitate energy trading between networked microgrids. The 

conclusion of this work can be summarized as follows: 

• In the case of islanded interconnected microgrids, simulation results showed that 

the proposed energy trading model and price adjustment mechanism effectively 

facilitated fair energy transactions between microgrids in a cost and time efficient 

manner. The proposed model ensured grid network reliability by ensuring the 

satisfaction of the deficit and excess power of all trading participants. 

• In the case of grid-connected microgrid networks, simulation results showed that 

the proposed energy trading models and price adjustment mechanisms effectively 

facilitated energy trading and assured price fairness for all trading participants. 

The optimization problem formulation and price adjustment mechanisms assured 

minimum operation cost for each microgrid in the network. 

• The novel two-phase blockchain-based transaction settlement protocol promoted 

system security and records immutability through the use of a two-stage 

consensus protocol. Simulation results showed that the proposed consensus 

algorithm is time-efficient compared with traditional consensus methods. 
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5.1 Future Work 

Further research which can be undertaken to extend the conducted work may include: 

• Improving the scalability of the proposed consensus protocol by partitioning a 

large network into smaller networks (federates) as proposed in [63]. 

• Simulation of the proposed energy trading models utilizing different and more 

comprehensive generation and load data collected from an operational microgrid 

network. 

• A unified energy trading and price adjustment mechanism for both islanded and 

grid-connected operation which includes specific considerations for energy 

trading during transitions between islanded and grid-connected operation. 

• Development of new hybrid two-phase consensus protocols that combines pBFT 

with different consensus methods such as Proof of Authority and Proof of Work. 

5.2 Outcome Publications  

Portions of the research presented in this thesis have been peer-reviewed and published as shown 

below: 

1) T. M. Masaud, J. Warner and E. F. El-Saadany, "A Blockchain-Enabled Decentralized 

Energy Trading Mechanism for Islanded Networked Microgrids," IEEE Access, vol. 8, 

pp. 211291-211302, November 2020. 

2) J. Warner and T. M. Masaud, “Decentralized Peer-to-Peer Energy Trading Model for 

Networked Microgrids,” in IEEE Conference on Technologies for Sustainability, Orange 

County, CA, USA (Virtual), April 22-24, 2021. Accepted. 
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APPENDIX B 

TABULATED DATA 

Table B.1. Net load of each microgrid (10 microgrid scenario) from randomly generated data for 

islanded operation 

  Microgrid No. 
  1 2 3 4 5 6 7 8 9 10 

H
ou

r 
in

 th
e 

24
-h

ou
r 

tim
e 

ho
ri

zo
n 

1 2.18 -7.51 2.21 1.21 5.98 1.15 -3.91 2.23 -0.75 -5.69 
2 0.88 3.74 8.5 -4.95 -1.44 -6.5 -0.43 0.34 5.51 -8.23 
3 -7.16 0.48 3.91 -1.25 4.61 -3.12 0.14 -3.81 -8.65 0.47 
4 0.34 8.59 -3.08 -2.48 2.45 -3.24 5.08 0.17 3.58 -6.34 
5 -3.59 0.41 1.4 0.19 0.86 6.72 -8.17 -2.28 -0.03 -0.72 
6 4.4 -2.97 -1.28 1.07 -2.67 -0.87 4.89 -2.55 4.54 0.95 
7 -0.42 6.22 4.26 -0.27 -1.75 -3.64 3.1 0.4 7.84 -1.56 
8 0.27 2 -4.05 5.07 -4.15 3.37 -4.46 -3.8 -6.12 1.97 
9 -1.16 -0.25 -3.84 0.61 0.6 0.96 0.3 6.36 -1.02 -3.05 
10 -1.65 3.51 -1.67 1 0.77 -4.13 -2.69 -4 1.86 1.4 
11 8.49 -1.88 3.94 2.12 -5.51 6.71 4.53 -2.29 -4.02 -1.39 
12 4.12 -1.94 -5.15 -0.73 6.36 7.96 4.47 4.09 0.55 0.02 
13 -1.33 6.55 4.46 -1.52 -2.8 9.06 6.7 -2.16 -6.71 -3.95 
14 8.9 1.82 -3.42 -6.31 -3.17 5.23 0.04 -1.9 -5.29 -2.22 
15 -4.05 -5.41 -7.13 -0.77 3.26 -0.74 7.02 4.39 -5.48 1.08 
16 6.39 7.69 4.74 -0.8 8.03 5.73 0.83 -4.34 8.23 2.3 
17 -0.72 -6.01 8.34 2.63 6.25 1.09 4.96 -8.16 -0.67 2.78 
18 -2.53 -2.12 -0.87 2.56 6.81 -2.43 1.13 -0.24 6.15 1.24 
19 -8.36 -1.38 -4.57 1.68 -0.41 2.67 -6.94 -1.37 3.68 3.44 
20 -5.59 4.79 -9.37 -2.27 -0.2 -2.4 -3.81 -3.62 4.28 -0.97 
21 0.46 1.53 -1.42 -1.06 7.03 -1.19 -5.74 -1.45 0.77 -2.47 
22 -0.6 -0.18 8.38 8.4 4.68 2.82 3.45 -6.24 -2.55 -2.57 
23 0.06 -4.46 4.57 8.3 1.92 -5.62 -5.43 -2.19 -1.75 -2.71 
24 1.77 -3.45 6.02 -6.77 -3.5 -2.21 -0.46 4.16 -5.22 6.89 
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Table B.2. Microgrid net load data used for grid-connected operation 
 

