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ABSTRACT Predicting the time, location and magnitude of an earthquake is a challenging job as an
earthquake does not show specific patterns resulting in inaccurate predictions. Techniques based on Artificial
Intelligence (AI) are well known for their capability to find hidden patterns in data. In the case of
earthquake prediction, these models also produce a promising outcome. This work systematically explores
the contributions made to date in earthquake prediction using AI-based techniques. A total of 84 scientific
research papers, which reported the use of AI-based techniques in earthquake prediction, have been selected
from different academic databases. These studies include a range of AI techniques including rule-based
methods, shallow machine learning and deep learning algorithms. Covering all existing AI-based techniques
in earthquake prediction, this article provides an account of the available methodologies and a comparative
analysis of their performances. The performance comparison has been reported from the perspective of used
datasets and evaluation metrics. Furthermore, using comparative analysis of performances the paper aims to
facilitate the selection of appropriate techniques for earthquake prediction. Towards the end, it outlines some
open challenges and potential research directions in the field.

INDEX TERMS AI, deep learning, earthquake, machine learning, review.

NOMENCLATURE
ACC ant-colony clustering.
AdaBoost/LPBoost adaptive/linear programming boost.
AE absolute error.
AHC agglomerative hierarchical cluster-

ing.
AI artificial intelligence.
ANFIS/FIS adaptive-network-based/fuzzy infer-

ence system.
ANN artificial neural network.
AUC area under the curve.
BP backpropagation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwei Gao .

DL deep learning.
DNN deep neural network.
DT decision tree.
KNN K-nearest neighbors.
ELM extreme learning machine.
FAR false alarm ratio.
FLANN functional link artificial neural network.
FNN fuzzy neural network.
FUM fuzzy user model.
GA genetic algorithm.
GBV/PBV global/personal best value.
GFCV generalized fuzzy clustering variety.
GLM generalized linear model.
GMDH group method of data handling.
GP grid partitioning.
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HWT Haar wavelet transformation.
IABC improved artificial bee colony.
IASPEI international association of seismology and

physics of the earth’s interior.
LM Levenberg-Marquardt.
LR logistic regression.
LSTM long short-term memory.
MAE mean absolute error.
MFO moth flame optimization.
ML machine learning.
MLP multi-layer perceptron.
MSE mean squared error.
NARX nonlinear auto-regressive networks with exoge-

nous input.
NB Naive Bayes.
NDAP neural dynamic optimization of Adeli and Park.
NDC neural dynamic classification.
NFS neuro-fuzzy system.
PCA principal component analysis.
PDF probability density function.
PHMM poisson hidden Markov model.
PNN probabilistic neural network.
PR polynomial regression.
PRNN pattern recognition neural network.
PSO particle swarm optimization.
RBFNN radial basis function neural network.
RE relative error.
RF random forest.
RMSE root mean square error.
ROC receiver operating characteristics.
SC subtractive clustering.
SES seismic electric signal.
P0 negative predictive value.
P1 positive predictive value.
Sn sensitivity.
Sp specificity.
SVD singular value decomposition.
SVM/R support vector machine/regressor.
TEC total electron content.
WIA Willmott’s index of agreement.

I. INTRODUCTION
Earthquake is a natural disaster caused by the movement of
tectonic plates of earth due to the release of its substantial
internal energy. A major earthquake with a magnitude greater
than five can inflict massive death tolls and huge infrastruc-
tural damages costing billions of dollars. However, if the
occurrences of an earthquake can be predicted, the magnitude
of destruction can be minimized. A complete earthquake
prediction procedure should have three types of information:
the magnitude, location, and time of occurrence. Since 2005,
there have been 28,400 occurrences of earthquakes with a
magnitude of more than five around the world [1]. Fig. 1
presents the location of the occurrences from January to
December 2019 [1]. Observing closely, it is possible to see

some patterns in locations of earthquakes (denoted by red dots
in Fig. 1). This kind of patterns may provide researchers with
possibilities to accurately predict earthquakes.

