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Abstract. We offer an alternative to the standard way of formalis-
ing attributed graphs. We propose to represent them as graphs with
a marked sub-graph that represents the data domain, rather than as
tuples of graph and algebra. This is a general construction which can
be shown to preserve adhesiveness of categories; it has the advantage of
uniformity and gives more flexibility in defining data abstractions. We
show equivalence of our formalisation with the standard one, under a
suitable encoding of algebras as graphs.

1 Introduction

Graph transformation has many strengths and pleasant characteristics, but the
treatment of data values, such as integers, booleans and strings, is not among
them. In fact, the core idea of graph-based modelling is that concrete node and
edge identities are irrelevant, and so graphs can be regarded up to isomorphism;
this, however, is simply no longer true if the nodes stand for data values.

Nevertheless, the large majority of systems for which graph-based modelling
is appropriate do include primitive data, in the form of attributes. There is
therefore no question but that graph transformation has to cope with data in
order to be practically useful in modelling real-world applications. And so, a
model for attributed graphs has been worked out by Ehrig et al. [3], which we
will refer to as the standard model.

The standard model explicitly combines the world of graphs and that of
algebras; the manipulation of the data is deferred to the second, whereas the
data values appear as nodes in the graphs, to which it is possible to define
edges from ordinary nodes. Such edges then stand for attributes. Although this
is theoretically satisfactory, in that the model allows us to use attributes, and
is, moreover, a “nice” category for graph transformation (meaning that it is
adhesive HLR — more about this later), we feel that the standard model leaves
some things to be desired.

— Due to the presence of both graphs and algebras in the standard model, some
things are solved twice. In particular, in transformation rules, the algebra
component uses variables, terms and (in)equations, whereas the graph com-
ponent uses nodes, edges and (non)injectivity constraints, for essentially the
same functionality. This means that users have two different formalisms to
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cope with, and the visual presentation of rules needs to combine graphical
and textual parts. Moreover, an implementation also needs to contain distinct
algorithms for matching the graph and algebra parts.

— We are studying abstraction in graph transformation, in particular also data
abstraction. A very limited form of abstraction is possible using algebras,
by moving from the standard algebra of a given signature (for instance, the
integers with successor, addition and multiplication) by a surjective homo-
morphism to another algebra (for instance, the integers modulo an upper
bound). However, many interesting abstractions cannot be formulated as alge-
bra homomorphisms. For instance, the classical abstraction of the integers into
the three-valued set of “strict negative”, “zero” and “strict positive” either
does not give rise to an algebra (the operations are not deterministic); or, if
we add the joined elements “negative”, “positive” and “all”, then there is no
homomorphism from the standard algebra to this one.

The first of these issues has prompted us to consider a version of attributed
graphs in which the algebras are entirely encoded as sub-graphs. In particular,
the operations are also coded up, by adding corresponding nodes and edges. A
preliminary version of this idea was presented in [7]. Since (at need) these sub-
graphs are easily distinguishable from the surrounding “real” graphs by typing,
in most circumstances we can proceed as if we were dealing with standard graphs.

A side benefit is that this sub-graph arrangement can be understood as a
general categorical construction: namely, it gives rise to a category of reflected
monos, in which the objects are monos (corresponding to embedded graphs) and
the arrows are pullbacks. The proof of adhesiveness of the resulting category can
therefore be established on a more general level than for the standard model.

It turns out that this also provides a solution to the second issue. By extend-

ing the set of “algebra graphs” allowed as sub-graphs with graphs in which the
algebraic operations are not deterministic (and so are no longer truly operations),
we can easily cope with data abstractions such as the one mentioned above. Our
proof of adhesiveness carries over to the extended category without any changes.
Now the embedding theorem implies that the abstract graphs over-approximate
the behaviour of the concrete graphs. We also extend the embedding theorem
to rules with negative application conditions, provided that these do not test
(negatively) for the data part.
The paper is structured as follows: in Sect.2 we define our attributed graph
category and establish equivalence with the standard model. In Sect.3 we give
an independent proof that the construction gives rise to an adhesive category. In
Sect. 4 we discuss data abstraction, and we show that the embedding theorem
still holds in the presence of NACs which do not test for data. In Sect.5 we
briefly discuss the implementation of these concepts in the graph transformation
tool GROOVE. Section 6 concludes the paper.

Almost all of the proofs are silently omitted from this version of the paper.
For the full technical report, including all proofs, see [8].
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2 The Model

In this section, we show how the structure of any algebra can be encoded as a
graph. We then combine these algebra graphs with the graphs that need attri-
bution, giving rise to larger graphs of which the algebra graphs are sub-graphs;
attributes then take the form of edges from the surrounding graph into the alge-
bra sub-graph.

Some general notational conventions: if s € A* is a sequence, say s = s1 - - - Sy,
then |s| denotes the length (n), [s] denotes the set of elements in s ({s1,..., s, }),
and for all 1 <4 < n, s|; denotes the ith element (s;). The empty sequence is
denoted e.

2.1 Algebra Graphs

Let us first recall the standard definitions of signatures and algebras. We assume
a global set Name of names, which are symbols that are of themselves uninter-
preted; the interpretation is given by their use.

Definition 1 (signature). A signature is a tuple X = (S,0,0,7) where S C
Name is a set of sorts, O C Name is a set of operators, disjoint from S,
0: O — §* is the source typing of the operators, and 7: O — S is the target
typing of the operators.

We call a sort s of a given signature spurious if there is no operator that uses
it, i.e., s ¢ [0(0)] for all 0 € O. In this paper we assume that signatures have no
spurious sorts.

Given a signature, the arity of an operator o € O is given by a(0) = |o(0)|.
We call a signature unary if a(o) =1 for all o € O.