 Microgrid No. 
  1 2 3 4 5 6 7 

H
ou

r 
in

 th
e 

24
-h

ou
r 

tim
e 

ho
ri

zo
n 

1 -1.0879 1.0658 1.2812 -0.9228 -0.2915 -0.6728 0.7178 
2 -1.4392 0.8188 1.0711 -1.1416 -0.4007 -0.9571 0.6673 
3 -1.1819 0.5483 0.8841 -1.1714 -0.4100 -1.0842 0.7177 
4 -0.8322 0.8929 0.6810 -1.3023 -0.4534 -1.1884 0.6878 
5 -0.9556 0.9716 0.8356 -1.3251 -0.3995 -0.9503 0.7179 
6 -0.9376 1.0173 0.7609 -1.2164 -0.6946 -1.0951 0.6406 
7 -0.8374 0.8963 0.9494 -1.0277 -0.3048 -0.6898 0.8310 
8 -0.6112 1.0060 1.3298 -0.9043 -0.1632 -0.8024 0.9565 
9 -0.4116 1.0337 1.2967 -1.1386 -0.0706 -0.4902 1.0514 
10 -0.3749 0.8225 1.1505 -1.1760 -0.1092 -0.6339 1.0156 
11 -0.6009 0.7378 1.2809 -1.2022 -0.3865 -0.8644 0.8634 
12 -1.0991 0.6847 1.7097 -0.9516 -0.2279 -0.6570 0.6802 
13 -1.1278 0.7894 1.6098 -1.0136 -0.2469 -0.7014 0.6679 
14 -1.1242 0.9071 1.4907 -1.3214 -0.2169 -0.6001 0.6581 
15 -0.8272 1.0511 1.3826 -1.4349 -0.1821 -0.5341 0.6617 
16 -0.9168 1.0542 1.1904 -1.6089 -0.3698 -0.5695 0.6822 
17 -0.5412 1.0832 1.0112 -1.7098 -0.4226 -0.4706 0.8817 
18 -0.6536 1.0284 0.8279 -1.5350 -0.4731 -0.9744 1.0521 
19 -0.4008 1.1967 0.8238 -1.5868 -0.3744 -0.4901 1.0968 
20 -0.5076 0.9942 1.0032 -1.5441 -0.6827 -0.4383 1.0871 
21 -0.6829 1.1671 1.3144 -1.3794 -0.0839 -0.5612 1.1353 
22 -0.9986 1.1823 1.7851 -1.0688 -0.0947 -0.7355 1.0267 
23 -1.4259 1.0406 1.4382 -0.9938 -0.2752 -0.9514 0.9374 
24 -1.3453 1.2199 1.5806 -0.8601 -0.2114 -0.8152 0.9498 
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APPENDIX C 

SIMULATION CODES 

C.1. Simulation Code for Islanded Operation 

import hashlib as hasher 
import datetime 
import math 
import random 
import datetime as date 
from openpyxl import Workbook 
 
 
filename = "blockchain_test123.xlsx" 
workbook = Workbook() 
sheet = workbook.active 
 
cost_batt = 30/1000 
cost_shed = 1000/1000 
cost_reserve = 250/1000 
cost_trans = 0.0000028 
t=1 
 
A = ([[0, 10.2, 14.5, 149.7, 162, 171.1, 50.3, 21.6, 175, 178.2, 182.3, 75, 
184.3, 119.6, 87.6, 128, 155.2, 191, 66.2, 81],  
      [10.2, 0, 17.9, 159.2, 171.9, 183.4, 60.1, 17, 183.2, 188.3, 192, 85.6, 
197.2, 131, 54.3, 31.6, 105.2, 142.5, 151, 162.2], 
      [14.5, 17.9, 0, 165.3, 177, 185.3, 5.6, 24.8, 186.8, 193.5, 196, 91.7, 
202.9, 135.2, 62.2, 51, 107, 127.6, 191, 88.1], 
      [149.7, 159.2, 165.3, 0, 12.1, 220.5, 102.6, 175, 22.7, 27.1, 231.5, 
125.2, 234.9, 172, 44.1, 191.5, 34, 202.3, 198, 215.1], 
      [162, 171.9, 177, 12.1, 0, 232, 112.2, 187.3, 34.8, 39.3, 242.6, 137, 
247.5, 182.4, 22, 161.6, 124.2, 155, 104.5, 74.1], 
      [171.1, 183.4, 185.3, 220.5, 232, 0, 122.4, 95.9, 242, 247.7, 10.2, 
145.6, 15, 192.1, 149.5, 86, 101.1, 62.5, 25, 36.2], 
      [50.3, 60.1, 5.6, 102.6, 112.2, 122.4, 0, 75.2, 122.3, 127.8, 130.5, 
25, 135.9, 70.4, 178.2, 61.5, 140.2, 32, 73, 197.3], 
      [21.6, 17, 24.8, 175, 187.3, 95.9, 75.2, 0, 197.1, 202.3, 205.7, 100.4, 
213.8, 145, 121.1, 167.5, 55, 31.4, 232.1, 14], 
      [175, 183.2, 186.8, 22.7, 34.8, 242, 122.3, 197.1, 0, 36.2, 252.3, 
147.6, 257, 192.9, 165.5, 71, 41.4, 127.7, 182, 52.3], 
      [178.2, 188.3, 193.5, 27.1, 39.3, 247.7, 127.8, 202.3, 36.2, 0, 257, 
152.4, 262.6, 197, 165.2, 77.7, 23.1, 112, 182.5, 69.2], 
      [182.3, 192, 196, 231.5, 242.6, 10.2, 130.5, 205.7, 252.3, 257, 0, 
155.1, 15.9, 204.7, 68.4, 121.5, 182, 20.6, 142.2, 40], 
      [75, 85.6, 91.7, 125.2, 137, 145.6, 25, 100.4, 147.6, 152.4, 155.1, 0, 
160.5, 95.1, 150.2, 217.5, 49.2, 108.6, 82, 77.4], 
      [184.3, 197.2, 202.9, 234.9, 247.5, 15, 135.9, 213.8, 257, 262.6, 15.9, 
160.5, 0, 205.7, 188.2, 62.4, 89, 124.5, 160.1, 98.8], 
      [119.6, 131, 135.2, 172, 182.4, 192.1, 70.4, 145, 192.9, 197, 204.7, 
95.1, 205.7, 0, 66.5, 221.4, 155.2, 181.3, 25, 98.2], 
      [87.6, 54.3, 62.2, 44.1, 22, 149.5, 178.2, 121.1, 165.5, 165.2, 68.4, 
150.2, 188.2, 66.5, 0, 114.8, 202.2, 158.2, 76, 185.2], 
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      [128, 31.6, 51, 191.5, 161.6, 86, 61.5, 167.5, 71, 77.7, 121.5, 217.5, 
62.4, 221.4, 114.8, 0,19.5, 171.2, 207, 75], 
      [155.2, 105.2, 107, 34, 124.2, 101.1, 140.2, 55, 41.4, 23.1, 182, 49.2, 
89, 155.2, 202.2, 19.5, 0, 132.2, 168.4, 63], 
      [191, 142.5, 127.6, 202.3, 155, 62.5, 32, 31.4, 127.7, 112, 220.6, 
108.6, 124.5, 181.3, 158.2, 171.2, 132.2, 0, 212.4, 78.4], 
      [66.2, 151, 191, 198, 104.5, 25, 73, 232.1, 182, 182.5, 142.2, 82, 
160.1, 25, 76, 207, 168.4, 212.4, 0, 185.2], 
      [81, 162.2, 88.1, 215.1, 74.1, 36.2, 197.3, 14, 52.3, 69.2, 40, 77.4, 
98.8, 98.2, 185.2, 75, 63, 78.4, 185.2, 0]]) 
 