Earthquake prediction can be classified into the short-term
and long-term process. Short-term prediction is very compli-
cated as it predicts earthquakes within days or weeks of their
occurrences. Therefore, it should be precise and accurate,
and fewer false alarms are appreciated. Generally, short-term
predictions are used for evacuation of an area before an
earthquake. On the other hand, long-term earthquakes are pre-
dicted based on earthquakes periodical arrival, which carries
a few pieces of information. Still, they can help to set stan-
dards for building code and designing disaster response plans.
In 2009, L’Aquila city of Italy was struck by a 5.9 magnitude
earthquake, taking away the life of 308 citizens. However,
the earthquake forecast commission of Italy predicted that
there would be no damage, and they did not evacuate the
city. Such faulty prediction can lead to a massive massacre
taking away lives and damaging lots of infrastructures. The
scientists involved in that incident were punished with six
years of imprisonment [2].

The earthquake predictionmodels performwell with earth-
quakes having medium magnitudes, but while the shocks
have high magnitude, the outcomes achieved are poor. Major
earthquakes cause most damages and bring the most con-
cern. The reason behind this scenario is that there is a
smaller number of earthquakes with high magnitude, and
without data, the prediction becomes very difficult. The
researches on the prediction use historical data involving an
earthquake’s energy, depth, location, and magnitude from
the earthquake catalogs. Based on the magnitude of com-
pleteness value, the area-specific earthquake parameters like
b-value parameters are calculated. Machine learning (ML)
based algorithms mainly calculate the seismic indicators like
Gutenberg Richter b-values, time lag, earthquakes energy,
mean magnitude, etc. [3]. Instead deep learning (DL) based
models can calculate thousands of sophisticated features by
themselves [4], [5]. Since ML and DL based models are
data-driven and major earthquakes happen in a few cases, it is
challenging to predict them based on historical data. Some
methods predict the major earthquakes by separately training
them or adding weights to them, but these models need many
improvements [6].

Another way for successful prediction is to find some
precursors of a major earthquake. Precursors are the changes
in elements in nature before the occurrence of an earth-
quake. Earthquake scientists suggest that concentration of
Radon gas, strange cloud formation, earth’s electromagnetic
field variations, humidity, temperature of the soil, crustal
change, etc. can be the possible candidate precursors [7].
Such generalization may be misleading because there were
many cases found where these precursors were present with-
out the occurrence of an earthquake, and earthquakes took
place even though there was an absence of these precursors.
According to the International Association of Seismology
and Physics of the Earth’s Interior (IASPEI), precursor-based
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FIGURE 1. Earthquakes occurred around the world from January 2019 to December 2019 with magnitude greater or equal to five. In twelve months,
1637 earthquakes happened around the world. The data were collected from the United States Geological Surveys and plotted using ArcGIS software.
The red square represents the epicenter of occurrence of the earthquake.

earthquake research should have some qualities like- it should
be observed from more than one site and instruments and
should be related to stress and strains of the earth [8]. No pre-
cursor with definite proof of predicting earthquake is found
yet. Fig. 2 depicts the necessary process of prediction of
earthquakes with AI based methods. Some AI classifiers
are used for this prediction process, along with the input
parameters and preprocessing.

Evaluation of an earthquake prediction method can be
carried out using different metrics such as positive and neg-
ative predictive values (P1, P0), specificity (Sp), sensitivity
(Sn), accuracy, false alarm rate (FAR), R-score, root mean
square error (RMSE), mean squared error (MSE), relative
error (RE), mean absolute error (MAE), area under the curve
(AUC), chi-square testing, and so on. Earthquake models are
dependent on the area from where the data are collected. That
is why there is a need for a standard dataset of an earthquake
on which the researchers can calculate the evaluation metrics
for comparing their models with previous studies.