Ezample 2. As a running example we use the algebra of booleans and integers
with a few operations. This is given by the signature Prim with S = {Int, Bool}
and O, ¢ and 7 given by the following table. (It stands for lesser than.)

O|zero succ pred add It pos true false not
ol € Int Int IntintintInt Int ¢ e Bool
7|Int Int Int Int Bool Bool Bool Bool Bool

Definition 3 (algebra). An algebra over a signature X' is a tuple A = (D, F)
where

- D = (D%)4es is an S-indezed family of disjoint data sets;
- F =(f%oco is an O-indexed family of functions typed by the signature; i.e.,
forallo€ O, if o(0) = s1 -+ 8y then fO: Dt x --- X D" — D7),

Given two algebras A; = (D;, F;) over ¥ (i = 1,2), an algebra morphism is a
family of functions h = (h®: D} — D3$)ses such that for all o € O with o(o) =
$1+++8p and for alld; € DY (j=1,...,n):

h(f(dy, ..oy dn)) = f3(h%(dr), - b (dn))



248 H. Kastenberg and A. Rensink

We commonly use D4 and F4 to denote the data sets and functions of an algebra
A; we omit the subscript A if it is clear from the context. The algebras over a
signature Y together with the algebra morphisms form a category, which we call
Alg(X).

Ezample 4. For the signature of Example 2, one may consider the following
algebras:

— The initial or term algebra Atem, where all terms built over Prim denote
distinct elements. The data sets of this algebra consist of the (syntax trees of
the) terms themselves.

— The natural or standard algebra Asyy, consisting of the “real” integers and
booleans.

— The final or point algebra Apgint, where the data sets are all singletons, i.e.,
all values are collapsed to a single one.

There are unique algebra morphisms from A erm to Asiyq and from Asig to Apoint;
for instance, if h: Aterm — Asig then h'™(succ(zero())) = 1 and hB°(true()) =
hBe°!(not(false())) = true.

The encoding of algebras as graphs is essentially straightforward:

— The data values (i.e., the elements of the carrier sets) are represented by nodes
— The functions are interpreted as sets of pairs of elements from the function
domain, respectively codomain; these pairs are then represented by edges.

The only complication is that, for operators with arity > 1, the domain of
the corresponding function is a cartesian product; in order to interpret such a
function as a set of edges we need to introduce nodes for the elements of the
domain, i.e., nodes that stand for tuples of data values. For unary signatures, this
complication does not arise, hence we concentrate on these first; we then show
a way to transform algebras over arbitrary signatures into equivalent algebras
over unary signatures.

Definition 5 (graph). A graph is a tuple G = (N, E, sre, tgt, lab) where N is
a set of nodes, F is a set of edges, src: E— N 1is a source function, tgt: E— N
s a target function, and lab: F — Name is a labelling.

Given two graphs G; = (N;, E;, src;, tgt;, lab;) fori =1,2, a graph morphism
from Gy to Go is a pair h = (hY: Ny — No, hP: Ey — Ey) such that, for all
e € Fq,

srea(hE (e)) = hN (sreyi(e))
tgty(h”(e)) = ™ (tgty(e))
laby (R (e)) = laby (e).
We commonly use Ng, E¢ etc. to denote the components of a graph G; we omit

the subscript G if it is clear from the context. Graphs and graph morphisms form
a category, which we call Graph (identity arrows are pairs of identity functions
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over the node and edge sets, and arrow composition is component-wise compo-
sition of the node and edge functions). We call a graph G discrete if Eg = 0,
i.e., the graph consists of nodes only. The full sub-category of Graph consisting
of discrete graphs will be denoted dGraph. Note that a unary signature X' can
be seen as a graph where the nodes are sorts and the edges are operators. For
edge labels we can use the operators themselves. This gives rise to the signature
graph Gx = (S,0,0,7,ido).

Definition 6 (algebra graph). Let X be a unary signature. An algebra graph
over X is a graph G with a morphism t to Gx such that for all n € Ng and
o€ O, if tN(n) = o(0) then there is an edge e € Eg such that src(e) = n and
tf(e) = 0. G is called deterministic if this edge e is always unique.

For a given unary signature X, we use AlgGraph+(Z) to denote the full sub-
category of Graph consisting of all algebra graphs over ¥, and AlgGraph(X)
for the full (further) sub-category of deterministic algebra graphs.

(The upshot of the above definition is that ¢ acts as a typing morphism
from G to Gyx; the additional conditions on the existence and, in the case of
determinism, uniqueness of edges can be understood as multiplicity constraints
in the type graph G yx: all edges have outgoing multiplicity 1..x or, in the case of
determinism, 1.)

Example 7. Figure1 shows an algebra graph for a variation on Prim, viz., the
unary signature X' with Sy = Sprim and Ox = {succ, odd, not}. Here, odd tests
if a number is odd; it has o(odd) = Int and 7(odd) = Bool.

S - succ
t odd
st rs '_;;_:_"_,'_'_'-i—.-—””/:’//’/’ not
algebra graph (typing) morphism 51gnature graph

Fig. 1. Algebra graph with typing into the signature graph. Italic node labels stand
for algebra values.

The following proposition is important in that it implies that it is enough
to know that a graph is in AlgGraph™ (%) (for a given unary signature ¥) in
order to reconstruct the actual typing morphism. This relies on our assumption
that X has no spurious sorts.

Proposition 8. For any ¥ and G € AlgGraph™ (X)), there exists exactly one
(typing) morphism t: G — Gx.
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The following theorem essentially states that our encoding of algebras as graphs
works.

Theorem 9. For any unary X, Alg(X) and AlgGraph(X) are equivalent.