 
class Block: 
  def __init__(self, index, timestamp, data, previous_hash): 
    self.index = index 
    self.timestamp = timestamp 
    self.data = data 
    self.previous_hash = previous_hash 
    self.hash = self.hash_block() 
   
  def hash_block(self): 
      sha = hasher.sha256() 
      sha.update((str(self.index) + str(self.timestamp) + str(self.data) + 
str(self.previous_hash)).encode()) 
      return sha.hexdigest() 
 
def create_genesis_block(): 
  # Manually construct a block with 
  # index zero and arbitrary previous hash 
  return Block(0, date.datetime.now(), "Genesis Block", "0") 
 
def next_block(last_block): 
  this_index = last_block.index + 1 
  this_timestamp = date.datetime.now() 
  this_data = "kW:" + str(kW) + " Price:" + str(price_seller) + " Time:" 
+time 
  this_hash = last_block.hash 
  return Block(this_index, this_timestamp, this_data, this_hash) 
 
class Prosumer(): 
    def __init__(self, index, pgen, pload, pnet, status): 
        self.index = index 
        self.pgen = pgen 
        self.pload = pload 
        self.pnet = pnet 
        self.status = status 
      
# Create the blockchain and add the genesis block 
blockchain = [create_genesis_block()] 
previous_block = blockchain[0] 
temp_buyer = [] 
temp_seller = [] 
alpha = 0 
beta = 0 
gamma = 0 
average = 0 
phi = 1 
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price_retail = 0.12 
j=0 
k=0 
 
# How many blocks should we add to the chain 
# after the genesis block 
num_of_blocks_to_add = 24 
y=0 
m=1 
n=1 
pgensum = 0 
ploadsum = 0 
while(y < num_of_blocks_to_add): 
    genlist = list() 
    loadlist = list() 
    netlist = list() 
    conlist = list() 
    prodlist = list() 
    prosumers = list() 
    producers = list() 
    consumers = list() 
 
    for k in range(1, 20): 
        pgen = round(random.uniform(5,15), 2) 
        genlist.append(pgen) 
        pload = round(random.uniform(5,15), 2) 
        loadlist.append(pload) 
        pnet = round(pload-pgen, 2) 
        netlist.append(pnet) 
        if(pgen > pload): 
            status = 1 
        else: 
            status = 0 
        prosumers.append(Prosumer(k, pgen, pload, pnet, status)) 
 
    sum3 = sum(netlist) 
    print(sum3) 
    if(sum3 > 0): 
        prosumers.append(Prosumer(20, 0, sum3, -sum3, 1)) 
    else: 
        prosumers.append(Prosumer(20, sum3, 0, 0-sum3, 0)) 
     
    
    phi += 1 
    for i in range(0, len(prosumers)): 
        print("Prosumer: {}".format(prosumers[i].index)) 
        print("Pgen: {}".format(prosumers[i].pgen)) 
        print("Pload: {}".format(prosumers[i].pload)) 
        print("Pnet: {}".format(prosumers[i].pnet)) 
        print("Status: {}\n".format(prosumers[i].status)) 
        sheet.cell(row=i+1, column=25+phi).value = prosumers[i].pnet 
 
        if(prosumers[i].pnet > 0): 
            consumers.append(prosumers[i]) 
            conlist.append(prosumers[i].pnet) 
        else: 
            producers.append(prosumers[i]) 
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            prodlist.append(prosumers[i].pnet) 
 
    
    for i in range(0, len(consumers)): 
        print("Consumers: {}".format(consumers[i].pnet)) 
        sheet.cell(row=t, column=15).value = consumers[i].pnet 
        t+=1 
    for i in range(0, len(producers)): 
        print("Producers: {}".format(producers[i].pnet)) 
        sheet.cell(row=t, column=16).value = producers[i].pnet 
        t+=1 
 
#Negotiate contract 
    have_contract = 0 
    average = 0 
    price_retail = 0.20 
    j=0 
    for j in range(0, len(consumers)): 
        for k in range(0, len(producers)): 
            if consumers[j].pnet>0 and producers[k].pnet<0: 
                alpha = 0.01 
                beta = 0.04 
                tau = 0 
                fixed_seller = 0.25 
                fixed_buyer = 0.15 
                cost_curt = 0 
                batt_limit = 2 
                reserve_limit = 5 
                have_contract = 0 
                tasks = 0 
                gamma = 0.2 
                count = 0 
 
                while(have_contract < 1): 
                    if(count<5): 
                        if(abs(producers[k].pnet) < batt_limit): 
                            price_seller = (fixed_seller) - 
tau*(cost_batt*abs(producers[k].pnet)*gamma + alpha*cost_curt*abs(0)) + 
(A[j][k]*cost_trans*abs(producers[k].pnet)) 
                            batt_limit -= abs(producers[k].pnet) 
                            tasks += 1 
                        else: 
                            price_seller = (fixed_seller)  - 
tau*(cost_batt*abs(batt_limit) + alpha*cost_curt*abs(producers[k].pnet - 
batt_limit)) + (A[j][k]*cost_trans*abs(producers[k].pnet)) 
                            tasks +=1 
                        if(abs(consumers[j].pnet) < reserve_limit): 
                            price_buyer = (fixed_buyer) + 
tau*(beta*cost_shed*abs(0) + cost_reserve*abs(consumers[j].pnet)) 
                            reserve_limit -= consumers[j].pnet 
                            tasks +=1 
                        else: 
                            price_buyer = (fixed_buyer) + 
tau*(beta*cost_shed*abs(consumers[j].pnet - reserve_limit) + 
cost_reserve*abs(reserve_limit)) 
                            tasks += 1 
                    else: 
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                        if(abs(producers[k].pnet) < batt_limit): 
                            price_seller = (fixed_seller) - 
tau*(cost_batt*abs(producers[k].pnet)*0 + alpha*cost_curt*abs(0)) + 
(A[j][k]*cost_trans*abs(producers[k].pnet)) 
                            batt_limit -= abs(producers[k].pnet) 
                            tasks += 1 
                        else: 
                            price_seller = (fixed_seller)  - 
tau*(0*cost_batt*abs(batt_limit) + alpha*cost_curt*abs(producers[k].pnet)) + 
(A[j][k]*cost_trans*abs(producers[k].pnet)) 
                            tasks +=1 
                        if(abs(consumers[j].pnet) < reserve_limit): 
                            price_buyer = (fixed_buyer) + 
tau*(beta*cost_shed*abs(0) + 0*cost_reserve*abs(consumers[j].pnet)) 
                            reserve_limit -= consumers[j].pnet 
                            tasks +=1 
                        else: 
                            price_buyer = (fixed_buyer) + 
tau*(beta*cost_shed*abs(consumers[j].pnet) + 
0*cost_reserve*abs(reserve_limit)) 
                            tasks += 1 
                         