There are some review articles available that evaluated
earthquake prediction studies. In some of the reviews, the pre-
cursory based researches are criticized based on their sci-
entific values [10]. How these precursors can be used in
earthquake prediction is also elaborated [11]. The use of
Radon concentration for the prediction of an earthquake is

also investigated [17]. Data mining techniques are discussed
in the study [15]. Classical ML techniques are reviewed, and
their evaluation techniques are discussed in the study [20].
How the rule-based techniques can work in this field are
investigated in [21]. Mignan and Broccardo [22] discussed
the DL techniques in this field. There is a missing study
where all these techniques are accumulated together, which
can be an excellent resource for AI researchers in the field of
earthquake prediction.

For this review, earthquake prediction studies that include
AI-basedmethods are searched in databases like IEEEXplore
digital library, Science Direct, and Google Scholar. Ini-
tially, 292 papers were found. After removing duplicates
and reviewing the abstract of these papers, 148 papers were
selected for full-text review. This study includes both journal
and conference articles because the conference proceedings
also present substantial content vital in the prediction pro-
cess. After reviewing full-text of these papers, 64 papers
were excluded as they were not specialized researches of
earthquake prediction. Finally, the 84 papers are studied in
this research. Fig. 3 illustrates the selection procedure of
the articles for this study using a Prisma diagram. Fig. 4(a)
depicts the buzz-words of earthquake researches. Fig. 4(b)
represents the pie diagram showing the distribution of AI
algorithms, and it clearly shows that the Artificial Neural
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FIGURE 2. A general earthquake prediction model. Earthquakes are predicted based on some features. These features can be the seismicity indicators,
which are calculated from the earthquake catalog. Some earthquake precursors can be found which happened a few days before the earthquake. But
these precursors never confirm an earthquake. Radon gas concentration, soil temperature variation, and strange cloud formation are some of the
earthquake precursors. From the seismograph P-wave and S-wave can be detected by which earthquake can be predicted. Some countries use dedicated
satellite to monitor earthquake-related parameters which helps in finding earthquake precursors. These data are used as an input signal to the
prediction model. Then the data are processed to remove missing values and converted to a form that suits the classification and regression algorithms.
In this study, we have considered the AI-based algorithms only. These algorithms try to find hidden patterns in the data to classify them. In the end,
these algorithms predict the time, location, and magnitude of an earthquake.

Network (ANN) is used in most studies. Fig. 4(c) shows the
yearly distribution of the reviewed articles. Studies of the
last 15 years were incorporated into this research. Most of
the researches were from the year 2016 to the year 2019.
In these four years, 36 pieces of research were done based
on AI techniques. The other 48 studies were selected from
the year 2005 to the year 2015. In the year 2009 and the year
2014, 8 studies were selected each year, which is the highest
in the first 11 years considered for review.

This study focuses on reviewing the earthquake researches
that are based on different AI techniques. It reflects the state-
of-the-art historically. All the possible AI-based methods
used in this regard are included with their proposed methods
and findings. To the author’s knowledge, the other review
works in this field considered a few aspects of the earthquake
and did not cover all theAImethods.We have incorporated all
the studies that focus on earthquake prediction and its charac-
teristics with their performance. This will widen the scope of
further research by pointing out the most effective parameters
of earthquakes and techniques with higher accuracy. Table 1
presents existing review articles published in this field. The
main contributions of this article are discussed below, which
shows the uniqueness of this study:

1) This study considers the articles that include rule-based
methods such as Fuzzy logic, adaptive-network-based
fuzzy inference system (ANFIS); Shallow machine
learning algorithms such as support vector machine
(SVM), support vector regression (SVR), random For-
est (RF), decision tree (DT), radial basis function
neural network (RBFNN), K-nearest neighbor (KNN),
probabilistic neural network (PNN), ANN, clustering;
and Deep machine learning methods such as a recur-
rent neural network (RNN), long short-term mem-
ory (LSTM), deep neural nets (DNN) for predicting
an earthquake. Not only that, the bio-inspired mod-
els are also evaluated. To the best of our knowl-
edge, no study has been done considering all these
techniques.