This is proved by two functors, one of which turns data values into nodes and
codes up the operations as edges, and the other of which undoes this by recon-
structing the operations from the edges. The full proof can be found in [8].

For non-unary signatures, the situation is more complicated: first we have to
flatten the signatures and algebras, but we also have to impose some additional
constraints on the flattened algebras in order to get an equivalent category.

Definition 10 (product sorts).

1. A signature with products is a pair X|m where X = (S, 0) is a unary signa-
ture and w: S — O* is a partial function that assigns to some of the sorts
(called the product sorts) a sequence of distinct projection operators, such
that src(o) = s for all o € [w(s)]. For product sorts p € dom(m) we use
w(p) = |m(p)| to denote the width of p, and mp; (1 < i < w(p)) to denote the
individual elements of (p) (hence T(p) = Tp 1 Tp w(p))-

2. An algebra over X|m is an algebra over X such that, in addition, for all sorts
p € dom(m) and all combinations of data values (d; € D™y i)
from the target sorts of the projection operators, there is a unique d € DP
with f™i(d) = d; for all 1 <i < w(p).

3. An algebra graph G over Y| is an algebra graph over X, with typing t, such
that, in addition, for all product sorts p € dom(w) and all combinations of
nodes (n; € tN "1 (tgt(mp.:)))1<i<w(p) typed by the target sorts of the projection
operators, there is ann € N and a family of edges (e; € E)1<i<w(p) such that
for all 1 < i < w(p), tF(e) = mp4, src(e) = n and tgt(e) = n;. G is called
deterministic if, in addition to the conditions of Definition 6, this n is unique.

The underlying intuition is as follows: if p is a product sort with projection
operators 7(p) = o1 - - - 0,,, and respective target sorts sj - - - s, then Clause 10.2
above guarantees that DP is essentially the cartesian product D*! x --- D% and
the o; project the values of DP to their ith components; and analogously for
algebra graphs.

If X|r is a signature with products, we use Alg(X|w) to denote the category
of algebras over X|m and AlgGraph™ (X|n) [resp. AlgGraph(X|7)] to denote
the category of [deterministic] algebra graphs over X|mw. The following extends
Theorem 9 to signatures with products.

Theorem 11. For any X|m, Alg(X|n) and AlgGraph(X|r) are equivalent.

The following result states that we can indeed flatten arbitrary signatures
into signatures with products, and obtain equivalent categories of algebras.

Theorem 12. For any X, there is a signature with products flat(X') such that
Alg(X) and Alg(flat(X)) are equivalent.
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To construct flat(X), we need to add product sorts and projection operators.
For this purpose, assume disjoint subsets of product sort names and projection
operator names, which are also disjoint from S and O. For all z € S*, let s,
denote a distinct fresh product sort name corresponding to z, and for all 1 <
i < |z|, let p,,; denote a distinct fresh projection operator name from s,-values
to their ith components. Now flat(X) is defined as X |m, where X consists of!

51=SU{80(0) |O€O}
O1=0U{ps),i|l0€0,1<i<ao)}

o1 ={(0,34(0)) | 0 € O} U{(Po(0).i+50(0)) | 0 € O,1 <7 < x(0)}
71 = T U{(Po(0),i»0(0)]i) | 0 € 0,1 <i < afo)}

T = {(56(0)» Po(0),1 " * " Po(o),a(o)) | © € O}

By combining the above results, we get

Corollary 13. For any X, Alg(X) and AlgGraph(flat(X)) are equivalent.

2.2 Reflected Graph Embeddings

To achieve graph attribution, we embed algebra graphs into larger graphs. To
define the necessary constructs, let C define the component-wise subset relation
over graphs.

Definition 14 (graph embedding). Let G be a sub-category of Graph. A
graph embedding over G is a pair (G—,G) such that G- € G and G- C
G € Graph. If (G7,G),(H™, H) are graph embeddings, then a reflection from
(G=,G) to (H~,H) is a graph morphism h: G — H such that for all n € Ng,
hN(n) € Ny- implies n € Ng-, and for all e € Eg, h¥(e) € Ey- implies
e € Eg-. REmb(G) denotes the category of graph embeddings over G with
reflections as arrows.

A graph embedding (G, G) is said to be glued over a discrete graph G=— C
G~, if for all e € Eg \ Eg- and incident nodes n € {src(e), tgt(e)}, n € Ng-
implies n € Ng--. An embedding functor is a functor £: G — dGraph such
that £(G) C G for all G-graphs G and E(f) = f | E(G) for all G-morphisms
f: G— H. REmb(&) denotes the full sub-category of REmb(G) consisting of
embeddings (G—,G) glued over E(G™).

The term reflection is chosen to stress that the structure of the subgraph H™ is
reflected (as the dual of preserved) in G~.

1 It should be noted that X has a bipartite signature graph (and hence bipartite
algebra graphs) as every operation is redefined to have a product sort as its source;
even the operations that were already unary to start with. This is not at all necessary
for the results in this paper: other constructions for flat(X) may be more intuitive
in practice.
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Thus, if an embedding (G~, G) is glued over a graph G, this means that
only nodes in G~~ may be connected (by G-edges) to nodes outside G~. For
instance, in this paper we do not want to allow attribute edges to point to
product nodes as these are meant only as auxiliaries,? so our embeddings will
be glued over the sub-graph of the algebra graph with only non-product nodes.
Very often we just use G to denote graph embeddings (G, G).

Based on this, we can define our category of attributed graphs. In this defini-
tion, x|, : AlgGraph(X|r) — dGraph (for an arbitrary signature with prod-
ucts X|r) is the embedding functor mapping every X|w-algebra graph G to the
discrete sub-graph with nodes {n € Ng | t(n) € Sx \ dom(n)}, where t is the
typing of G into G'x.