                    if(price_seller <= price_buyer): 
                        have_contract = 1 
                        print("Price_seller: {}".format(price_seller)) 
                        print("Price_buyer: {}".format(price_buyer)) 
                        sheet.cell(row=m, column=1).value = price_seller 
                        sheet.cell(row=n, column=2).value = price_buyer 
                        m+=1 
                        n+=1 
                        tasks += 1 
                        time = date.datetime.now().strftime('%S.%f')[:-2] 
                        sheet.cell(row=m, column=7).value = tasks 
                    else: 
                        tau = 1 
                        count += 1 
                        print("Price_seller: {}".format(price_seller)) 
                        print("Price_buyer: {}".format(price_buyer)) 
                        sheet.cell(row=m, column=1).value = price_seller 
                        sheet.cell(row=n, column=2).value = price_buyer  
                        m+=1 
                        n+=1 
                        cost_curt = price_seller 
                        fixed_seller = price_seller 
                        fixed_buyer = price_buyer 
                        tasks += 1 
                        time = date.datetime.now().strftime('%S.%f')[:-2] 
                        sheet.cell(row=m, column=7).value = tasks 
                         
 
                    sheet.cell(row=k+1, column=1).value = price_seller 
                    sheet.cell(row=k+1, column=2).value = price_buyer 
 
                sheet.cell(row=m, column=9).value = consumers[j].pnet 
                sheet.cell(row=m, column=10).value = producers[k].pnet 
                     
                if(abs(producers[k].pnet) >= abs(consumers[j].pnet)): 
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                    kW = abs(consumers[j].pnet) 
                    producers[k].pnet += consumers[j].pnet 
                    consumers[j].pnet = 0 
                else: 
                    kW = abs(producers[k].pnet) 
                    consumers[j].pnet += producers[k].pnet 
                    producers[k].pnet = 0 
 
                time = date.datetime.now().strftime('%S.%f')[:-2] 
                block_to_add = next_block(previous_block) 
                blockchain.append(block_to_add) 
                previous_block = block_to_add 
                print("Block #{} has been added to the 
blockchain!".format(block_to_add.index)) 
                print("Data: {}".format(block_to_add.data)) 
                print("Hash: {}\n".format(block_to_add.hash)) 
                sheet.cell(row=m, column=3).value = block_to_add.index 
                sheet.cell(row=m, column=4).value = block_to_add.data 
                sheet.cell(row=m, column=5).value = block_to_add.hash 
                sheet.cell(row=m, column=6).value = time 
                sheet.cell(row=m, column=7).value = tasks 
                sheet.cell(row=m, column=8).value = kW 
 
    sheet.cell(row=m, column=11).value = sum(conlist) 
    sheet.cell(row=m, column=12).value = sum(prodlist) 
 
    y +=1 
 
workbook.save(filename=filename) 
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C.2. Simulation Code for Grid-Connected Operation – Model I 
 
import hashlib as hasher 
import datetime 
import math 
import random 
import numpy as np 
from openpyxl import load_workbook 
 
# ------------------------------------------------------------ 
# DATA HANDLING 
# 
wb2 = load_workbook('NET LOAD.xlsx', data_only=True) 
 
z=1 
 
ws1 = wb2["Sheet2"] 
ws2 = wb2["Sheet3"] 
sheet = wb2.active 
cell_range = ws1['A3':'I26'] 
 
#------ 
# MG1 
 
Load1 = [] 
for x in range(3,27): 
    Load1.append((ws1.cell(row=x,column=2).value)) 
Load1 = list(np.around(np.array(Load1),4)) 
 
print("Load1: ") 
print(*Load1) 
 
Load2 = [] 
for x in range(3,27): 
    Load2.append((ws1.cell(row=x,column=3).value)) 
Load2 = list(np.around(np.array(Load2),4)) 
 
print("\nLoad2: ") 
print(*Load2) 
 
Load3 = [] 
for x in range(3,27): 
    Load3.append((ws1.cell(row=x,column=4).value)) 
Load3 = list(np.around(np.array(Load3),4)) 
 
print("\nLoad3: ") 
print(*Load3) 
 
Load4 = [] 
for x in range(3,27): 
    Load4.append((ws1.cell(row=x,column=5).value)) 
Load4 = list(np.around(np.array(Load4),4)) 
 
print("\nLoad4: ") 
print(*Load4) 
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Load5 = [] 
for x in range(3,27): 
    Load5.append((ws1.cell(row=x,column=6).value)) 
Load5 = list(np.around(np.array(Load5),4)) 
 
print("\nLoad5: ") 
print(*Load5) 
 
Load6 = [] 
for x in range(3,27): 
    Load6.append((ws1.cell(row=x,column=7).value)) 
Load6 = list(np.around(np.array(Load6),4)) 
 
print("\nLoad6: ") 
print(*Load6) 
 
Load7 = [] 
for x in range(3,27): 
    Load7.append((ws1.cell(row=x,column=8).value)) 
Load7 = list(np.around(np.array(Load7),4)) 
 
print("\nLoad7: ") 
print(*Load7) 
 