2) 84 papers from renowned publishers are extensively
reviewed based on the AI techniques.

3) This study presents an in-depth description of the
methodologies of these researches.

4) Relative comparison between different techniques
based on their performances are presented.

5) The databases used in the studies are also included,
which can help earthquake research enthusiasts in
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FIGURE 3. Prisma diagram of the selection process of the research articles of this review. The
search string used in this study is- (‘‘Neural Network’’ or ‘‘Machine Learning’’ or ‘‘SVM’’ or
‘‘RNN’’ or ‘‘HMM’’ or ‘‘Hidden Markov’’ or ‘‘Fuzzy’’ or ‘‘Deep Learning’’ or ‘‘Data Mining’’ or
‘‘SVR’’ or ‘‘PNN’’ or ‘‘LSTM’’ or ‘‘Clustering’’ or ‘‘Radial Basis’’ or ‘‘RBF’’ or ‘‘Support Vector’’) and
(‘‘Earthquake’’) and (‘‘Prediction’’). Based on this search string, we have initially found
292 research articles from Science Direct, Google Scholar, and IEEE Xplore digital library. After
screening and eligibility testing, we have selected 84 research papers for this review.

their studies. Performance comparison based on these
datasets are also provided in this article.

It is expected that this study will attract new
AI researchers to this highly demanding field of earthquake
prediction.

The rest of the paper is organized as follows. In section II,
the works related to this study are discussed. Section III
discusses the working principle of the most common AI
algorithms. Section IV briefly discusses the methodologies
used by the researchers of earthquake prediction. Section V

VOLUME 8, 2020 5



M. H. A. Banna et al.: Application of AI in Predicting Earthquakes: State-of-the-Art and Future Challenges

FIGURE 4. (a) The focuses of the reviewed studies depicted as retrieved keywords from the article title. This was generated using the word cloud to show
what the reviewed research articles focused on their titles. (b) Algorithm wise distribution of the articles. Here using a pie diagram, the most popular
algorithms in the reviewed studies are presented. The ANN was used in 33% of the cases. (c) Year wise distribution of the studies. Here, we present the
number of research works that happened from the year 2005 to 2019 on earthquake prediction using AI methods, which were selected in this review.
In recent years the number of researches increased a lot.

TABLE 1. Review researches based on earthquake prediction.

describes popular evaluation metrics for performance cate-
gorization while section VI examines and discusses their per-
formances. In section VII, some challenges of the earthquake
prediction studies are mentioned, and section VIII provides
the concluding remarks.

II. RELATED WORKS
Researches on earthquake prediction started in the late nine-
teenth century. Geller [9] reviewed earthquake researches of
one hundred years and criticized their quality. He divided
the researches based on different time ranges like researches
before 1960, after 1960, and 1962 to 1997. He raised ques-
tions about the precursors of earthquakes and acknowledged
the IASPEI guidelines for precursory researches. He rec-
ognized the works of the VAN group [23] with the earth’s
electric signal but doubted their research procedure. Different
AI models evolved after this review. Sevgi [10] criticized

different seismo-electromagnetic precursory based researches
for earthquake predictions. He evaluated the researches based
on their scientific content, considering whether the researches
were conducted scientifically or not. He found that most of
the precursory predictions were not made based on IASPEI’s
guidelines. He also mentioned that the earth’s electromag-
netic signal is very noisy and has characteristics from local
permittivity and permeability, introducing background noise.
In his review, though, he discussed the earth’s electric signal,
he did not review the earthquake prediction models with
historical data.

