187 research outputs found

    Performance Evaluation of Different Optimization Algorithms for Power Demand Forecasting Applications in a Smart Grid Environment

    Get PDF
    AbstractThis paper presents an in-depth performance evaluation of three different optimization algorithms, in particular genetic algorithm (GA), particle swarm optimization (PSO), and firefly (FF) algorithm for power demand forecasting in a deregulated electricity market and smart grid environments. In this framework, this paper proposes a hybrid intelligent algorithm for power demand forecasts using the combination of wavelet transform (WT) and fuzzy ARTMAP (FA) network that is optimized by using FF optimization algorithm. The effectiveness and accuracy of the proposed hybrid WT+FF+FA model is trained and tested utilizing the data obtained from ISO-NE electricity market

    Intelligent and Improved Self-Adaptive Anomaly based Intrusion Detection System for Networks

    Get PDF
    With the advent of digital technology, computer networks have developed rapidly at an unprecedented pace contributing tremendously to social and economic development. They have become the backbone for all critical sectors and all the top Multi-National companies. Unfortunately, security threats for computer networks have increased dramatically over the last decade being much brazen and bolder. Intrusions or attacks on computers and networks are activities or attempts to jeopardize main system security objectives, which called as confidentiality, integrity and availability. They lead mostly in great financial losses, massive sensitive data leaks, thereby decreasing efficiency and the quality of productivity of an organization. There is a great need for an effective Network Intrusion Detection System (NIDS), which are security tools designed to interpret the intrusion attempts in incoming network traffic, thereby achieving a solid line of protection against inside and outside intruders. In this work, we propose to optimize a very popular soft computing tool prevalently used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel machine learning framework called “ISAGASAA”, based on Improved Self-Adaptive Genetic Algorithm (ISAGA) and Simulated Annealing Algorithm (SAA). ISAGA is our variant of standard Genetic Algorithm (GA), which is developed based on GA improved through an Adaptive Mutation Algorithm (AMA) and optimization strategies. The optimization strategies carried out are Parallel Processing (PP) and Fitness Value Hashing (FVH) that reduce execution time, convergence time and save processing power. While, SAA was incorporated to ISAGA in order to optimize its heuristic search. Experimental results based on Kyoto University benchmark dataset version 2015 demonstrate that our optimized NIDS based BPNN called “ANID BPNN-ISAGASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. Moreover, improvement of GA through FVH and PP saves processing power and execution time. Thus, our model is very much convenient for network anomaly detection.

    New Anomaly Network Intrusion Detection System in Cloud Environment Based on Optimized Back Propagation Neural Network Using Improved Genetic Algorithm

    Get PDF
    Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over an open environment (Internet), this lead to different matters related to the security and privacy in cloud computing. Thus, defending network accessible Cloud resources and services from various threats and attacks is of great concern. To address this issue, it is essential to create an efficient and effective Network Intrusion System (NIDS) to detect both outsider and insider intruders with high detection precision in the cloud environment. NIDS has become popular as an important component of the network security infrastructure, which detects malicious activities by monitoring network traffic. In this work, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely, Back Propagation Neural Network (BPNN) using an Improved Genetic Algorithm (IGA). Genetic Algorithm (GA) is improved through optimization strategies, namely Parallel Processing and Fitness Value Hashing, which reduce execution time, convergence time and save processing power. Since,  Learning rate and Momentum term are among the most relevant parameters that impact the performance of BPNN classifier, we have employed IGA to find the optimal or near-optimal values of these two parameters which ensure high detection rate, high accuracy and low false alarm rate. The CloudSim simulator 4.0 and DARPA’s KDD cup datasets 1999 are used for simulation. From the detailed performance analysis, it is clear that the proposed system called “ANIDS BPNN-IGA” (Anomaly NIDS based on BPNN and IGA) outperforms several state-of-art methods and it is more suitable for network anomaly detection