Load8 = [] 
for x in range(3,27): 
    Load8.append((ws1.cell(row=x,column=9).value)) 
Load8 = list(np.around(np.array(Load8),4)) 
 
print("\nLoad8: ") 
print(*Load8) 
 
# ------------------------------------------------------------- 
# GLOBAL CONSTANTS & COUNTERS 
# 
 
Cbat = 0.03 
Csh = 0.8 
Cres = 0.25 
Ckw = 0.25 
Cl = 0.08 
Cpk = 0.5 
line_limit = 1000 
Ccurt = 1000 
Cgrid = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62, 31.94, 
37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09, 50.41, 
47.77, 40.96, 36.71, 32.12] 
 
t=1 
r = 0 
q=0 
fp_buy = 5 
fp_sell = 25 
j=1 
 
for x in range(len(Load1)): 
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        print("Hour # {}\n".format(x+1)) 
        traders = [] 
        prod = [] 
        cons = [] 
        traders.append(Load1[x]) 
        traders.append(Load2[x]) 
        traders.append(Load3[x]) 
        traders.append(Load4[x]) 
        traders.append(Load5[x]) 
        traders.append(Load6[x]) 
        traders.append(Load7[x]) 
        traders.append(Load8[x]) 
 
        for i in range(len(traders)): 
            if(traders[i] < 0): 
                prod.append(traders[i]) 
            elif(traders[i] > 0): 
                cons.append(traders[i]) 
        print(prod) 
        print(cons) 
        alpha = 1 
        price_buy = 8 
        price_sell = 25 
        r = 1 
        q=1 
        fixed_buylist=[] 
        price_buylist=[] 
        fixed_selllist=[] 
        price_selllist=[] 
         
        while(sum(prod) != 0 and sum(cons) != 0): 
            r=1 
            q=1 
            trade = 0 
            while(sum(prod) != 0 and sum(cons) !=0): 
                for j in range(len(prod)): 
                    sale = False 
                    if(r <= 10): 
                        if(r==1): 
                            fixed_sell = (1 + 
((abs(prod[j])**(1/2))/3))*Cgrid[x] 
                            fixed_selllist.append(fixed_sell) 
                            print("Fixed_seller price: 
{}".format(round(fixed_sell, 4))) 
                            price_sell = fixed_sell - (((r-1)/(r + 
math.factorial(r)))*price_sell) 
                            price_selllist.append(price_sell) 
                            print("Seller price: {}".format(round(price_sell, 
4))) 
                        else: 
                            price_sell = price_selllist[j] - (((r-1)/(r + 
math.factorial(r)))*price_selllist[j]) 
                            price_selllist[j] = price_sell 
                            print("Seller price: {}".format(round(price_sell, 
4)))        
                for k in range(len(cons)): 
                        if(r <= 10): 
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                            if(r==1): 
                                fixed_buy = (1 - 
((abs(cons[k])**(1/2))/3))*Cgrid[x] 
                                fixed_buylist.append(fixed_buy) 
                                print("Fixed_buyer price: 
{}".format(round(fixed_buylist[k],4))) 
                                price_buy = fixed_buylist[k] + (((r-1)/(r + 
math.factorial(r)))*price_buy) 
                                price_buylist.append(price_buy) 
                                print("Buyer price: 
{}".format(round(price_buylist[k], 4)))   
                            else: 
                                price_buy = price_buylist[k] + (((r-1)/(r + 
math.factorial(r)))*price_buylist[k]) 
                                price_buylist[k] = price_buy 
                                print("Buyer price: 
{}".format(round(price_buylist[k], 4))) 
                 
                price_buylisttemp = price_buylist 
                price_buylisttemp.sort() 
                trade_price = min(price_selllist) 
                for k in range(len(price_buylisttemp)): 
                    while(price_buylisttemp[k] > trade_price): 
                        trade_price = min(price_selllist) 
                        j = price_selllist.index(min(price_selllist)) 
                        if(price_buylist[k] > trade_price and (prod[j] != 0 
and cons[k] != 0)): 
                            print("\nPresale Prod: {}".format(prod[j])) 
                            print("Presale Cons: {}".format(cons[k])) 
                            if(prod[j] <= 0 and cons[k] >= 0): 
                                prod1 = prod[j] 
                                if(abs(prod[j]) < cons[k]): 
                                    traded = prod[j] 
                                    price = price_selllist[j] 
                                    cons[k] = cons[k] + prod[j] 
                                    prod[j] = 0 
                                    price_selllist[j] = 1000 
                                    print("Prod: {}".format(prod[j])) 
                                    print("Cons: {}".format(cons[k])) 
                                    print("kW Traded: {}".format(traded)) 
                                    print("Price of Trade: {}".format(price)) 
                                    print("\n") 
                                    sheet.cell(row=z+1, column=13).value = 
x+1 
                                    sheet.cell(row=z+1, column=14).value = 
prod[j] 
                                    sheet.cell(row=z+1, column=15).value = 
cons[k] 
                                    sheet.cell(row=z+1, column=16).value = 
traded 
                                    sheet.cell(row=z+1, column=17).value = 
price 
                                    z = z+1 
                                else: 
                                    traded = cons[k]*-1 
                                    price = trade_price 
                                    prod[j] = prod[j]+cons[k] 
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                                    cons[k] = 0 
                                    price_buylist[k] = 1000 
                                    price_buylisttemp[k] = 0 
                                    print("Prod: {}".format(prod[j])) 
                                    print("Cons: {}".format(cons[k])) 
                                    print("kW Traded: {}".format(traded)) 
                                    print("Price of Trade: {}".format(price)) 
                                    print("\n") 
                                    sheet.cell(row=z+1, column=13).value = 
x+1 
                                    sheet.cell(row=z+1, column=14).value = 
prod[j] 
                                    sheet.cell(row=z+1, column=15).value = 
cons[k] 
                                    sheet.cell(row=z+1, column=16).value = 
traded 
                                    sheet.cell(row=z+1, column=17).value = 
price 
                                    z = z+1 
                        else: 
                            trade = 0 
                r+=1 
        print("\n") 
        print("Remaining Prod: {}".format(prod)) 
        print("Remaining Cons: {}".format(cons)) 
        print("Remaining NET: {}".format(sum(prod)+sum(cons))) 
        sheet.cell(row=z+1, column=18).value = sum(prod)+sum(cons) 
                     
        sale = True 
 
        print("\n") 
wb2.save("NET LOAD.xlsx")   
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C.3. Simulation Code for Grid-Connected Operation – Model II 
 
import hashlib as hasher 
import datetime as date 
import math 
import random 
import numpy as np 
from openpyxl import load_workbook 
from openpyxl import Workbook 
 
t=1 
 
# ------------------------------------------------------------ 
# DATA HANDLING 
# 
wb2 = load_workbook('NET LOAD.xlsx') 
 
z=1 
 
ws1 = wb2["Sheet2"] 
ws2 = wb2["Sheet3"] 
sheet = wb2.active 
cell_range = ws1['A3':'I26'] 
 