Uyeda et al. [11] reviewed the short-term prediction of
earthquakes based on seismo-electromagnetic signals. They
first reviewed the researches that covered the history of
short-term earthquake predictions. They suggested that in
precursory researches, nonseismic precursors should also be
considered. They also discussed different types of emissions
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of the earth before earthquakes like telluric current and
high-frequency electromagnetic waves. They pointed out that
this electric signal should not be considered as earthquake
precursors. Alvan and Azad [14] reviewed earthquake pre-
diction researches based on space-based and ground-based
sensors covering most of the earthquake precursors. They
divided the studies based on the different precursors like
earth’s crust, temperature, strange cloud formation, humid-
ity, and Radon gas concentration. The satellite imagery and
ground parameters were also discussed in this research.
Woith [17] reviewed earthquake prediction techniques that
used Radon gas concentration as a parameter. He pointed to
the fact that though there are anomalies present in Radon con-
centration, in many cases, no earthquake occurs. He reviewed
105 publications and enlisted their databases and methods.
He also discussed how models should differentiate between
seismic disturbance of Radon concentration and human-made
ones.

Huang et al. [18] reviewed earthquake precursory
researches from 1965 to 2015 in China. In this research,
the studies were clustered in different time ranges.
Seismic parameters, geo-electromagnetic parameters, geode-
tic and gravity parameters, and ground fluids were con-
sidered as earthquake precursors. Then they discussed
the ongoing projects in China for earthquake prediction.
Mubarak et al. [12] discussed earthquake precursors like
gravity variations, temperature and humidity fluctuation,
Radon concentration changes, and electric field changes.
Then they briefly discussed seven countries which use satel-
lite for their precursory predictions. From the literature they
reviewed, a decrease in air humidity, and an increase in Radon
concentration and electric field can be taken as earthquake
precursors. Bhargava et al. [13] reviewed the articles which
used animals’ weird behavior before an earthquake as the
indicator of an earthquake and mentioned that China, Japan,
and the USA have facilities for this kind of research. They did
not include historical data-based researches for earthquake
prediction.

Otari and Kulkarni [15] reviewed 16 journals from 1989 to
2011 and grouped them based on NN and data mining
approaches. In 2018, Goswami et al. [19] reviewed data min-
ing techniques to predict, detect, and develop management
strategies for natural disasters like earthquakes, Tsunami,
or cyclones. They proposed a twitter-based disaster man-
agement model for India. Galkina and Grafeeva [20] ana-
lyzed the ML trend in earthquake prediction research. They
observed datasets, features, the magnitude of completeness,
and performancemeasurement criteria for these studies. They
noticed that these studies face difficulties in predicting rare
but more important major earthquakes. Azam et al. [16]
reviewed earthquake prediction works based on NN, Fuzzy
logic, and bio-inspired optimization algorithms. However,
there is a lack of detailed research in this area. Jiao and
Alavi [21] reviewed the DL-based researches and predicted
future trends in this area. DNN is used for this purpose as
it can take unorganized data and calculate many features

by itself. They presented a generalized picture of the work-
ing procedure of these systems. Mignan and Broccardo [22]
analyzed 77 articles on NN from 1994 to 2019. They divided
the studies into two categories- ANN and DNN. DNN is the
future of the earthquake prediction model though the model
is more complex and uninterpretable. As a result, overfitting
becomes a problem.

All the review articles discussed either short-term earth-
quakes with earthquake precursors or addressed some por-
tion of AI methods to the best of the author’s knowl-
edge. No review covers short-term earthquakes, long-term
earthquakes, earth’s electromagnetics, ANN-based meth-
ods, Fuzzy based studies, clustering techniques, DNN,
bio-inspired algorithms, and ML techniques for prediction of
earthquakes. Through this study, all these sectors were incor-
porated for a comprehensive review of earthquake prediction.

III. ARTIFICIAL INTELLIGENCE (AI) ALGORITHMS
A. RULE BASED APPROACHES
1) FUZZY LOGIC
The decision-making process of humans is different than
how a machine works. Between ‘‘yes’’ and ‘‘no’’, human
considers some other options. Fuzzy-logic systems represent
this way of decision making. A fuzzy logic system has some
modules with whom it takes a decision. The fuzzification
module uses a membership function to generate a member-
ship degree from crisp inputs. Membership degree can be-
large positive, medium positive, small, mid negative, and
large negative. Then the knowledge base comes, where there
are some IF-THEN rules, which are adopted from human
behavior. The inference engine compares the input with the
rules and provides reasoning for the input. The defuzzifica-
tion module converts this reasoning to crisp output. Fuzzy
logic is popular because of its ease of use, and flexibility.
Fig. 5(a) shows the basic structure of Fuzzy logic systems.

