
Electronic Communications of the EASST
Volume 71 (2015)

Graph Computation Models
Selected Revised Papers from GCM 2014

Graph Transformation with Symbolic Attributes via Monadic Coalgebra
Homomorphisms

Wolfram Kahl

17 pages

Guest Editors: Rachid Echahed, Annegret Habel, Mohamed Mosbah
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Communications of the EASST (European Association of Software Science and...

https://core.ac.uk/display/236422893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.easst.org/eceasst/

ECEASST

Graph Transformation with Symbolic Attributes via Monadic
Coalgebra Homomorphisms

Wolfram Kahl∗

McMaster University, Hamilton, Ontario, Canada,

Abstract: We show how a coalgebraic approach leads to more natural represen-
tations of many kinds of graph structures that in the algebraic approach are fre-
quently dealt with using ad-hoc constructions. For the case of symbolically at-
tributed graphs, we demonstrate how using substituting coalgebra homomorphisms
in double-pushout rewriting steps yields a powerful and easily understandable trans-
formation mechanism.

Keywords: Transformation of symbolically attributed graphs, attributed graphs as
coalgebras, categoric approach to graph transformation

1 Introduction

An attributed graph is a graph where (some of) the items (nodes and edges) carry “attributes”,
which are taken from some attribute datatypes.

Formal treatments of datatypes [EM85, BKL+91, BM04] typically characterise datatypes as
algebras, or “sets with operations”; they are most frequently implemented as software libraries
where the sets are only abstract entities, the operations are executable code, and only the elements
of the sets are represented as static data.

Graphs, too, can be characterised as algebras, most prominently in the “algebraic approach
to graph transformation” [CMR+97, EHK+97, EEPT06]. However, the sets in question are the
sets of nodes and edges, and the “operations” are the incidence relations; the whole algebra,
understood as a graph, is typically represented as static data.

In attributed graphs, these two conflicting views of algebras come together, and formalisations
that consider an attributed graph as a single algebra that includes both graph item sorts and
attribute value sorts do not correspond to the way attributed graphs are understood in terms of
data organisation. For graph transformation, the theory of the algebraic approach also contributes
to the necessity of keeping the graph algebra separate from the attribute value algebra, since
pushouts of graph structures, customarily considered as unary algebras [Löw90, CMR+97], can
be calculated component-wise, while for typical attribute value algebras, this is not the case.
Indeed, most applications have no need to transform the attribute value algebras, since most
transformation concepts for attributed graphs expect the transformation results to be attributed
over the same attribute datatypes. An exception to this consideration are symbolic attributes,
which can easily be drawn from term algebras over different variable sets during different stages
of transformation.
∗ This research is supported by the National Science and Engineering Research Council of Canada, NSERC.

1 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

Unary algebras are in fact also co-unary coalgebras, and many kinds of graphs that do not fit
the mould of unary algebras can actually naturally be considered as more general coalgebras.
This argument was first made in [Kah14]; in the current paper we continue that development
and show how to use substituting coalgebra homomorphisms for DPO rewriting of symbolically
attributed graphs.

After discussing related work in the next section and providing necessary notation in Sect. 3,
we explain the basic technicalities for modelling graph structures using coalgebras in Sect. 4.
Using the example of edge-labelled and node-attributed graphs, we move to substituting coal-
gebra homomorphisms in Sect. 5. The resulting category is an instance of the monadic product
coalgebra categories introduced in [Kah14]; we summarise definition and basic results in Sect. 6.
The resulting pushouts are used in Sect. 7 to obtain direct derivations of attributed graphs. We
contrast our approach with the adhesive approach of [EEPT06] in more detail in Sect. 8. Since
the rules and direct derivations of Sect. 7 are not using monomorphisms where most of the cur-
rent DPO graph transformation literature, and in particular the adhesive approach, prescibe them,
we prove a characterisation of monomorphisms in categories of substitutions in Appendix A.

2 Related Work

Löwe et al. [LKW93] appear to have been the first to consider attributed graphs in the context
of the algebraic approach to graph transformation; they propose to extend the customary unary
graph structure signature with an arbitrary attribute signature, and a set of unary attribution oper-
ators connecting the two. These attribution operators typically may have as their source special
sorts of attribute carriers, which can be deleted and re-created for relabelling.

König and Kozioura [KK08] essentially follow the approach of [LKW93], but choose a rigid
organisation of unlabelled nodes, and labelled hyperedges with a single attribute the sort of which
is determined by the edge label. Homomorphisms include algebra homomorphisms. In a rule
(L,R,α,g), the two rule sides L and R are attributed graphs over the term algebra over a globally
fixed set of variables, with L attributed only with variables, and only variables occurring in L
may occur in R. The rule morphism is defined by an injective node mapping α; rule morphisms
are not defined for edges and attributes, and therefore are a special case of partial morphisms.
(The Boolean guard term g controls applicability of the rule.) Matches need to be injective on
edges; rewrite steps preserve the data algebra.

In the double-pushout approach, [HKT02, EPT04] use attribution edges connecting graph
items with attribute values, and are essentially predecessors of [EEPT06], the approach of which
is discussed in more detail in Sect. 8.

All the above consider arbitrary attribute algebras for the application graphs, with term alge-
bras a special case.

For the “symbolic graphs” of [Ore11, OL10b], the data algebra is not considered an explicit
part of the graph structure; instead, a “symbolic graph” is an E-graph over a sorted variable set
together with a set of formulae (most typically equations) that may refer to constants drawn from
the data algebra.