AttGraph(Y) = REmb(&pay(xy)- (1)

Although the formal definition may appear complicated (partially because we
have set it up so that it is a special case of the general framework introduced in
the next section), the basic idea is still conceptually simple: an attributed graph
is a graph with an embedded deterministic algebra graph. This means that there
are three types of edges in the overall graph:

— Edges within the algebra graph. These encode the algebra, as discussed above.

— Edges entirely outside the algebra graph, i.e., with end nodes also outside the
algebra graph. These represent the “ordinary” graph structure.

— Edges not in the algebra graph, but with one or more end nodes in the algebra
graph. These are attribute edges, i.e., they provide the kind of information that
we introduced attributed graphs for in the first place.

Ezxample 15. Figure 2 shows an example attributed graph for the signature Prim
of Example 2, using the standard algebra, encoded into the graph structure.
(Obviously the algebra graph is only partially shown.) Examples of algebra-only
edges are the succ- and m-labelled edges; A, B and next are ordinary graph edges;
and x and y are attribute edges. The italic inscriptions 0, I and true represent
the algebra values and are formally not part of the actual graph. Note that only
non-product nodes are used as glue between the algebra graph to the “real”
graph.

For arbitrary signatures, we first have to construct the algebra graph with prod-
uct sorts; an attributed graph is then a graph with this algebra graph embedded,
such that, moreover, only the non-product sorts are eligible as end nodes of the
attribute edges.

With a fairly light discipline on the choice of labels, we can in fact make the
definitions even easier. Namely, if we assume that operators of the signature X
are never used to label edges in Fg \ Eg-, then G~ can be constructed from G
by restricting to the O-labelled edges.

2 This is a choice, not a necessity: one might actually want to have sorts that stand
for tuples in the original, unflattened signature.
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next

Tnt Int,1

Fig. 2. Example attributed graph; rectangular nodes are ordinary graph nodes, ellip-
soid ones represent algebra values.

We now show that this category is essentially equivalent to the standard
model of [3]. We reformulate their definition so as to make the equivalence proof
easier.

Definition 16. Let D: C — dGraph be a functor to discrete graphs. The cat-
egory of D-attributed graphs SAttGraph(D) is defined by

— Objects (G, C) where G is a graph and C an object of C, such that D(C) C G.

- Arrows (f: G— H,g: B— C), where f is a graph morphism and g an arrow
from C, such that D(g) = f | D(dom(g)) — in other words, f and g agree
upon the discrete graph.

Examples of functors D that can be “plugged in” here are:

- Ayx: Alg(Y) — dGraph for an arbitrary signature X, mapping every X-
algebra A to the discrete graph with N = (J, .4 D*;

— Agjr: Alg(X|r) — dGraph for a signature with product sorts X|7, mapping
every X|m-algebra A to the discrete graph with N = Uses\dom(ﬂ) Ds;

— The functor x|, : AlgGraph(X|r) — dGraph defined above.

The standard category of node-attributed graphs, as defined in [3], is essen-
tially given by SAttGraph(Ay) — where “essentially” means that we ignore
some differences:

— In the standard model, attributed graphs are typed. We leave out typing
because we find it complicates the presentation; moreover, enriching graphs
with typing is a standard construction — see, e.g., [10].

— In the standard model, the only connections allowed between the non-attribute
part of the graph and attribute (i.e., algebra) values are edges with non-data
nodes as sources. We find that this constraint unnecessarily complicates the
presentation and does not affect the formalism in any way; moreover, we
believe that attribute edges starting in data nodes may be useful as well.
Furthermore, this constraint can always be imposed on top of our definition,
if so desired.
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— The standard model includes edge attributes, which are essentially edges whose
sources are edges. These present a technical complication which we have omit-
ted, but which could be catered for by extending the category Graph with
such edges in general.?

Definition 17. Two functors D;: C;—dGraph (i = 1,2) are source equivalent
if there are functors F: C;—Csq and U: Co— Cq which establish an equivalence
between Cy1 and Cs, and such that, moreover, the following diagram of functors
commutes:

For instance, the functors Ay, Aqat(x) and Exay(s) introduced above are pairwise
source equivalent for arbitrary X, due to (respectively) Theorems 11 and 12.

The reason for introducing source equivalence is the following theorem, which
states that replacing the “data component” in the standard model by a source
equivalent one does not change the category.

Theorem 18. IfD;: C; —dGraph fori = 1,2 are two source equivalent func-
tors, then SAttGraph(D;) and SAttGraph(Ds) are equivalent categories.

This is shown by functors between SAttGraph(D;) and SAttGraph(D;) that
coincide with D; and D5 on the algebra component and with the identity functor
on the graph component. Note that the source equivalence precisely guarantees
that the part of the algebra used in the graph remains untouched when replacing
D1 by D, and hence the identity functor can be used.

The final auxiliary result on the road to proving equivalence between the
standard model and our formalisation is the following.

Theorem 19. Forany X|r,SAttGraph(Ex|,) andREmb(Ex,) are equivalent.

This results in the following corollary, which is the first main result of this
paper:

Corollary 20. Forany X, SAttGraph(Ayx) and AttGraph(XY) are equivalent.

Proof. This follows from a chain of equivalences sketched in the following
diagram.

3 Methodologically, we believe that edge attributes are not a useful concept, since
they can always be encoded by using attributed nodes instead. In a context where
the increase in expressiveness is felt to be worth the price of a more complicated
formalism, we believe that an extension to hyper-edges is typically more appropriate
than edges over edges.
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SAttGraph(Ay) Alg(X)
(Th. 18)} (Th. 12)} T4 —
SAttGraph(Ag,e(x)) Alg(flat(X)) — Anxsy — dGraph
(Th. 18)} (Th. 11)} ) -
SAttGraph(&ae(x)) AlgGraph(flat(Y))
(Th. 19)}
AttGraph(X)

Here, < denotes equivalence of categories and — denotes a functor. The vertical
chain on the left contains the actual steps of the proof; the diagram on the right
is the justification for applying Theorem 18.