2) FUZZY NEURAL NETWORK (FNN)
When Fuzzy networks are represented as ANN so that they
can be optimized using backpropagation or genetic algo-
rithm (GA), we call the system a neuro-fuzzy system (NFS).
One approach to implementing this system is the Mamdani
approach by Ebhasim Mamdani [24]. For this approach, both
the input and output of the system must be a fuzzy quantity.
It uses a simple min-max operations structure, which makes
it a great model for human inference systems. This model is
understandable for humans, but the complexity increases with
the increase in input rules. This model uses five layers for
prediction, which are enlisted as:

1) Fuzzification layer: The input vector consisting of fea-
tures enters into the fuzzification layer, where its mem-
bership value is calculated. Generally, the Gaussian
function is selected for calculating the membership
value [24].

2) Fuzzy inference layer: In the inference layer, fuzzy
rules fire based on the input vector by multiplying the
membership values.
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FIGURE 5. (a) Fuzzy Logic architecture. In Fuzzy logic, the crisp input is fuzzified and compared with the rules to create a crisp output. (b) Mamdani
FNN architecture. It has five layers that work together to predict a value. A1, A2, B1, B2 are the input nodes which take X, Y as input. The next layer
denoted by 5 multiplies the values of the previous layer to generate weight W1 and W2. These weights are used for implication, and the result of
them is summed together. This output goes to the defuzzification layer to produce an output. (c) Takagi-Sugeno ANFIS architecture. This is a
five-layer architecture where A1, A2, B1, B2 are the input nodes which take X, Y as input. The next layer denoted by 5 multiplies the values of the
previous layer to generate weight W1 and W2. The layer denoted by N normalizes the value of the previous layer and outputs W̄1 and W̄2. The rules
are a combination of X, Y and the input nodes. These rules are multiplied and summed together to produce an output. The square layers are
adaptive as they can be changed to produce a better output.

3) Implication layer: In the implication layer, consequent
membership functions are calculated based on their
strength.

4) Aggregation layer: In the aggregation layer, the multi-
plication of firing strength and consequent parameters
are summed together.

5) Defuzzification layer: The final crisp output is achieved
by defuzzification, which follows the center of the area
method.

Fig. 5(b) depicts the layer structure of the Mamdani FNN.
The other approach is Takagi Sugeno neuro-fuzzy system,

which is also known as ANFIS. The NN and fuzzy inference
system (FIS) are combined for this model [25]. Usually, FIS
does not have learning ability, and its membership function is
fixed. Five layered ANFIS approach solves these problems
and generates IF-THEN rules from the knowledge of an
expert avoiding extensive initialization stage and making the
system efficient in computation.

The first layer generates grade membership functions like
Gaussian functions, triangular functions, and trapezoid func-
tions, which are used to generate firing strength. The second
layer uses the membership function’s grade to calculate the
firing strength. The output of each model is compared, and
the product or minimum of them is selected. In the third
layer, normalization is done by dividing the firing strength
of a rule by the combined firing strength. Defuzzification
is the next layer where the output is calculated using the
weighted parameters. The sum of all the defuzzified nodes
is summed together in the last stage to generate the overall
ANFIS output. Fig. 5(c) depicts the architecture of an ANFIS
model. The square layers are adaptive, that means, with some
optimization algorithms like BP or GA, we can adjust these
layers.