Since the conventional M-adhesive approach does not cover rule applications that change
attributes, [Gol12] presents a variant of adhesive categories that softens the adhesive restrictions

Selected Revised Papers from GCM 2014 2 / 17

ECEASST

to only affect the pushouts that are actually needed during transformation, avoiding spurious
non-unifiability problems for attributes. Similarly, Habel and Plump [HP12] restrict the class
of morphisms to be used in “vertical” roles in the rewriting steps, to be able to capture the
relabelling DPO graph transformations of [HP02, Plu09] which use partially labelled interface
graphs.

A different approach to relabelling is that of Rebout [RFS08], which combines de-facto-partial
attribution relations with a special mechanism for relabelling via “computations” in the left-hand
side of the rule.

Rutten’s overview article [Rut00] is useful for general theory of coalgebras. Related with
our current work is the part of the coalgebra literature that deals with combining algebras and
coalgebras; one approach considers separate algebraic and coalgebraic structures in the same car-
riers, for example Kurz and Hennicker’s “Institutions for Modular Coalgebraic Specifications”
[KH02]. A further generalisation are “dialgebras” [Hag87, PZ01], which have a single carrier X,
and operations fi ∶ Fi X→Gi X, where both Fi and Gi are polynomial functors.

3 Notation and Background: Categories and Monads

We assume familiarity with the basics of category theory; for notation, we write “f ∶ A→B” to
declare that morphism f goes from object A to object B, and use “.,” as the associative binary
forward composition operator that maps two morphisms f ∶ A→B and g ∶ B→C to (f ., g) ∶ A→C.
The identity morphism for object A is written IA. We assign “.,” higher priority than other binary
operators, and assign unary operators higher priority than all binary operators.

The category of sets and functions is denoted by Set.

A functor F from one category to another maps objects to objects and morphisms to mor-
phisms respecting the structure generated by →, I, and composition; we denote functor applica-
tion by juxtaposition both for objects, F A, and for morphisms, F f . Although we use forward
composition of morphisms, we use backward composition “○” for functors, with (G ○F) A =

G (F A).
A monad on a category C consists is a functor M ∶ C→C for which there are two natural

transformations (“polymorphic morphisms”) returnA ∶ A→M A and joinA ∶M (M A)→M A
satisfying returnM A

., joinA = I and M returnA
., joinA = I and M joinA

., joinA = join
M A

., joinA.
Important monads are the List monad, and the term monad TΣ for any (algebraic) signature Σ.
For the former, joinList,A ∶ List (List A)→List A is the function that flattens (or concatenates)
lists of lists. For the latter, TΣ V is the set of terms with elements of set V used as variables; the
function join

TΣ,V ∶ TΣ (TΣ V)→TΣ V maps nested terms (or terms using V-terms as variables) into
“flattened” V-terms. Each monadM on C induces the so-called Kleisli category KM that has the
same objects as C, but C-morphisms A→M B as morphisms from A to B. Kleisli-composition
of f ∶ A→M B with g ∶ B→M C will be written f #g; this is defined by f #g = f .,(M g) ., joinC.

In the term monad TΣ, Kleisli morphisms are substitutions σ ∶ V1→TΣ V2, and Kleisli compo-
sition is just composition of substitutions. Application of a substitution σ ∶ V1→TΣ V2 to a term
t ∶ TΣ V1 will be written σ ▹ t. (Appendix A contains a few more details about the term monad.)

3 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

The double-pushout (DPO) approach to high-level rewriting [CMR+97] uses transformation
rules that are spans L ϕL� G ϕR-R in an appropriate category between the left-hand side L,
gluing object G, and right-hand side R. A direct transformation step from object A to object B
via such a rule is given by a double pushout diagram, with host object H, where the morphism µ

is called the match.

L
ϕL� G

ϕR- R

µ

?

η

?

ν

?

A �
ψL

H -
ψR

B

4 The Coalgebra View of Graph Structures

In the context of the algebraic approach to graph transformation, graph structures have tradi-
tionally been presented as unary algebras [Löw90, CMR+97]. However, as such they are the
intersection between algebras and coalgebras, and in [Kah14], we showed how more general
coalgebras are useful in modelling graph features. Recall: Given a (unary) functor F,

• an F-algebra A = (CA, fA) is an object CA together with a morphism fA ∶ F CA→CA

• an F-coalgebra A = (CA, fA) is an object CA together with a morphism fA ∶CA→F CA.

Whereas non-unary algebras allow structured types for the arguments of their operations, non-
unary coalgebras allow structured types for their results. Also, while in practical algebras, the
shape of the arguments can typically be described by a polynomial functor, more general functors
are routinely considered for the shape of the results in coalgebras.

In the signatures for such coalgebras, we therefore allow additional syntax for such functors,
like List, with fixed interpretation, just like the product functor × that is used for the argument
shapes of non-unary algebras. In general, we assume a language of functor symbols (with arity),
and a signature introduces first, after “sorts:”, a list of sort symbols, and then, after “ops:”, a list
of function symbols (or operation symbols), and for each operation symbol, an argument type
expression and a result type expression (separated by “→”) each built from the functor symbols
and the sort symbols.

• An algebraic signature has only single sort symbols as result types.

• An coalgebraic signature has only single sort symbols as argument types.

For example, the following is a coalgebraic signature for directed hypergraphs where each hy-
peredge has a sequence of source nodes and a sequence of target nodes, and each node is labelled

Selected Revised Papers from GCM 2014 4 / 17

ECEASST

with an element of the constant set L:

sigDHG ∶= ⟨ sorts: N,E
ops: src ∶ E→ List N

trg ∶ E→ List N

nlab ∶N→ L ⟩

The coalgebra functor corresponding to sigDHG is a functor between product categories because
of the two sorts:

FsigDHG (N , E) = (L , ((List N)×(List N)))

Since in algebras, all operations must have a sort as result, modelling labelled graphs as al-
gebras always has to employ the trick of declaring the label sets as additional sorts, and then
consider the subcategory that has algebras with a fixed choice for these label sets, and mor-
phisms that map them only with the identity. Similarly, list-valued source and target functions
are frequently considered for algebraic graph transformation, but with ad-hoc definitions for mor-
phisms and custom proofs of their properties. In contrast, declaring these features via a coalgebra
signature such as sigDHG directly captures the mathematical intent.

