
Marshall University Marshall University

Marshall Digital Scholar Marshall Digital Scholar

Theses, Dissertations and Capstones

2021

Peer-to-Peer Energy Trading for Networked Microgrids Peer-to-Peer Energy Trading for Networked Microgrids

Jonathan David Warner

Follow this and additional works at: https://mds.marshall.edu/etd

 Part of the Digital Communications and Networking Commons, Electrical and Computer Engineering

Commons, and the Environmental Engineering Commons

https://mds.marshall.edu/
https://mds.marshall.edu/etd
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=mds.marshall.edu%2Fetd%2F1344&utm_medium=PDF&utm_campaign=PDFCoverPages

PEER-TO-PEER ENERGY TRADING FOR NETWORKED MICROGRIDS

A thesis submitted to
the Graduate College of

Marshall University
In partial fulfillment of

the requirements for the degree of
Master of Science

In
Electrical & Computer Engineering

by
Jonathan David Warner

Approved by
Dr. Tarek Masaud, Committee Chairperson

Dr. Taher Ghomian
Dr. Pingping Zhu

Marshall University
May 2021

APPROVAL OF THESIS

We, the faculty supervising the work of Jonathan David Warner, affirm that the thesis, Peer-To
Peer Energy Trading For Networked Microgrids, meets the high academic standards for original
scholarship and creative work established by the Electrical & Computer Engineering Masters
program and the College of Engineering and Computer Sciences. The work also conforms to the
formatting guidelines of Marshall University. With our signatures, we approve the manuscript for
publication.

�··
��.. •· .. .

Dr. Tarek Mas�ud, CSEE Committee Chairperson Date

Dr. Taher Ghomian, CSEE Committee Member Date

Dr. Pingping Zhu, CSEE Committee Member Date

ii

iii

© 2021
JONATHAN DAVID WARNER

ALL RIGHTS RESERVED

iv

ACKNOWLEDGMENTS

I want to thank all the people who helped and supported me to achieve this milestone. I

cannot begin any acknowledgement without first thanking my parents, David and Denise, whose

love, support, and encouragement have carried me through every stage of my journey. I must

also thank my brother, Tim, for being my inspiration to overachieve and my life-long target to

outperform. I also want to thank my many friends who have encouraged, counseled, and

accommodated me on this journey. Lastly, I want to thank my adviser, Dr. Masaud, who has

provided me with and guided me through many opportunities to grow as a researcher and a

scholar.

v

TABLE OF CONTENTS

List of Nomenclature ...vii

List of Tables ..viii

List of Figures ..ix

Abstract ..xi

Chapter 1: Introduction ..1

 1.1. Background ...1

 1.2. Literature Review..5

 1.3. Contributions...10

 1.4. Thesis Outline ...11

Chapter 2: Peer-to-Peer Energy Trading In Distribution Networks: An Overview12

 2.1. Introduction ...12

 2.2. Peer-To-Peer Energy Trading Mechanism ...16

 2.2.1. Game Theory ...18

 2.2.2. Auction Markets...19

 2.2.3 Constrained Optimization ...20

 2.3. Blockchain-Based P2P Trading ..21

Chapter 3: The Proposed P2P Energy Trading Model...27

 3.1. Islanded Operation Mode – Multiagent Model ...27

 3.1.1. Seller and Buyer Identification ..28

 3.1.2. Price Adjustment and Contract Matching Mechanism29

 3.2. Grid Connected Operation Mode – Multiagent Model ...35

 3.2.1. Formulation of the Optimization Scheduling Problem35

vi

 3.2.2. Energy Trading and Price Adjustment Model – Model I36

 3.2.3. Energy Trading and Price Adjustment Model – Model II41

 3.3. Two-Phase Blockchain Consensus Protocol ...43

Chapter 4: Simulation Results ...48

 4.1. Islanded Operation Mode – Multiagent Model ...48

 4.2. Grid Connected Operation – Multiagent Models..57

 4.2.1. Model I ...57

 4.2.2. Model II ...62

Chapter 5: Conclusion..68

 5.1. Future Work ..69

 5.2. Outcome Publications ...69

References ..71

Appendix A: Approval Letter from the Office of Research Integrity ...80

Appendix B: Tabulated Data ...81

Appendix C: Simulation Codes ...83

vii

LIST OF NOMENCLATURE

Sets:
𝑚𝑚 Seller
𝑛𝑛 Buyer
𝑟𝑟 Price adjustment round
𝑡𝑡 Hour

Parameters:
NL Net load
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum generation capacity

of microgrid
𝑪𝑪𝒑𝒑𝒑𝒑 Maximum storage capacity of

microgrid
𝑪𝑪𝒈𝒈 Cost of generation for DG
𝑪𝑪𝒑𝒑𝒑𝒑 Cost of peak plant generation
𝑪𝑪𝒃𝒃𝒑𝒑𝒑𝒑 Cost of battery storage
𝑪𝑪𝒄𝒄𝒄𝒄𝒄𝒄 Energy and load curtailment

cost
𝑪𝑪𝒑𝒑𝒔𝒔 Energy and load shedding cost
𝑺𝑺𝑺𝑺 Startup cost
𝑺𝑺𝑺𝑺 Shutdown cost
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum generation limit of

DG
𝑷𝑷𝒈𝒈,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum generation limit of

DG
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒅𝒅𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum discharge power

from BSS
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒅𝒅𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum discharge power

from BSS
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum charge power to

BSS
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑,𝒄𝒄𝒔𝒔,𝒎𝒎𝒎𝒎𝒎𝒎 Minimum charge power to BSS
𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎 Minimum state of charge of

BSS

𝑬𝑬𝒎𝒎𝒎𝒎𝒎𝒎 Maximum state of charge of
BSS

𝑷𝑷𝒕𝒕𝒎𝒎𝒕𝒕,𝒎𝒎𝒎𝒎𝒎𝒎 Maximum capacity of utility tie
line

𝑃𝑃𝑝𝑝𝑝𝑝 Maximum energy from peak
generation

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 Maximum energy to curtail
𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 Cost of spinning reserve energy

Variables:
𝑷𝑷𝒈𝒈 Generation of DG
𝑷𝑷𝒃𝒃𝒑𝒑𝒑𝒑 Power charged to or discharged

from BSS
𝑺𝑺𝑺𝑺𝑪𝑪 State of charge of BSS
𝑷𝑷𝒈𝒈𝒄𝒄𝒎𝒎𝒅𝒅 Power exchanged with the

utility
𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟 Power from spinning reserve
𝝀𝝀𝒈𝒈𝒄𝒄𝒎𝒎𝒅𝒅 24-hour dynamic utility price
𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Fixed utility price
𝑷𝑷𝒎𝒎𝒕𝒕𝒕𝒕 Amount of power to be traded
𝒄𝒄 Binary variable describing the

dispatch of DG
𝒚𝒚 Binary variable describing

startup status
𝒛𝒛 Binary variable describing

shutdown status
𝒅𝒅 Binary variable describing

discharge state
𝒄𝒄 Binary variable describing

charge state
𝝀𝝀𝒑𝒑𝒕𝒕𝒔𝒔𝒔𝒔 Desired selling price
𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢 Desired buying price

viii

LIST OF TABLES

Table 3.1 Price adjustment and contract execution algorithm - islanded

operation ..33

Table 3.2 Price adjustment and contract execution algorithm - grid-

connected operation model I ..41

Table 3.3 Price adjustment and contract execution algorithm - grid-

connected operation model II...43

Table 3.4 Two-phase blockchain consensus protocol ...47

Table 4.1 Amount of power traded in each contract over the 24-hour time

horizon ...52

Table 4.2 Validation of obtained results in comparison to results from the

literature ...57

ix

LIST OF FIGURES

Figure 2.1 Microgrid concept ..12

Figure 2.2 Group of interconnected microgrids forming a microgrid network16

Figure 2.3 Prosumer definition ..17

Figure 2.4 General blockchain structure ..22

Figure 3.1 System model (islanded operation) ..28

Figure 3.2 Flowchart of the proposed trading model (grid connected operation)37

Figure 3.3 System model (grid connected operation) ..38

Figure 3.4 pBFT two round voting process with faulty node tolerance44

Figure 3.5 Flowchart of the proposed model ...47

Figure 4.1 Number of executed contracts and amount of traded power in the case

of 10 interconnected microgrid system ...50

Figure 4.2 A successful price adjustment process for a selected block51

Figure 4.3 Variation in the computation time with respect to the change of the

number of microgrids in the network ...53

Figure 4.4 Variation in the number of executed contracts with respect to the

change of the number of microgrids in the network ...54

Figure 4.5 A sample of generated blocks containing contract data ...55

Figure 4.6 The change in average validation time with respect to the change of

the number of microgrids in the network..56

Figure 4.7 24-hour dynamic energy prices ..59

Figure 4.8 Excess and deficit power to be traded from seven networked

microgrids ...59

x

Figure 4.9 Amount of deficit power vs. satisfied deficit power resulting from the

peer-to-peer trading model..60

Figure 4.10 Comparison of the model trading price to the utility price61

Figure 4.11 An example of the price adjustment process of two buyers and two

sellers ..62

Figure 4.12 A sample of generated blocks containing contract data ...63

Figure 4.13 Comparison of energy deficit to traded energy ..64

Figure 4.14 Comparison of the model trading price to utility price ...64

Figure 4.15 An example of price adjustment process of two buyers and two sellers66

Figure 4.16 Total energy traded in each hour, including primary and spinning

reserve power ...67

Figure 4.17 A sample of generated blocks containing contract data ...68

Figure 4.18 A sample of generated blocks including a spinning reserve contract

block..68

xi

ABSTRACT

Considering the limitations of the existing centralized power infrastructure, research interests

have been directed to decentralized smart power systems constructed as networks of

interconnected microgrids. Therefore, it has become critical to develop secure and efficient

energy trading mechanisms among networked microgrids for reliability and economic mutual

benefits. Furthermore, integrating blockchain technologies into the energy sector has gained

significant interest among researchers and industry professionals. Considering these trends, the

work in this thesis focuses on developing Peer-to-Peer (P2P) energy trading models to facilitate

transactions among microgrids in a multiagent network. Price negotiation mechanisms are

proposed for both islanded and grid-connected microgrid networks. To enable a trusted

settlement of electricity trading transactions, a two-stage blockchain-based settlement consensus

protocol is also developed. Simulation results have shown that the model has successfully

facilitated energy trading for networked microgrids.

1

CHAPTER 1

INTRODUCTION

This chapter will include a discussion of the background and motivation which inspired

the undertaking of this research. Additionally, this chapter includes an extensive literature review

of the topic, and a summary of the thesis scope and contributions.

1.1 Background

For decades, energy consumers have relied on the large-scale power grid to supply

electrical power for their homes and businesses. The power grid has traditionally consisted of

utility-owned and operated electric power generation plants connected to high voltage

transmission lines delivering electricity up to hundreds of miles away from the power source.

The highly centralized nature of these power grids has been a significant concern for system

reliability and resiliency, where a single-equipment failure can have extensive effects on the rest

of the grid, leading to localized power disruptions, generation outages, and even large-scale

blackouts [1]. Additionally, the power grid has traditionally relied on conventional, non-

renewable energy sources such as coal and natural gas. These fossil fuels, in addition to being a

depleting resource, have been shown to contribute greatly to environmental pollution and

growing crisis of climate change [2].

In recent years, the concept of a smart grid has begun to emerge which aims to alleviate

and eliminate many of the concerns of the traditional power grid. Smart Grid is the term for the

next generation of the power grid which is currently being researched, developed, and deployed

around the world. The Smart Grid includes many technological upgrades and additional control

features to the grid including smart meter technology, smart appliances, and a focus on

renewable energy and other energy efficient resources [3]. The goal of the Smart Grid is to

2

optimize the economic and operational efficiency of the grid by improving grid reliability and

demand response flexibility. Because of this emphasis on efficiency and integration of renewable

energies, it is common for the future smart grid to be imagined as a system of interconnected

smart microgrids [4]. IEEE standard 1547.4 has confirmed that representing large power grids by

a group of interconnected microgrids significantly enhances the reliability, resiliency, and

sustainability of the network [5]. Thus, significant attention has been paid to the concept of

networked microgrid operation in recent years.

Microgrid is defined by the US Department of Energy as “a group of interconnected

loads and distributed energy resources within clearly defined electrical boundaries that acts as a

single controllable entity with respect to the grid. A microgrid can connect and disconnect from

the grid to enable it to operate in both grid-connected or island mode” [5]. Microgrid applications

have been developing steadily over the past few years and deployment of microgrids are

anticipated to increase even more in the near future, especially with an increasing interest in the

use of smart grid technology.

The most important aspect of any power grid operation is the ability to maintain

generation-demand balance at all times. However, due to the intermittent nature of the renewable

energy sources present in the microgrids and the unique energy demands of each grid, all

microgrids will have different energy profiles. It is an essential principle of any grid operation to

maintain a generation-demand balance. However, for any given interval in a 24-hour day, some

microgrids will be experiencing energy deficit conditions where generation is less than demand,

while others may be experiencing energy surplus conditions where generation is greater than

demand. Therefore, in order to maintain real-time balance of local power generation and

demand, microgrids may seek to establish energy trading coalitions to share energy resources.

3

Coalition formation and the energy trading mechanism used to assure adequate power sharing

among networked microgrids are crucial elements to the success of the interconnected microgrid

network. Energy trading helps to ensure generation-demand imbalance is mitigated as much as

possible based on available resources while also minimizing microgrid operation costs by

maximizing the economic efficiency of the microgrid network.

 Centralized energy trading models are relatively simplistic and convenient; however

they are hard to scale for a large number of entities. Furthermore, centralized trading schemes

make networks highly susceptible to cyber-attacks [6]. Because of these drawbacks, the

emergence of Blockchain and the great amount of attention given to it has led to a tremendous

amount of interest in using the technology within information infrastructures to assure secure and

decentralize energy trading [6]. In the U.S., the Brooklyn Microgrid project is an example of a

first generation successful peer-to-peer blockchain system operating through smart meters, where

prosumers are able to trade energy based on pre-determined bid prices [7].

As previously noted, the concept of blockchain is becoming a popular choice for secure

transactions in decentralized networks. First proposed in 2008, a blockchain is a simple growing

list of public records known as blocks which are securely linked to one another to form a chain.

The original application of the blockchain was to provide a distributed public transaction record

for the Bitcoin cryptocurrency, but the concept has been adapted to be used in any case where

transactional security is a concern. The primary advantage of the blockchain is its distributed,

decentralized structure, which allows for direct peer-to-peer interaction without the concern of a

potentially compromised central entity. The blockchain also employs a consensus method,

whereby blocks must be validated by varying means before being appended to the blockchain.

4

 Due to the immutability of the blockchain record and the consensus methods used to

validate information appended to the chain, blockchain is a perfect candidate for tracking

financial transaction records [8]. These blockchains are constructed as digital ledgers, where

each block contains the details of a financial transaction. The data contained in a block includes

the identification of the parties participating in the transaction, the amount of goods being

transacted, the timestamp of the execution of the transaction, and an alpha-numeric string called

a hash, which is taken from the previous block. This data is input into a hashing function,

generating a new and unique hash which is appended to the block, separate from the transaction

data. All information is then updated synchronously to the entire network so that each peer (node

in the network) keeps a record of the same ledger. The next block includes the hash from the

previous block as part of its data and generates a new hash, which is then used by the next block.

Therefore, the blocks are chained together by these uniquely generated hashes. If any of the data

in a chained block is modified, the hash associated with that block will change, no longer

matching the hash used in the next block and thereby breaking the chain. Because of its

consensus method, integrity of the data recorded in the ledger can be guaranteed without a

trusted third party [9]. Various consensus algorithms have been developed such as Proof of Work

(PoW), Proof of Stake (PoS), Delegated Proof of Stake (DPoS), Ripple Protocol Consensus

Algorithm (RPCA) and AlgoRand [9]. The consensus algorithm is the most important factor of

the entire blockchain system, not only because it is the primary method of blockchain security,

but also because the efficiency of the consensus algorithm is the primary factor influencing the

blockchain's performance.

5

1.2 Literature Review

In the existing literature, numerous models have been developed for Peer-to-Peer (P2P)

energy trading with and without considering the integration of blockchain technology, which can

be classified into three main areas: game theory models [10] – [13], auction models [14] – [17],

and analytical models [18] – [20]. Researchers in [10] propose a novel game-theoretic model for

P2P energy trading using direct interaction between prosumers with a particular consideration for

demand response capability and privacy. Price negotiations are modeled as a non-cooperative

game, with a novel iterative algorithm developed to reach price equilibrium. The work proposed

in [11] suggests a strategy for energy storage allocation utilizing a Stackelberg game. In this

strategy, each participant submits an initial bid price which is evaluated by a central, third-party

participant. The third party then calculates a target price between the minimum and maximum

bid prices which seeks to maximize the average cost savings among participants. After the

selected target price is proposed, participants may adjust the amount of energy storage allocation

they are willing to purchase, which would in turn affect the target price calculation. The target

price and participant energy storage amounts are continuously updated until an equilibrium is

reached where all bids are finalized and payments are exchanged. A primary drawback of the

proposed strategy is the requirement of a centralized entity to control price adjustments for

trading. Additionally, the economic efficiency is not maximized for each participant. The model

proposed in [12] formulates a cooperative game to solve energy trading with bilateral decision

making. In this model, buyers and sellers determine their maximum and minimum acceptable

costs and maximum and minimum acceptable payoff. The game is solved when an appropriate

bilateral price is determined for both parties. The efficiency of the model is shown for energy

trading between single seller single buyer and single seller multiple buyers; however, the model

6

is not extended to scenarios which consider multiple sellers in the marketplace. The work in [13]

proposes a Stackelberg game-based dynamical pricing strategy for energy sharing. A central

trading operator sets the buying and selling prices for the microgrid, while the energy prosumers

are able to determine their level of energy consumption from the microgrid and from the utility.

Researchers in [14] propose an energy market auction for a community microgrid. The

community microgrid establishes trading between its prosumers in an effort to purchase energy

at a price below the utility price. The utility participates as an infinite energy source in the

market, therefore excess generated power in the microgrid will remain unsold if it cannot beat

the utility price. Additionally, the proposed trading market is conditioned for noniterative

bidding, which does not allow for energy prices and bids to be dynamically updated to encourage

trading. In [15], an iterative double auction price adjustment mechanism is proposed in an effort

to maximize social welfare. A third-party energy broker entity acts as an auctioneer, determining

the execution of energy trades based on buying and selling prices submitted by participants. In

this way, the third-party entity ultimately determines the final trading price and amount.

Researchers in [16] propose a continuous double auction-based electricity market utilizing a

predictive trading optimization model. In this strategy, an optimization problem which

determines optimal grid operation is integrated into the auction model in order to optimize the

bidding behaviors of buyers and sellers. This optimized auction model relies on market pricing

predictions based on historical transaction data. The work in [17] proposes a multiagent method

for energy trading utilizing a strict reverse auction bidding scheme. In this method, an aggregator

acts as a central entity interfacing with generation entities in the microgrid which bid to fulfill the

microgrid demand with the aggregator having control over the selection of bids. If the available

energy supply is higher than the demand, the aggregator lowers the purchasing price and accepts

7

updated bids from willing participants. This process continues until only one participant remains

and the trade is executed at the final price. The primary drawback of this work is also the

reliance on a central trade control entity.

The work in [18] develops a P2P linear programming trading model for applications in

decentralized and centralized storage energy markets. The model is designed as a multi-energy

management strategy with a goal to minimize electricity costs in the trading community. The

authors admit that price determination is highly dependent on the assumed consumption costs,

which in the proposed modeled are determined from grid prices. Authors in [19] propose an

optimization model for the operation of PV systems in the context of P2P energy trading. The

proposed model is designed as a mixed integer linear programming model used to optimize

operational decisions of a distributed energy market which allows P2P energy trading. In this

way, the pricing mechanism for energy trading is directly incorporated in the optimization

problem. Research in [20] proposes a dynamical pricing model for energy sharing considering

the supply and demand ratio of shared PV energy. Prosumers calculate desired prices in an effort

to minimize economic and inconvenience costs. Buyers attempt to match their prices to the seller

price, with both updating their prices iteratively based on the cost function until converging on

their finalized prices. If prices do not match, the excess demand is satisfied by the utility. None

of the trading models proposed in [10] – [20] consider costs associated with islanded microgrid

operation, such as energy curtailment and load shedding. Additionally, the existing models fail to

consider other factors which influence the buying and selling prices such as spinning reserve and

energy storage costs.