#------ 
# MG1 
 
Load1 = [] 
for x in range(3,27): 
    Load1.append((ws1.cell(row=x,column=2).value)) 
Load1 = list(np.around(np.array(Load1),4)) 
 
print("Load1: ") 
print(*Load1) 
 
Load2 = [] 
for x in range(3,27): 
    Load2.append((ws1.cell(row=x,column=3).value)) 
Load2 = list(np.around(np.array(Load2),4)) 
 
print("\nLoad2: ") 
print(*Load2) 
 
Load3 = [] 
for x in range(3,27): 
    Load3.append((ws1.cell(row=x,column=4).value)) 
Load3 = list(np.around(np.array(Load3),4)) 
 
print("\nLoad3: ") 
print(*Load3) 
 
Load4 = [] 
for x in range(3,27): 
    Load4.append((ws1.cell(row=x,column=5).value)) 
Load4 = list(np.around(np.array(Load4),4)) 
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print("\nLoad4: ") 
print(*Load4) 
 
Load5 = [] 
for x in range(3,27): 
    Load5.append((ws1.cell(row=x,column=6).value)) 
Load5 = list(np.around(np.array(Load5),4)) 
 
print("\nLoad5: ") 
print(*Load5) 
 
Load6 = [] 
for x in range(3,27): 
    Load6.append((ws1.cell(row=x,column=7).value)) 
Load6 = list(np.around(np.array(Load6),4)) 
 
print("\nLoad6: ") 
print(*Load6) 
 
Load7 = [] 
for x in range(3,27): 
    Load7.append((ws1.cell(row=x,column=8).value)) 
Load7 = list(np.around(np.array(Load7),4)) 
 
print("\nLoad7: ") 
print(*Load7) 
 
Load8 = [] 
for x in range(3,27): 
    Load8.append((ws1.cell(row=x,column=9).value)) 
Load8 = list(np.around(np.array(Load8),4)) 
 
print("\nLoad8: ") 
print(*Load8) 
 
# ------------------------------------------------------------- 
# GLOBAL CONSTANTS & COUNTERS 
# 
 
blockchain = [create_genesis_block()] 
previous_block = blockchain[0] 
Cbat = 30 
Csh = 500 
Cres = 63 
Ckw = 25 
Cl = 80 
Cpk = 63 
Ppk = 1 
Pbat = 0.3 
Pmaxline = 1 
Ccurt = 800 
Cgrid = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62, 31.94, 
37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09, 50.41, 
47.77, 40.96, 36.71, 32.12] 
 
t=1 
r = 0 
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q=0 
fp_buy = 5 
fp_sell = 25 
m=1 
n=1 
num_of_blocks_to_add = 24 
 
for x in range(len(Load1)): 
 
        print("\nHour # {}\n".format(x+1)) 
        traders = [] 
        prod = [] 
        cons = [] 
        traders.append(Load1[x]) 
        traders.append(Load2[x]) 
        traders.append(Load3[x]) 
        traders.append(Load4[x]) 
        traders.append(Load5[x]) 
        traders.append(Load6[x]) 
        traders.append(Load7[x]) 
        traders.append(Load8[x]) 
 
        for i in range(len(traders)): 
            if(traders[i] < 0): 
                prod.append(traders[i]) 
            elif(traders[i] > 0): 
                cons.append(traders[i]) 
        print(prod) 
        print(cons) 
        alpha = 0 
        price_buy = 8 
        price_sell = 25 
        r = 1 
        q=1 
        fixed_buylist=[] 
        price_buylist=[] 
        fixed_selllist = [] 
        price_selllist = [] 
 
        while(sum(prod) != 0 and sum(cons) != 0): 
            r=1 
            q=1 
            j=0 
            k=0 
            trade = 0 
            while(sum(prod) != 0 and sum(cons) !=0): 
                j=0 
                for j in range(len(prod)): 
                    sale = False 
                    if(abs(prod[j])<sum(cons)): 
                        beta = 1 
                    else: 
                        beta = 0 
                    if(abs(prod[j])>sum(cons)): 
                        gamma = 1 
                    else: 
                        gamma = 0 
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                    if(r <= 100): 
                        if(r==1): 
                            fixed_sell = (1 + 
((abs(prod[j])**(1/2))/3))*Cgrid[x] 
                            fixed_selllist.append(fixed_sell) 
                            price_sell = fixed_sell 
                            print("Fixed_seller price: 
{}".format(round(fixed_sell, 4))) 
                            price_selllist.append(price_sell) 
                            print("Seller price: {}".format(round(price_sell, 
4))) 
                        else: 
                            price_sell = price_selllist[j] - 
(price_selllist[j]*0.05*(abs(prod[j])) + Cbat*0.1*abs(prod[j])) 
                            price_selllist[j] = price_sell 
                            print("Seller price: 
{}".format(round(price_selllist[j], 4))) 
                             
                 
                for k in range(len(cons)): 
                        if(abs(sum(prod))<cons[k] or cons[k]>0.5): 
                            alpha = 1 
                        else: 
                            alpha = 0 
                        if(r <= 100): 
                            if(r==1): 
                                fixed_buy = (1 - 
((abs(cons[k])**(1/2))/3))*Cgrid[x] 
                                fixed_buylist.append(fixed_buy) 
                                print("Fixed_buyer price: 
{}".format(round(fixed_buylist[k],4))) 
                                price_buy = fixed_buylist[k] + 
fixed_buy*(cons[k]*0.05) 
                                price_buylist.append(price_buy) 
                                print("Buyer price: 
{}".format(round(price_buylist[k], 4)))   
                            else: 
                                price_buy = price_buylist[k] + 
((Cpk*0.05*cons[k] + Csh*0.01*(cons[k]-0.05*cons[k]))) 
                                price_buylist[k] = price_buy 
                                print("Buyer price: 
{}".format(round(price_buylist[k], 4))) 
                 
                trade_price = min(price_selllist) 
                count = 0 
                #while(count <= 5): 
                for k in range(len(price_buylist)): 
                        count += 1 
                   