5 Attributed Graphs as Coalgebras

The expressive power of coalgebraic signatures extends to attributed graphs without any effort.
For example, the following is a coalgebraic signature for edge-labelled (with label set L) and
node-attributed graphs, with symbolic attributes taken from the term algebra over some term
signature Σ and with variables from the variable carrier set for sort V:

sigSNAGΣ ∶= ⟨ sorts: N,E,V
ops: src ∶ E→N

trg ∶ E→N

lab ∶ E→L

attr ∶N→ TΣ V ⟩

The resulting homomorphism concept only allows renaming of variables:

Fact 5.1 A sigSNAGΣ-coalgebra homomorphism F ∶ G1 →G2 consists of three mappings FN ∶

N1→N2 and FE ∶ E1→ E2 and FV ∶V1→V2 satisfying the following conditions:

FE
., src2 = src1

., FN FE
., lab2 = lab1

FE
., trg2 = trg1

., FN FN
.,attr2 = attr1

.,TΣ FV

DPO rewriting in this category would have to rely on deletion and re-creation of attribute carrying
nodes to implement relabelling, similar to [LKW93, KK08]. In addition we also lack the ability
to instantiate rules via variable substitution as part of the morphism concept, and might therefore
be tempted to add such instantiation outside the DPO rewriting framework, as in [PS04].

5 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

The homomorphism concept for sigSNAGΣ-coalgebras can be “fixed” to allow substitution, by
also adapting the morphism conditions to take the substituted variables inside the image terms of
the attribution function into account:

Definition 5.2 We define the category SNAGΣ to have sigSNAGΣ-coalgebras as objects, and
a morphism F ∶ G1 → G2 consists of three mappings typed as shown to the left, satisfying the
conditions shown to the right:

FN ∶ N1→N2

FE ∶ E1→ E2

FV ∶ V1→ TΣ V2

FE
., src2 = src1

., FN FE
., lab2 = lab1

FE
., trg2 = trg1

., FN FN
.,attr2 = attr1 #FV

Note that FV is now a morphism in the Kleisli category of the term monad TΣ, and accordingly
the homomorphism condition for FV employs Kleisli composition #. It is not hard to verify that
this category is well-defined — the key to the proof is to recognise that the FV components are
substitutions and compose via Kleisli composition of the term monad.

6 Monadic Product Coalgebras

In [Kah14], we introduced the concept of “monadic product coalgebras” as abstract setting for
graph structures with substituting homomorphisms, which distinguishes “graph item sorts” from
“variable sorts” by setting the formalisation in the product category C1×C2, assuming:

• two categories C1 and C2,

• a monadM on C2,

• a functor F from C1×C2 to C1.

In terms of coalgebraic signatures, this implements the restriction that sorts mentioned as monad
arguments do not occur as source sorts of operators, and that the monad must not depend on
sorts that do occur as source sorts of operators. This restriction is satisfied by all simple kinds
of symbolically attributed graphs where the monad is typically a term monad, is applied only to
sets of free variables, and these variables do not otherwise participate in the graph structure.

Definition 6.1 ([Kah14]) AnM-F-product-coalgebra A is a triple (A1,A2,opA) consisting of

• an object A1 of C1, and

• an object A2 of C2, and

• a morphism opA ∶ A1→F (A1,M A2)

AM-F-product-coalgebra homomorphism f from (A1,A2,opA) to (B1,B2,opB) is a pair (f1, f2)
consisting of a C1-morphism f1 from A1 to B1 and a morphism f2 from A2 to B2 in the Kleisli
category ofM such that

f1 .,opB = opA
.,F (f1,M f2 ., join) .

Morphism composition is composition of the corresponding product category.

Selected Revised Papers from GCM 2014 6 / 17

ECEASST

This morphism composition is well-defined, and induces a category. If we let M0 be the
product monad of the identity monad on C1 andM, then we see thatM-F-product-coalgebra
homomorphism are in fact morphisms of the Kleisli category KM0 , and also use its composition.
If we further define F0 as endofunctor on C1 ×C2 by F0(X1,X2) = (F(X1,X2),1l), then anM-
F-product-coalgebra is indeed a (F0 ○M0)-coalgebra. (This factorisation is further explored in
[Kah14], and is too general for pushout creation).

Example 6.2 The category SNAGΣ of Def. 5.2 is equivalent to the category of TΣ-FsigSNAG-
product-coalgebras, where C1 = Set×Set for nodes and edges, C2 = Set for variables (or terms),
and

FsigSNAG ((N,E),T) = (T,(N ×N ×L)) .

The four constituents of the result type of FsigSNAG correspond to the four operators attr, src,
trg, and lab of sigSNAG, with attr being the first constituent, since it is the only operator starting
from sort N, while the remaining three all start from sort E.

SinceM0 is a product monad, pushouts in KM0 are calculated component-wise, that is, they
consist of a pushout in C1 and a pushout in the Kleisli category ofM, and we have:

Theorem 6.3 ([Kah14]) The forgetful functor from the category ofM-F-product-coalgebra
homomorphisms to the Kleisli category ofM0 creates pushouts.