    LĂ©vy mutation in artificial bee colony algorithm for gasoline price prediction

    Get PDF
    In this paper, a mutation strategy that is based on LĂ©vy Probabily Distribution is introduced in Artificial Bee Colony algorithm. The purpose is to better exploit promising solutions found by the bees.Such an approach is used to improve the performance of the original ABC in optimizing Least Squares Support Vector Machine hyper parameters.From the conducted experiment, the proposed lvABC shows encouraging results in optimizing parameters of interest.The proposed.lvABC-LSSVM has outperformed existing prediction model, Backpropogation Neural Network (BPNN), in predicting gasoline price

    Improved cuckoo search based neural network learning algorithms for data classification

    Get PDF
    Artificial Neural Networks (ANN) techniques, mostly Back-Propagation Neural Network (BPNN) algorithm has been used as a tool for recognizing a mapping function among a known set of input and output examples. These networks can be trained with gradient descent back propagation. The algorithm is not definite in finding the global minimum of the error function since gradient descent may get stuck in local minima, where it may stay indefinitely. Among the conventional methods, some researchers prefer Levenberg-Marquardt (LM) because of its convergence speed and performance. On the other hand, LM algorithms which are derivative based algorithms still face a risk of getting stuck in local minima. Recently, a novel meta-heuristic search technique called cuckoo search (CS) has gained a great deal of attention from researchers due to its efficient convergence towards optimal solution. But Cuckoo search is prone to less optimal solution during exploration and exploitation process due to large step lengths taken by CS due to Levy flight. It can also be used to improve the balance between exploration and exploitation of CS algorithm, and to increase the chances of the egg’s survival. This research proposed an improved CS called hybrid Accelerated Cuckoo Particle Swarm Optimization algorithm (HACPSO) with Accelerated particle Swarm Optimization (APSO) algorithm. In the proposed HACPSO algorithm, initially accelerated particle swarm optimization (APSO) algorithm searches within the search space and finds the best sub-search space, and then the CS selects the best nest by traversing the sub-search space. This exploration and exploitation method followed in the proposed HACPSO algorithm makes it to converge to global optima with more efficiency than the original Cuckoo Search (CS) algorithm. Finally, the proposed CS hybrid variants such as; HACPSO, HACPSO-BP, HACPSO-LM, CSBP, CSLM, CSERN, and CSLMERN are evaluated and compared with conventional Back propagation Neural Network (BPNN), Artificial Bee Colony Neural Network (ABCNN), Artificial Bee Colony Back propagation algorithm (ABC-BP), and Artificial Bee Colony Levenberg-Marquardt algorithm (ABC-LM). Specifically, 6 benchmark classification datasets are used for training the hybrid Artificial Neural Network algorithms. Overall from the simulation results, it is realized that the proposed CS based NN algorithms performs better than all other proposed and conventional models in terms of CPU Time, MSE, SD and accuracy

    Liver Segmentation and Liver Cancer Detection Based on Deep Convolutional Neural Network: A Brief Bibliometric Survey

    Get PDF
    Background: This study analyzes liver segmentation and cancer detection work, with the perspectives of machine learning and deep learning and different image processing techniques from the year 2012 to 2020. The study uses different Bibliometric analysis methods. Methods: The articles on the topic were obtained from one of the most popular databases- Scopus. The year span for the analysis is considered to be from 2012 to 2020. Scopus analyzer facilitates the analysis of the databases with different categories such as documents by source, year, and county and so on. Analysis is also done by using different units of analysis such as co-authorship, co-occurrences, citation analysis etc. For this analysis Vosviewer Version 1.6.15 is used. Results: In the study, a total of 518 articles on liver segmentation and liver cancer were obtained between the years 2012 to 2020. From the statistical analysis and network analysis it can be concluded that, the maximum articles are published in the year 2020 with China is the highest contributor followed by United States and India. Conclusions: Outcome from Scoups database is 518 articles with English language has the largest number of articles. Statistical analysis is done in terms of different parameters such as Authors, documents, country, affiliation etc. The analysis clearly indicates the potential of the topic. Network analysis of different parameters is also performed. This also indicate that there is a lot of scope for further research in terms of advanced algorithms of computer vision, deep learning and machine learning
    • …
    corecore