3 Adhesiveness

In this section we reformulate the core construction above, that of graph embed-
dings (Definition 14), in a more general way, getting away from the precise
choice of graph category. For this, we adopt the setting of adhesive HLR cat-
egories, developed by Ehrig et al. [5] based on the adhesive categories of Lack
and Sobocirisky [11]. One of the advantages is that, in this setting, many the-
orems come “for free;” an example is the embedding theorem used in the next
section. We show that our embedding construction, generalised as the category of
reflected monos, preserves adhesiveness, or can give rise to particular HLR adhe-
sive categories. Among other things, this essentially constitutes an alternative
proof strategy for the HLR adhesiveness of SAttGraph. .

For lack of space, we have to omit the definitions of the basic ¢~ | g
categorical concepts. In addition we need the more involved con- l\.¢/ l
cept of Van Kampen squares. A Van Kampen square in a given ./J/.\.
category is a commuting square which, if used as the bottom pr
square in a “cube” diagram of which the back faces are pullbacks
(see right), guarantees that the front faces are pullbacks if and
only if the top square is a pushout.

Definition 21 (adhesive HLR category, [5]). Let C be a category. A class
of morphisms M in C is called suitable if it satisfies the following properties:

— M consists of monomorphisms;
- M is closed under isomorphisms and composition;
- M is closed under pushout and pullback.

C is called an adhesive HLR category for a suitable class of morphisms M if it
satisfies the following properties for all f € M:

— FEach cospan e S e — ohasa pullback;

— FEach span o Lee has a pushout, such that the pushout diagram is a Van
Kampen square.
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A category is adhesive in the sense of [11, Definition 5], if it is adhesive HLR
for the class M of all monomorphisms, and moreover, all pullbacks exist. The
conditions on adhesive categories essentially ensure that such categories are “set-
like”; that is, the pushout is “union-like” and the pullback is “intersection-like”.
For instance, our example category, Graph, is adhesive, as shown in [11,
Proposition 8]; and so is AlgGraph™, due to the fact (not proved here) that
AlgGraph' is closed under Graph-pushouts and -pullbacks. On the other
hand, AlgGraph is not adhesive, and indeed could not be, given that it is
equivalent to Alg (see Theorem 9) which is well known not to be adhesive.
Another observation is that in any category C the class of isomorphisms is suit-
able in the sense of Definition 21; since, moreover, pushouts and pullbacks over
isomorphisms always trivially exist, the following is easy to show:

Proposition 22. Every category is adhesive HLR for the class M of isomor-
phisms.

3.1 Reflected Monos

We now define a categorical construction generalising reflected embeddings
(Definition 14).

Definition 23 (reflected monos). Let C be an arbitrary category. The cate-
gory of reflected monos in C, denoted RMon(C), is defined as follows:

— Objects are monos a: A — B of C; we write a~ and at for the inner object
A and outer object B, respectively;

— Arrows f: a—b are pairs of arrows (f~: a=—b~, fT:aT—bT) from C such
that the resulting square is a pullback diagram:

f+
at ——=1bt

J

a” ——=b"
Identities and arrow composition are defined component-wise.

Note that this indeed gives rise to a category; in particular, arrow composition
is correct due to the pullback composition property.

The intuition behind the definition of RMon is that monos a, in set-like
categories, are essentially embeddings of the inner object a™ into the outer object
a™. We will refer to the part of a™ that is “disjoint” from a~ as the rim of a;
this may be thought of as the largest sub-object of a™ which, when taking the
coproduct with a~, is still a sub-object of at. The pullback property of the
morphisms f: a— b ensures that none of the rim of a “spills over” into the inner
object b™; or in other words, b~ is reflected in a~. Some more observations:

— If C has an initial object 0, then monos 0 — A have an “empty inner object”;
essentially, the entire object A is rim. We call such objects closed.



Graph Attribution Through Sub-Graphs 257

— Intuitively, the outer object a* consists of the rim, the inner object, and
some additional structure connecting the inner object to the rim. We infor-
mally refer to this connecting structure as “glue.” For instance, in the case of
attributed graphs, the glue is the set of attribute edges.

— In general, arrows f incorporate changes to both the rim, the inner object and
the glue. Arrows f that completely preserve the inner object are characterised
by the fact that f~ is an isomorphism; we call such arrows inner isomorphisms.
Preservation of the rim, on the other hand, can be captured by requiring that
the pullback diagram of f is also a pushout diagram (in C). Finally, if C has
an initial object, then the simultaneous preservation of the inner object and
the glue can also be captured; see Definition 35.

— Due to the well-definedness of pullbacks up to isomorphism, every arrow
f:a—0bin RMon is essentially determined by its outer component, f+.

The following is another core result of this paper. To prove it, we first need
to establish that monos in RMon(C) are pairs of (outer and inner) monos in
C; pushouts over monos in RMon(C) consist of outer pushouts and inner VK
squares in C; and pullbacks in RMon(C) consist of outer and inner pullbacks
in C.

Theorem 24. If C is an adhesive category, then so is RMon(C).

Unfortunately, reflected monos do not yet capture the category AttGraph(X)
defined in (1), since for AttGraph(X) we had the following further constraints:

— Inner graphs were restricted to the sub-category of algebra graphs over flat(X');
— Embeddings were restricted to those glued over a further sub-graph.

We will show how to lift the first kind of restriction to reflected monos, and
very briefly hint on how to achieve the second. For a full sub-category D of C,
let RMon(D, C) denote the full sub-category of RMon(C) such that all inner
objects are in D.