More explicitly, if a span B f� A g-C ofM-F-product-coalgebra homomorphisms is given,
and also a cospan (B1,B2)

h- (D1,D2)
k� (C1,C2) in KM0 that is a pushout for the Kleisli

morphisms underlying F and G, then (D1,D2) can be extended to a M-F-product-coalgebra
D= (D1,D2,opD) such that B h-D k� C is a pushout for B f� A g-C in theM-F-product-
coalgebra category.

Together with the equivalence of categories of Example 6.2, pushouts for node-attributed
graphs essentially reduce to unification for their variable components (due to the fact that Set
as underlying category has pushouts):

Corollary 6.4 A span B F� A G-C in the category SNAGΣ of node-attributed graphs (as
sigSNAGΣ structures) has a pushout if FV and GV, as substitutions, have a pushout.

7 DPO Transformation with Substituting Homomorphisms

Most DPO approaches to attributed graph transformation insist that the “data algebra” supplying
the attribute values remains unchanged by transformation. In contrast, our approach has the data
algebra generated by a monad from selected carrier sets — most typically, the data algebra is the
term algebra of the variable carrier set. And since variables are just elements of one of the carrier
sets, adding and deleting variables is as easy as adding and deleting nodes and edges.

For the sake of readability, we limit the discussion in this section to the symbolically attributed
graphs of Sect. 5, but it obviously applies to arbitraryM-F-product-coalgebra categories.

7 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

For rewriting of symbolically attributed graphs, we organise the variable set VG of the gluing
graph as a coproduct VG = TG+RG of

• the set TG of transfer variables, and

• the set RG of replacement variables.

We demand that

• the graph parts (node and edge components) of the rule morphisms are injective,

• the rule morphisms map transfer variables injectively to variables,

• all replacement variables occur in attributes of gluing graph items.

A (rule) morphism satisfying these conditions is called rigid.
For human-oriented presentation, and for simplifying the technical arguments below, the

transfer-variable parts of the rule morphisms, namely ϕL,T ∶ TG → TΣ VL and ϕR,T ∶ TG → TΣ VR,
will be subset inclusions, with TG = VL∩VR. In the following example drawings, we explicitly
list the variable set for each graph, and the variable component (substitution) for each homomor-
phism.

F G

x

y

y + d

x− d

r1

r2

x 7→ x
y 7→ y
r1 7→ x
r2 7→ y

x 7→ x
y 7→ y
r1 7→ y + d
r2 7→ x− d

{x, y, r1, r2}{x, y} {x, y, d}

ϕL ϕR
L G R

In the rule drawn above, the transfer variables are x, and y, and the replacement variables are
r1 and r2; the latter are mapped to different terms on the two rule sides, thus implementing “re-
attribution”. Furthermore, variable d is “added by the RHS”; if the host graph H had already
contained a variable d, then the d of the RHS would have been mapped to some fresh variable in
the result graph B.

Note that ϕL is not a monomorphism in the category SNAGΣ of Def. 5.2: Consider a graph Z
with empty node and edge sets and with variable set {z}, and homomorphisms

• λ1 ∶ Z→G with λ1,V(z) = x and

• λ2 ∶ Z→G with λ2,V(z) = r1,

then λ1 #ϕL = λ2 #ϕL, but λ1 ≠ λ2. (The homomorphism ϕR “accidentally” happens to be a
monomorphism, but it would not be one if, e.g., “x− d ” had been replaced with “x− 1”. See
Appendix A for more information about monomorphisms in categories of substitutions.)

Selected Revised Papers from GCM 2014 8 / 17

ECEASST

Although the replacement variables in the example above correspond to undefined labelling
in, e.g., [HP12], this is not their only possible use; replacement variables can also occur deeper
in the term structure of graph item attributes. This could be used for example to emulate multiple
attributes via record-valued single attributes, and then replacing selected attributes could employ
gluing nodes with attributes like “pair(x,r1)” or even “⟨a1↦ x,a2↦ r1,a3↦ 3 ⋅ r2⟩”.

Existence of a pushout complement in the category SNAGΣ requires, besides the conventional
gluing condition for the graph part, the following additional clause for the attribution part:

Definition 7.1 (Variable gluing condition) Each deleted variable (i.e., each variable in VL−VG)
is mapped by the matching µ to a variable in A that does not occur in attributes outside the image
of the deleted part of L (which is the “dangling” aspect), and also does not occur in the result of
µV for any other variable (which is the “identification” aspect).

Since variable deletion is probably a relatively rarely-useful operation, we show an example
redex and DPO transformation step not involving variable deletion on the left-hand side, and
therefore trivially satisfying the variable gluing condition (we do not indicate the obvious node
and edge mappings for the application span A� H -B):

x 7→ a+ b
y 7→ 2 · b

F

a+ b

2 · b
{a, b, c}

A

F

a · c

x 7→ a+ b
y 7→ 2 · b
r1 7→ r1
r2 7→ r2

r1

r2

{a, b, c, r1, r2}

F

a · c

x 7→ a+ b
y 7→ 2 · b
d 7→ d

G

2 · b+ d

a+ b− d

{a, b, c, d}

B

F

a · c

H

x 7→ x
y 7→ y
r1 7→ y + d
r2 7→ x− d

ϕR

a 7→ a
b 7→ b
c 7→ c
r1 7→ 2 · b+ d
r2 7→ a+ b− d

x 7→ x
y 7→ y
r1 7→ x
r2 7→ y

ϕL

a 7→ a
b 7→ b
c 7→ c
r1 7→ a+ b
r2 7→ 2 · b

r1

r2

{x, y, r1, r2}

G

G

y + d

x− d

{x, y, d}

R

µ η ν

F

x

y

{x, y}

L

ψL ψR

Recall that µV is a function of type VL→ TΣ VA, that is, a substitution that maps variables from
VL to terms over VA. We will apply it to terms t ∶ TΣ VL using the notation µV ▹ t introduced in
Sect. 3.