                        while(price_buylist[k] > trade_price): 
                            trade_price = min(price_selllist) 
                            j = price_selllist.index(min(price_selllist)) 
                            if(price_buylist[k] > trade_price and (prod[j] < 
0 and cons[k] > 0)): 
                             
                                print("\nPresale Prod: {}".format(prod[j])) 
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                                print("Presale Cons: {}".format(cons[k])) 
                                 
                                if(prod[j] < 0 and cons[k] > 0): 
                                     
                                    if(abs(prod[j]) < cons[k]): 
                                        traded = prod[j] 
                                        price = price_selllist[j] 
                                        cons[k] = cons[k] + prod[j] 
                                        prod1 = prod[j] 
                                        pricesell1 = price_selllist[j] 
                                        prod[j] = 0 
                                        price_selllist[j] = 1000 
                                        print("Prod: {}".format(prod[j])) 
                                        print("Cons: {}".format(cons[k])) 
                                        print("kW Traded: {}".format(traded)) 
                                        print("Price of Trade: 
{}".format(price)) 
                                        print("\n") 
                                        sheet.cell(row=z+1, column=13).value 
= x+1 
                                        sheet.cell(row=z+1, column=14).value 
= round(prod[j], 5) 
                                        sheet.cell(row=z+1, column=15).value 
= round(cons[k], 5) 
                                        sheet.cell(row=z+1, column=16).value 
= round(traded, 5) 
                                        sheet.cell(row=z+1, column=17).value 
= round(price, 5) 
                                        z = z+1 
                                    else: 
                                        traded = cons[k]*-1 
                                        price = trade_price 
                                        prod[j] = prod[j]+cons[k] 
                                        cons[k] = 0 
                                        #price_buylist[k] = 1000 
                                        price_buylist[k] = 0 
                                        print("Prod: {}".format(prod[j])) 
                                        print("Cons: {}".format(cons[k])) 
                                        print("kW Traded: {}".format(traded)) 
                                        print("Price of Trade: 
{}".format(price)) 
                                        print("\n") 
                                        sheet.cell(row=z+1, column=13).value 
= x+1 
                                        sheet.cell(row=z+1, column=14).value 
= round(prod[j], 5) 
                                        sheet.cell(row=z+1, column=15).value 
= round(cons[k], 5) 
                                        sheet.cell(row=z+1, column=16).value 
= round(traded, 5) 
                                        sheet.cell(row=z+1, column=17).value 
= round(price, 5) 
                                        z = z+1 
 
                            elif(sum(prod) == 0 and cons[k] > 0): 
                                p = abs((abs(prod1)-cons[k])/prod1) 
                                p_res = p*abs(prod1) 
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                                tempseller = Cres 
                                p_resalt = 0.2*prod1 
                                if((20*price_buylist[k])>tempseller): 
                                    traded = min(p_res, p_resalt) 
                                    traded = traded*-1 
                                    price = tempseller 
                                    cons[k] = cons[k] + traded 
                                    prod1 = 0 
                                    #price_selllist[j] = 1000 
                                    print("Prod: {}".format(prod[j])) 
                                    print("Cons: {}".format(cons[k])) 
                                    print("kW Traded: {}".format(traded)) 
                                    print("Price of Trade: {}".format(price)) 
                                    print("Traded @ 2nd price") 
                                    print("Z: {}".format(p)) 
                                    print("\n") 
                                    sheet.cell(row=z+1, column=13).value = 
x+1 
                                    sheet.cell(row=z+1, column=14).value = 
round(prod[j], 5) 
                                    sheet.cell(row=z+1, column=15).value = 
round(cons[k], 5) 
                                    sheet.cell(row=z+1, column=16).value = 
round(traded, 5) 
                                    sheet.cell(row=z+1, column=17).value = 
round(price, 5) 
                                    sheet.cell(row=z+1, column=18).value = 1 
                                    sheet.cell(row=z+1, column=20).value = 
trade_price 
                                    sheet.cell(row=z+1, column=21).value = 
p_res 
                                    z = z+1 
                            else: 
                                trade = 0 
                                trade_price = 1000         
 
wb2.save("NET LOAD.xlsx") 
 
  



100 
 

C.4. Simulation Code for Blockchain Settlement Protocol 

import hashlib as hasher 
import datetime 
import math 
import random 
import datetime as date 
from openpyxl import Workbook 
import time 
import numpy as np 
 
filename = "consensus_16.xlsx" 
workbook = Workbook() 
sheet = workbook.active 
 
 
class Block: 
  def __init__(self, index, timestamp, data, previous_hash): 
    self.index = index 
    self.timestamp = timestamp 
    self.data = data 
    self.previous_hash = previous_hash 
    self.hash = self.hash_block() 
   
  def hash_block(self): 
      sha = hasher.sha256() 
      sha.update((str(self.index) + str(self.timestamp) + str(self.data) + 
str(self.previous_hash)).encode()) 
      return sha.hexdigest() 
 
def create_genesis_block(): 
  # Manually construct a block with 
  # index zero and arbitrary previous hash 
  return Block(0, date.datetime.now(), "Genesis Block", "0") 
 
def next_block(last_block): 
  this_index = last_block.index + 1 
  this_timestamp = date.datetime.now() 
  this_data = "kW:" + str(pnet) + " Price:" + str(0) + " Time:" +nowtime 
  this_hash = last_block.hash 
  return Block(this_index, this_timestamp, this_data, this_hash) 
 
class Prosumer(): 
    def __init__(self, index, pgen, pload, pnet, status): 
        self.index = index 
        self.pgen = pgen 
        self.pload = pload 
        self.pnet = pnet 
        self.status = status 
 
    def vote(self): 
        return 1 
 
    def value(self): 
        val = random.uniform(0,10) 
        return val 
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# Create the blockchain and add the genesis block 
blockchain = [create_genesis_block()] 
previous_block = blockchain[0] 
temp_buyer = [] 
temp_seller = [] 
 
j=0 
k=0 
 
# How many blocks should we add to the chain 
# after the genesis block 
num_of_blocks_to_add = 58 
y=0 
m=1 
n=1 
pgensum = 0 
ploadsum = 0 
while(y < num_of_blocks_to_add): 
    prosumers = list() 
    producers = list() 
    consumers = list() 
    for k in range(1, 8): 
        pgen = round(random.uniform(5,15), 2) 
        pload = round(random.uniform(5,15), 2) 
        pnet = round(pload-pgen, 2) 
        if(pgen > pload): 
            status = 1 
        else: 
            status = 0 
        prosumers.append(Prosumer(k, pgen, pload, pnet, status)) 
 