Proposition 25. For any full subcategory G of Graph, REmb(G) is equiva-
lent with RMon(G, Graph).

For example, REmb(AlgGraph) is equivalent to RMon(AlgGraph, Graph).
The reason why this equivalence is not an isomorphism is that there are many
monos that correspond to a single graph embedding. Now let us call D closed
under M-pushouts/pullbacks where M is a suitable class of morphisms if, for
every [colspan in D with one of the morphisms in M, the corresponding C-
pushout object [C-pullback object] is also in D.

Theorem 26. If C is an adhesive category, D is a full sub-category of C, M is a
suitable class of morphisms in D, and D is closed under M-pushouts/pullbacks,
then D is adhesive HLR for the class M, and RMon(D, C) is adhesive HLR
for the class N of all monomorphisms with inner arrow in M.
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Proof. This follows from the fact that the constructions of the pushouts and pull-
backs in RMon(C) entirely rely on the corresponding C-constructions over the
inner and outer parts of the objects and arrows. We have assumed D to be closed
under these constructions, hence the resulting objects are in RMon(D, C);
moreover, D is a full sub-category, hence the constructed objects also satisfy
the necessary universal properties. It follows that all required pushouts and
pullbacks exist.

An application of this result is the following.
Corollary 27. Let X be an arbitrary signature.

1. REmb(AlgGraph™ (X|r)) is adhesive.
2. REmb(AlgGraph(X|n)) is adhesive HLR for inner isomorphic monos.

To also lift the “gluing over”-construction of Definition 14 to reflected monos,
instead of just a sub-category D, we need a functor £: D — RMon(E, D), with
E a further full sub-category of D, such that £(G)" = G and E(f)T = f for all
objects G and arrows f of D. We can then define RMon(&, C) as the full sub-

category of RMon(D, C) with objects a such that the diagram e @ e
has a pushout complement.

Fig. 3. Partial non-deterministic algebra graph for Prim of Example 2.

4 Data Abstraction

One of the most powerful analysis techniques for dynamic behaviour is abstrac-
tion. This involves discarding information from a model in order to make it
more tractable, and over-approximating the original system by (where neces-
sary) “guessing” what the discarded information may have been.

In a graph-based setting, a very natural kind of abstraction is obtained by
taking a non-injective image of the start graph and applying the rules to that.
The (standard) embedding theorem then implies that, under a certain consis-
tency condition (Definition 30 below), all transformations on the original graph
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can be applied to the abstract graph. (Other studies of abstraction for graph
transformation are reported in [1,16,18].)

In this section, we show how data abstraction, i.e., where only the data domain
and not the “proper” graph structure is abstracted, can be formulated in the
framework of reflected monos. In this regard, our framework is more powerful
than the standard attributed graph model, due to the ability to deal with non-
determinism. The embedding theorem automatically holds due to adhesiveness;
we show that this abstraction also automatically fulfills consistency, and that it
is still valid in the presence of negative application conditions that only constrain
the rim (i.e., the proper graph part).

Ezample 28. Figure 3 shows a partial abstract algebra graph G for flat(Prim),
with Prim as in Example 2. There is a non-injective morphism h from the natural
algebra graph H for flat(Prim) (partially displayed in Fig. 2) to G, with especially,
for all i € NIt

Itz ifi <0
h:ir— < eqzifi=0
gtz if i > 0.

As can be seen from Fig.3, G is not deterministic: for instance, from the tuple
element (ltz, gtz) there are three outgoing add-arrows, reflecting the fact that
adding a negative to a positive number might give a negative, zero, or positive
result.

In contrast, the only non-injective algebra morphism from the natural algebra
over Prim is to the point algebra, in which every sort has exactly one element.
This abstraction loses all data distinctions and is therefore much too coarse for
almost all uses.

Definition 29 (inner abstraction morphism). An inner abstraction mor-
phism is an arrow in RMon(C) that is a pushout in C.

As discussed in Sect. 3, an arrow in RMon(C) that is a pushout in C essentially
does not modify the outer object — except to accommodate changes in the inner
object.

To recall the embedding theorem, first we need the following consistency condi-
tion.

Definition 30 (consistency, cf. [4,6,12]). A morphism a: G — H is called

consistent with a span G L pLar if a commuting diagram of the following
shape exists:

bl

B
b ¢ d d’
C
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Intuitively, consistency comes down to the requirement that none of the items
of G that are deleted by the span (meaning that they are not in d-image of D)
are “modified” by a — where modification means (node or edge) merging or
addition of incident edges. The embedding theorem refers to the derived span
of a transformation sequence, which we will not formally define; however, in an
adhesive HLR category with a class M of monos, the morphisms of derived spans
are always in M.

Theorem 31 (embedding, cf. [4,6,14]). For any transformation t : Gy =
G, and morphism ag: Gog — Hy that is consistent with the derived span of t,
there is a transformation Hy = H, consisting of the same rules as t, and a
morphism a,: Gn, — Hy,.

The following lemma implies a sufficient condition for consistency.

Lemma 32. Let C be an adhesive category. If G <D ﬂG’ is a span of
inner isomorphic monos and a: G — H is an inner abstraction in a category
RMon(C), then there is a diagram of the following shape, where e and o’ are
also inner abstractions:

!
a4 p_T .
a PO e PO a
H~ S-S,

This means that, for categories where all the rule morphisms are inner iso-
morphic monos, inner abstractions are always consistent.

Corollary 33 (abstraction embedding). Consider a sub-category of RMon
which is adhesive HLR for a class M of inner isomorphisms. For any transfor-
mation t : Gg = G,, and any inner abstraction ag: Gy — Hy, there is a trans-
formation Hy = H,, consisting of the same rules as t, with an inner abstraction
an: G, — H,.