The pushout complement, consisting of the host graph H and the morphisms η and ψL, is

9 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

obtained via the following steps:

• The graph part (nodes and edges) is constructed as the pushout complement of the graph
part of G ϕL-L µ-A.

• We then calculate a least unifier γ ∶ RG → TΣ RG that simultaneously unifies (without in-
stantiating any variables of A) all pairs

(µV ▹(attrG(n1)), µV ▹(attrG(n2)))

for different preimages n1 ≠ n2 ∈NG of nodes identified by µ , that is, with µN(ϕL,N(n1)) =

µN(ϕL,N(n2)). Such a least unifier exists since the matching µ proves unifiability.

• The variable set VH is the disjoint union of the preserved variables of A, that is, VP ∶= VA−

µV(VL−VG), with the replacement variables of RG that occur in the range of γ . (Variables
that have been unified away must be removed.)

• For the attribution function, we then define (note that γ and µV replace disjoint sets of
variables):

attrH(n) = {
γ (µV ▹(attrG(m))) if n = ηN(m) with m ∈NG

attrA(ψL,N(n)) if ψL,N(n) ∉ µN(NL)

• The substitution ηV is the identity on replacement variables, and coincides with µV on
transfer variables.

• The substitution ψL,V is the identity on preserved variables, and coincides with ϕL,V #µV

on replacement variables.

Commutativity ηV #ψL,V = ϕL,V #µV is then trivial; the attribute preservation properties

ηN
.,attrH = attrG #ηV

and
ψL,N

.,attrA = attrH #ψL,V

are trivial when γ is trivial (that is, when µN does not identify any nodes), and in general require
careful analysis for the different variable sets.

The variable gluing condition (Def. 7.1) is essential to show the universality property of the
cospan L µ-A ψL� H; altogether we obtain:

Theorem 7.2 (Existence and uniqueness of the pushout-complement) For G ϕL-L µ-A in
the category SNAG, if ϕL is a rigid morphism, then a pushout complement G η-H ψL-A exists
iff the extended gluing condition is satisfied. If a pushout complement exists, it is unique up to
isomorphism.

Selected Revised Papers from GCM 2014 10 / 17

ECEASST

Since the category SNAG does not have all pushouts, the right-hand side of a rule might
contribute additional application conditions. Now we define a SNAG-transformation rule to be
a span L ϕL� G ϕR-R of rigid SNAG-homomorphisms. With that restriction, it is easy to see
that right-hand side pushouts always exist at least if the matching µ does not identify any nodes.
In the case of node identification via µ , the extended gluing condition is only sufficient for
construction and well-definedness of the pushout complement; for the construction of the result
graph, the following additional condition is necessary:

Definition 7.3 (Attribute identification condition) There is a unifier δ ∶ VR→ TΣ VR that simul-
taneously unifies all pairs

(µV ▹(attrR(ϕR,N(n1))), µV ▹(attrR(ϕR,N(n2))))

for different preimages n1 ≠ n2 ∈ NG of nodes identified by µ , that is, with µN(ϕL,N(n1)) =

µN(ϕL,N(n2)).

Theorem 7.4 (Existence of direct derivation) For A µ� L ϕL� G ϕR-R in the category SNAG,
if ϕL and ϕR are rigid morphisms and the attribute identification condition is satisfied in addition
to the gluing condition for G ϕL-L µ-A, then the usual double-pushout diagram for a direct
derivation from A via the rule L ϕL� G ϕR-R and the matching µ can be constructed.

8 Comparison with Attributed Graph Transformation in the Adhe-
sive Approach

In the adhesive HLR approach to attributed graph transformation, presented in detail in [EEPT06,
Chapters 8–12], each attributed graph contains its own Σ-algebra for attribute values. Attributes
are associated with graph items (nodes or edges) through special “attribute edges” that have a
graph item as source and an attribute value as target. This has the advantage that the source of
a matching needs to have only those attributes defined that are relevant for the matching, but
also has the disadvantage that “attribute names” require separate mechanisms for distinguishing
attributes belonging to different names (achieved via “typing”, i.e., move to a slice category,
in [EEPT06, Def. 8.7]), for enforcing existence (achieved via “constraints” in [EEPT06, Sec-
tion 12.1]), and for enforcing uniqueness (apparently requiring tuning a global parameter of the
“constraint” mechanism, see [EEPT06, Example 12.2]).

For the implementation AGG, [EEPT06, p. 308] mentions that “AGG allows neither graphs
which are only partially attributed, nor several values for one type. This restriction is natural,
[...]. In the theory, this restriction can be expressed by adding [...] constraints [...]”.

We agree that “this restriction is natural”, and we consider coalgebras a far more natural way
to incorporate this restriction into the theory of attributed graphs: Any number of attribution
operators can be added to a coalgebraic signature, each of these is then necessarily interpreted
(implemented) as a (conceptually separate) total function in all coalgebras for that signature.

The typed attributed graph transformation rules of [EEPT06, Chapter 9] are restricted to a
“term algebra with variables” for attributes, and the choice of class M implies that all three
graphs of a rule L� G -R share the same term algebra. Therefore, “[the] definition of the

11 / 17 Volume 71 (2015)

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

match [L → A] already requires an assignment for all variables” [EEPT06, p. 183], including
those that one might otherwise consider as “introduced in the RHS”.

The fact that all horizontal morphisms are restricted to isomorphisms on the value algebra
implies that that algebra cannot be modified by transformations. In particular, if the application
graph contains a term algebra, it is not possible to add or delete variables.