In terms of integrating blockchain technology, few studies have focused on developing

decentralized energy trading using blockchain technology [21] – [25]. For instance, the work in

8

[21] proposes a two-layer algorithm for blockchain-based energy trading negotiation and

transaction settlement among grid connected networked prosumers. The first layer is a contract

chain, which contains data related to the energy transaction. The second layer is a ledger chain,

which tracks the trading balance of the microgrid network. Because the data in these two chains

directly influence one another, the immutability of their records is further ensured by a high

frequency verification mechanism between corresponding blocks in each chain. Researchers in

[22] suggest the use of a smart contract method based on energy tokens, where the energy token

represents a unit of power at a fixed price. This work shows that utilizing blockchain for smart

contract allows automatic execution of energy trading contracts in a secure, decentralized

network. Authors in [23] extend the energy token method by using a linear time-based value

depreciation model for the energy tokens. This method stimulates energy trading by

incentivizing the buying and selling of tokens within a time limit. An incentivizing method

utilizing Nash bargaining theory is presented in [24]. In [25], the impact of applying load

management on reducing the energy cost bought from a blockchain-based peer-to-peer energy

trading market is studied. PoW is used as the blockchain consensus method in this work.

 System security is crucial to the successful operation of interconnected energy trading

systems, and recently proposed models have turned to blockchain technology to address these

concerns [8, 26-30]. The work in [26] proposes a blockchain model for detecting data corruption

produced by third party intrusions based on a collaborative intrusion detection approach. The use

of blockchain as a means of intrusion detection removes the security risk of a central authority

while improving the speed and accuracy of detection. A modified blockchain approach utilizing

directed acyclic graphs is proposed in [8] to ensure the preservation of security in networked

microgrids in order to minimize operational costs. The proposed method additionally includes a

9

data restoration technique for the event of a corruption on the blockchain due to third-party

intrusion. A unified energy blockchain based on consortium blockchain for secure peer-to-peer

energy trading in industrial internet of things is presented in [27]. This unified energy blockchain

utilizes a traditional proof of work consensus method to validate blocks on the chain. To ease the

limitation of execution time, a credit-based payment scheme is also proposed to stimulate fast

peer-to-peer energy trading. To increase the system security and privacy, differentially private

energy trading auction using consortium blockchain for microgrids systems is proposed in [28].

This model seeks to increase the security and privacy of traditional auction-based peer-to-peer

trading by utilizing consortium blockchain technology. Researchers in [29] propose the use of

consortium blockchain to ensure privacy protection of direct transactions between microgrids. In

an effort to improve the efficiency of blockchain transactions, the use of practical byzantine fault

tolerance (pBFT) is proposed as an alternative to traditional consensus methods in this work.

Peer-to-peer energy trading based on Blockchain implementation using Hyperledger Fabric

considering different energy transaction scenarios and crowdsources is presented in [30]. This

work considers blockchain utilizing a modified pBFT consensus method but requires a central

managing entity in large-scale crowdsourced implementation.

 Based on the conducted literature review, it was found that there are three aspects that

need further investigation:

(i) How the energy trading price and amount is determined for both islanded and grid-

connected microgrid networks.

(ii) Once a trading transaction is completed, there is a need to develop more secure energy-

and time-efficient consensus algorithms to settle those transactions in the blockchain.

Additionally, the existence of malicious nodes that might invalidate the voting process of

10

the consensus mechanism and manipulate the recorded data need to be considered in the

algorithm’s development. Otherwise, the blockchain system may become insecure,

unreliable, and inefficient.

(iii) In spite of the numerus advantages of using blockchain in developing a trustable trading

environment, the concern of network privacy is still a primary concern restricting

blockchain implementation, especially in peer-to-peer- trading mechanisms.

1.3 Contributions

To resolve the above challenges, the work in this thesis focuses on developing P2P

energy trading models to facilitate transactions among microgrids in a multiagent network. Price

negotiation mechanisms are proposed for both islanded and grid-connected microgrid networks.

Additionally, a two-stage blockchain-based energy trading algorithm for a group of networked

microgrids is considered to ensure the security of the energy trading mechanism. The two-stage

algorithm develops an energy trading-based smart contract mechanism in stage one, and a

transaction settlement method is developed in the second stage. The contribution of this work

can be summarized as follows.

1. Development of a pre-conditioned smart contract-based energy trading mechanism to

allow microgrids to establish coalitions, negotiate the electricity trading price, and the

amount of energy to be traded. Significantly distinguished from the work in the literature,

this method is uniquely developed in such a way that the pre-determined smart contracts

are executed autonomously in a blindly traded energy marketplace, where peers do not

share their data, including the energy prices during the trading process. This contributes

to the need to develop more privacy-preserving negotiation mechanisms for peer-to-peer

trading oriented processes.

11

2. Distinguished from the work in the literature [16] – [26], this work proposes a new

blockchain-based contract settlement protocol utilizing a two-phase consensus algorithm

consisting of pBFT and a modified PoS to ensure system security, energy and time

efficiency.

3. The proposed algorithm establishes a price adjustment mechanism for islanded operation

and two distinct price adjustment mechanisms for grid-connected operation of microgrid

networks. In contrast to the work in the literature, the cost of microgrid local resources

(storage cost, curtailment cost, load shedding cost, and spinning reserve) are considered

in the price adjustment process to incentivise the P2P energy trading.

1.4 Thesis Outline

This thesis is structured in five chapters. Chapter 1 provides background and motivation,

literature review, research contributions, and a thesis outline. Chapter 2 contains an extended

discussion of peer-to-peer energy trading applications for networked microgrids and blockchain

technology. Chapter 3 presents the proposed energy trading model for the networked microgrid

applications, including the development of the pricing mechanisms for islanded and grid-

connected operation and the blockchain-based settlement protocol. Chapter 4 details the

simulation of the proposed models with an extensive presentation and analysis of the obtained

results. Additionally, the results of the simulation are compared against existing solutions found

in the literature. Finally, Chapter 5 provides the conclusions of the thesis work and proposes

future research to extend the work contained in the thesis.

12

CHAPTER 2

PEER-TO-PEER ENERGY TRADING IN DISTRIBUTION NETWORKS: AN

OVERVIEW

2.1. Introduction

The United States Department of Energy defines a microgrid as, “a group of

interconnected loads and distributed energy resources within clearly defined electrical

boundaries that acts as a single controllable entity with respect to the grid. A microgrid can

connect and disconnect from the grid to enable it to operate in both grid-connected or island

mode [5].” Fig. 2.1 shows a schematic diagram of the microgrid concept. From this definition we

can identify three major distinguishing characteristics of a microgrid: (1) microgrids exist at the

distribution level, consisting of distributed energy sources serving localized loads, (2) microgrids

are capable of operating both with and without a connection to the power grid, and (3)

microgrids have a layer of intelligent control, enabling the microgrid to actively manage its

resources to operate successfully whether it is islanded or grid connected.

Figure 2.1. Microgrid concept

13

As mentioned previously, the prevailing method of energy distribution for the last

century has consisted of large-scale, centralized energy production facilities generating and

transmitting power over long distances up to hundreds of miles away from the generation. To

mitigate losses over these long distances, power is transmitted at very high voltages up to 750

kV. Stepping up to this voltage requires large, expensive step-up transformers at the generating

facilities, and similarly expensive step-down transformers to gradually step down from

transmission to distribution voltage, and then finally to residential service levels. According to

the US Energy Information Administration, the amount of power lost in transmission and voltage

transformation is on average 5% of the total energy production [31]. Microgrids avoid the issue

of transmission power loss altogether by relying on distributed generation technology (DG). DG

can be defined as small energy generating resources installed at the distribution level. DG is

already localized to the loads it serves, and therefore requires little to no power transmission to

deliver energy to the consumer.

An additional drawback of the current power grid system is the centralized nature of the

power grid. Large-scale utility generation plants service thousands of individual customers

through a small number of transmission lines, the loss of which would impact those customers.

Conversely, the islanding capability enables microgrid to maintain the power supply during

power grid outages, and reliably supply power to its local loads.

The second unique characteristic of the microgrid is its ability to operate with or without

a connection to the power grid. When the microgrid has a connection to the power grid, it is said

to be grid-connected. This grid connection gives the microgrid the ability to exchange energy

with the grid, either by purchasing energy from the grid in the event that the microgrid cannot

14

generate enough energy to satisfy its demand, or by selling energy to the grid in the event that

the microgrid has generated more energy than it has demand. When the microgrid is

disconnected from the power grid, it is said to be islanded, or operating in islanded mode. A

microgrid operating in islanded mode does not have the capability of exchanging energy with the

grid, and therefore must rely on its own generation to satisfy the local demand.

Islanded operation can be either voluntary or involuntary. In the majority of voluntary

cases, the microgrid is islanded because a connection to the grid is impractical, such as when the

microgrid is servicing loads in a remote community [4]. Additionally, a microgrid can choose to

enter islanded operation when the utility grid experiences disturbances. A microgrid may be

involuntarily islanded due to a loss of the tie line between the microgrid and the power grid as a

result of equipment failure or a severe weather event [4]. Also, a system blackout in the power

grid could be considered an involuntary islanding. Fig. 2.1 illustrates the ability of a microgrid to

operate in either grid connected or islanded mode.

The third unique characteristic of the microgrid is the ability to intelligently control its

energy resources to maximize the efficiency and increase the deployment of renewable

distributed energy sources (RES). As mentioned previously, microgrids are equipped with an

array of local energy sources (energy storage, dispatchable generation units, controllable loads,

etc) which can be utilized to accommodate the variable nature of renewable generation.

Microgrids manage its local resources in one of two primary ways: centralized control or

distributed control. The microgrid utilizes a central controller which is tasked with scheduling

the dispatch of the all the various energy sources and managing all the loads in the grid [32]. For

distributed control schemes, the microgrid relies on the local control of each resource in the

microgrid [33]. Distributed schemes are often structured as Multi-Agent Systems (MAS), where

15

each resource is equipped with a controller agent that coordinates the generation or demand of its

resource among the other agents in the grid [34].

To achieve optimal management and scheduling of microgrid local resources in both

control schemes, it is imperative of the microgrid operator to forecast the grid energy profile,

which include demand and renewable generation forecast. In addition to its ability to forecast,

the microgrid must also be equipped to respond to real-time forecasting errors and sudden

contingency scenarios, such as an unscheduled islanding. Microgrid controllers must be able to

self-stabilize through voltage and frequency control to ensure the microgrid remains operational

[35].

Beyond the operational characteristics and concerns of a single microgrid, much research

attention is being paid to the operation and interaction of groups of microgrids. Due to the

rapidly increasing deployment of microgrids, a primary focus of microgrid research is now

turning to the microgrid network. Networked microgrid is a large group of interconnected

microgrids which may operate cooperatively among themselves while still remaining distinct

from the utility grid as shown in Fig. 2.2. The ability of networked microgrids to operate

cooperatively leads to increased energy efficiency, reduced emissions, and lower energy

consumer costs [36]. Additionally, transitioning the utility power grid toward a system of

microgrid networks provides more efficient, and reliable smart grid [4].

16

Figure 2.2. Group of interconnected microgrids forming a microgrid network

2.2. Peer-to-Peer Energy Trading Mechanism

Peer-to-Peer (P2P) energy trading represents direct energy trading between peers. For

networked microgrids applications, energy is traded among all microgrids (peers) in the network

to achieve a desired social welfare (e.g., reliability or economic benefits). P2P markets can also

be defined as energy exchange platforms that create a transactive energy market for all peers to

bid and offer for transacting energy. P2P energy trading in the microgrid network service

towards achieving generation-demand balance while reducing the instances of load shedding and

energy curtailment, thereby improving the energy and economic efficiency of each microgrid.

In P2P energy trading markets, participants known as prosumers buy and sell energy

from one another in an effort to gain economic and reliability benefits. A prosumer is an

emerging category of energy consumer which not only consumes energy but also has the

capacity to produce energy through installed distributed generation (most commonly renewable

generation) as illustrated in Fig. 2.3. The primary energy source of the prosumer is therefore its

own generation, and any energy demand above the generation capacity of the prosumer must be

sourced from external generation, such as the power grid. Conversely, if the amount of energy

17

produced exceeds the prosumer demand, the prosumer can sell the excess energy. In this way it

becomes easy to define a microgrid as an energy prosumer, which utilizes its own generation to

satisfy loads, while also being able to exchange energy with external entities [37].

Figure 2.3. Prosumer definition

For reliability purposes, each prosumer aims at achieving demand-generation balance.

However, due to fluctuations in both renewable generation and demand, achieving generation-

demand balance becomes a challenging task. Therefore, there are three distinct scenarios exist

for the prosumer: (1) when generation-demand balance is achieved, (2) when generation is less

than demand, and (3) when generation exceeds demand. In the first scenario, the prosumer has

satisfied all of its loads and has no remaining energy, therefore no action is required. In the

second scenario, the prosumer was not able to satisfy all of its loads and therefore must seek to

purchase additional energy or be forced to shed his unsatisfied load. In the third scenario, the

prosumer has not only satisfied all of its demand, but it also has excess energy which it may seek

to sell at a profit, store in an energy storage system, or curtail. P2P energy trading between

prosumers seeks to resolve the energy deficits and surpluses of scenarios (2) and (3).

18

Among the numerous P2P models developed in the literature, three primary techniques

are employed [37]: 1) game theory, 2) auction markets, and 3) constrained optimization.

2.2.1 Game Theory

Game theory has been defined as the mathematical study of the interaction among

rational decision makers. The modern development of game theory was heavily influenced by its

use among mathematicians and economists as a tool for determining the optimal equilibrium

among game participants [38]. In basic terms, game theory analyzes the decision-making process

among game participants in competitive situations for which the actions of one participant both

effect and depend on the actions of the other participants. Therefore, game theory has become a

popular technique for developing P2P trading models where each participant is seeking to

optimize their situation. Two general categories of games exist: cooperative games and non-

cooperative games [38].

In cooperative games, participants are motivated by both their self-interests and the

interests of one, multiple, or all other participants in the game. Participants operate under

coalition, making decisions that benefit all coalition members while fairly distributing revenue.

Cooperative game P2P trading models involve situations where trading participants sacrifice

their individual economic optimization to achieve an equilibrium which satisfies a larger group

of trading participants [39]. In cooperative games, the optimal trading price is not always

achieved.

In non-cooperative games, all participants seek to optimize their situation based on their

self-interests without directly communicating among other members [38]. The end goal of a non-

cooperative game is to achieve a Nash equilibrium, which is a stable state wherein no game

participant can improve their standing by deviating from their current states. The most popular

19

non-cooperative game strategy utilized in P2P trading is the Stackelberg game. In the

Stackelberg game, a single participant is designated as the leader and makes the first decision,

and all other participants have the benefit of optimizing their decision based on the leader’s

initial decision [40]. If the game is dynamic, all participants then update their decisions

strategically to arrive at an equilibrium. In practice, this trading model would involve the leader

offering an initial price, and all other participants providing counter-prices. After the initial set of

prices is known, participants are able to adjust their pricing strategy to obtain the best possible

economic outcome, i.e. selling at the highest price a buyer is willing to purchase, or purchasing

at the lowest price a seller is willing to sell.

2.2.2 Auction Markets

Auction refers to the process of buying and selling a commodity by offering bids that

establish the price at which an auction participant is willing to buy or sell the commodity being

offered [41]. Traditionally, three types of auctions exist, depending on the number and makeup

of the participants: forward auction, reverse auction, and double auction [42]. The most common

type of layman’s auction is the forward auction, where a single seller is offering an item that

receives bids from multiple potential buyers and the highest bid succeeds. The reverse auction is

the opposite, where a single buyer accepts bids from multiple sellers where the lowest bid

succeeds. While both the forward and reverse auction types can be used to develop P2P trading

models, the most popular is the double auction.

In a double auction, multiple buyers and multiple sellers participate, where buyers submit

their bids and sellers submit their asking prices. A third-party market controller then evaluates all

the bids and selects a price which clears the market; that is, where all sellers who asked below

20

the selected price and all buyers who bid above the selected price succeed in their sale or

purchase [43].

Ideally, the selected price is obtained from the intersection of the aggregated supply and

demand curves of the available bids, known as the average mechanism [11]. However, in

practice P2P energy trading double auctions can utilize different price determination mechanisms

which can be designed to comply with a set of system constraints.

2.2.3 Constrained Optimization

Constrained optimization is the process of optimizing an objective function with respect

to one or more variables considering limitations of those variables. For the purposes of P2P

trading, the objective function is a cost function, which is solved to minimize the decision

variables. Several optimization techniques have been used to develop P2P energy trading

models, including linear programming (LP), mixed integer linear programming (MILP), and

alternating direction method of multipliers (ADMM).

In mathematics, LP is the method of achieving the optimal scenario in a model

represented entirely by linear relationships. In other terms, LP optimizes a model defined as a

linear equation. LP are capable of being solved very efficiently using the simplex algorithm. In

the case of P2P energy trading, LP is utilized to determine the optimal trading decisions which

minimize trading costs. This optimization can be done considering a single prosumer, or an

entire P2P trading market.

MILP is a special case of integer LP where some variables are constrained as integers

while other variables are capable of being non-integers. Unlike LP, because of the mixture of

integer and non-integer variables, MILP problems cannot be solved efficiently using the simplex

21

algorithm. MILP is used in much the same way as LP to develop P2P trading models, with the

main difference being the number and mixture of decision variable types being solved.

ADMM is a variant of the augmented Lagrangian method for solving distributed convex

optimization problems. The ADMM works by decomposing a constrained optimization problem

into distinct unconstrained problems which can then be solved more easily and adding a term to

consider the error of decomposing the original problem. In the case of P2P energy trading,

ADMM is particularly useful for dual price adjustment optimization.

2.3 Blockchain-Based P2P Trading

One of the fastest growing technological advances of the 21st century is the continued

development and application of the blockchain and blockchain technology. A blockchain is a

digital database of information containing an immutable ledger of transactions distributed in a

decentralized network [9]. In the simplest terms, a blockchain is a growing list of records that

cannot be changed that is shared among a group of users.

A fairly recent concept, blockchain was first proposed in 2008 by an individual (or

group) using the alias Satoshi Nakamoto and was originally intended as a public transaction

ledger for the popular cryptocurrency bitcoin [44]. Since its invention, blockchain technology

has been utilized in many applications, including cryptocurrency, banking, supply chain

logistics, smart contracts, and energy trading.

Blockchain takes its name from the structure of its data as a chain of discrete information

blocks which form a digital ledger. Each block in the chain contains the informational details of

a discrete transaction record, with each transaction being recorded on a new block in a time-

linear manner [9]. The information contained in each block includes the identification of the

parties participating in the transaction, the amount of the commodity being transacted, the price

22

of that transaction (if applicable), the precise time of the transaction, and often a nonce, which is

a random string of numbers. Additional information can be included to suit the particular

application. Fig. 2.4 illustrates a simple schematic diagram of the blockchain structure.

Figure 2.4. General blockchain structure

In addition to the transactional information and the nonce, each block contains an alpha-

numeric string known as a hash, which is obtained by inputting the information from the block

into a hash function (a special mathematical function) which generates a fixed-length hash that is

deterministic with regard to the input [46]. The hash of the block is then published at the end of

the block. Furthermore, the next block in the chain will add the previous hash to its block data

before hashing, which will contribute to the input of the hash function to generate the hash that

will be published to the end of the second block. The third block will adopt the hash of the

second, and so on. This process of relating each block by their hashes is where the chain concept

originates [9].

When a block is added to the blockchain, all information is then updated synchronously

to the entire network that shares the blockchain. This ensures that all participants have the same

blockchain record. If any of the data in a chained block is modified, even by a single character,

23

the hash generated with that block will change. Since the tampered block’s hash has changed, it

no longer matches the hash found in the data of next block and indicates the tampering of the

block. In this way, a malicious actor that wishes to tamper with a block would also have to

update the information in the next block (and also the previous block). However, altering the

information in the second block will cause hash mismatch between the second and third blocks,

and so the information of the third block must also be updated. Therefore, altering the

information of just one block causes an increasing ripple effect. Additionally, since the

blockchain is distributed among all network participants, the malicious actor would have to alter

all copies of the blockchain simultaneously. This would require individual access to all

decentralized machines with a copy of the blockchain, which is also practically infeasible.