Negative application conditions. Negative application conditions (NACs) in com-
bination with abstraction pose a problem: structures forbidden by a NAC may
very well (appear to) exist on the abstract level, whereas they do not occur
in the corresponding concrete graph. In general, to cope with this we can only
“switch off” the evaluation of NACs on the abstract level; however, this makes
the resulting over-approximation very coarse. The last result of this paper is
to extend abstraction embedding to rules with NACs that do not constrain the
inner objects. We first have to recall how NACs work.

Definition 34 (negative application condition). A negative application
condition is a morphism n: L — N. n is said to be satisfied by a matching
m: L — G if m does not factor through n, i.e., there is no f: N — G such that
m = fon.
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To avoid the problem of false positives after abstraction, it not enough to restrict
the NACs to inner isomorphisms: they should also not introduce any new con-
nections between the inner object and the rim. To formulate this as a general
requirement, we have to assume that the base category has an initial object.

Definition 35. Let C be an adhesive category with an initial object. A mor-
phism h in RMon(C) is said to avoid the inner object if h is part of a pushout
diagram of the following form, where a and b are closed objects (meaning that
a” and b~ are empty):

S|

The intuition is that a NAC avoids the inner object if it does not constrain the
inner object itself, nor the glue between the inner object and the rim. If a NAC
avoids the inner object, then inner abstractions do not cause false negatives.

Theorem 36. Assume C is an adhesive category with an initial object; let
n: L — N be a NAC in RMon(C) that avoids the inner object, m: L — G
a matching, and a: G — H an inner abstraction. If m satisfies n, then a om
satisfies n.

It follows that Corollary 33 continues holding for rules with NACs that avoid
the inner object.

5 Implementation

Here we show how the ideas exposed above have been partially implemented in
the tool GROOVE (see [17]). GROOVE supports a basic signature X consisting of
four sorts: whole (integer) numbers, floating point numbers, boolean and strings,
with the typical operations found in programming languages.

As an example we take a graph transformation system that models the
behaviour of an indexed stack, which is a stack modelled using an indexed list
(rather than a linked list, as is more common for this particular data structure)
for the elements. That is, elements on the stack have an order, which is 1 for
the bottom element and increases for every next element on top of it. Figure4
shows the graphs for an empty stack and a stack with three elements, using the
natural algebra graphs for the sorts at hand (actually, in this example only inte-
gers). The node labels Stack and Cell are notational conventions for self-edges
with those labels, which in practice serve as node types. The Stack-node has a
length-edge to the number of elements currently contained in the stack; every
Cell-node has an order-edge to its index. GROOVE supports single-pushout rules
in general, but can also be restricted to double-pushout. Rules are thus spans of
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Fig. 4. Empty stack and 3-element stack

morphisms over rule graphs, in which the algebra subgraphs consist only of the
constants from the signature and typed variable nodes for the four basic sorts;
the values for the product sorts correspond to tuples of the above.

Typical operations on indexed stacks are pushing and popping elements.
These are modelled by the rules shown in Fig.5. The figure only shows the
left hand side and right hand side graphs of both rules, leaving out the middle
(interface) graph and suggesting the morphisms though the positioning of the
nodes. For demonstration purposes, the push rule has been enriched with a
condition that is satisfied only if the length of the stack is smaller than 5. The
following graphical notational conventions are used:

— Only the relevant algebra graph nodes are shown in the figures. In particular,
in host graphs, none of the auxiliary product nodes are ever included.

— Pure data nodes, i.e., elements of the data sets of the four basic sorts, are
represented as ellipses labelled or by their values, by their types if they are
variable nodes.

— Product nodes are represented as diamonds. The projection edges are labelled
mi for index i starting at 0. The operator edges in Fig. 5 are add and It in push,
for addition and less-than, and sub in pop for subtraction.

In GROOVE, only part of the potential power of this paper’s approach has been
realised, in that non-deterministic algebra graphs such as the one in Fig.3 are
not supported. What is supported, on the other hand, are several (families) of
algebras, namely

— Point algebras, where every value set consists of a single data value; i.e., all
distinctions between data values are lost. If we interpret our indexed stacks
under the point algebra, for instance, all order-edges point to the single inte-
ger representative, and rule push remains forever enabled because the It-edge
always points to the single Boolean value that represents both true and false.

— Java algebras, where every value set corresponds to its natural Java type, e.g.,
int for integers. This means that integer overflow is treated as Java does, by
ignoring any significant bits above 31.

— Big algebras, where the most precise Java types available are chosen as value
sets instead; e.g., BigInteger for integers.
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— Term algebras, where every value set is given by the set of syntactic terms of
the corresponding sort. Interpreted under the term algebra, for instance, rule
push is not applicable to either of the graphs in Fig. 4, as in the term algebra
graph the lt-edge leading from the tuple (0,5) does not point to true but to
the term It(0, 5), which is (in that algebra) distinct from true.

6 Evaluation and Conclusion

In this paper we have proposed a new approach to model attributed graphs,
which is more uniform than the standard model of [3] in that it stays entirely
within a single (graph) category. Rather than resorting to a separate category
of algebras to model the data, we encode the entire algebra structure into a
sub-graph. This removes the need for additional algebraic equations specified
outside the graph formalism and a corresponding satisfaction engine; thus, both
tool implementers and users may benefit.
Contributions of the paper are:

— Equivalence of our model with the standard model (Corollary 20);

— An alternative proof of the adhesiveness of our construction (Theorem 26);

— Embedding theorems for data abstraction, without consistency condition
(Corollary 33) and in the presence of negative application conditions
(Theorem 36).