9 Conclusion and Outlook

The theory of coalgebras, where operations map carrier set elements to arbitrary types con-
structed via functors from all carrier sets, provides inherent flexibility for modelling of graph
structures that is sorely missing from the theory of unary algebras traditionally employed for
this purpose in the “algebraic” approach to graph transformation. In particular, coalgebras can
model attributed graph structures effortlessly. In contrast, the non-unary value algebras needed
for practical applications of attribution form an alien element in the traditional unary algebras
modelling graph structures, and therefore require complex auxiliary constructions to properly
capture even the simple fact that attribution is a total function from (e.g.) nodes to attribute
values, as explained in the previous section.

While the traditional approach handles substitution (typically as a special case of evaluation)
via algebra homomorphisms, we use the approach of [Kah14] to handle substitution via Kleisli
composition, by factoring the coalgebra functor over an appropriate monad.

In the current paper, we restricted our attention to the term monad, and therefore only consid-
ered symbolic attribution with terms in more detail; due to the fact that the set of variables is one
of the carrier sets of our coalgebras, adding and deleting variables via DPO transformations is
essentially as easy as adding and deleting nodes or edges. Because of this possibility of adding
variables via transformation steps, we obtain a symbolic rewriting system that is closer in spirit
to that of [OL10a] than to the point of view of [EEPT06], where additional variables in the RHS
need to be instantiated as part of the rule application (and indeed already as part of the matching,
for technical reasons).

Even though the Kleisli category of the term monad does not have all pushouts (since not
all terms are unifiable), we still managed to obtain a rule concept with an application condition
that is an only slightly strengthened gluing condition, and that guarantees that a DPO rewriting
step can be constructed. Interestingly, the rule sides, although injective on their graph parts,
are not monomorphisms in our coalgebra category, so none of the current M-adhesive, W-
adhesive [Gol12], or M,N -adhesive [HP12] approaches is directly applicable. The general
approach of e.g., [Gol12], should however still be applicable to DPO rewriting in categories
of monadic product coalgebras — the concrete instance of aW-adhesive category of attributed
graphs presented in [Gol12] (implicitly) uses, for enabling attribute change, a partiality monad,
which, like the term monad, is a “guarded monad” [GLD05]; we conjecture that guarded monads
might be used to unify the two approaches.

For future work, we therefore hope to identify an appropriate variant of the adhesive HLR ap-
proaches that does not require monomorphisms for the rule sides, and still supports typical HLR
results. The fully abstract generalisation of the results of Sect. 7 to arbitrary M-F-product-

Selected Revised Papers from GCM 2014 12 / 17

ECEASST

coalgebra categories will then require monads with membership [FHM93] for the gluing condi-
tion.

Besides the DPO-based HLR approaches, we also plan to investigate applying to monadic
product coalgebras for example also the sesqui-pushout (SqPO) approach of [CHHK06], which
is aplied to attributed graph transformation in [DEPR14]. While the approach of Sect. 7 can
only delete variables that are matched to variables, sesqui-pushout rewriting should give us more
flexibility there. It may even be advantageous to explore applying the fibred apprach to rewrit-
ing [Kah97], as this provies a principled approach to distinguish the different ways substitution
and/or partiality are employed in the horizontal versus the vertical arrows of “double-square
rewriting”.

We also plan to investigate moving from term algebras to more general algebras as target types
for attributions.

Bibliography

[BKL+91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, D. Sanella (eds.). Algebraic
System Specification and Devalopment — A Survey and Annotated Bibliography.
LNCS 501. Springer, 1991.

[BM97] R. S. Bird, O. de Moor. Algebra of Programming. International Series in Computer
Science 100. Prentice Hall, 1997.

[BM04] M. Bidoit, P. D. Mosses. CASL User Manual. LNCS (IFIP Series) 2900. Springer,
2004. With chapters by T. Mossakowski, D. Sannella, and A. Tarlecki.
http://link.springer.de/link/service/series/0558/tocs/t2900.htm

[CEKR02] A. Corradini, H. Ehrig, H. Kreowski, G. Rozenberg (eds.). Proc. First International
Conference on Graph Transformation, ICGT 2002. LNCS 2505. 2002.
doi:10.1007/3-540-45832-8

[CHHK06] A. Corradini, T. Heindel, F. Hermann, B. Knig. Sesqui-Pushout Rewriting. In Cor-
radini et al. (eds.), Graph Transformations. LNCS 4178, pp. 30–45. Springer Berlin
Heidelberg, 2006.
doi:10.1007/11841883 4
http://dx.doi.org/10.1007/11841883 4

[CMR+97] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe. Algebraic
Approaches to Graph Transformation, Part I: Basic Concepts and Double Pushout
Approach. Chapter 3, pp. 163–245 in [Roz97].

[DEPR14] D. Duval, R. Echahed, F. Prost, L. Ribeiro. Transformation of Attributed Structures
with Cloning. In Gnesi and Rensink (eds.), Fundamental Approaches to Software
Engineering. LNCS 8411, pp. 310–324. Springer Berlin Heidelberg, 2014.
doi:10.1007/978-3-642-54804-8 22

13 / 17 Volume 71 (2015)

http://link.springer.de/link/service/series/0558/tocs/t2900.htm
http://dx.doi.org/10.1007/3-540-45832-8
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/978-3-642-54804-8_22

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

[EEKR12] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Proc. Sixth International
Conference on Graph Transformation, ICGT 2012. LNCS 7562. Springer, 2012.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[EHK+97] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, A. Corradini. Al-
gebraic Approaches to Graph Transformation, Part II: Single Pushout Approach and
Comparison with Double Pushout Approach. Chapter 4, pp. 247–312 in [Roz97].

[EM85] H. Ehrig, B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial
Semantics. Springer, 1985.

