2,331 research outputs found

    Graph attribution through sub-graphs

    Get PDF
    We offer an alternative to the standard formalisation of attributed graphs. We propose to represent an attributed graph as a graph with a marked sub-graph, in which the sub-graph represents the data domain, rather than as a tuple of graph and algebra. This is a general construction which can be shown to preserve adhesiveness of categories; it has the advantage of uniformity and gives more flexibility in defining data abstractions. We show equivalence of our formalisation with the standard one, under a suitable encoding of algebras as graphs

    Composition of M,N-adhesive Categories with Application to Attribution of Graphs

    Get PDF
    This paper continues the work on M,N-adhesive categories and shows some important composition properties for these categories. We present a new concept of attributed graphs and show that the corresponding category is M,N-adhesive. As a consequence, we inherit all nice properties for M,N-adhesive systems such as the Local Church-Rosser Theorem, the Parallelism Theorem, and the Concurrency Theorem for this type of attributed graphs

    Characterizing Van Kampen Squares via Descent Data

    Full text link
    Categories in which cocones satisfy certain exactness conditions w.r.t. pullbacks are subject to current research activities in theoretical computer science. Usually, exactness is expressed in terms of properties of the pullback functor associated with the cocone. Even in the case of non-exactness, researchers in model semantics and rewriting theory inquire an elementary characterization of the image of this functor. In this paper we will investigate this question in the special case where the cocone is a cospan, i.e. part of a Van Kampen square. The use of Descent Data as the dominant categorical tool yields two main results: A simple condition which characterizes the reachable part of the above mentioned functor in terms of liftings of involved equivalence relations and (as a consequence) a necessary and sufficient condition for a pushout to be a Van Kampen square formulated in a purely algebraic manner.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Graph Attribution Through Sub-Graphs

    Get PDF

    Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

    Get PDF
    We show how a coalgebraic approach leads to more natural representations of many kinds of graph structures that in the algebraic approach are frequently dealt with using ad-hoc constructions. For the case of symbolically attributed graphs, we demonstrate how using substituting coalgebra homomorphisms in double-pushout rewriting steps yields a powerful and easily understandable transformation mechanism

    Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

    Get PDF
    Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geĂ€ndert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung fĂŒr das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geĂ€ndert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte AnsĂ€tze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geĂ€ndert wurde, können wĂ€hrend eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurĂŒckfallen Konsistenz dadurch wiederherzustellen, dass sie das geĂ€nderte Modell (bzw. große Teile von ihm) neu ĂŒbersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstĂŒtzt (Attribute und negative Constraints), durchgĂ€ngig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen AnsĂ€tzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nĂ€mlich Korrektheit, VollstĂ€ndigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf NeuĂŒbersetzung zurĂŒckzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende BeitrĂ€ge zur Theorie der algebraischen Graphtransformation. ZunĂ€chst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln fĂŒhrt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher mĂŒssen wir sicherstellen, dass die fĂŒr Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gĂŒltig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhĂ€lt, die nötig sind, um die Theorie fĂŒr Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsĂ€tzlichen BeitrĂ€ge es uns, unsere Lösung fĂŒr das grundlegende Modellsynchronisationsproblem vollstĂ€ndig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models), one of which has been changed, is given and consistency shall be restored. Triple graph grammars (TGGs) are an established and suitable formalism to address this and related problems. Being based on the algebraic theory of graph transformation and (double-)pushout rewriting, they are especially suited to develop solutions whose properties can be formally proven. Despite being established, many TGG-based solutions do not satisfactorily deal with the problem of information loss. When one model is changed, in the process of restoring consistency such solutions may lose information that is only present in the second model because the synchronization process resorts to restoring consistency by re-translating (large parts of) the updated model. We introduce a TGG-based approach that supports advanced features of TGGs (attributes and negative constraints), is comprehensively formalized, implemented, and is incremental in the sense that it drastically reduces the amount of information loss compared to former approaches. Up to now, a TGG-based approach with these characteristics is not available. The central contribution of this thesis is to formally develop that approach and to prove its essential properties, namely correctness, completeness, and termination. The crucial new idea in our approach is the use of repair rules, which are special rules that allow one to directly propagate changes from one model to the other instead of resorting to re-translation. To be able to construct and apply these repair rules, we contribute more fundamentally to the theory of algebraic graph transformation. First, we develop a new kind of sequential rule composition. Whereas the conventional composition of rules leads to rules that delete and re-create elements, we can compute rules that preserve such elements instead. Furthermore, technically the setting in which the synchronization process we develop takes place is the category of partial triple graphs and not the one of ordinary triple graphs. Hence, we have to ensure that the elaborate theory of double-pushout rewriting still applies. Therefore, we develop a (category-theoretic) construction of new categories from given ones and show that (i) this construction preserves the axioms that are necessary to develop the theory of double-pushout rewriting and (ii) partial triple graphs can be constructed as such a category. Together, those two more fundamental contributions enable us to develop our solution to the basic model synchronization problem in a fully formal manner and to prove its central properties

    Process Denition of Adhesive HLR Systems (Long Version)

    Get PDF
    Process models of graph transformation systems are based on the concept of occurrence grammars, which are a generalization of Petri net processes given by occurrence nets. Recently, subobject transformation systems were proposed as an abstract framework for occurrence grammars in adhesive categories, but they are restricted to monomorphic matches for transformation steps. In this paper we review the construction of STSs as processes for plain graph grammars and present an extension to weak adhesive HLR categories with non-monomorphic matching, such that e.g. attributed graph grammars are included

    Tensors, !-graphs, and non-commutative quantum structures

    Full text link
    Categorical quantum mechanics (CQM) and the theory of quantum groups rely heavily on the use of structures that have both an algebraic and co-algebraic component, making them well-suited for manipulation using diagrammatic techniques. Diagrams allow us to easily form complex compositions of (co)algebraic structures, and prove their equality via graph rewriting. One of the biggest challenges in going beyond simple rewriting-based proofs is designing a graphical language that is expressive enough to prove interesting properties (e.g. normal form results) about not just single diagrams, but entire families of diagrams. One candidate is the language of !-graphs, which consist of graphs with certain subgraphs marked with boxes (called !-boxes) that can be repeated any number of times. New !-graph equations can then be proved using a powerful technique called !-box induction. However, previously this technique only applied to commutative (or cocommutative) algebraic structures, severely limiting its applications in some parts of CQM and (especially) quantum groups. In this paper, we fix this shortcoming by offering a new semantics for non-commutative !-graphs using an enriched version of Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810
    • 

    corecore