The immutability of blocks, coupled with the decentralized distribution of the blockchain

record, make blockchain an attractive solution to cybersecurity concerns for financial

transactions in energy trading [9]. Additionally, blockchains employ a consensus method as a

requirement for adding blocks to the blockchain, which protects the blockchain from malicious

actors that would seek to record false information on the blockchain. These consensus methods

require that a form of proof be provided that the block being added to the blockchain is valid.

Various consensus methods have been developed, including PoW, PoS, Proof of Authority

(PoA), and pBFT [16].

PoW is the original and most widely used algorithm for determining blockchain

consensus. By definition, PoW describes a system that requires a not-insignificant amount of

computational effort to complete a task, which acts as a deterrent to malicious abuse. For

blockchain applications, PoW relies on the addition of the previously mentioned nonce, where

blockchain participants called miners guess the nonce value that will produce a hash for the

24

block below a certain target hash value. Determining a nonce value which will satisfy the given

condition is non-trivial, and the target hash is most often selected such that it requires

approximately 10 minutes to solve for the nonce. Once the nonce has been solved for, the valid

hash is broadcast to the network and the validated block is added to the chain.

PoS was proposed as an alternative to the PoW algorithm, which is both energy and time

inefficient due to the high computational requirements. PoS works on the basis of “stake”,

wherein a validator for a proposed block is chosen randomly from a group of validators that have

a certain level of stake in the blockchain. Individuals who participate in the blockchain and

validate blocks more often accrue more stake, which in turn gives them a higher chance of being

selected to validate new blocks.

Conceptually, tying the validation of new blocks to stake deters malicious actors from

attempting to accrue high levels of stake in order to manipulate the blockchain, since accruing

stake also means the individual is increasingly reliant on the accuracy of the chain, therefore

making it self-detrimental to manipulate the chain. The concept of stake was originally

established based on cryptocurrency but can also be defined according to the specific blockchain

application. For instance, when PoS is used for energy trading, stake can be defined as the

number of blocks the individual has previously participated in.

PoA is a consensus method typically reserved for permissioned blockchain. In contrast to

traditional blockchains which are publicly distributed, permissioned blockchains are only

distributed among a group of trusted peers [46]. Among the group of blockchain participants,

PoA requires a subset of accounts which have the authority to validate blocks for the blockchain.

In this way, PoA is a more centralized consensus method since is relies on a controlled group of

privileged blocks. While this method provides a much faster and more automatic method of

25

validation, it also requires that authorized participants be highly trusted and have very strong

individual security, since a malicious actor can target these authorized participants in order to

gain validation privileges.

Unlike the other consensus methods, pBFT is not a direct proof method. Instead, pBFT

relies on applying the concept of BFT for the purposes of block validation. BFT refers to the

ability for a distributed network to reach an assured consensus despite the presence of faulty or

malicious nodes that propagate false data. The distinguishing feature of pBFT is the use of two

voting rounds to reach consensus. When a block requires validated, the block is compiled by the

transacting parties and sent to a participant known as the primary. The primary then broadcasts

the block proposal to the network. This commences the first voting round, wherein each

participant broadcasts an acknowledge message to the network that it has obtained the block to

be validated. This is the first vote, and each network participant is then waiting to receive votes

from a pre-determined threshold (usually 2/3) of the network [47]. When a participant receives

the requisite number of votes, it sends a second vote which acknowledges whether it approves

the block being validated. Once the second vote has been broadcast for more than 2/3 of the

network the block is validated and the primary appends the block to the chain [47]. In this way,

the network is capable of tolerating up to 1/3 of network not participating or behaving contrary to

the other network members. Malicious actors would need to gain control over more than 1/3 of

all network participants to manipulate the blockchain [47].

The blockchain is becoming a popular choice for secure P2P energy trading in

decentralized networks due to the immutability of the blockchain record and the consensus

methods used to validate energy transactions appended to the chain [9]. For instance, smart

contract architectures for decentralized P2P energy trading based on Blockchain is a commonly

26

used method. The smart contract is defined as a computerized transaction protocol that executes

the terms of a contract [37]. By converting contractual conditions into code and embedding them

into property that enables self-executing of trusted transactions and agreements between

different, anonymous nodes without the need for a central authority. For blockchain applications,

smart contracts are scripts stored on the blockchain with a unique hash [37]. A smart contract is

triggered by addressing a transaction to it. It then executes independently and automatically in a

prescribed manner on every node in the network, according to the data that was included in the

triggering transaction.

27

CHAPTER 3

THE PROPOSED P2P ENERGY TRADING MODELS

3.1 Islanded Operation Mode – Multiagent Model

The entire interconnected islanded microgrid system is modeled as a distributed multi-

agent network, where each agent (microgrid) is a node of the network. Multi-agent coalition

refers to a way to cooperate agents to complete a task, where none of them can complete it

independently [21]. Based on this definition, it was assumed that each microgrid (agent) consists

of only renewable distributed generation and power demand. Since all microgrids are connected

to each other and disconnected from the power grid, thus, the grid back up is unavailable.

Therefore, the task of all microgrid operators in the islanded system is to balance local renewable

generation and demand. Hence, achieving zero net load is used to measure the level of

satisfaction of all participants in the P2P trading. It should be noted that the net load is defined as

demand minus renewable generation. All microgrids in the islanded system share a common

interest which is satisfying their net load; hence, they agree to work in a collaborative manner to

satisfy their net load. It is also assumed that each microgrid does not have sufficient non-

renewable local resources (e.g, dispatchable units, storage, controllable loads). Therefore, each

microgrid is extensively incentivized to participate in the P2P trading to balance their net load.

This incentive mechanism can be justified based on the fact that reliability benefits are main

drivers of microgrids operation in islanded mode [48]. Limited capacity of local resources can be

used only as a back-up if the power exchanged in the P2P trading is insufficient to balance their

net load. Therefore, it is not required to formulate a scheduling optimization problem since

dispatchable units, storage and controllable loads are not primarily used to balance the net load.

28

In terms of the model architecture, each node represents a microgrid consisting of

renewable generators, and power demand, local controller, and trade controller in a layered

architecture. The renewable distributed generation and power demand are located in the physical

resource layer. On top of that there is the local controller agent (LCA), which is mandated to

manage the load and renewable generation data (forecasting hourly net load). In the event of

energy deficit or surplus, the local controller forwards the information to the trade agent (TA)

which is tasked with buying or selling energy to satisfy the microgrid hourly net load for the day

ahead 24-hour time horizon. A graphical illustration of the system model is given in Fig. 3.1. The

overall trading model is described in detail in the following sections.

Figure 3.1. System Model (islanded operation)

3.1.1 Seller and Buyer Identification

It is assumed that all microgrids have the capability to forecast their power demand and

generation for a particular time slot 𝑡𝑡, and is beyond the scope of this work. Hence, the energy

production and consumption for each time interval 𝑡𝑡 in the time horizon 𝑇𝑇 is generated randomly

29

by utilizing the Mersenne Twister pseudo-random number generator [49], The Mersenne Twister

outputs a statistically uniform distribution between the upper and lower bounds detailed in

equations (1), and (2) obtained from [50] with a slight modification. Utilizing the Mersenne

Twister pseudo-random number generator was based on the fact that for each time horizon 𝑇𝑇,

there is a maximum value for the renewable generation and electric load, below which the sub-

horizon values are permitted to vary in a quasi-random fashion dictated by a Mersenne Twister

pseudo-random number generator [51].

𝑃𝑃𝑔𝑔(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 �𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 −
𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇

,𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 + 𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇
� (1)

𝑃𝑃𝑢𝑢(𝑡𝑡) = 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 �𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 −
𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇

,𝑃𝑃𝑅𝑅𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 + 𝐶𝐶𝑝𝑝𝑝𝑝
𝑇𝑇
� (2)

The local controller determines the renewable generation-based net load of each

microgrid by:

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) = 𝑃𝑃;(𝑡𝑡) − 𝑃𝑃𝑔𝑔(𝑡𝑡) (3)

where 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) < 0 denotes an energy surplus while 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 (𝑡𝑡) > 0 indicates an energy deficit. If

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 0 the microgrid has reached generation-demand balance. For all time intervals where

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 ≠ 0, the local controller notifies the trade controller of the need to buy or sell energy. A

microgrid with a negative net load is identified as a seller, whereas a microgrid with a positive

net load is identified as a buyer as shown in equations (4) and (5).

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 (4)

𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢(𝑡𝑡) > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 (5)

3.1.2 Price Adjustment and Contract Matching Mechanism

After determining the remaining net load, the local controller forwards the hourly energy

deficit or surplus information to the trade controller to interface with the other microgrids

participating in the local energy trading marketplace. For each round 𝑟𝑟 in the time interval 𝑡𝑡

30

(hourly time interval) in 24-hour day ahead scenario, formulated energy selling contracts are

offered at fixed prices by microgrids with surplus power, and energy buyers bid for these

contracts with prices offered by microgrids with power deficit. Both sellers and buyers aim to get

their contracts matched and executed to satisfy their net load since grid backup is absent. The

contract matching process is developed as follows:

 1) Sellers start with high fixed energy prices and make progressively lower offers in an effort

to match the price of potential buyers after each unsuccessful offering round. Conversely, buyers

start with low fixed prices and making progressively higher offers in an effort to match the prices

offered in seller contracts.

 2) For each round 𝑟𝑟 in the time interval 𝑡𝑡, an autonomous contract matching round is done in

the marketplace considering the following possible scenarios:

(i) If 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢 the contract is automatically executed.

(ii) If 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢, the buyer moves on to the next available contract.

(iii) If after the first trading round the offered contract did not receive a match from a

potential buyer, the seller must lower its contract selling price using (6) and the

buyer must increase the desired purchase price using (7). The contract will

automatically execute when the buyer and seller prices converge in a future round.

The contract price adjustment mechanism is developed as follows:

 1) For time intervals when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0, the microgrid is designated as a seller (𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 is identified

as 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) and the trade controller authors an energy contract containing the amount of surplus

power for sale and the price per kW of the power being sold. The seller calculates the desired

selling price for each contract offering round as shown in (6).

𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 (6)

31

It should be noted that 𝑡𝑡 indicates the hourly time interval of the considered 24-hour time

horizon, and 𝑟𝑟 represents the trading round in hour 𝑡𝑡. Since grid tie is unavailable for the

islanded microgrid network, the seller initially attempts to sell with a price higher than the utility

price in the first round (𝑟𝑟 = 1), denoted as 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓, where 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢

𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is designed such that 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 >

𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (the seller intends to sell at higher than the utility price). Therefore, when 𝑟𝑟 = 1,

𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) is equal to the initial price 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓. To ensure price fairness and avoid price

adjustment manipulation by the seller, a maximum threshold for 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is specified by the

marketplace and agreed on by all microgrid operators.

If the offered contract did not receive a match in the first round, the seller must lower its

selling price according to (6). The price is reduced considering the operation cost of battery

storage, curtailment cost, and transmission cost, where the second term in (6) represents the

battery operation cost for each charging cycle, and the third term represents the energy

curtailment cost. The cost of curtailment is modeled as a loss of revenue where 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 in

the first round and 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) for all sequential rounds. It should be noted that curtailment is

applied only when the surplus power (𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) is higher than the battery charging limit for each

round (|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| > 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥). Hence, the curtailed amount of power for each round is a

percentage of the difference between the surplus power and the power charged in the battery

(𝛼𝛼|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟). It should be noted that 𝜏𝜏 is a binary variable with a value of 0 in the first round

and 1 in all subsequent rounds for each hour. The fourth term indicates the transmission cost,

where 𝐴𝐴 is the distance matrix that represents the distance between any two microgrids in the

network, 𝑖𝑖 is the buyer microgrid index and 𝑗𝑗 is the seller microgrid index; hence 𝐴𝐴𝑢𝑢,𝑗𝑗 is the

distance between microgrid 𝑖𝑖, and microgrid 𝑗𝑗. The price adjustment process in (6) is developed

based on the fact that sellers would tend to charge and curtail surplus power to satisfy its net load

32

if they did not sell their excess power. Microgrids are motivated to utilize energy trading to avoid

these high costs, therefore the seller will go back and adjust its selling price after each round

until it gets its contract matched and executed.

 2) For time intervals where 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0, the microgrid is designated as a buyer (𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 is identified

as 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) and the trade controller enters the marketplace to evaluate potential contract purchases.

The buyer enters the marketplace with a desired purchase price calculated using (7).

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔�� (7)

Since grid tie is unavailable for the islanded microgrid network, the buyer initially

attempts to purchase power with a price lower than the utility price in the first round (𝑟𝑟 = 1),

denoted as 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓, where 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢

𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is designed such that 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 < 𝜆𝜆𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (the buyer intends to pay

less than the utility price).). Therefore, when 𝑟𝑟 = 1, 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) is equal to the initial price

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓. To avoid manipulation of the price adjustment by the buyer, a minimum threshold for

𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 is specified by the marketplace and agreed upon by all microgrid operators. In addition,

all cost parameters (e.g, 𝐶𝐶𝑔𝑔,𝐶𝐶𝑟𝑟ℎ ,𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐶𝐶𝑢𝑢𝑐𝑐) used in price adjustment equations are constant and

determined by the local marketplace in which all peers are trading.

If the offered buying contract did not receive a match, the buyer will increase its offered

buying price. The price is increased considering the operation cost of dispatchable units and load

shedding cost, where the second term in (7) denotes the dispatchable unit operation cost for a

committed cycle, and the third term indicates the load shedding cost. It should be noted that load

shedding is applied only when the deficit power (𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢) is larger than the backup dispatchable

unit output power limit for each round (�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 � > 𝑃𝑃𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥). Hence, the amount of deficit power to

33

be shed is a percentage of the difference between the deficit power and the power supplied by the

dispatchable unit (𝛽𝛽(|𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢| − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)).

The price adjustment process in (7) is designed based on the fact that buyers would have

to get power from back up dispatchable units, as well as applying load shedding to balance its

deficit net load if they did not buy power. Microgrids with energy deficits are motivated to avoid

these high costs, and therefore the buyer will go back and adjust (increase) its buying price after

each round until it gets its contract matched and executed. The complete contract price

adjustment and execution algorithm is shown in Table 3.1.

Table 3.1. Price adjustment and contract execution algorithm – islanded operation

Algorithm 1. Islanded Operation
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢
3: 𝑟𝑟 = 1
4: while contract = FALSE
5: if 𝑟𝑟 = 1

6: 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢

7: 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢
𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓 + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔��

8: else
9: 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) − 𝜏𝜏�𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 + 𝛼𝛼𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)� + 𝐴𝐴𝑢𝑢,𝑗𝑗𝐶𝐶𝑢𝑢𝑐𝑐𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢

10: 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟 − 1) + 𝜏𝜏 �𝐶𝐶𝑔𝑔𝑃𝑃𝑔𝑔 + 𝛽𝛽𝐶𝐶𝑟𝑟ℎ�𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑔𝑔��
11: if 𝜆𝜆𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
12: contract = TRUE
13: else
14: 𝑟𝑟 = 𝑟𝑟 + 1
15: end

The blockchain in this work is used only as a secure settlement protocol after the contract

execution. Even though the autonomous contract execution using blockchain is beyond the scope

of this work, it can be done as follows:

34

Sellers and buyers prepare their contract condition off-chain, and then they compile and

deploy their smart contract for possible execution to the local marketplace using an appropriate

blockchain architecture that supports smart contract and deterministic consensus protocols.

Hyperledger is a private blockchain software [52] that provides a modular architecture that

makes it simple to implement smart contracts and deterministic pBFT-bases distributed

consensus [53]. For instance, the energy trading model proposed in [54] adopted Hyperledger

platform for implementing the proposed model. Furthermore, to avoid trade manipulation,

prospective energy buyers do not share their desired purchase prices with energy sellers. Sellers

that are aware of desired buying prices can manipulate trade by i) overvaluing their contracts by

holding to a higher price knowing that prospective buyers will raise the desired buying price to

meet energy demands or ii) under-valuing their contracts in order to undercut competition and

execute more contracts. The converse is true for buyers manipulating buying prices. Therefore,

prices should not be shared between buyers and sellers during contract's matching process. This

can be done by encrypting the data included in the contract before it is broadcast in the

marketplace. For instance, the confidential transactions technique discussed in [55] can be

adopted where the buyer and seller have contract s that contain price and other confidential

information. The technique of confidential transactions is to keep the price amount secret and to

grant verifiers the ability to check the validity of amounts [56]. In this case, buyer and seller

perform a two-stage encryption process. At first, buyer and seller perform cryptographic hash

operation on their contracts to preserve the confidentiality and authenticity of data to each other.

Then, the buyer adds a public-key or asymmetric cryptography to further protect data from 3rd

party (intruder) intervention/malicious party. In particular, each of the buyers and sellers

generate a public-key and a private-key. The buyer then encrypts its (cryptographic hashed)

35

contracts with the public key of the seller. The seller then decrypts data using its own private

key. Once the seller decrypts the other party's data, its smart contract system performs price-

matching. Note that this price-matching operation contains a smart algorithm that can work on

the cryptographic-hash (price) amounts from buyer and seller and make a decision [55]. Once

this contract matching operation is done, it informs the buyers and the sellers about its decision.

In this way, buyer and seller are not exposed to the price of each other and hence the overall

confidentiality is preserved.

3.2 Grid Connected Operation Mode – Multiagent Model

3.2.1 Formulation of The Optimization Scheduling Problem

In the first stage of the energy trading model for grid-connected operation, each

microgrid solves a local energy resource scheduling problem. Since all microgrids in the network

are independent entities with unique self-interests, each microgrid solves its own local optimal

scheduling problem with an objective to minimize its operation cost. The scheduling problem is

modeled as Mixed Integer Linear Programming (MILP) problem. It was assumed that all

microgrid are connected to each other and connected to the main utility grid.

min∑ �𝐶𝐶𝑔𝑔𝑃𝑃𝑢𝑢
𝑔𝑔𝑢𝑢𝑢𝑢 + 𝑆𝑆𝑈𝑈𝑢𝑢𝑦𝑦𝑢𝑢 + 𝑆𝑆𝐷𝐷𝑢𝑢𝑧𝑧𝑢𝑢 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑟𝑟𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓𝑃𝑃𝑢𝑢
𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 + 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐|𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢|�24

𝑢𝑢=1 (8)

The first term of the objective function shown in (8) includes the cost of a dispatchable

generation unit, followed by the startup and shutdown costs associated with the dispatchable

generation unit. The fourth term is the operational cost of the Battery Storage System (BSS). The

fifth term is the cost of energy exchanged with the grid (either purchased or sold), and the sixth

term is cost the curtailed power (curtailed excess generation or curtailed excess load), where

𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 is the hourly curtailed net load. It should be noted that 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 is negative for excess

generation (curtailed power), and positive for deficit power (curtailed load). The net load is

36

defined as the hourly demand minus hourly renewable generation. Each microgrid will trade its

excess net load 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 with other microgrids to avoid generation and load curtailment cost, hence;

minimize its operation cost. The objective function is subject to the following constraints:

𝑃𝑃𝑢𝑢
𝑔𝑔 + 𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 + 𝑃𝑃𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑁𝑁𝐿𝐿𝑢𝑢 (9)

𝑃𝑃𝑢𝑢
𝑔𝑔,𝑚𝑚𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢 ≤ 𝑃𝑃𝑢𝑢

𝑔𝑔 ≤ 𝑃𝑃𝑢𝑢
𝑔𝑔,𝑚𝑚𝑎𝑎𝑥𝑥 (10)

𝑦𝑦𝑢𝑢 − 𝑧𝑧𝑢𝑢 = 𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑢𝑢−1 (11)

𝑦𝑦𝑢𝑢 + 𝑧𝑧𝑢𝑢 ≤ 1 (12)

𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑓𝑓𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑢𝑢
𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑢𝑢𝑛𝑛𝑐𝑐𝑢𝑢 (13)

𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 ≥ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑓𝑓𝑐𝑐ℎ,𝑚𝑚𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑢𝑢
𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥𝑐𝑐𝑢𝑢 (14)

𝑟𝑟𝑢𝑢 + 𝑐𝑐𝑢𝑢 ≤ 1 (15)

𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 = 𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 − 𝑃𝑃𝑢𝑢𝑏𝑏𝑟𝑟𝑟𝑟 (16)

𝐸𝐸𝑚𝑚𝑢𝑢𝑛𝑛 ≤ 𝑆𝑆𝑆𝑆𝐶𝐶𝑢𝑢 ≤ 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 (17)

�𝑃𝑃𝑢𝑢
𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓� ≤ 𝑃𝑃𝑢𝑢𝑢𝑢𝑟𝑟,𝑚𝑚𝑎𝑎𝑥𝑥 (18)

The power balance equation (9) represents the power balance equation of each microgrid.