[EPT04] H. Ehrig, U. Prange, G. Taentzer. Fundamental Theory for Typed Attributed Graph
Transformation. Pp. 161–177 in [PBE04].
doi:10.1007/b100934

[FHM93] P. Freyd, P. Hoogendijk, O. de Moor. Membership of Datatypes. Dec. 1993. Unpub-
lished manuscript, see also [BM97, Sect. 6.5].

[GLD05] N. Ghani, C. Lüth, F. De Marchi. Monads of Coalgebras: Rational Terms and Term
Graphs. Mathematical Structures in Computer Science 15:433–451, 2005.
doi:10.1017/S0960129505004743

[Gol12] U. Golas. A General Attribution Concept for Models inM-Adhesive Transforma-
tion Systems. Pp. 187–202 in [EEKR12].
doi:10.1007/978-3-642-33654-6 13

[Hag87] T. Hagino. A Categorical Programming Language. PhD thesis, Edinburgh Univer-
sity, 1987.

[HKT02] R. Heckel, J. M. Küster, G. Taentzer. Confluence of Typed Attributed Graph Trans-
formation Systems. Pp. 161–176 in [CEKR02].
doi:10.1007/3-540-45832-8 14

[HP02] A. Habel, D. Plump. Relabelling in Graph Transformation. Pp. 135–147 in
[CEKR02].
doi:10.1007/3-540-45832-8 12

[HP12] A. Habel, D. Plump. M,N -Adhesive Transformation Systems. Pp. 218–233 in
[EEKR12].
doi:10.1007/978-3-642-33654-6 15

[Kah97] W. Kahl. A Fibred Approach to Rewriting — How the Duality between Adding and
Deleting Cooperates with the Difference between Matching and Rewriting. Techni-
cal report 9702, Fakultät für Informatik, Universität der Bundeswehr München, May
1997. http://www.cas.mcmaster.ca/∼kahl/Publications/TR/Kahl-1997b.html.
http://www.cas.mcmaster.ca/∼kahl/Publications/TR/Kahl-1997b.html

Selected Revised Papers from GCM 2014 14 / 17

http://dx.doi.org/10.1007/b100934
http://dx.doi.org/10.1017/S0960129505004743
http://dx.doi.org/10.1007/978-3-642-33654-6_13
http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1007/3-540-45832-8_12
http://dx.doi.org/10.1007/978-3-642-33654-6_15
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Kahl-1997b.html
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Kahl-1997b.html

ECEASST

[Kah14] W. Kahl. Categories of Coalgebras with Monadic Homomorphisms. In Bonsangue
(ed.), Coalgebraic Methods in Computer Science, CMCS 2014. LNCS 8446,
pp. 151–167. Springer, 2014. Agda theories available via http://RelMiCS.McMaster.
ca/RATH-Agda/.
doi:10.1007/978-3-662-44124-4 9

[KH02] A. Kurz, R. Hennicker. On Institutions for Modular Coalgebraic Specifications. The-
oretical Computer Science 280(1–2):69–103, 2002.
doi:10.1016/S0304-3975(01)00021-4

[KK08] B. König, V. Kozioura. Towards the Verification of Attributed Graph Transformation
Systems. In Ehrig et al. (eds.), 4th Intl. Conf. on Graph Transformations, ICGT 2008.
LNCS 5214, pp. 305–320. 2008.
doi:10.1007/978-3-540-87405-8 21

[LKW93] M. Löwe, M. Korff, A. Wagner. An Algebraic Framework for the Transformation
of Attributed Graphs. In Sleep et al. (eds.), Term Graph Rewriting: Theory and
Practice. Pp. 185–199. Wiley, 1993.

[Löw90] M. Löwe. Algebraic Approach to Graph Transformation Based on Single Pushout
Derivations. Technical report 90/05, TU Berlin, 1990.

[OL10a] F. Orejas, L. Lambers. Delaying Constraint Solving in Symbolic Graph Transforma-
tion. In Ehrig et al. (eds.), Fifth Intl. Conf. on Graph Transformation, ICGT 2010.
LNCS 6372, pp. 43–58. Sept. 2010.
doi:10.1007/978-3-642-15928-2 4

[OL10b] F. Orejas, L. Lambers. Symbolic Attributed Graphs for Attributed Graph Transfor-
mation. ECEASST 30(Graph and Model Transformation 2010):2.1–2.25, 2010.

[Ore11] F. Orejas. Symbolic Graphs for Attributed Graph Constraints. J. Symbolic Comput.
46(3):294–315, Mar. 2011.
doi:10.1016/j.jsc.2010.09.009

[PBE04] F. Parisi-Presicce, P. Bottoni, G. Engels (eds.). Proc. Second International Confer-
ence on Graph Transformation, ICGT 2004. LNCS 3256. 2004.
doi:10.1007/b100934

[Plu09] D. Plump. The Graph Programming Language GP. In Algebraic Informatics, CAI
2009. LNCS 5725, pp. 99–122. 2009.
doi:0.1007/978-3-642-03564-7 6

[PS04] D. Plump, S. Steinert. Towards Graph Programs for Graph Algorithms. Pp. 128–143
in [PBE04].
doi:10.1007/978-3-540-30203-2 11

[PZ01] E. Poll, J. Zwanenburg. From Algebras and Coalgebras to Dialgebras. ENTCS
44(1):289–307, 2001.
doi:10.1016/S1571-0661(04)80915-0