We have chosen a very common graph category in this paper: labelled binary
graphs. The use of hyper-graphs instead would probably ease the encoding of
the algebras. In particular, this would obviate the need for the product sorts,
removing one important source of complexity. As a consequence, for instance,
we would not have to flatten the signatures, and we would not have to resort to
the “gluing over”-construction.

Left hand side Right hand side
(Stacc gt —(inty-r0—> ()mo—>
w1l It w1 It
push: 0 0
%k @ entry length 4? @
add 71 l add 71
() 10 (e} order 10
e (i)
. sub sub
pop: entry length %% §§
0 7l 70 7l

o8 D & o

Fig. 5. Push and pop rules for the indexed stack
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It should be noted that we have more or less silently restricted ourselves to
node attributes. To support edge attributes as well, an extension of the standard
notion of graph would be required in which (some) edges can have edges as their
source, instead of nodes, just like in the standard model.

As we have briefly shown in Sect. 5, the setup described in this paper has
been partially implemented in the tool GROOVE. It should be said, however, that
the setup is not very appealing in terms of readability: for instance, already
the fairly simple rules in Fig.5 are non-trivial to read and write. In the newer
versions of the tool, therefore, a lot of syntactic sugar has been added that allows
the use of terms rather than product nodes, bringing it visually much closer to
the standard model.

Related work. We have at several places referred to the “standard model” of
representing attributes developed by Ehrig and al, but there are a number of
other alternatives approaches. For instance, in the language GP for Graph Pro-
grams (e.g., [15]), attributes are encoded in labels: rules are able to compose and
decompose such labels into their constituent values. In [2], the authors propose
to associate exactly one attribute to every node and edge which may however
be a tuple and so carry as many primitive values as one might wish. Morphisms
have, apart from a structural backbone, a A-term for each target graph ele-
ment that expresses how its attribute is computed from the morphisms source.
Refinements on the theme of adhesiveness that improve the way attributes fit
have been studied and proposed in [6,14]. Another recent approach has been
proposed in [13], using the symbolic graphs also studied in [12]. However, as the
onderlying models are still algebras, and hence deterministic, we believe that
symbolic graphs are not able to offer data abstraction in the sense of Sect. 4.

In related work of another type, an idea very similar to the one worked out in
this paper has been used in [9] to extend a technique that was only available for
graphs without attributes. This supports the point, made in the introduction,
that there is a benefit to stick to the framework of graphs to encode the world
of algebras.

Acknowledgement. For the proof of adhesiveness of RMon, we are very grateful
for help from Andrea Corradini, Tobias Heindel, and Ulrike Prange.

References

1. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner
abstraction. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 249-264.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_16

2. Boisvert, B., Féraud, L., Soloviev, S.: Typed lambda-terms in categorical attributed
graph transformation. In: Durdn, F., Rusu, V. (eds.) Algebraic Methods in Model-
based Software Engineering (AMMSE). Electr. Notes Theor. Comput. Sci., vol. 56,
pp. 3347 (2011)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed
attributed graphs and graph transformation based on adhesive HLR categories.
Fund. Inf. 74(1), 31-61 (2006)


https://doi.org/10.1007/978-3-540-74061-2_16

10.

11.

12.

13.

14.

15.

16.

17.

18.

Graph Attribution Through Sub-Graphs 265

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement
systems: a new categorical framework for graph transformation. Fund. Inf. 74(1),
1-29 (2006)

Golas, U.: A general attribution concept for models in M-adhesive transformation
systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT
2012. LNCS, vol. 7562, pp. 187-202. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33654-6_13

Kastenberg, H.: Towards attributed graphs in GROOVE: Work in progress. In:
Heckel, R., Konig, B., Rensink, A. (eds.) Graph Transformation for Verification
and Concurrency (GT-VC). Electr. Proc. Theor. Comput. Sci., vol. 154, pp. 47-54
(2006)

Kastenberg, H., Rensink, A.: Graph attribution through sub-graphs. CTIT Techni-
cal report TR-CTIT-12-27, Department of Computer Science, University of Twente
(2012)

Kehrer, T., Alshanqiti, A., Heckel, R.: Automatic inference of rule-based specifica-
tions of complex in-place model transformations. In: Guerra, E., van den Brand, M.
(eds.) ICMT 2017. LNCS, vol. 10374, pp. 92-107. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61473-1_7

Konig, B.: A general framework for types in graph rewriting. Acta Inf. 42(4-5),
349-388 (2005)

Lack, S., Sobocinski, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273-288. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24727-2_20

Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput.
46(3), 294-315 (2011)

Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph trans-
formation. In: Graph and Model Transformation (GraMoT). Electr. Comm. of the
EASST., vol. 30 (2010)

Peuser, C., Habel, A.: Composition of m,n-adhesive categories with application
to attribution of graphs. In: Plump, D. (ed.) Graph Computation Models (GCM).
Electr. Comm. of the EASST, vol. 73 (2015)

Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol.
3256, pp. 128-143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30203-2_11

Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 401-415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24725-8_28

Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Bohlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479-485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6_40
Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor.
Comput. Sci. 157(1), 39-59 (2006)


https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-33654-6_13
https://doi.org/10.1007/978-3-642-33654-6_13
https://doi.org/10.1007/978-3-319-61473-1_7
https://doi.org/10.1007/978-3-319-61473-1_7
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-24727-2_20
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-30203-2_11
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-25959-6_40

	Graph Attribution Through Sub-Graphs
	1 Introduction
	2 The Model
	2.1 Algebra Graphs
	2.2 Reflected Graph Embeddings

	3 Adhesiveness
	3.1 Reflected Monos

	4 Data Abstraction
	5 Implementation
	6 Evaluation and Conclusion
	References