Equation (10) ensures that the dispatchable generator operates within its operational limits. The

constraint (11) ensures that a startup or shutdown only occurs when there is a change in the

operating state of the generator from ON to OFF and vice versa. Equation (12) ensures that the

generation unit cannot start-up and shutdown in the same hourly time interval. Equations (13)

and (14) show the charge and discharge constraints of the BSS, while equation (15) ensures the

BSS is not simultaneously charging and discharging in the same hourly time interval. Equation

(16) shows that the SOC of the BSS is affected by the amount of energy charged or discharged

from the BSS at hour 𝑡𝑡. The SOC of the battery storage system is limited by (17). The constraint

37

in (18) ensures that the power exchanged with the utility grid is limited by the maximum

capacity of the tie line.

3.2.2 Energy Trading and Price Adjustment Model – Model I

After the scheduling problem has been solved, each microgrid has determined its

remaining net load, modeled as 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢, which represents the surplus or deficit power for each

hourly time interval t. Each microgrid intends to satisfy 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 by trading in the marketplace to

avoid generation curtailment cost. If 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 (surplus power), the microgrid will sell the

surplus power. Whereas, if 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 (deficit power), the microgrid will purchase power from the

market to satisfy its deficit load and avoid the high cost of load curtailment. Hence, for each

hourly time interval, microgrids with excess power will be identified as sellers, and microgrids

with deficit power will be identified as buyers. Fig. 3.2 shows a flowchart of the overall trading

model.

It is worth noting that the deficit and excess power cannot be traded with the utility grid

because the maximum power that can be traded with the utility grid is limited by the tie line

maximum capacity limit.

38

Figure 3.2. Flowchart of the proposed trading model (grid connected operation)

Similar to the system described for islanded operation, the microgrid network is modelled

as a multi-agent system, where each microgrid in the network represents an agent. Each agent

(microgrid) includes one local coordination agent (LCA), and one trading agent (TA). The LCA

performs autonomous energy management by solving a local scheduling problem to determine

optimal control actions of the local energy resources and the net load to be traded. The LCA

forwards the net load information to the TA, which is tasked with resolving each microgrid net

load by facilitating energy trading among marketplace participants. In contrast to the system

model for islanded operation, in grid-connected operation the trading agent is also capable of

exchanging energy with the utility grid. A system model for the proposed system is shown in

Fig. 3.3.

Yes

No

39

Figure 3.3. System model (grid-connected operation)

Before offering their energy contracts in the marketplace, microgrids which will be

selling energy calculate their initial offering price as a function of their excess power according

to the developed formula shown in (19). Similarly, buyers calculate their initial offered price as a

function of their deficit power demands according to equation (20).

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑡𝑡, 𝑟𝑟) = �1 +
��𝑃𝑃𝑚𝑚𝑚𝑚

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 (19)

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑡𝑡, 𝑟𝑟) = �1 −

��𝑃𝑃𝑛𝑛𝑚𝑚
𝑏𝑏𝑏𝑏𝑏𝑏�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓 (20)

Equations (19) and (20) are designed in such a way that microgrids with a lower

magnitude of 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢are more willing to exchange energy at a price closer to the utility prices,

while microgrids with higher magnitudes of 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢are more motivated to maximize their economic

benefits (sellers maximizing profits, and buyers minimizing energy purchase cost).

40

Sellers will then publish their initial contracts to the marketplace detailing their power

available for purchase and the offered price per unit of power. Seller contracts on the

marketplace are sorted, with the lowest contract price considered first, followed by the second

lowest contract price, and continuing in that fashion. Trading rounds for hour 𝑡𝑡 begin with buyers

attempting to purchase power by matching their prices to the initial offering prices of the

available contracts starting at seller index 𝑚𝑚 = 0. The contract matching process can be

summarized as follows:

1) If 𝜆𝜆𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 the contract is a match for the buyer-seller pair (𝑛𝑛,𝑚𝑚) and the transaction will

be executed at the price 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢. If 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 > 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 then the amount of exchanged power will

equal 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢, resulting in buyer 𝑛𝑛 fully satisfying its load and dropping from the market for

hour 𝑡𝑡, while the remaining balance of 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 will remain available for purchase in the

marketplace. Whereas, If 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 < 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 then the amount of exchanged power will equal 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢,

resulting in seller 𝑚𝑚 fully depleting its excess power and dropping from the market for hour

𝑡𝑡, while the buyer 𝑛𝑛 with remaining demand equal to 𝑃𝑃𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 − 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 will continue to purchase

available power in the marketplace to satisfy its load.

2) If 𝜆𝜆𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢 < 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢, the contract is not a match, and buyer 𝑛𝑛 moves to the next available contract.

If after all matching contracts are executed in round 𝑟𝑟 there still exists sellers with surplus

power and buyers with deficit power, then the remaining sellers and buyers will update their

prices according to equations (21) and (22), respectively, and begin the next trading round.

Equations (21) and (22) are designed to motivate market participants to trade by incrementally

reducing the price of sellers and increasing the price of buyers after each trading round until their

prices converge. The rationale behind (21) and (22) is that the seller price decreases with the

41

increase in the number of matching rounds, while the buyer price increases with the increase of

the number of matching rounds.

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) (21)

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) + 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) (22)

The remaining seller contracts are resorted by price low to high, and the buyers then

attempt to match their prices with available contracts in the same manner for subsequent rounds

until either ∑𝑃𝑃𝑚𝑚𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 0 or ∑𝑃𝑃𝑛𝑛𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢 = 0. If there is no available energy left in the marketplace, the

remaining microgrids with energy deficits will curtail their remaining loads. Similarly, if there

are no willing buyers left in the marketplace, the remaining microgrids with surplus power will

curtail their excess generation. Table 3.2 depicts the contract offering and matching algorithm.

Table 3.2. Price adjustment and contract execution algorithm – grid-connected operation model I

Algorithm 2. Grid-connected operation – model I
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢
3: 𝑟𝑟 = 1
4: while contract = FALSE
5: if 𝑟𝑟 = 1

6: 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = �1 +
��𝑃𝑃𝑚𝑚𝑚𝑚

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓

7: 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = �1 −

��𝑃𝑃𝑛𝑛𝑚𝑚
𝑏𝑏𝑏𝑏𝑏𝑏�

3
� 𝜆𝜆𝑢𝑢

𝑔𝑔𝑐𝑐𝑢𝑢𝑓𝑓

8: else
9: 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝑐𝑐−1

𝑐𝑐+𝑐𝑐!
𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1)

10: 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) + 𝑐𝑐−1
𝑐𝑐+𝑐𝑐!

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1)

11: if 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢

12: contract = TRUE
13: else
14: 𝑟𝑟 = 𝑟𝑟 + 1
15: end

42

3.2.3 Energy Trading and Price Adjustment Model – Model II

The calculation of initial offering prices for buyers and sellers is conducted in the same

manner as above with equations (19) and (20). Similarly, the contract matching process proceeds

as described above, with one of two possible outcomes:

1) If 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 the contract is a match for the buyer-seller pair (𝑛𝑛,𝑚𝑚) and the transaction will

be executed at the price 𝜆𝜆𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢.

2) If 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 < 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢, the contract is not a match, and buyer 𝑛𝑛 moves to the next available contract.

Diverging from the previous model: if after all matching contracts are executed for round

𝑟𝑟 = 1 there still exist sellers with surplus power and buyers with deficit power, then all

microgrids still participating will update their prices according to equation (23) for buyers and

equation (24) for sellers.

𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢�� + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))� (23)

𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟) (24)

Buyers calculate their price adjustment considering transmission losses in the second

term of (23), where the transmission cost is calculated as a fixed percentage of the traded energy.

The third term in (23) considers the cost of peak plant generation and load shedding, while the

fourth term includes the cost of load shedding. The binary variable 𝜏𝜏 has a value of 0 when 𝑟𝑟 = 1

and a value of 1 otherwise. Likewise, the binary variable 𝛼𝛼 has the opposite conditions, having a

value of 1 when 𝑟𝑟 = 1 and 0 otherwise. The constant 𝛽𝛽 limits the amount of load shedding to 1

percent of the remaining load. Sellers calculate their price adjustment considering energy

curtailment in the second term and battery storage costs in the third term. The maximum energy

available from peak generation is defined as (25), while the amount of energy curtailed is defined

43

in (26), and the amount of energy charged to the battery is limited by (27). Table 3.3 depicts the

contract offering and matching algorithm for grid-connected operation model II.

𝑃𝑃𝑝𝑝𝑝𝑝 = 0.1 × 𝑃𝑃𝑛𝑛
𝑏𝑏𝑐𝑐𝑢𝑢 (25)

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 = 0.05 × 𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 (26)

𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟 ≤ 𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟,𝑐𝑐ℎ,𝑚𝑚𝑎𝑎𝑥𝑥 (27)

Table 3.3. Price adjustment and contract execution algorithm – grid-connected operation model II

Algorithm 3. Grid-connected operation – model II
1: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 < 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢
2: when 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 > 0 ⇒ 𝑃𝑃𝑛𝑛𝑟𝑟𝑢𝑢 = 𝑃𝑃𝑏𝑏𝑐𝑐𝑢𝑢𝑛𝑛𝑟𝑟𝑢𝑢
3: 𝑟𝑟 = 1
4: while contract = FALSE
5: if 𝑟𝑟 = 1
6: 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢,𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓

𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)
7: 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢,𝑓𝑓𝑢𝑢𝑥𝑥𝑟𝑟𝑓𝑓
𝑏𝑏𝑐𝑐𝑢𝑢 �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛

𝑏𝑏𝑐𝑐𝑢𝑢�� + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))�
8: else
9: 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑟𝑟 − 1) − 𝜏𝜏(𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑟𝑟𝑟𝑟𝑃𝑃𝑏𝑏𝑟𝑟𝑟𝑟)
10: 𝜆𝜆𝑛𝑛𝑢𝑢

𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟) = 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢(𝑟𝑟 − 1) �1 + 𝛼𝛼�𝑘𝑘 𝑃𝑃𝑛𝑛

𝑏𝑏𝑐𝑐𝑢𝑢�� + 𝜏𝜏�(𝐶𝐶𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝) + (𝛽𝛽𝐶𝐶𝑟𝑟ℎ(𝑃𝑃𝑛𝑛𝑛𝑛𝑟𝑟𝑢𝑢 − 𝑃𝑃𝑝𝑝𝑝𝑝))�

11: if 𝜆𝜆𝑛𝑛𝑢𝑢
𝑏𝑏𝑐𝑐𝑢𝑢 ≥ 𝜆𝜆𝑚𝑚𝑢𝑢𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢

12: contract = TRUE
13: else
14: 𝑟𝑟 = 𝑟𝑟 + 1
15: end

After adjusting prices, buyers and sellers again attempt to match prices to execute

contracts. This process continues until there is no more surplus or deficit energy available in the

marketplace. If after all buyer and seller contract matches there still exists an energy deficit for

the final buyer, the final seller will offer an additional amount of energy above the initial contract

offer by utilizing a spinning reserve. Spinning reserve is the extra generating capacity available

in a dispatched generator which can be utilized to compensate for power shortages. It is assumed

that the seller is equipped with a spinning reserve margin from dispatchable generation which

44

can supply up to an additional 20% of the available energy. This additional energy is offered at a

higher price according to the cost of reserve energy (𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟). If the second selling price is less than

the penalty cost of load shedding for the buyer and the buyer still needs to purchase energy to

satisfy its deficit, then a subsequent contract will be executed which transfers to the buyer an

amount of reserve generation up to 20% of the final seller’s original excess power balance. The

contract will be executed with an agreed upon price for the cost of the reserve energy. The total

cost of the reserve contract is defined by (28). The amount of reserve energy exchanged in the

contract is defined by (29) where 𝑧𝑧 is defined by (30) as a percentage of the seller energy and

limited to be less than 0.2.

𝐶𝐶𝑐𝑐𝑐𝑐𝑛𝑛𝑢𝑢𝑐𝑐𝑎𝑎𝑐𝑐𝑢𝑢 = 𝑧𝑧𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (28)

𝑃𝑃𝑐𝑐𝑟𝑟𝑟𝑟 = 𝑧𝑧𝑃𝑃𝑚𝑚𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢 , 𝑧𝑧 ≤ 0.2 (29)

𝑧𝑧 = 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏−𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠

𝑃𝑃𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
 (30)

3.3 Two-Phase Blockchain Consensus Protocol

To enable a trusted settlement of electricity trading transactions, a smart blockchain-

based contracts protocol for transaction settlement is developed. The proposed blockchain

method uses a traditional distributed ledger consisting of blocks of data that are connected in a

single chain. These blocks of data contain the details of the finalized contract from the trading

marketplace, including the network address of the buyer and seller, the amount of energy being

trading, the price per kilowatt of the contract, the timestamp when the contract was executed, the

hash from the previous block, and a new hash generated using the SHA-256 hashing algorithm.

Because this ledger chain is a distributed ledger, each node of the network maintains a copy of

the ledger.

45

Before a block is appended to the ledger chain, it must be validated using a consensus

method. A two-phase consensus process method is proposed. In the first phase, a pBFT is

adopted. pBFT has been proposed in recent years as a viable alternative to popular consensus

methods such as PoW and PoS. Byzantine Fault Tolerance (BFT) refers to the ability for a

distributed network to reach an assured consensus despite the presence of faulty or malicious

nodes that propagate false data. The consensus process developed in this work is shown in Fig.

3.4.

Figure 3.4. pBFT two round voting process with faulty node tolerance

The pBFT is an optimized application of traditional BFT method, which ensures

consensus for any network of size 3f + 1 when there exists 2f + 1 validating responses (where f

denotes the maximum number of faulty nodes).

The pBFT works by a voting consensus where each node has an equally weighted vote

value. For each block validation process the following steps are implemented:

1) Initiate: a random node (microgrid) is selected to be the primary node. The primary node

broadcasts the proposed block including the contract data to each of the secondary nodes

in the network.

46

2) Acknowledge: Each of the secondary nodes broadcasts a vote to acknowledge their receipt

of the proposed block to each node.

3) Validate: After receiving 2𝑓𝑓 + 1 approval messages, a node will broadcast a validation

message if the data in the proposed block is valid.

4) Finalize: When 2𝑓𝑓 + 1 validation messages are received, the block has been validated

and is moved to the second phase of the consensus process.

It should be noted that according to traditional pBFT implementation, the network is

secure for any network of size 3𝑓𝑓 + 1 where f is the maximum number of faulty nodes.

Therefore, in a system where greater than 1/3 of nodes are faulty (corrupted or non-functioning),

the pBFT no longer ensures a secure consensus. In the proposed model, the voting criteria is

modified from the traditional 1/3 fault protection to be 2𝑓𝑓 + 1, because this criteria is greater

than 2/3 of the network size. While a 2/3 criteria is sufficiently safe, the margin of error is a

motivating factor for introducing the modified PoS as a second phase of consensus.

To ensure a high level of security, a simultaneous second phase of consensus is

conducted using a modified version of PoS consensus. For this consensus method, each

microgrid is assigned a semi-random value generated using a weighting factor. This weighting

factor corresponds to the recent history of participation in the energy trading marketplace, where

microgrids with higher levels of participation are assigned higher weighting factors. After stakes

values have been generated, the microgrid with the highest stake value during each consensus

round is chosen as a special independent validator node. This validator node constructs a block

using the same contract data as was broadcast in the pBFT consensus round and compares its

block to the one validated using the pBFT consensus. If these two blocks match, the validator

broadcasts a final confirmation that the block is valid, and it is appended to the public chain. If

47

the two blocks do not match, it indicates a fault that has manipulated the formed block, and an

notification will be propagated to report a data manipulation incident. The overall two-phase

consensus algorithm is illustrated in Table 3.3, where each microgrid is described as a prosumer.

Table 3.4. Two-phase blockchain consensus protocol

In comparison with other common blockchain consensus methods, pBFT shows several

advantages. Firstly, pBFT has no fixed time requirements before consensus can be reached. PoW

and the traditional PoS both have fixed time interval requirements before a proposed block can

be validated. Additionally, pBFT does not require additional resources specific to the blockchain

creation, instead utilizing existing network technology and processing capabilities to perform the

block validation function. PoW requires expensive, special purpose computing hardware to

perform block validation tasks which consume a significant amount of energy and financial

resources. Furthermore, traditional PoS requires participants to be willing to use expendable

financial resources in order to wager for validation rights.

It is important to mention, however, that pBFT-based consensus methods have scalability

issues regarding its use for a massive number of nodes. However, methods including partitioning

48

the network into smaller groups called federates have been shown to result in improved scaling

up to 1000 nodes [4].

The complete two-stage energy trading model which summarizes the trading process for

all proposed models, including price negotiation mechanism and blockchain-based contract

settlement, is detailed in the flowchart shown in Fig. 3.5.

Fig. 3.5. Flowchart of the proposed model

Pr
ic

e
ad

ju
st

m
en

t

Sellers offer contract at desired selling
prices. Buyers evaluate contracts

according to desired purchase price.

49

CHAPTER 4

SIMULATION RESULTS

4.1 Islanded Operation Mode – Multiagent Model

The proposed model was simulated using Python 3.6 in Microsoft Visual Studio

Professional 2017 on a quad-core 2 GHz CPU equipped with 16 GB RAM. For adjusting the

contract price, the charge cost of the battery storage is considered to be $0.03/kW [57] with a

charging limit per round of 2 kW. The adopted $0.25/kWh operation cost of dispatchable unit is

obtained from [58] with a slight modification, considering a ramp rate of 5 kW per round. The

load shedding cost adopted in in this study is $1.0/kW [59]. The maximum curtailment ratio for

each round is taken as 1% of the hourly surplus net load value. The load shedding ratio for each

round is taken as 4% of the deficit hourly net load value. Transmission cost is considered to be

2.8 × 10−6 $/(kWh. km) [60]. The simulation is carried out with 𝑇𝑇 = 24 hours, 𝑡𝑡 = 1 hour and

scenarios of 5, 10, 15, and 20 node microgrid networks. Unless otherwise noted, trading results

for each scenario are similar and congruent, and samplings of results from selected scenarios are

reported for brevity.

Using equations (6) and (7), microgrids participating in energy trading successfully

adjusted their bid prices, executing a total of 216 contracts for a total of 419.63 kW of traded

power during for the scenario of a 10 node microgrid network, whereas 456 successful contracts

were executed with a total traded power of 937.17 kW for the scenario of a 20 node microgrid

network. A graphical representation of each executed contracts for the case of 10 microgrids is

depicted in Fig. 4.1, where the blue line represents the hourly total amount of traded power. The

vertical bars show the accumulation of contracts in each hour, where each colored section of a

bar represents a separate contract and the size of the section representing the amount of energy

50

traded in the contract. Table 4.1 details the data obtained from simulation for the scenario of 20

microgrids, showing the amount of power traded in each formed contract over the 24-hour

period. A similar table of data with the results for the scenario of 10 microgrids was used to

generate fig. 4, and conversely a similar figure could be generated for the scenario of 20

microgrids using the data from Table 4.1.

Figure 4.1 number of executed contracts and amount of traded power in the case of 10

interconnected microgrid system

Fig. 4.2 shows an example of the progressive price adjustments of a buyer and seller

negotiating an energy contract. In this sample, the desired buyer (microgrid 2) and seller

(microgrid 5) adjust their prices according to (6) and (7) over successive contract matching

rounds for one contract. It can be clearly seen that the seller decreases their asking price after

each round (blue line), while the buyer increases their offered purchase price after each round

(red line), with a contract match occurring at a price of $0.198/kW. According to the agreed

upon market conditions, the seller offered their initial selling price at a value of $0.25/kW, and

buyer sets their initial price to $0.15/kW. With the price of the buyer lower than the price of the

seller, there is no match in the first round. In the second round the seller decreases their price to

$0.2329/kW according to (6), and the buyer increases their price to $0.175/kW according to (7).

51

However, there was still no contract price match. Similarly in the third round the seller decreases

their price to $0.215/kW and buyer increases their price to $0.2/kW with no contract match.

Finally, in the fourth round the seller reduces their price to $0.198/kW, and the buyer increases

their price to $0.225/kW. Hence, a contract is executed at the offerd seller price of $0.198/kW

(for an exchange of 1.69 kW) since the seller price is now less than the buyer price.