15 / 17 Volume 71 (2015)

http://RelMiCS.McMaster.ca/RATH-Agda/
http://RelMiCS.McMaster.ca/RATH-Agda/
http://dx.doi.org/10.1007/978-3-662-44124-4_9
http://dx.doi.org/10.1016/S0304-3975(01)00021-4
http://dx.doi.org/10.1007/978-3-540-87405-8_21
http://dx.doi.org/10.1007/978-3-642-15928-2_4
http://dx.doi.org/10.1016/j.jsc.2010.09.009
http://dx.doi.org/10.1007/b100934
http://dx.doi.org/0.1007/978-3-642-03564-7_6
http://dx.doi.org/10.1007/978-3-540-30203-2_11
http://dx.doi.org/10.1016/S1571-0661(04)80915-0

Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

[RFS08] M. Rebout, L. Féraud, S. Soloviev. A Unified Categorical Approach for Attributed
Graph Rewriting. In Hirsch et al. (eds.), Computer Science — Theory and Applica-
tions, CSR 2008. LNCS 5010, pp. 398–409. Springer, 2008.
doi:10.1007/978-3-540-79709-8 39

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 1: Foundations. World Scientific, Singapore, 1997.

[Rut00] J. J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science
249(1):3–80, 2000.
doi:10.1016/S0304-3975(00)00056-6

A Monomorphisms in Substitution Categories

Let TΣ denote the term functor for signature Σ, that is, TΣ X is the set of Σ-terms with elements
of set X as variables. Let FV(t) denote the set of (free) variables occurring in term t.
TΣ is an endofunctor on the category Set, and naturally extends to a monad (see Sect. 3), the

term monad. Its “join” natural transformation, join
TΣ

, produces for each set A (of variables) the
function join

TΣ,A ∶ TΣ (TΣ A)→ TΣ A which “flattens” nested terms over variables in A (that is,
terms over TΣ A as their set of variables).

Substitutions, that is, functions X → TΣ Y , are morphisms in the Kleisli category of the term
monad TΣ, and therefore compose via Kleisli composition, which is defined for arbitrary substi-
tutions F ∶ X→ TΣ Y and G ∶ Y → TΣ Z as follows:

F # G = F .,TΣ G ., join
TΣ,Z

Conventionally, this would be described via “application” of substitutions to terms — since we
write F▹ t for the application of substitution F ∶ X→ TΣ Y to term t ∶ TΣ X, the composition F # G
can defined by

(F # G)(v) = F▹(G(v)) , for all v ∶ X.

When starting from the monadic setting, application of substitutions can be defined as follows:

F▹ t = ((TΣ F) ., joinY)(t)

Monomorphisms

In any monad, if the “return” natural transformation produces monomorphisms (which it does
for TΣ), then monomorphisms in the Kleisli category of this monad are also monomorphisms in
the underlying category. Monomorphisms F of the underlying category that are preserved by
the monad functor give rise to monomorphisms F ., return in the Kleisli category.

The term functor preserves all monomorphisms: An injective variable mapping F ∶ V1→ V2
gives rise to an injective term mapping TΣ F ∶ TΣ V1→ TΣ V2 that only renames variables. The
resulting substitution F ., return ∶ V1→ TΣ V2 is an injective variable renaming, which is therefore
a mono in the category of substitutions, too — this also can easily be seen directly.

The category of substitutions has pushouts along such variable renamings; these pushouts
implement name-clash-avoiding extension of the domain of substitutions.

Selected Revised Papers from GCM 2014 16 / 17

http://dx.doi.org/10.1007/978-3-540-79709-8_39
http://dx.doi.org/10.1016/S0304-3975(00)00056-6

ECEASST

For σ , being a monomorphism in the category of substitutions exactly means that substitution
application of σ does not unify any two different terms. That is, σ is a monomorphism in the
category of substitutions iff for any two terms t1 and t2 we have

σ ▹ t1 = σ ▹ t2 implies t1 = t2 .

From this, it is easy to see that monomorphisms in the category of substitutions cannot map any
variables to ground terms.

However, this condition is not easy to check directly.
Fortunately a much simpler condition is (necessary and) sufficient: We can show that monomor-

phisms in the Kleisli category of the term monad are those substitutions that do not identify
variables with different terms:

Theorem A.1 A substitution σ ∶V1→ TΣ V2 is a monomorphism in the category of substitutions
iff for every variable v ∶ V1 and every term t ∶ TΣ V1, we have:

σ v = σ ▹ t implies v = t .

Proof. “⇒” follows directly by applying the monomorphism property to the two terms v and t.
“⇐”: Assume that σ satisfies the given condition. To show that σ is a monomorphism in the
category of substitutions it suffices to show that for any two terms t,u ∶ TΣ V1 with σ ▹ t = σ ▹u,
we have t = u. Since this is actually equivalent to restricting V0 to a one-element set, it suffices
to show that for all terms t1, t2 ∶ TΣ V1 with σ ▹ t1 = σ ▹ t2 we have t1 = t2.

• If t = v is a variable, then σ v = σ ▹ t = σ ▹u, from which the given property yields v = u.
(The case where u is a variable is analogous.)

• If t = f (t1, . . . tn) and u = g(u1, . . .un), then σ ▹ t =σ ▹u implies f = g and σ ▹ ti =σ ▹ui, from
which the induction hypothesis yields ti = ui for all i, implying t = u.

For finite substitutions, this condition directly translates into a decision procedure that for each
variable v ∶ V1 checks whether for any different variable u ∶ V1, its image σ u occurs as a subterm
in σ v.

17 / 17 Volume 71 (2015)

	Introduction
	Related Work
	Notation and Background: Categories and Monads
	The Coalgebra View of Graph Structures
	Attributed Graphs as Coalgebras
	Monadic Product Coalgebras
	DPO Transformation with Substituting Homomorphisms
	Comparison with Attributed Graph Transformation in the Adhesive Approach
	Conclusion and Outlook
	Monomorphisms in Substitution Categories