#Negotiate contract 
    have_contract = 0 
    f = 2 
    prepare = 0 
    commit = 0 
    values = list() 
    messages = 0 
    nowtime = date.datetime.now().strftime('%S.%f')[:-2] 
    sheet.cell(row=y+1, column=8).value = nowtime 
 
    #pBFT 
    while(prepare <= (2*f +1)): 
        for i in range(0, len(prosumers)): 
            prepare += prosumers[i].vote() 
            time.sleep(random.uniform(0, 0.1)) 
            messages += 1 
 
    while(commit <= (2*f +1)): 
        for i in range(0, len(prosumers)): 
            commit += prosumers[i].vote() 
            time.sleep(random.uniform(0,0.1)) 
            messages += 1 
 
    #Modified PoS 
    for i in range(0, len(prosumers)): 
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        values.append(prosumers[i].value()) 
    validator = np.argmax(values) 
 
    nowtime = date.datetime.now().strftime('%S.%f')[:-2] 
    block_to_add = next_block(previous_block) 
    blockchain.append(block_to_add) 
    previous_block = block_to_add 
    print("Block #{} has been added to the 
blockchain!".format(block_to_add.index)) 
    print("Data: {}".format(block_to_add.data)) 
    print("Hash: {}\n".format(block_to_add.hash)) 
    sheet.cell(row=y+1, column=3).value = block_to_add.index 
    sheet.cell(row=y+1, column=4).value = block_to_add.data 
    sheet.cell(row=y+1, column=5).value = block_to_add.hash 
    sheet.cell(row=y+1, column=6).value = nowtime 
    sheet.cell(row=y+1, column=7).value = messages 
 
    y +=1 
 
workbook.save(filename=filename)  
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C.5. Optimal Scheduling Problem Code 
 
{string}T=...;   //time horizon 
{string}G={"G1"};    //Thermal generating units 
float L[T]=...;   //net load data 
float F[G]=[61.3];  //operational cost ($/MW) 
float Pmin[G]=[0.01]; //minimum power generation 
float Pmax[G]=[.5];  //max power generation 
float SU[G]=[15];  //startup for each uniit 
float SD[G]=[2];  //shutdown for each unit 
float Eessmin= 2;  //Minimum energy capacity (MWh) 
float Eessmax= 10;  //Maximum energy Capacity  (MWh) 
float Pdchmax=0.3;  //max discharging power for the battery 
float Pdchmin=0.01;  //min discharging power for the battery 
float Pchmin=0.01;   //min charging power for the battery 
float Pchmax=0.3;   //max charging power for the battery 
float CB=70; 
float CC=1000; 
float Cgrid[T] = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62, 
31.94, 37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09, 
50.41, 47.77, 40.96, 36.71, 32.12]; 
 
 
//float Cr=85; 
//float SU[G]=[18,10,15];//startup for each uniit 
//float SD[G]=[1.5, 1, 2];//shutdown for each unit 
 
// DECISION variables 
//dvar float Pgrid[T]; 
dvar float+ P[G][T];  //generation from microgrid 
dvar float R[T]; // Spining Reserve 
dvar float Bss[T]; // battery Power 
dvar float C[T]; // Battery Energy  
dvar float Pnet[T]; 
dvar boolean u[G][T];//commitment state of dispatchable units 
dvar boolean y[G][T];// startup variable 
dvar boolean z[G][T];//shut down variable 
dvar boolean d1[T]; // DISCHARGING STATE VARIABLE 
dvar boolean c1[T]; // CHARGING STATE VARIABLE 
 
//objective function 
dexpr float cost = sum(j in T)(sum (i in G) (F[i]*P[i][j]*u[i][j] + 
y[i][j]*SU[i] + z[i][j]*SD[i]) + CB*Bss[j] + Cgrid[j]*R[j] + 
CC*abs(Pnet[j])); 
 
// model 
minimize cost; 
 
subject to { 
// Power balance constraint 
CT1: forall (i in G, j in T){ 
(sum(i in G)P[i][j]+Bss[j]+R[j]+Pnet[j]==L[j]);}  
 
//generation limits 
CT2:forall(i in G,j in T){ 
   Pmin[i]*u[i][j]<=P[i][j];} 
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CT3: forall (i in G, j in T){ 
            L[j]<=Pmax[i]=>Pmax[i]*u[i][j]>=P[i][j]; 
   L[j]>=Pmax[i]=>Pmax[i]*u[i][j]>=P[i][j];} 
    
CT5:forall(i in G, j in T:j!=first(T)){ 
   y[i][j]-z[i][j]==u[i][j]-u[i][prev(T,j)];} 
    
CT6:forall (i in G, j in T){ 
            y[i][j]+z[i][j]<=1;}  
             
//Battery limits 
//max discharge and min charge of MG1 
CT7:forall (j in T){ 
   Bss[j]<=((Pdchmax*d1[j])-(Pchmin*c1[j]));} 
    
//min discharge and max charge of MG1 
CT8: forall (j in T){ 
   Bss[j]>=((Pdchmin*d1[j])-(Pchmax*c1[j]));} 
    
//charging and discharging state of ESS for MG1    
CT9: forall (j in T){ 
   d1[j]+c1[j]<=1;} 
    
//ESS state of charge for MG1 
CT10:forall (j in T:j!=first(T)){ 
   C[j]==C[prev(T, j)]-Bss[j];} 
    
//ESS capacity constraints for MG1 
CT11:forall(j in T){ 
   C[j]<=Eessmax; 
   C[j]>=Eessmin;} 
    
CT12: forall(j in T){ 
   abs(R[j]) <= 0.5;} 
}  
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