Figure 4.2. A successful price adjustment process for a selected block

52

Table 4.1. Amount of power traded (kW) in each executed contract for the 24-hour time horizon

Contract no

Hour
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 3.67 0.83 1.87 1.08 0.41 0.24 2.9 0.02 2.28 0.32 7.59 2.55 1.84 1.3 0.1 0.36 3.27 5.64 3.4

2 3.2 0.15 0.77 1.93 0.19 0.5 0.99 2.78 1.96 0.88 2.56 1.09 0.49 4.2 1.97 0.22 2.26 0.31 1.92

3 1.67 3.13 3.07 1.3 2.8 0.17 0.43 0.63 0.74 0.73 0.41 4.93 0.26 0.73 2.76 1.96 0.59 2.84 3.03

4 0.22 2.81 1.05 0.56 1.79 0.18 3.38 1.53 0.62 5.52 1.92 2.35 3.56 0.37 0.3 1.19 2.42 1.77 8.54

5 1.77 3.67 2.12 0.47 1.9 3.18 0.16 0.17 0.18 2.92 1.83 1.36 1.37 1.98 4.06 5.36 7.24 9.57 4.97

6 2.44 1.13 2.6 0.32 0.09 1.09 2.7 0.14 1.47 5.5 0.08 0.2 1.21 0.33 0.15 1.98 1.18 5.28 3.56

7 2.05 0.46 1.23 0.44 0.72 0.24 1.73 1.73 1.02 1.01 2.41 1.02 0.06 1.68 0.9 1.03 2.06 4.21 1.83

8 0.74 0.85 0.52 2.69 0.32 1.68 4.05 0.85 3.09 1.69 2.14 0.56 3.23 1.03 0.46 0.27 1.32 4.74 4.05

9 0.82 2.98 0.93 2.34 0.88 0.74 0.16 2.9 0.14 0.63 2.93 1.67 0.32 0.06 2.01 0.88 0.82 0.15 7.04

10 4.06 0.6 2.02 3.3 1.61 1.45 2.43 1 0.31 1.99 1.77 2.53 3.7 2.7 1.47 0.4 0.9 5.15 3.45

11 3.29 0.05 2.32 0.54 6.15 1.84 0.13 1.93 0.58 3.07 0.29 6.07 1.01 1.73 4.07 0.37 1.97 3.8 5.83

12 1.18 2.36 0.07 2.6 3.49 0.32 0.63 2.19 1.62 1.68 0.43 0.72 5.85 0.85 4.32 6 3.5 0.81 3.97

13 1.89 2.46 1.89 0.07 1.91 1.27 3.48 3.82 1.05 0.79 1.85 0.09 1 1.82 0.96 5.87 3.24 4.51 2.03

14 2.96 2.32 4.22 0.82 0.44 2.14 2.57 1.01 1.01 1.01 0.16 0.36 0.03 0.86 1.71 2.54 0.97 4.46 2.66

15 0.79 1.01 3.24 2.96 3.05 0.46 1.1 1.41 0.02 0.03 0.46 1.67 3.08 1.54 4.83 1.23 0.71 4.38 6.46

16 0.67 2.18 2.09 1.08 1.29 0.51 0.54 3.61 0.1 1.88 0.38 0.04 0.63 2.09 0.24 8.49 4.89 6.5 2.24

17 0.91 2 0.21 0.43 1.55 1.68 3.1 0.42 3.54 2.2 1.44 6.29 0.7 6.5 5.39 6.47 1.77 3.09 3.22

18 2.85 2.53 0.01 4.97 0.62 1.22 2.62 3.1 3.04 1.31 2.75 0.49 1.93 0.27 1.84 0.5 6.19 1.91 1.25

19 2.25 2.39 0.45 0.49 0.01 0.07 0.01 6.68 0.9 0.19 4.22 0.83 0.79 0.47 4.04 2.17 0.6 0.37 3.61

20 2.32 3.67 0.87 3.12 1.81 1.14 0.81 5.26 0.13 0.12 1.34 1.07 3.69 0.63 4.46 0.26 1.08 4.49 0.5

21 7.13 0.13 0.94 3.31 0.35 2.49 0.04 3.3 2.03 0.17 1.85 0.66 5.01 2.22 0.07 4.73 2.16 0.07 1.43

22 4.03 1.39 3.87 0.43 2.65 1.68 2.72 4.92 1.94 6.22 1.48 0.59 3.48 1.34 0.3 7.14 2.69 1.78 4.66

23 0.37 3.92 1.1 3.06 0.14 2.52 0.96 1.16 6.06 1.74 7.77 6.01 7.01 0.47 4.18 0.67 0.13 0.72 3.8

24 5.34 0.17 0.13 4.09 1.08 4.19 0.13 2.23 2.75 1.35 2 0.07 1.35 0.48 0.45 7.61 2.8 3.44 4.06

53

Since each instance of offering a price and executing a contract is a discrete

computational task, the average computation time required to complete discrete tasks required to

execute a final contract are reported for a varying number of microgrids in the network, as shown

in Fig. 4.3. The average computation time to execute all contracts in the case of 20 microgrids is

found to be less than one second (around 15.25 ms), which demonstrates the time efficiency of

the proposed trading model. It can also be noted that the average contract matching time

increases with the increase in the number of microgrids in the network in a nearly linear

relationship. This is because with an increase in the number of microgrids in the network, the

amount of traded contracts increases accordingly. The linearity of the increase in contract

negotiation time shows that the proposed trading model is easily scalable for differing numbers

of microgrids. This is also depicted in Fig. 4.4, which shows a similarly linear relationship

between the number of formed contracts and the number of interconnected microgrids.

Figure 4.3. Variation in the computation time with respect to the change of the number of

microgrids in the network

54

Figure 4.4. Variation in the number of executed contracts with respect to the change of the

number of microgrids in the network

It was found that the model has successfully incentivized efficient energy trading among

islanded networked microgrids, primarily to satisfy outstanding net loads, and secondarily to

obtain the economic benefit of trading at a negotiated price. Each microgrid with power deficit

successfully purchased power to meet demands while microgrids with power surplus sold off

their excess power hence, demand-generation balance for the islanded interconnected system has

been achieved and the costs associated with load shedding and power curtailment have been

avoided.

After all contract negotiations have been finalized, the details of each contract are

recorded as blocks, verified using a novel two-phase consensus mechanism, and placed on a

contract records blockchain. Each validated block in the chain contains (i) buyer and seller

identification IDs, (ii) the amount of power being traded, (iii) a transaction price expressed in

$/kW, (iv) the timestamp of the execution of the transaction, and (v) an alpha-numeric string

called a hash, which is taken from the previous block on the blockchain. A sample of data

included in two sequentially generated blocks is shown in Fig. 4.5.

55

Figure 4.5. A sample of generated blocks containing contract data

In order to investigate the impact of the number of microgrids in the network on the

validation time required for the proposed consensus method, the validation time is measured as

the time elapsed between transaction submission and block confirmation. The average validation

time for the validation method was calculated for an increasing number of microgrids, as shown

in Fig. 4.6. It can be observed that the validation time increases accordingly (approximately a

linear increase rate) with the increase in the number of networked microgrids. This is due to the

fact that with an increase in the number of microgrids in the network, there is a corresponding

increase in the number of executed contracts (see Fig. 4.4), which results in a longer validation

period. The validation time required to validate all created blocks in a 20 microgrids network is

found to be around 1.9 seconds as shown in Fig 4.6.

56

Figure 4.6. The change in average validation time with respect to the change of the number of

microgrids in the network

To ensure the effectiveness of the proposed model, the obtained results were compared

with the results of recent work proposed in [21] and [61]. Table 4.2 depicts the full comparison,

which demonstrates the time efficiency or the proposed energy trading model (less negotiation

time for the same number of nodes, and improvement in the success rate of the transaction,

where all deficit and surplus power is satisfied).

It was found that the proposed method is time efficient compared to more traditional

methods that applies a direct price negotiation between peers. In traditional direct price

negotiation methods, both negotiators are fully dedicated to take advantage of the offered

contracts by the other peer and bring the other peer closer to their offered price. This increases

the contract determination computation time and might lead to unsuccessful negotiation process,

which can cause a reliability problem when the grid back up is absent for islanded networked

microgrids. To provide a brief comparison of the proposed negotiation method with a commonly

used game theory-based developed algorithm in the literature, the results of the proposed method

are compared with the result of the two algorithms proposed in [61]. In the case of 20

57

interconnected microgrids, the results in [61] show an average convergence times of 0.025 sec,

and 0.05 sec, respectively. However, the negotiation method proposed in this thesis offers a

shorter negotiation time of 0.0155 sec for the same number of microgrids as shown in Fig. 4.3,

which demonstrates the time efficiency of the proposed energy trading model.

Table 4.2. Validation of obtained results in comparison to results from the literature

Comparison Aspects Proposed Model The Model Proposed in [21]
Computation time for
contract determination

10 ms for six nodes system ~14 ms for six nodes system
(700 ms for 300 nodes)

Consensus protocol Less energy and time-
consuming protocol based
on pBFT and modified
PoS

Utilizes a time-consuming
consensus method contains three
components: contract-chain,
ledger-chain, and a high
frequency verification module
that requires all nodes to solve
puzzle problems and vote for
verification (validation time is not
reported).

Comparison aspect Proposed model The model proposed in [61]

Transaction negotiation time
(Average convergence time)

0.0115 sec for 20 node
system

Algorithm 1: 0.025 sec for 20
node system
Algorithm 2: 0.05 sec for 20 node
system

With regard to justifying the fast validation time of our proposed consensus method, the

work in [62] confirms that in networked computer systems a pBFT algorithm can be executed in

the order of milliseconds. Furthermore, in the modified proof of stake algorithm being proposed

in the second phase of the consensus process, the stake is calculated automatically based on pre-

existing data without a pre-determined time constraint. Therefore, the PoS algorithm does not

significantly impact the validation time.

It is also worth mentioning that although there are many advantages to pBFT-based

consensus, it has been categorized as communication bound, hence it has a scalability issue when

58

utilized for networks with a very large number of nodes. To overcome these limits without

sacrificing safety, the method proposed in [63] includes an approach to partition large networks

into smaller groups called federates; thus resulting in an improved scalability up to 1000 nodes

[53].

4.2 Grid Connected Operation – Multiagent Models

4.2.1 Model I

The scheduling problem is modeled as a Mixed Integer Linear Program (MILP)

optimization problem using IBM CPLEX 12.7, and the energy trading model was simulated for a

case of 7 networked microgrids using Python 3.6. The generation and load data were modified

from compiled wind energy and load data for 7 interconnected microgrids with an average

installed renewable energy capacity of 7.5 MW for each microgrid. Each microgrid is equipped

with a dispatchable generator with a fuel cost of 61.3 $/MW [64]. The maximum power

generation per round for the dispatchable generator was assumed to be 0.15 MW. Each microgrid

is additionally equipped with a battery storage system with a charge and discharge cost of 70

$/MW [64]. The maximum charging limit per round is considered to be 0.3 MW. The maximum

capacity of the tie line connecting each microgrid with the utility grid is considered to be 0.5

MW. A 24-hour dynamic energy price for solving the scheduling optimization problem is

adopted as shown in Fig. 4.7 [65]. The cost of load shedding and renewable energy curtailment is

assumed to be 1,000 $/MW.

After solving the local scheduling problem for a group of seven networked microgrids,

there was a total excess load of 18.92 MW (positive net load) and an excess generation of -16.97

(negative net load) over the 24-hour time horizon. Fig. 4.8 shows the total net load to be traded

for each time interval. The trading model is then simulated for each hour in the day ahead 24-

59

hour time horizon. The total amount of power traded over the 24-hour period was 8.85 MW,

distributed over 58 contracts. The maximum power traded in a single contract was 0.56 MW

exchanged at 2:00 am, while the minimum power traded in a single contract was 0.0018 MW

exchanged at 3:00 am. Fig. 4.9 shows the amount of deficit power in each hour that was satisfied

by the trading model (labelled in orange). Since there is more deficit power than excess power,

not all deficit power is satisfied, where the remaining deficit power will be curtailed.

Figure 4.7. 24-hour dynamic energy prices

Figure 4.8. Excess and deficit power to be traded from seven networked microgrids

60

Figure 4.9. Amount of deficit power vs satisfied deficit power resulting from the peer-to-peer

trading model

The model has successfully facilitated efficient energy trading among the networked

microgrids, and reduced the amount of curtailed power, hence, the costs associated with load

shedding and power curtailment have been reduced. It should be noted that almost all deficit

power is satisfied through energy trading for early morning hours, namely 2:00 am through 6:00

am and afternoon hours 11:00 am through 8:00 pm. Conversely, in the morning hours from 7:00

am to 10:00 am and nighttime hours from 9:00 pm to 12:00 midnight, there is insufficient excess

generation available to satisfy the demand during these periods. This result correlates well with

Fig. 4.8, where the total net load of the microgrid network was largely positive (deficit power) in

the later morning and night, and negative (excess power) in the early morning and mid-day

through the evening. We can conclude from Fig. 4.9 that, when excess generation is available,

the proposed trading model is effective to satisfy all deficit net load. It is also worth noting that

no contracts were executed at 9:00 am, which was a result of no excess generation being

available in the marketplace during that hour. The total cost of energy trading in the 24-hour

period was $321.78, with the average contract price of 36 $/MW and average cost of a contract

at $5.55. The maximum contract price was 63.98 $/MW executed at 3:00 pm, while the

61

minimum contract price was 16.13 $/MW executed at 2:00 am. Fig. 4.10 shows a comparison

between the final contract trading price and the dynamic utility price. This comparison shows

that, even without limiting the upper bound of the negotiated price, the pricing mechanism

consistently arrives at a price close to the utility price at each hour, indicating that the pricing

mechanism used in the trading model is fair for both buyers and sellers.

Figure 4.10. Comparison of the model trading price to the utility price

Fig. 4.11 shows an example of the price adjustment of marketplace participants during

hour 2. During this hour, two sellers offered contracts in the marketplace, seller 1 having 0.64

MW excess power and seller 2 having 0.157 MW excess power. Two buyers attempted to satisfy

their loads by purchasing energy from the marketplace, with buyer 1 having a 0.12 MW deficit

and buyer 2 having a 0.599 MW deficit. The initial selling prices offered were 31.19 $/MW for

seller 1 and 27.88 $/MW for seller 2. Initial buying prices were set at 21.77 $/MW for buyer 1

and 18.27 $/MW for buyer 2. No contract matches occurred in the first round, so each participant

adjusted their price for a second round. During the second trading round, buyer 1 matched with

seller 2 and a contract was executed which sold 0.12 MW to buyer 1 at a price of 20.91 $/MW.

This contract fully satisfied the load of buyer 1 and reduced the available power for sale from

seller 2 to 0.036 MW. Because buyer 1 was no longer participating in the trading and seller 2 still

had the lowest available contract price, buyer 2 also matched with seller 2, exchanging the

62

remaining excess energy of 0.036 from seller 2 at the same selling price. Since buyer 2 still had

an unsatisfied load of 0.56 MW, they also match with seller 1 at a price of 23.39 $/MW. A

contract was executed and fully satisfied the demand of buyer 2. Since Seller 1 still has a

remining excess power and there are no buyers during this hour, seller 1 curtailed the remaining

excess power of 0.076 MW.

Figure 4.11. An example of price adjustment process of two buyers and two sellers

After all contract negotiations have been finalized, the details of each contract are

recorded as blocks, verified using the proposed two-phase consensus mechanism, and placed on

a contract records blockchain. Similarly, as with the simulation in section 4.1, each validated

block in the chain contains (i) buyer and seller identification IDs, (ii) the amount of power being

traded, (iii) a transaction price expressed in $/MW, (iv) the timestamp of the execution of the

transaction, and (v) an alpha-numeric hash, which is taken from the previous block on the

blockchain. A sample of two sequentially generated blocks is shown in Fig. 4.12.

63

Figure 4.12. A sample of generated blocks containing contract data

For grid-connected operation model I, the test system consisted of a 7-node microgrid

network. The proposed blockchain settlement protocol was simulated for a system of this size,

and it was found that the average validation time for a single block in this system was 0.705

seconds, or 705 ms.

4.2.2 Model II

The same scheduling problem, under the same parameters detailed in section 3.2.1, is

utilized for the second non-islanded trading model. After solving the local scheduling problem

for the seven microgrid network, there was a total excess load of 18.92 MW (positive net load)

and an excess generation of -16.91 (negative net load) over the 24-hour time horizon. Again Fig.

4.8 shows the total net load to be traded for each time interval.

64

Figure 4.13. Comparison of energy deficit to traded energy

The trading model is then simulated each hour in a day ahead 24-hour time horizon. It

was found that the model has successfully facilitated efficient energy trading among the

networked microgrids and reduced the amount of curtailed power. Thus, the proposed model

improves the operation cost of each microgrid by reducing the high costs associated with load

shedding and power curtailment. The total amount of power traded over the 24-hour period was

found to be 9.26 MW, distributed over 59 contracts. The maximum power traded in a single

contract was 0.599 MW exchanged at hour 2 while the minimum power traded in a single

contract was found to be 0.0005 MW (0.5 kW) exchanged at hour 8. Fig. 4.12 shows the amount

of deficit power in each hour that was satisfied by the trading model (labelled in orange).

Figure 4.14. Comparison of the model trading price to utility price

65

The total cost of energy trading in the 24-hour period was $433.17, with the average

contract price of 47.59 $/MW and average cost of a contract at $8.33. The maximum contract

price was 74.63 $/MW executed at hour 15, while the minimum contract price was 21.63 $/MW

executed at hour 3. Fig. 4.13 shows a comparison between the final contract trading price and the

dynamic utility price. Looking to this figure, it is clear that the proposed model facilitates the

trading of contracts at prices close to the utility price, indicating that the pricing mechanism used

in the trading model is fair for both buyers and sellers.

Fig. 4.14 shows an example of the price adjustment of marketplace participants during

hour 19. During this hour, two sellers offered contracts in the marketplace, seller 1 having

0.4179 MW excess power and seller 2 having 0.3744 MW excess power. Two buyers attempted

to satisfy their loads by purchasing energy from the marketplace, with buyer 1 having a 0.2467

MW deficit and buyer 2 having a 0.1468 MW deficit. The initial selling prices offered were

69.39 $/MW for seller 1 and 68.73 $/MW for seller 2. Initial buying prices were set at 48.23

$/MW for buyer 1 and 50.16 $/MW for buyer 2. No contract matches occurred in the first 10

rounds, so each participant adjusted their price incrementally to attempt to execute a contract.

During the 11th trading round, buyer 1 matched with seller 2 and a contract was executed which

sold 0.2467 MW to buyer 1 at a price of 67.23 $/MW. This contract fully satisfied the load of

buyer 1 and reduced the available power for sale from seller 2 to 0.1277 MW. Because buyer 1

fully satisfied their load deficit, they no longer participated in subsequent trading rounds.

Additionally, since no other prices matched in round 11, price adjustments continued until round

16 when buyer 2 matched prices with seller 1. The executed contract traded 0.1468 MW to buyer

2 at a price of 66.84 $/MW, fully satisfying the load deficit of buyer 2 a leaving seller 1 with a

remaining excess of 0.2711 MW. Since both seller 1 and seller 2 still have remining excess

66

power and there are no more buyers participating on the marketplace for this hour, seller 1 is

forced to curtail their remaining excess power of 0.2711 MW and seller 2 is forced to curtail

their remaining excess power of 0.1277 MW.

Figure 4.15. An example of price adjustment process of two buyers and two sellers

For hours in which all excess energy was sold in the marketplace but there still existed an

energy deficit with the final buyer, a final contract was executed utilizing the spinning reserve

energy of the final seller. For this contract, the amount of energy sold could not exceed 20% of

the final seller’s net load, according to equations (29) and (30) from section 3.2.3. In total, 13

reserve energy contracts were executed over the 24-hour simulation which traded 0.359 MW of

spinning reserve energy, at an average of 7.33 kW of spinning reserve energy traded per contract.

Each of these contracts was executed at the designated spinning reserve price of 63 $/MW, with

the total cost of spinning reserve contracts being $22.63, for an average contract cost of $0.45.

The results shown in Fig. 4.15 show the total amount of traded power for each hour in the 24-

hour time horizon, and highlights the contribution of spinning reserve power in each hour where

67

a spinning reserve contract was executed. As can be seen in the figure, spinning reserve contracts

(highlighted in red) contributed to the traded energy in 13 of 24 hours.

Figure 4.16. Total energy traded in each hour, including primary and spinning reserve

power

After all contract negotiations have been finalized, the details of each contract are

recorded as blocks, verified using the proposed two-phase consensus mechanism, and placed on

a contract records blockchain. Similarly, as with the simulation in section 4.1, each validated

block in the chain contains (i) buyer and seller identification IDs, (ii) the amount of power being

traded, (iii) a transaction price expressed in $/MW, (iv) the timestamp of the execution of the

transaction, and (v) an alpha-numeric hash, which is taken from the previous block on the

blockchain. A sample of two sequentially generated blocks is shown in Fig. 4.12. Whereas Fig.

4.14 shows a sample of generated block for the spinning reserve contract (Block 2). The block

contains (i) buyer and seller identification IDs, (ii) the amount of power being traded using the

seller spinning reserve in MW and as percentage of the seller excess power, (iii) a transaction

68

price expressed in $/MW, (iv) the timestamp of the execution of the transaction, and (v) an

alpha-numeric hash, which is taken from the previous block on the blockchain.

Figure 4.17. A sample of generated blocks containing contract data

Figure 4.18. A sample of a generated block including a spinning reserve contract block

69

CHAPTER 5

CONCLUSION

In this work, multiple Peer-to-Peer (P2P) energy trading mechanisms for groups of both

islanded and grid-connected microgrid networks are proposed. Additionally, a two-stage

blockchain-based energy transaction settlement protocol is developed to ensure the security of

the energy trading transactions. Simulation results show that all of the proposed electricity

trading mechanisms can efficiently facilitate energy trading between networked microgrids. The

conclusion of this work can be summarized as follows:

• In the case of islanded interconnected microgrids, simulation results showed that

the proposed energy trading model and price adjustment mechanism effectively

facilitated fair energy transactions between microgrids in a cost and time efficient

manner. The proposed model ensured grid network reliability by ensuring the

satisfaction of the deficit and excess power of all trading participants.

• In the case of grid-connected microgrid networks, simulation results showed that

the proposed energy trading models and price adjustment mechanisms effectively

facilitated energy trading and assured price fairness for all trading participants.

The optimization problem formulation and price adjustment mechanisms assured

minimum operation cost for each microgrid in the network.

• The novel two-phase blockchain-based transaction settlement protocol promoted

system security and records immutability through the use of a two-stage

consensus protocol. Simulation results showed that the proposed consensus

algorithm is time-efficient compared with traditional consensus methods.

70

5.1 Future Work

Further research which can be undertaken to extend the conducted work may include:

• Improving the scalability of the proposed consensus protocol by partitioning a

large network into smaller networks (federates) as proposed in [63].

• Simulation of the proposed energy trading models utilizing different and more

comprehensive generation and load data collected from an operational microgrid

network.

• A unified energy trading and price adjustment mechanism for both islanded and

grid-connected operation which includes specific considerations for energy

trading during transitions between islanded and grid-connected operation.

• Development of new hybrid two-phase consensus protocols that combines pBFT

with different consensus methods such as Proof of Authority and Proof of Work.

5.2 Outcome Publications

Portions of the research presented in this thesis have been peer-reviewed and published as shown

below:

1) T. M. Masaud, J. Warner and E. F. El-Saadany, "A Blockchain-Enabled Decentralized

Energy Trading Mechanism for Islanded Networked Microgrids," IEEE Access, vol. 8,

pp. 211291-211302, November 2020.

2) J. Warner and T. M. Masaud, “Decentralized Peer-to-Peer Energy Trading Model for

Networked Microgrids,” in IEEE Conference on Technologies for Sustainability, Orange

County, CA, USA (Virtual), April 22-24, 2021. Accepted.

71

REFERENCES

[1] M. S. Saleh, A. Althaibani, Y. Esa, Y. Mhandi, A. A. Mohamed, “Impact of clustering

microgrids on their stability and resilience during blackouts,” 2015 International

Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 195–200,

October 2015.

[2] J. Lelieveld, K. Klingmüller, A. Pozzer, R. T. Burnett, A. Haines, V. Ramanathan, “Effects of

fossil fuel and total anthropogenic emission removal on public health and climate,”

Proceedings of the National Academy of Sciences of the United States of America, 116

(15), pp. 7192-7197, March 2019.

[3] A. P. Sakis Meliopoulos et al., "Smart Grid technologies for autonomous operation and

control," in IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 1-10, March 2011, doi:

10.1109/TSG.2010.2091656.

[4] S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on

microgrids: A review”, IEEE Access, vol. 3, pp. 890 - 925, June 2015.

[5] IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems

with Electric Power Systems, IEEE Standard 1547.4, pp. 1–54, 2011.

[6] N. Aitzhan and D. Svetinovic, “Security and privacy in decentralized energy trading through

multi-signatures, blockchain and anonymous messaging streams,” IEEE Trans.

Dependable Secure Comput., vol. 15, no. 5, pp. 840–852, Sep./Oct. 2016.

[7] LO3 Energy: The Future of Energy, [Online]. Available: https://lo3energy.com/. Accessed:

Nov. 20, 2019.

[8] B. Wang, M. Dabbaghjamanesh, A. K. Fard and S. Mehraeen, "Cybersecurity enhancement

of power trading within the networked microgrids based on blockchain and directed

72

acyclic graph approach," in IEEE Transactions on Industry Applications, p. In Press.,

2019.

[9] A. S. Musleh, G. Yao and S. M. Muyeen, "Blockchain applications in smart grid–review and

frameworks," in IEEE Access, vol. 7, pp. 86746-86757, 2019, doi:

10.1109/ACCESS.2019.2920682.

[10] A. Paudel, K. Chaudhari, C. Long and H. B. Gooi, "Peer-to-peer energy trading in a

prosumer-based community microgrid: A game-theoretic model," in IEEE Transactions

on Industrial Electronics, vol. 66, no. 8, pp. 6087-6097, Aug. 2019, doi:

10.1109/TIE.2018.2874578.

[11] W. Tushar, B. Chai, C. Yuen, S. Huang, D. B. Smith, H. V. Poor, and Z. Yang, “Energy

storage sharing in smart grid: a modified auction based approach”, IEEE Transactions on

Smart Grid, vol. 7, no. 3, May. 2016. pp. 1462 – 1475.

[12] A. Anees, T. Dillon and Y.-P. P. Chen, "A novel decision strategy for a bilateral energy

contract", Applied Energy, vol. 253, pp. 1-13, Nov. 2019.

[13] S. Cui, Y. Wang and N. Liu, "Distributed game-based pricing strategy for energy sharing in

microgrid with PV prosumers," IET Renewable Power Generation, vol. 12, no. 3, pp.

380-388, 2018.

[14] P. Shamsi, H. Xie, A. Longe and J. Joo, "Economic dispatch for an agent-based community

microgrid," in IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2317-2324, Sept.

2016, doi: 10.1109/TSG.2015.2487422.

[15] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang and E. Hossain, "Enabling localized peer-

to-peer electricity trading among plug-in hybrid electric vehicles using consortium

73

blockchains," in IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pp. 3154-

3164, Dec. 2017, doi: 10.1109/TII.2017.2709784.

[16] K. Chen, J. Lin, Y. Song, “Trading strategy optimization for a prosumer in continuous

double auction-based peer-to-peer market: A prediction integration model,” Applied

Energy, vol. 242, pp. 1121-1133, 2019.

[17] M. H. Cintuglu, H. Martin and O. A. Mohammed, "Real-time implementation of

multiagent-based game theory reverse auction model for microgrid market operation,"

2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA,

pp. 1-1, 2016, doi: 10.1109/PESGM.2016.7741074.

[18] A. Luth, M. Zepter, P. C. del Granado, R. Egging, “Local electricity market designs for

peer-to-peer trading: The role of battery flexibility,” Applied Energy, vol. 229, pp. 1233-

1243, 2018.

[19] S. Nguyen, W. Peng, P. Sokolowski, D. Alahakoon, X. Yu, “Optimizing rooftop

photovoltaic distributed generation with battery storage for peer-to-peer energy trading,”

Applied Energy, vol. 228, pp. 2567-2580, 2018.

[20] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “An energy sharing model with price-

based demand response for microgrids of peer-to-peer prosumers,” IEEE Transactions on

Power Systems, vol. 32, no. 5, pp. 3569 – 3583, Jan. 2017.

[21] F. Luo, Z. Y. Dong, G. Liang, J. Murata and Z. Xu, "A distributed electricity trading system

in active distribution networks based on multi-agent coalition and blockchain," IEEE

Transactions on Power Systems, vol. 34, no. 5, pp. 4097-4108, September 2019.

[22] S. J. Pee, E. S. Kang, J. G. Song and J. W. Jang, "Blockchain based smart energy trading

platform using smart contract," 2019 International Conference on Artificial Intelligence

74

in Information and Communication (ICAIIC), Okinawa, Japan, pp. 322-325, 2019, doi:

10.1109/ICAIIC.2019.8668978.

[23] M. T. Devine and P. Cuffe, "Blockchain electricity trading under demurrage," IEEE

Transactions on Smart Grid, vol. 10, no. 2, pp. 2323-2325, March 2019.

[24] H. Wang, J. Huang, “Incentivizing energy trading for interconnected microgrids,” IEEE

Transactions on Smart Grid, vol. 9, no. 4, pp. 2647-2657, July 2018.

[25] C. Dang, J. Zhang, C. Kwong, L. Li, “Demand side load management for big industrial

energy users under blockchain-based peer-to-peer electricity market,” in IEEE

Transactions on Smart Grid, vol. 10, no. 6, pp. 6426-6435, March 2019.

[26] B. Hu, C. Zhou, Y. C. Tian, Y. Qin and X. Junping, "A collaborative intrusion detection

approach using blockchain for multimicrogrid systems," in IEEE Transactions on

Systems, Man, and Cybernetics, vol. 49, no. 8, pp. 1720-1730, August 2019.

[27] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng and Y. Zhang, "Consortium blockchain for secure

energy trading in industrial internet of things," in IEEE Transactions on Industrial

Informatics, vol. 14, no. 8, pp. 3690-3700, August 2018.

[28] M. U. Hassan, M. H. Rehmani and J. Chen, "DEAL: Differentially private auction for

blockchain-based microgrids energy trading," in IEEE Transactions on Services

Computing, vol. 13, no. 2, pp. 263-275, 1 March-April 2020, doi:

10.1109/TSC.2019.2947471.

[29] S. Zhang, M. Pu, B. Wang, B. Dong, “A privacy protection scheme of microgrid direct

electricity transaction based on consortium blockchain and continuous double auction,”

IEEE Access, vol. 7, pp. 151746-151753, October 2019.

75

[30] S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy crowdsourcing and

peer-to-peer energy trading in blockchain-enabled smart grids”, IEEE Transactions on

Systems, Man, and Cybernetics Systems, vol. 49. no.8, August 2019.

[31] US Energy Information Administration, “State Electricity Profiles,” US EIA, Washington,

DC, USA, 2020. Accessed on: Dec. 15, 2020. [Online].

[32] "IEEE Standard for the Specification of Microgrid Controllers," in IEEE Std 2030.7-2017 ,

vol., no., pp.1-43, 23 April 2018, doi: 10.1109/IEEESTD.2018.8340204

[33] M. Pulcherio, M. S. Illindala, J. Choi and R. K. Yedavalli, "Robust microgrid clustering in a

distribution system with inverter-based DERs," in IEEE Transactions on Industry

Applications, vol. 54, no. 5, pp. 5152-5162, Sept.-Oct. 2018, doi:

10.1109/TIA.2018.2853039.

[34] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, "MAS-based distributed

coordinated control and optimization in microgrid and microgrid clusters: A

comprehensive overview," in IEEE Transactions on Power Electronics, vol. 33, no. 8,

pp. 6488-6508, Aug. 2018, doi: 10.1109/TPEL.2017.2761438.

[35] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for

microgrids islanded operation,” IEEE Transaction on Power Systems, vol. 21, no. 2, pp.

916–924, May 2006.

[36] H. Kanchev, F. Colas, V. Lazarov and B. Francois, "Emission reduction and economical

optimization of an urban microgrid operation including dispatched PV-based active

generators," in IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1397-1405,

Oct. 2014, doi: 10.1109/TSTE.2014.2331712.

76

[37] W. Tushar, T. K. Saha, C. Yuen, D. Smith and H. V. Poor, "Peer-to-peer trading in

electricity networks: An overview," in IEEE Transactions on Smart Grid, vol. 11, no. 4,

pp. 3185-3200, July 2020, doi: 10.1109/TSG.2020.2969657.

[38] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory. New York, NY:

Academic Press, 1995.

[39] W. Saad, Z. Han, H. V. Poor, and T. Bas¸ar, “Game-theoretic methods for the smart grid:

An overview of microgrid systems, demand-side management, and smart grid

communications,” IEEE Signal Processing Magazine, vol. 29, no. 5, pp. 86–105, Sept.

2012.

[40] W. Tushar, W. Saad, H. V. Poor, and D. B. Smith, “Economics of electric vehicle charging:

A game theoretic approach,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1767–

1778, Dec. 2012.

[41] McAfee, R. Preston; McMillan, John (1987). "Auctions and Bidding". Journal of Economic

Literature. 25 (2): 699–738.

[42] D. Ganguly and S. Chakraborty, "E commerce - forward and reverse auction - A managerial

tool to succeed over business competitiveness," 2008 Ninth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, Phuket, pp. 447-452, 2008, doi:

10.1109/SNPD.2008.51.

[43] W. Saad, Zhu Han, H. V. Poor and T. Başar, "A noncooperative game for double auction-

based energy trading between PHEVs and distribution grids," 2011 IEEE International

Conference on Smart Grid Communications (SmartGridComm), Brussels, pp. 267-272,

2011, doi: 10.1109/SmartGridComm.2011.6102331.

77

[44] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Accessed: Dec. 15,

2020. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[45] K. Toyoda, K. Machi, Y. Ohtake and A. N. Zhang, "Function-level bottleneck analysis of

private proof-of-authority ethereum blockchain," in IEEE Access, vol. 8, pp. 141611-

141621, 2020, doi: 10.1109/ACCESS.2020.3011876.

[46] R. Beck, ``Beyond bitcoin: The rise of blockchain world,'' Computer, vol. 51, no. 2, pp.

54_58, Feb. 2018.

[47] A. Andrey and C. Petr, "Review of existing consensus algorithms blockchain," 2019

International Conference "Quality Management, Transport and Information Security,

Information Technologies" (IT&QM&IS), Sochi, Russia, pp. 124-127, 2019, doi:

10.1109/ITQMIS.2019.8928323.

[48] Z. Wang, B. Chen, J. Wang and J. kim, "Decentralized energy management system for

networked microgrids in grid-connected and islanded modes," in IEEE Transactions on

Smart Grid, vol. 7, no. 2, pp. 1097-1105, March 2016, doi: 10.1109/TSG.2015.2427371.

[49] X. Tian and K. Benkrid, ‘‘Mersenne twister random number generation on FPGA, CPU and

GPU,’’ in Proceedings of NASA/ESA Conference on Adaptive Hardware Systems, pp.

460–464, Jul. 2009.

[50] W. Hou, L. Guo, and Z. Ning, ‘‘Local electricity storage for blockchain based energy

trading in industrial Internet of Things,’’ IEEE Trans. Industrial Information, vol. 15, no.

6, pp. 3610–3619, Jun. 2019.

[51] B. Brooks, J. Jiang, and H. Sun, ‘‘Incorporating user utility in a smart microgrid with

distributed generation and elastic demand,’’ in Proc. IEEE International Conference on

Communication Workshops, pp. 1–5, May 2017.

78

[52] Hyperledger. (2020). Blockchain Technologies for Business. [Online]. Available:

https://www.hyperledger.org

[53] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi and J. Wang, "Untangling blockchain:

A data processing view of blockchain systems," in IEEE Transactions on Knowledge and

Data Engineering, vol. 30, no. 7, pp. 1366-1385, 1 July 2018, doi:

10.1109/TKDE.2017.2781227.

[54] X. Chen and X. Zhang, “Secure electricity trading and incentive contract model for electric

vehicle based on energy blockchain,” IEEE Access, vol. 7, pp. 178763-178778, 2019.

[55] G. Maxwell. (2017). Confidential Transactions. [Online]. Available:

http://diyhpl.us/wiki/transcipts/gmaxwell-confidential-transactions/

[56] H. Zhang, F. Zhang, B. Wei, and Y. Du, “Implementing confidential transactions with

lattice techniques,” IET Information Security, vol. 14, no. 1, pp. 30-38, Jan. 2020.

[57] K. Mongird, ``Energy storage technology and cost characterization report,'' Pacific

Northwest Nat. Lab., Seattle, WA, USA, Tech. Rep. PNNL-28866, Jul. 2019. [Online].

Available:

https://www.energy.gov/sites/prod/files/2019/07/f65/Storage%20Cost%20and%20Perfor

mance%20Characterization%20Report_Final.pdf

[58] D. T. Nguyen and L. B. Le, "Optimal bidding strategy for microgrids considering renewable

energy and building thermal dynamics," in IEEE Transactions on Smart Grid, vol. 5, no.

4, pp. 1608-1620, July 2014, doi: 10.1109/TSG.2014.2313612.

[59] Z. Jianjun, S. Dongyu, Z. Dong and G. Yang, "Load shedding control strategy for power

system based on the system frequency and voltage stability,” 2018 China International

79

Conference on Electricity Distribution (CICED), Tianjin, 2018, pp. 1352-1355, April

2018, doi: 10.1109/CICED.2018.8592262.

[60] N. Wang, W. Xu, Z. Xu, and W. Shao, ``Peer-to-peer energy trading among microgrids with

multidimensional willingness,'' Energies, vol. 11, no. 12, p. 3312, Nov. 2018.

[61] A. M. Jadhav, N. R. Patne and J. M. Guerrero, "A novel approach to neighborhood fair

energy trading in a distribution network of multiple microgrid clusters," in IEEE

Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1520-1531, Feb. 2019, doi:

10.1109/TIE.2018.2815945.

[62] T. Distler, C. Cachin and R. Kapitza, "Resource-efficient byzantine fault tolerance," in IEEE

Transactions on Computers, vol. 65, no. 9, pp. 2807-2819, Sept. 2016, doi:

10.1109/TC.2015.2495213.

[63] D. Mazieres, “The stellar consensus protocol: A federated model for internet-level

consensus,” Dec. 2017, [Online]. Available: http://www.scs.stanford.edu/17au-

cs244b/notes/scp.pdf, Last accessed: 2020.

[64] R. D. Mistry, F. Eluyemi, T. Masaud, “Impact of aggregated EVs charging station on the

optimal scheduling of battery storage system in islanded microgrid,” IEEE North

American Power Symposium, Morgantown, WV, pp. 1-5, 2017.

[65] National Grid Website, [Online]. Available:

https://www9.nationalgridus.com/niagaramohawk/business/rates/5_hour_charge.asp

80

APPENDIX A

81

APPENDIX B

TABULATED DATA

Table B.1. Net load of each microgrid (10 microgrid scenario) from randomly generated data for

islanded operation

 Microgrid No.
 1 2 3 4 5 6 7 8 9 10

H
ou

r
in

 th
e

24
-h

ou
r

tim
e

ho
ri

zo
n

1 2.18 -7.51 2.21 1.21 5.98 1.15 -3.91 2.23 -0.75 -5.69
2 0.88 3.74 8.5 -4.95 -1.44 -6.5 -0.43 0.34 5.51 -8.23
3 -7.16 0.48 3.91 -1.25 4.61 -3.12 0.14 -3.81 -8.65 0.47
4 0.34 8.59 -3.08 -2.48 2.45 -3.24 5.08 0.17 3.58 -6.34
5 -3.59 0.41 1.4 0.19 0.86 6.72 -8.17 -2.28 -0.03 -0.72
6 4.4 -2.97 -1.28 1.07 -2.67 -0.87 4.89 -2.55 4.54 0.95
7 -0.42 6.22 4.26 -0.27 -1.75 -3.64 3.1 0.4 7.84 -1.56
8 0.27 2 -4.05 5.07 -4.15 3.37 -4.46 -3.8 -6.12 1.97
9 -1.16 -0.25 -3.84 0.61 0.6 0.96 0.3 6.36 -1.02 -3.05
10 -1.65 3.51 -1.67 1 0.77 -4.13 -2.69 -4 1.86 1.4
11 8.49 -1.88 3.94 2.12 -5.51 6.71 4.53 -2.29 -4.02 -1.39
12 4.12 -1.94 -5.15 -0.73 6.36 7.96 4.47 4.09 0.55 0.02
13 -1.33 6.55 4.46 -1.52 -2.8 9.06 6.7 -2.16 -6.71 -3.95
14 8.9 1.82 -3.42 -6.31 -3.17 5.23 0.04 -1.9 -5.29 -2.22
15 -4.05 -5.41 -7.13 -0.77 3.26 -0.74 7.02 4.39 -5.48 1.08
16 6.39 7.69 4.74 -0.8 8.03 5.73 0.83 -4.34 8.23 2.3
17 -0.72 -6.01 8.34 2.63 6.25 1.09 4.96 -8.16 -0.67 2.78
18 -2.53 -2.12 -0.87 2.56 6.81 -2.43 1.13 -0.24 6.15 1.24
19 -8.36 -1.38 -4.57 1.68 -0.41 2.67 -6.94 -1.37 3.68 3.44
20 -5.59 4.79 -9.37 -2.27 -0.2 -2.4 -3.81 -3.62 4.28 -0.97
21 0.46 1.53 -1.42 -1.06 7.03 -1.19 -5.74 -1.45 0.77 -2.47
22 -0.6 -0.18 8.38 8.4 4.68 2.82 3.45 -6.24 -2.55 -2.57
23 0.06 -4.46 4.57 8.3 1.92 -5.62 -5.43 -2.19 -1.75 -2.71
24 1.77 -3.45 6.02 -6.77 -3.5 -2.21 -0.46 4.16 -5.22 6.89

82

Table B.2. Microgrid net load data used for grid-connected operation

 Microgrid No.
 1 2 3 4 5 6 7

H
ou

r
in

 th
e

24
-h

ou
r

tim
e

ho
ri

zo
n

1 -1.0879 1.0658 1.2812 -0.9228 -0.2915 -0.6728 0.7178
2 -1.4392 0.8188 1.0711 -1.1416 -0.4007 -0.9571 0.6673
3 -1.1819 0.5483 0.8841 -1.1714 -0.4100 -1.0842 0.7177
4 -0.8322 0.8929 0.6810 -1.3023 -0.4534 -1.1884 0.6878
5 -0.9556 0.9716 0.8356 -1.3251 -0.3995 -0.9503 0.7179
6 -0.9376 1.0173 0.7609 -1.2164 -0.6946 -1.0951 0.6406
7 -0.8374 0.8963 0.9494 -1.0277 -0.3048 -0.6898 0.8310
8 -0.6112 1.0060 1.3298 -0.9043 -0.1632 -0.8024 0.9565
9 -0.4116 1.0337 1.2967 -1.1386 -0.0706 -0.4902 1.0514
10 -0.3749 0.8225 1.1505 -1.1760 -0.1092 -0.6339 1.0156
11 -0.6009 0.7378 1.2809 -1.2022 -0.3865 -0.8644 0.8634
12 -1.0991 0.6847 1.7097 -0.9516 -0.2279 -0.6570 0.6802
13 -1.1278 0.7894 1.6098 -1.0136 -0.2469 -0.7014 0.6679
14 -1.1242 0.9071 1.4907 -1.3214 -0.2169 -0.6001 0.6581
15 -0.8272 1.0511 1.3826 -1.4349 -0.1821 -0.5341 0.6617
16 -0.9168 1.0542 1.1904 -1.6089 -0.3698 -0.5695 0.6822
17 -0.5412 1.0832 1.0112 -1.7098 -0.4226 -0.4706 0.8817
18 -0.6536 1.0284 0.8279 -1.5350 -0.4731 -0.9744 1.0521
19 -0.4008 1.1967 0.8238 -1.5868 -0.3744 -0.4901 1.0968
20 -0.5076 0.9942 1.0032 -1.5441 -0.6827 -0.4383 1.0871
21 -0.6829 1.1671 1.3144 -1.3794 -0.0839 -0.5612 1.1353
22 -0.9986 1.1823 1.7851 -1.0688 -0.0947 -0.7355 1.0267
23 -1.4259 1.0406 1.4382 -0.9938 -0.2752 -0.9514 0.9374
24 -1.3453 1.2199 1.5806 -0.8601 -0.2114 -0.8152 0.9498

83

APPENDIX C

SIMULATION CODES

C.1. Simulation Code for Islanded Operation

import hashlib as hasher
import datetime
import math
import random
import datetime as date
from openpyxl import Workbook

filename = "blockchain_test123.xlsx"
workbook = Workbook()
sheet = workbook.active

cost_batt = 30/1000
cost_shed = 1000/1000
cost_reserve = 250/1000
cost_trans = 0.0000028
t=1

A = ([[0, 10.2, 14.5, 149.7, 162, 171.1, 50.3, 21.6, 175, 178.2, 182.3, 75,
184.3, 119.6, 87.6, 128, 155.2, 191, 66.2, 81],
 [10.2, 0, 17.9, 159.2, 171.9, 183.4, 60.1, 17, 183.2, 188.3, 192, 85.6,
197.2, 131, 54.3, 31.6, 105.2, 142.5, 151, 162.2],
 [14.5, 17.9, 0, 165.3, 177, 185.3, 5.6, 24.8, 186.8, 193.5, 196, 91.7,
202.9, 135.2, 62.2, 51, 107, 127.6, 191, 88.1],
 [149.7, 159.2, 165.3, 0, 12.1, 220.5, 102.6, 175, 22.7, 27.1, 231.5,
125.2, 234.9, 172, 44.1, 191.5, 34, 202.3, 198, 215.1],
 [162, 171.9, 177, 12.1, 0, 232, 112.2, 187.3, 34.8, 39.3, 242.6, 137,
247.5, 182.4, 22, 161.6, 124.2, 155, 104.5, 74.1],
 [171.1, 183.4, 185.3, 220.5, 232, 0, 122.4, 95.9, 242, 247.7, 10.2,
145.6, 15, 192.1, 149.5, 86, 101.1, 62.5, 25, 36.2],
 [50.3, 60.1, 5.6, 102.6, 112.2, 122.4, 0, 75.2, 122.3, 127.8, 130.5,
25, 135.9, 70.4, 178.2, 61.5, 140.2, 32, 73, 197.3],
 [21.6, 17, 24.8, 175, 187.3, 95.9, 75.2, 0, 197.1, 202.3, 205.7, 100.4,
213.8, 145, 121.1, 167.5, 55, 31.4, 232.1, 14],
 [175, 183.2, 186.8, 22.7, 34.8, 242, 122.3, 197.1, 0, 36.2, 252.3,
147.6, 257, 192.9, 165.5, 71, 41.4, 127.7, 182, 52.3],
 [178.2, 188.3, 193.5, 27.1, 39.3, 247.7, 127.8, 202.3, 36.2, 0, 257,
152.4, 262.6, 197, 165.2, 77.7, 23.1, 112, 182.5, 69.2],
 [182.3, 192, 196, 231.5, 242.6, 10.2, 130.5, 205.7, 252.3, 257, 0,
155.1, 15.9, 204.7, 68.4, 121.5, 182, 20.6, 142.2, 40],
 [75, 85.6, 91.7, 125.2, 137, 145.6, 25, 100.4, 147.6, 152.4, 155.1, 0,
160.5, 95.1, 150.2, 217.5, 49.2, 108.6, 82, 77.4],
 [184.3, 197.2, 202.9, 234.9, 247.5, 15, 135.9, 213.8, 257, 262.6, 15.9,
160.5, 0, 205.7, 188.2, 62.4, 89, 124.5, 160.1, 98.8],
 [119.6, 131, 135.2, 172, 182.4, 192.1, 70.4, 145, 192.9, 197, 204.7,
95.1, 205.7, 0, 66.5, 221.4, 155.2, 181.3, 25, 98.2],
 [87.6, 54.3, 62.2, 44.1, 22, 149.5, 178.2, 121.1, 165.5, 165.2, 68.4,
150.2, 188.2, 66.5, 0, 114.8, 202.2, 158.2, 76, 185.2],

84

 [128, 31.6, 51, 191.5, 161.6, 86, 61.5, 167.5, 71, 77.7, 121.5, 217.5,
62.4, 221.4, 114.8, 0,19.5, 171.2, 207, 75],
 [155.2, 105.2, 107, 34, 124.2, 101.1, 140.2, 55, 41.4, 23.1, 182, 49.2,
89, 155.2, 202.2, 19.5, 0, 132.2, 168.4, 63],
 [191, 142.5, 127.6, 202.3, 155, 62.5, 32, 31.4, 127.7, 112, 220.6,
108.6, 124.5, 181.3, 158.2, 171.2, 132.2, 0, 212.4, 78.4],
 [66.2, 151, 191, 198, 104.5, 25, 73, 232.1, 182, 182.5, 142.2, 82,
160.1, 25, 76, 207, 168.4, 212.4, 0, 185.2],
 [81, 162.2, 88.1, 215.1, 74.1, 36.2, 197.3, 14, 52.3, 69.2, 40, 77.4,
98.8, 98.2, 185.2, 75, 63, 78.4, 185.2, 0]])

class Block:
 def __init__(self, index, timestamp, data, previous_hash):
 self.index = index
 self.timestamp = timestamp
 self.data = data
 self.previous_hash = previous_hash
 self.hash = self.hash_block()

 def hash_block(self):
 sha = hasher.sha256()
 sha.update((str(self.index) + str(self.timestamp) + str(self.data) +
str(self.previous_hash)).encode())
 return sha.hexdigest()

def create_genesis_block():
 # Manually construct a block with
 # index zero and arbitrary previous hash
 return Block(0, date.datetime.now(), "Genesis Block", "0")

def next_block(last_block):
 this_index = last_block.index + 1
 this_timestamp = date.datetime.now()
 this_data = "kW:" + str(kW) + " Price:" + str(price_seller) + " Time:"
+time
 this_hash = last_block.hash
 return Block(this_index, this_timestamp, this_data, this_hash)

class Prosumer():
 def __init__(self, index, pgen, pload, pnet, status):
 self.index = index
 self.pgen = pgen
 self.pload = pload
 self.pnet = pnet
 self.status = status

Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[0]
temp_buyer = []
temp_seller = []
alpha = 0
beta = 0
gamma = 0
average = 0
phi = 1

85

price_retail = 0.12
j=0
k=0

How many blocks should we add to the chain
after the genesis block
num_of_blocks_to_add = 24
y=0
m=1
n=1
pgensum = 0
ploadsum = 0
while(y < num_of_blocks_to_add):
 genlist = list()
 loadlist = list()
 netlist = list()
 conlist = list()
 prodlist = list()
 prosumers = list()
 producers = list()
 consumers = list()

 for k in range(1, 20):
 pgen = round(random.uniform(5,15), 2)
 genlist.append(pgen)
 pload = round(random.uniform(5,15), 2)
 loadlist.append(pload)
 pnet = round(pload-pgen, 2)
 netlist.append(pnet)
 if(pgen > pload):
 status = 1
 else:
 status = 0
 prosumers.append(Prosumer(k, pgen, pload, pnet, status))

 sum3 = sum(netlist)
 print(sum3)
 if(sum3 > 0):
 prosumers.append(Prosumer(20, 0, sum3, -sum3, 1))
 else:
 prosumers.append(Prosumer(20, sum3, 0, 0-sum3, 0))

 phi += 1
 for i in range(0, len(prosumers)):
 print("Prosumer: {}".format(prosumers[i].index))
 print("Pgen: {}".format(prosumers[i].pgen))
 print("Pload: {}".format(prosumers[i].pload))
 print("Pnet: {}".format(prosumers[i].pnet))
 print("Status: {}\n".format(prosumers[i].status))
 sheet.cell(row=i+1, column=25+phi).value = prosumers[i].pnet

 if(prosumers[i].pnet > 0):
 consumers.append(prosumers[i])
 conlist.append(prosumers[i].pnet)
 else:
 producers.append(prosumers[i])

86

 prodlist.append(prosumers[i].pnet)

 for i in range(0, len(consumers)):
 print("Consumers: {}".format(consumers[i].pnet))
 sheet.cell(row=t, column=15).value = consumers[i].pnet
 t+=1
 for i in range(0, len(producers)):
 print("Producers: {}".format(producers[i].pnet))
 sheet.cell(row=t, column=16).value = producers[i].pnet
 t+=1

#Negotiate contract
 have_contract = 0
 average = 0
 price_retail = 0.20
 j=0
 for j in range(0, len(consumers)):
 for k in range(0, len(producers)):
 if consumers[j].pnet>0 and producers[k].pnet<0:
 alpha = 0.01
 beta = 0.04
 tau = 0
 fixed_seller = 0.25
 fixed_buyer = 0.15
 cost_curt = 0
 batt_limit = 2
 reserve_limit = 5
 have_contract = 0
 tasks = 0
 gamma = 0.2
 count = 0

 while(have_contract < 1):
 if(count<5):
 if(abs(producers[k].pnet) < batt_limit):
 price_seller = (fixed_seller) -
tau*(cost_batt*abs(producers[k].pnet)*gamma + alpha*cost_curt*abs(0)) +
(A[j][k]*cost_trans*abs(producers[k].pnet))
 batt_limit -= abs(producers[k].pnet)
 tasks += 1
 else:
 price_seller = (fixed_seller) -
tau*(cost_batt*abs(batt_limit) + alpha*cost_curt*abs(producers[k].pnet -
batt_limit)) + (A[j][k]*cost_trans*abs(producers[k].pnet))
 tasks +=1
 if(abs(consumers[j].pnet) < reserve_limit):
 price_buyer = (fixed_buyer) +
tau*(beta*cost_shed*abs(0) + cost_reserve*abs(consumers[j].pnet))
 reserve_limit -= consumers[j].pnet
 tasks +=1
 else:
 price_buyer = (fixed_buyer) +
tau*(beta*cost_shed*abs(consumers[j].pnet - reserve_limit) +
cost_reserve*abs(reserve_limit))
 tasks += 1
 else:

87

 if(abs(producers[k].pnet) < batt_limit):
 price_seller = (fixed_seller) -
tau*(cost_batt*abs(producers[k].pnet)*0 + alpha*cost_curt*abs(0)) +
(A[j][k]*cost_trans*abs(producers[k].pnet))
 batt_limit -= abs(producers[k].pnet)
 tasks += 1
 else:
 price_seller = (fixed_seller) -
tau*(0*cost_batt*abs(batt_limit) + alpha*cost_curt*abs(producers[k].pnet)) +
(A[j][k]*cost_trans*abs(producers[k].pnet))
 tasks +=1
 if(abs(consumers[j].pnet) < reserve_limit):
 price_buyer = (fixed_buyer) +
tau*(beta*cost_shed*abs(0) + 0*cost_reserve*abs(consumers[j].pnet))
 reserve_limit -= consumers[j].pnet
 tasks +=1
 else:
 price_buyer = (fixed_buyer) +
tau*(beta*cost_shed*abs(consumers[j].pnet) +
0*cost_reserve*abs(reserve_limit))
 tasks += 1

 if(price_seller <= price_buyer):
 have_contract = 1
 print("Price_seller: {}".format(price_seller))
 print("Price_buyer: {}".format(price_buyer))
 sheet.cell(row=m, column=1).value = price_seller
 sheet.cell(row=n, column=2).value = price_buyer
 m+=1
 n+=1
 tasks += 1
 time = date.datetime.now().strftime('%S.%f')[:-2]
 sheet.cell(row=m, column=7).value = tasks
 else:
 tau = 1
 count += 1
 print("Price_seller: {}".format(price_seller))
 print("Price_buyer: {}".format(price_buyer))
 sheet.cell(row=m, column=1).value = price_seller
 sheet.cell(row=n, column=2).value = price_buyer
 m+=1
 n+=1
 cost_curt = price_seller
 fixed_seller = price_seller
 fixed_buyer = price_buyer
 tasks += 1
 time = date.datetime.now().strftime('%S.%f')[:-2]
 sheet.cell(row=m, column=7).value = tasks

 sheet.cell(row=k+1, column=1).value = price_seller
 sheet.cell(row=k+1, column=2).value = price_buyer

 sheet.cell(row=m, column=9).value = consumers[j].pnet
 sheet.cell(row=m, column=10).value = producers[k].pnet

 if(abs(producers[k].pnet) >= abs(consumers[j].pnet)):

88

 kW = abs(consumers[j].pnet)
 producers[k].pnet += consumers[j].pnet
 consumers[j].pnet = 0
 else:
 kW = abs(producers[k].pnet)
 consumers[j].pnet += producers[k].pnet
 producers[k].pnet = 0

 time = date.datetime.now().strftime('%S.%f')[:-2]
 block_to_add = next_block(previous_block)
 blockchain.append(block_to_add)
 previous_block = block_to_add
 print("Block #{} has been added to the
blockchain!".format(block_to_add.index))
 print("Data: {}".format(block_to_add.data))
 print("Hash: {}\n".format(block_to_add.hash))
 sheet.cell(row=m, column=3).value = block_to_add.index
 sheet.cell(row=m, column=4).value = block_to_add.data
 sheet.cell(row=m, column=5).value = block_to_add.hash
 sheet.cell(row=m, column=6).value = time
 sheet.cell(row=m, column=7).value = tasks
 sheet.cell(row=m, column=8).value = kW

 sheet.cell(row=m, column=11).value = sum(conlist)
 sheet.cell(row=m, column=12).value = sum(prodlist)

 y +=1

workbook.save(filename=filename)

89

C.2. Simulation Code for Grid-Connected Operation – Model I

import hashlib as hasher
import datetime
import math
import random
import numpy as np
from openpyxl import load_workbook

--
DATA HANDLING

wb2 = load_workbook('NET LOAD.xlsx', data_only=True)

z=1

ws1 = wb2["Sheet2"]
ws2 = wb2["Sheet3"]
sheet = wb2.active
cell_range = ws1['A3':'I26']

#------
MG1

Load1 = []
for x in range(3,27):
 Load1.append((ws1.cell(row=x,column=2).value))
Load1 = list(np.around(np.array(Load1),4))

print("Load1: ")
print(*Load1)

Load2 = []
for x in range(3,27):
 Load2.append((ws1.cell(row=x,column=3).value))
Load2 = list(np.around(np.array(Load2),4))

print("\nLoad2: ")
print(*Load2)

Load3 = []
for x in range(3,27):
 Load3.append((ws1.cell(row=x,column=4).value))
Load3 = list(np.around(np.array(Load3),4))

print("\nLoad3: ")
print(*Load3)

Load4 = []
for x in range(3,27):
 Load4.append((ws1.cell(row=x,column=5).value))
Load4 = list(np.around(np.array(Load4),4))

print("\nLoad4: ")
print(*Load4)

90

Load5 = []
for x in range(3,27):
 Load5.append((ws1.cell(row=x,column=6).value))
Load5 = list(np.around(np.array(Load5),4))

print("\nLoad5: ")
print(*Load5)

Load6 = []
for x in range(3,27):
 Load6.append((ws1.cell(row=x,column=7).value))
Load6 = list(np.around(np.array(Load6),4))

print("\nLoad6: ")
print(*Load6)

Load7 = []
for x in range(3,27):
 Load7.append((ws1.cell(row=x,column=8).value))
Load7 = list(np.around(np.array(Load7),4))

print("\nLoad7: ")
print(*Load7)

Load8 = []
for x in range(3,27):
 Load8.append((ws1.cell(row=x,column=9).value))
Load8 = list(np.around(np.array(Load8),4))

print("\nLoad8: ")
print(*Load8)

GLOBAL CONSTANTS & COUNTERS

Cbat = 0.03
Csh = 0.8
Cres = 0.25
Ckw = 0.25
Cl = 0.08
Cpk = 0.5
line_limit = 1000
Ccurt = 1000
Cgrid = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62, 31.94,
37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09, 50.41,
47.77, 40.96, 36.71, 32.12]

t=1
r = 0
q=0
fp_buy = 5
fp_sell = 25
j=1

for x in range(len(Load1)):

91

 print("Hour # {}\n".format(x+1))
 traders = []
 prod = []
 cons = []
 traders.append(Load1[x])
 traders.append(Load2[x])
 traders.append(Load3[x])
 traders.append(Load4[x])
 traders.append(Load5[x])
 traders.append(Load6[x])
 traders.append(Load7[x])
 traders.append(Load8[x])

 for i in range(len(traders)):
 if(traders[i] < 0):
 prod.append(traders[i])
 elif(traders[i] > 0):
 cons.append(traders[i])
 print(prod)
 print(cons)
 alpha = 1
 price_buy = 8
 price_sell = 25
 r = 1
 q=1
 fixed_buylist=[]
 price_buylist=[]
 fixed_selllist=[]
 price_selllist=[]

 while(sum(prod) != 0 and sum(cons) != 0):
 r=1
 q=1
 trade = 0
 while(sum(prod) != 0 and sum(cons) !=0):
 for j in range(len(prod)):
 sale = False
 if(r <= 10):
 if(r==1):
 fixed_sell = (1 +
((abs(prod[j])**(1/2))/3))*Cgrid[x]
 fixed_selllist.append(fixed_sell)
 print("Fixed_seller price:
{}".format(round(fixed_sell, 4)))
 price_sell = fixed_sell - (((r-1)/(r +
math.factorial(r)))*price_sell)
 price_selllist.append(price_sell)
 print("Seller price: {}".format(round(price_sell,
4)))
 else:
 price_sell = price_selllist[j] - (((r-1)/(r +
math.factorial(r)))*price_selllist[j])
 price_selllist[j] = price_sell
 print("Seller price: {}".format(round(price_sell,
4)))
 for k in range(len(cons)):
 if(r <= 10):

92

 if(r==1):
 fixed_buy = (1 -
((abs(cons[k])**(1/2))/3))*Cgrid[x]
 fixed_buylist.append(fixed_buy)
 print("Fixed_buyer price:
{}".format(round(fixed_buylist[k],4)))
 price_buy = fixed_buylist[k] + (((r-1)/(r +
math.factorial(r)))*price_buy)
 price_buylist.append(price_buy)
 print("Buyer price:
{}".format(round(price_buylist[k], 4)))
 else:
 price_buy = price_buylist[k] + (((r-1)/(r +
math.factorial(r)))*price_buylist[k])
 price_buylist[k] = price_buy
 print("Buyer price:
{}".format(round(price_buylist[k], 4)))

 price_buylisttemp = price_buylist
 price_buylisttemp.sort()
 trade_price = min(price_selllist)
 for k in range(len(price_buylisttemp)):
 while(price_buylisttemp[k] > trade_price):
 trade_price = min(price_selllist)
 j = price_selllist.index(min(price_selllist))
 if(price_buylist[k] > trade_price and (prod[j] != 0
and cons[k] != 0)):
 print("\nPresale Prod: {}".format(prod[j]))
 print("Presale Cons: {}".format(cons[k]))
 if(prod[j] <= 0 and cons[k] >= 0):
 prod1 = prod[j]
 if(abs(prod[j]) < cons[k]):
 traded = prod[j]
 price = price_selllist[j]
 cons[k] = cons[k] + prod[j]
 prod[j] = 0
 price_selllist[j] = 1000
 print("Prod: {}".format(prod[j]))
 print("Cons: {}".format(cons[k]))
 print("kW Traded: {}".format(traded))
 print("Price of Trade: {}".format(price))
 print("\n")
 sheet.cell(row=z+1, column=13).value =
x+1
 sheet.cell(row=z+1, column=14).value =
prod[j]
 sheet.cell(row=z+1, column=15).value =
cons[k]
 sheet.cell(row=z+1, column=16).value =
traded
 sheet.cell(row=z+1, column=17).value =
price
 z = z+1
 else:
 traded = cons[k]*-1
 price = trade_price
 prod[j] = prod[j]+cons[k]

93

 cons[k] = 0
 price_buylist[k] = 1000
 price_buylisttemp[k] = 0
 print("Prod: {}".format(prod[j]))
 print("Cons: {}".format(cons[k]))
 print("kW Traded: {}".format(traded))
 print("Price of Trade: {}".format(price))
 print("\n")
 sheet.cell(row=z+1, column=13).value =
x+1
 sheet.cell(row=z+1, column=14).value =
prod[j]
 sheet.cell(row=z+1, column=15).value =
cons[k]
 sheet.cell(row=z+1, column=16).value =
traded
 sheet.cell(row=z+1, column=17).value =
price
 z = z+1
 else:
 trade = 0
 r+=1
 print("\n")
 print("Remaining Prod: {}".format(prod))
 print("Remaining Cons: {}".format(cons))
 print("Remaining NET: {}".format(sum(prod)+sum(cons)))
 sheet.cell(row=z+1, column=18).value = sum(prod)+sum(cons)

 sale = True

 print("\n")
wb2.save("NET LOAD.xlsx")

94

C.3. Simulation Code for Grid-Connected Operation – Model II

import hashlib as hasher
import datetime as date
import math
import random
import numpy as np
from openpyxl import load_workbook
from openpyxl import Workbook

t=1

--
DATA HANDLING

wb2 = load_workbook('NET LOAD.xlsx')

z=1

ws1 = wb2["Sheet2"]
ws2 = wb2["Sheet3"]
sheet = wb2.active
cell_range = ws1['A3':'I26']

#------
MG1

Load1 = []
for x in range(3,27):
 Load1.append((ws1.cell(row=x,column=2).value))
Load1 = list(np.around(np.array(Load1),4))

print("Load1: ")
print(*Load1)

Load2 = []
for x in range(3,27):
 Load2.append((ws1.cell(row=x,column=3).value))
Load2 = list(np.around(np.array(Load2),4))

print("\nLoad2: ")
print(*Load2)

Load3 = []
for x in range(3,27):
 Load3.append((ws1.cell(row=x,column=4).value))
Load3 = list(np.around(np.array(Load3),4))

print("\nLoad3: ")
print(*Load3)

Load4 = []
for x in range(3,27):
 Load4.append((ws1.cell(row=x,column=5).value))
Load4 = list(np.around(np.array(Load4),4))

95

print("\nLoad4: ")
print(*Load4)

Load5 = []
for x in range(3,27):
 Load5.append((ws1.cell(row=x,column=6).value))
Load5 = list(np.around(np.array(Load5),4))

print("\nLoad5: ")
print(*Load5)

Load6 = []
for x in range(3,27):
 Load6.append((ws1.cell(row=x,column=7).value))
Load6 = list(np.around(np.array(Load6),4))

print("\nLoad6: ")
print(*Load6)

Load7 = []
for x in range(3,27):
 Load7.append((ws1.cell(row=x,column=8).value))
Load7 = list(np.around(np.array(Load7),4))

print("\nLoad7: ")
print(*Load7)

Load8 = []
for x in range(3,27):
 Load8.append((ws1.cell(row=x,column=9).value))
Load8 = list(np.around(np.array(Load8),4))

print("\nLoad8: ")
print(*Load8)

GLOBAL CONSTANTS & COUNTERS

blockchain = [create_genesis_block()]
previous_block = blockchain[0]
Cbat = 30
Csh = 500
Cres = 63
Ckw = 25
Cl = 80
Cpk = 63
Ppk = 1
Pbat = 0.3
Pmaxline = 1
Ccurt = 800
Cgrid = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62, 31.94,
37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09, 50.41,
47.77, 40.96, 36.71, 32.12]

t=1
r = 0

96

q=0
fp_buy = 5
fp_sell = 25
m=1
n=1
num_of_blocks_to_add = 24

for x in range(len(Load1)):

 print("\nHour # {}\n".format(x+1))
 traders = []
 prod = []
 cons = []
 traders.append(Load1[x])
 traders.append(Load2[x])
 traders.append(Load3[x])
 traders.append(Load4[x])
 traders.append(Load5[x])
 traders.append(Load6[x])
 traders.append(Load7[x])
 traders.append(Load8[x])

 for i in range(len(traders)):
 if(traders[i] < 0):
 prod.append(traders[i])
 elif(traders[i] > 0):
 cons.append(traders[i])
 print(prod)
 print(cons)
 alpha = 0
 price_buy = 8
 price_sell = 25
 r = 1
 q=1
 fixed_buylist=[]
 price_buylist=[]
 fixed_selllist = []
 price_selllist = []

 while(sum(prod) != 0 and sum(cons) != 0):
 r=1
 q=1
 j=0
 k=0
 trade = 0
 while(sum(prod) != 0 and sum(cons) !=0):
 j=0
 for j in range(len(prod)):
 sale = False
 if(abs(prod[j])<sum(cons)):
 beta = 1
 else:
 beta = 0
 if(abs(prod[j])>sum(cons)):
 gamma = 1
 else:
 gamma = 0

97

 if(r <= 100):
 if(r==1):
 fixed_sell = (1 +
((abs(prod[j])**(1/2))/3))*Cgrid[x]
 fixed_selllist.append(fixed_sell)
 price_sell = fixed_sell
 print("Fixed_seller price:
{}".format(round(fixed_sell, 4)))
 price_selllist.append(price_sell)
 print("Seller price: {}".format(round(price_sell,
4)))
 else:
 price_sell = price_selllist[j] -
(price_selllist[j]*0.05*(abs(prod[j])) + Cbat*0.1*abs(prod[j]))
 price_selllist[j] = price_sell
 print("Seller price:
{}".format(round(price_selllist[j], 4)))

 for k in range(len(cons)):
 if(abs(sum(prod))<cons[k] or cons[k]>0.5):
 alpha = 1
 else:
 alpha = 0
 if(r <= 100):
 if(r==1):
 fixed_buy = (1 -
((abs(cons[k])**(1/2))/3))*Cgrid[x]
 fixed_buylist.append(fixed_buy)
 print("Fixed_buyer price:
{}".format(round(fixed_buylist[k],4)))
 price_buy = fixed_buylist[k] +
fixed_buy*(cons[k]*0.05)
 price_buylist.append(price_buy)
 print("Buyer price:
{}".format(round(price_buylist[k], 4)))
 else:
 price_buy = price_buylist[k] +
((Cpk*0.05*cons[k] + Csh*0.01*(cons[k]-0.05*cons[k])))
 price_buylist[k] = price_buy
 print("Buyer price:
{}".format(round(price_buylist[k], 4)))

 trade_price = min(price_selllist)
 count = 0
 #while(count <= 5):
 for k in range(len(price_buylist)):
 count += 1

 while(price_buylist[k] > trade_price):
 trade_price = min(price_selllist)
 j = price_selllist.index(min(price_selllist))
 if(price_buylist[k] > trade_price and (prod[j] <
0 and cons[k] > 0)):

 print("\nPresale Prod: {}".format(prod[j]))

98

 print("Presale Cons: {}".format(cons[k]))

 if(prod[j] < 0 and cons[k] > 0):

 if(abs(prod[j]) < cons[k]):
 traded = prod[j]
 price = price_selllist[j]
 cons[k] = cons[k] + prod[j]
 prod1 = prod[j]
 pricesell1 = price_selllist[j]
 prod[j] = 0
 price_selllist[j] = 1000
 print("Prod: {}".format(prod[j]))
 print("Cons: {}".format(cons[k]))
 print("kW Traded: {}".format(traded))
 print("Price of Trade:
{}".format(price))
 print("\n")
 sheet.cell(row=z+1, column=13).value
= x+1
 sheet.cell(row=z+1, column=14).value
= round(prod[j], 5)
 sheet.cell(row=z+1, column=15).value
= round(cons[k], 5)
 sheet.cell(row=z+1, column=16).value
= round(traded, 5)
 sheet.cell(row=z+1, column=17).value
= round(price, 5)
 z = z+1
 else:
 traded = cons[k]*-1
 price = trade_price
 prod[j] = prod[j]+cons[k]
 cons[k] = 0
 #price_buylist[k] = 1000
 price_buylist[k] = 0
 print("Prod: {}".format(prod[j]))
 print("Cons: {}".format(cons[k]))
 print("kW Traded: {}".format(traded))
 print("Price of Trade:
{}".format(price))
 print("\n")
 sheet.cell(row=z+1, column=13).value
= x+1
 sheet.cell(row=z+1, column=14).value
= round(prod[j], 5)
 sheet.cell(row=z+1, column=15).value
= round(cons[k], 5)
 sheet.cell(row=z+1, column=16).value
= round(traded, 5)
 sheet.cell(row=z+1, column=17).value
= round(price, 5)
 z = z+1

 elif(sum(prod) == 0 and cons[k] > 0):
 p = abs((abs(prod1)-cons[k])/prod1)
 p_res = p*abs(prod1)

99

 tempseller = Cres
 p_resalt = 0.2*prod1
 if((20*price_buylist[k])>tempseller):
 traded = min(p_res, p_resalt)
 traded = traded*-1
 price = tempseller
 cons[k] = cons[k] + traded
 prod1 = 0
 #price_selllist[j] = 1000
 print("Prod: {}".format(prod[j]))
 print("Cons: {}".format(cons[k]))
 print("kW Traded: {}".format(traded))
 print("Price of Trade: {}".format(price))
 print("Traded @ 2nd price")
 print("Z: {}".format(p))
 print("\n")
 sheet.cell(row=z+1, column=13).value =
x+1
 sheet.cell(row=z+1, column=14).value =
round(prod[j], 5)
 sheet.cell(row=z+1, column=15).value =
round(cons[k], 5)
 sheet.cell(row=z+1, column=16).value =
round(traded, 5)
 sheet.cell(row=z+1, column=17).value =
round(price, 5)
 sheet.cell(row=z+1, column=18).value = 1
 sheet.cell(row=z+1, column=20).value =
trade_price
 sheet.cell(row=z+1, column=21).value =
p_res
 z = z+1
 else:
 trade = 0
 trade_price = 1000

wb2.save("NET LOAD.xlsx")

100

C.4. Simulation Code for Blockchain Settlement Protocol

import hashlib as hasher
import datetime
import math
import random
import datetime as date
from openpyxl import Workbook
import time
import numpy as np

filename = "consensus_16.xlsx"
workbook = Workbook()
sheet = workbook.active

class Block:
 def __init__(self, index, timestamp, data, previous_hash):
 self.index = index
 self.timestamp = timestamp
 self.data = data
 self.previous_hash = previous_hash
 self.hash = self.hash_block()

 def hash_block(self):
 sha = hasher.sha256()
 sha.update((str(self.index) + str(self.timestamp) + str(self.data) +
str(self.previous_hash)).encode())
 return sha.hexdigest()

def create_genesis_block():
 # Manually construct a block with
 # index zero and arbitrary previous hash
 return Block(0, date.datetime.now(), "Genesis Block", "0")

def next_block(last_block):
 this_index = last_block.index + 1
 this_timestamp = date.datetime.now()
 this_data = "kW:" + str(pnet) + " Price:" + str(0) + " Time:" +nowtime
 this_hash = last_block.hash
 return Block(this_index, this_timestamp, this_data, this_hash)

class Prosumer():
 def __init__(self, index, pgen, pload, pnet, status):
 self.index = index
 self.pgen = pgen
 self.pload = pload
 self.pnet = pnet
 self.status = status

 def vote(self):
 return 1

 def value(self):
 val = random.uniform(0,10)
 return val

101

Create the blockchain and add the genesis block
blockchain = [create_genesis_block()]
previous_block = blockchain[0]
temp_buyer = []
temp_seller = []

j=0
k=0

How many blocks should we add to the chain
after the genesis block
num_of_blocks_to_add = 58
y=0
m=1
n=1
pgensum = 0
ploadsum = 0
while(y < num_of_blocks_to_add):
 prosumers = list()
 producers = list()
 consumers = list()
 for k in range(1, 8):
 pgen = round(random.uniform(5,15), 2)
 pload = round(random.uniform(5,15), 2)
 pnet = round(pload-pgen, 2)
 if(pgen > pload):
 status = 1
 else:
 status = 0
 prosumers.append(Prosumer(k, pgen, pload, pnet, status))

#Negotiate contract
 have_contract = 0
 f = 2
 prepare = 0
 commit = 0
 values = list()
 messages = 0
 nowtime = date.datetime.now().strftime('%S.%f')[:-2]
 sheet.cell(row=y+1, column=8).value = nowtime

 #pBFT
 while(prepare <= (2*f +1)):
 for i in range(0, len(prosumers)):
 prepare += prosumers[i].vote()
 time.sleep(random.uniform(0, 0.1))
 messages += 1

 while(commit <= (2*f +1)):
 for i in range(0, len(prosumers)):
 commit += prosumers[i].vote()
 time.sleep(random.uniform(0,0.1))
 messages += 1

 #Modified PoS
 for i in range(0, len(prosumers)):

102

 values.append(prosumers[i].value())
 validator = np.argmax(values)

 nowtime = date.datetime.now().strftime('%S.%f')[:-2]
 block_to_add = next_block(previous_block)
 blockchain.append(block_to_add)
 previous_block = block_to_add
 print("Block #{} has been added to the
blockchain!".format(block_to_add.index))
 print("Data: {}".format(block_to_add.data))
 print("Hash: {}\n".format(block_to_add.hash))
 sheet.cell(row=y+1, column=3).value = block_to_add.index
 sheet.cell(row=y+1, column=4).value = block_to_add.data
 sheet.cell(row=y+1, column=5).value = block_to_add.hash
 sheet.cell(row=y+1, column=6).value = nowtime
 sheet.cell(row=y+1, column=7).value = messages

 y +=1

workbook.save(filename=filename)

103

C.5. Optimal Scheduling Problem Code

{string}T=...; //time horizon
{string}G={"G1"}; //Thermal generating units
float L[T]=...; //net load data
float F[G]=[61.3]; //operational cost ($/MW)
float Pmin[G]=[0.01]; //minimum power generation
float Pmax[G]=[.5]; //max power generation
float SU[G]=[15]; //startup for each uniit
float SD[G]=[2]; //shutdown for each unit
float Eessmin= 2; //Minimum energy capacity (MWh)
float Eessmax= 10; //Maximum energy Capacity (MWh)
float Pdchmax=0.3; //max discharging power for the battery
float Pdchmin=0.01; //min discharging power for the battery
float Pchmin=0.01; //min charging power for the battery
float Pchmax=0.3; //max charging power for the battery
float CB=70;
float CC=1000;
float Cgrid[T] = [26.84, 24.63, 21.21, 20.32, 20.14, 21.10, 24.62, 29.62,
31.94, 37.54, 42.26, 48.08, 52.71, 59.98, 62.62, 62.99, 67.50, 64.72, 57.09,
50.41, 47.77, 40.96, 36.71, 32.12];

//float Cr=85;
//float SU[G]=[18,10,15];//startup for each uniit
//float SD[G]=[1.5, 1, 2];//shutdown for each unit

// DECISION variables
//dvar float Pgrid[T];
dvar float+ P[G][T]; //generation from microgrid
dvar float R[T]; // Spining Reserve
dvar float Bss[T]; // battery Power
dvar float C[T]; // Battery Energy
dvar float Pnet[T];
dvar boolean u[G][T];//commitment state of dispatchable units
dvar boolean y[G][T];// startup variable
dvar boolean z[G][T];//shut down variable
dvar boolean d1[T]; // DISCHARGING STATE VARIABLE
dvar boolean c1[T]; // CHARGING STATE VARIABLE

//objective function
dexpr float cost = sum(j in T)(sum (i in G) (F[i]*P[i][j]*u[i][j] +
y[i][j]*SU[i] + z[i][j]*SD[i]) + CB*Bss[j] + Cgrid[j]*R[j] +
CC*abs(Pnet[j]));

// model
minimize cost;

subject to {
// Power balance constraint
CT1: forall (i in G, j in T){
(sum(i in G)P[i][j]+Bss[j]+R[j]+Pnet[j]==L[j]);}

//generation limits
CT2:forall(i in G,j in T){
 Pmin[i]*u[i][j]<=P[i][j];}

104

CT3: forall (i in G, j in T){
 L[j]<=Pmax[i]=>Pmax[i]*u[i][j]>=P[i][j];
 L[j]>=Pmax[i]=>Pmax[i]*u[i][j]>=P[i][j];}

CT5:forall(i in G, j in T:j!=first(T)){
 y[i][j]-z[i][j]==u[i][j]-u[i][prev(T,j)];}

CT6:forall (i in G, j in T){
 y[i][j]+z[i][j]<=1;}

//Battery limits
//max discharge and min charge of MG1
CT7:forall (j in T){
 Bss[j]<=((Pdchmax*d1[j])-(Pchmin*c1[j]));}

//min discharge and max charge of MG1
CT8: forall (j in T){
 Bss[j]>=((Pdchmin*d1[j])-(Pchmax*c1[j]));}

//charging and discharging state of ESS for MG1
CT9: forall (j in T){
 d1[j]+c1[j]<=1;}

//ESS state of charge for MG1
CT10:forall (j in T:j!=first(T)){
 C[j]==C[prev(T, j)]-Bss[j];}

//ESS capacity constraints for MG1
CT11:forall(j in T){
 C[j]<=Eessmax;
 C[j]>=Eessmin;}

CT12: forall(j in T){
 abs(R[j]) <= 0.5;}
}

	Peer-to-Peer Energy Trading for Networked Microgrids
	committee signatures
	Thesis Manuscript 3-26