B. SHALLOW MACHINE LEARNING
1) SUPPORT VECTOR MACHINE (SVM)
SVM is a ML-based classification algorithm used success-
fully in applications like classification, pattern recognition,
and prediction. It organizes the classes by constructing a
hyperplane in an N-dimensional plane in a way so that the

hyperplane ensures maximum margin distance between data
points of the classes [26]. The data points close to the hyper-
plane are called support vectors, which determine the orienta-
tion and position of the hyperplane.When a linear hyperplane
cannot separate the classes, a higher dimensional nonlinear
hyperplane is needed. Polynomial, sigmoid, and radial basis
function (RBF) kernels are some accessible kernel functions
that are used for these cases. SVM is a quite computationally
expensive classifier and usually takes longer time for train-
ing. It possesses regularization capability and is capable of
working with linear or nonlinear data. Fig. 6(a) shows how
SVM constructs hyperplane between two groups of data for
classification purposes.

2) SUPPORT VECTOR REGRESSION (SVR)
SVR algorithm works in an entirely different manner than
most of the regression algorithms [27]. Where the other
regression algorithms try to minimize the sum of squared
error, SVR is concerned with the error when the error is
in a particular range. This regression method works simi-
larly to SVM, but instead of providing a class as output,
it produces a real number. SVR gives flexibility in case of
error to minimize coefficients (E-value) and optimizes them
to improve performance. It is trained with symmetrical loss
function to penalize low, and high miss estimates equally.
The computation complexity of SVR is not dependent on
the input shape’s dimension. For nonlinear operations, it uses
kernel functions like polynomial kernel, which is represented
by Eq. (1), where xi, xj are two different observations in
the dataset, r is the coefficient of the polynomial, and d is
the degree of the polynomial andGaussian RBF kernel, which
is represented by Eq. (2), where xi, xj are two different obser-
vations in the dataset, and γ is the spread of the kernel.

f (xi, xj) = (xi × xj + r)d (1)

f (xi, xj) = e−γ ||xi−xj||
2

(2)

It possesses excellent generalization capability and capable of
achieving high prediction accuracy. This process is depicted
in Fig. 6(b).
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FIGURE 6. (a) Classification process of the SVM algorithm. This algorithm tries to create a hyperplane to maximize the margin between to close data
points of two different classes. (b) Working procedure of the SVR algorithm. It inherits properties from the SVM algorithm but does regression
operation. A regression line is drawn to cover the whole dataset. The maximum deviation is denoted by e. The data which are not in the deviation of
±e are the outliers. (c) Decision-making process of the KNN algorithm. Based on the value of k, classification can be changed. (d) The working
principle of the K-means clustering algorithm. Based on Euclidean distance, the clusters are formed. The output of the clustering is represented using
different colors. (e) Classification process of the RF algorithm. From the data, different sub-trees are generated, which produces different classes. The
class with most occurrences are selected as the output class. (f) Dendrogram of hierarchical clustering. When data in the Dendrogram are accessed in
a top-down approach, it is called divisive clustering, and when it is accessed in a bottom-up fashion, it is called agglomerative clustering.
(g) Decision-making process of the DT (C4.5) algorithm. Here, based on different conditions, the algorithm reaches to different decisions.

3) K-NEAREST NEIGHBOR (KNN) ALGORITHM
It is a supervisedML algorithmwhere data in close proximity
are thought to have the same output class [28]. The value
of k is determined at first, which should not be very small
or massive. Then the input data’s Euclidean distance is cal-
culated considering each feature. The Euclidean distance of
two-point a and b is represented by Eq. (3).

||a− b|| =
√
(x1 − x2)2 + (y1 − y2)2 (3)

where coordinates of a is (x1, y1), and coordinates of point b
is (x2, y2). Based on those distances, the data are sorted in
smallest to largest order. Then the labels of the first k entities
are considered, and the label with the highest occurrences is
selected as the class of that data. Although it is a straightfor-
ward algorithm, it is not suitable for large datasets. Fig. 6(c)
shows how the change in the value of k can change the
prediction process.

4) RANDOM FOREST (RF) ALGORITHM
This classifier is a collection of randomly selected decision
trees that works in a voting method [29]. It takes votes from
different decision trees to determine the final class. This
method combines the output of different random decision
trees to provide a classification result. Each tree of RF is
constructed using different bootstrap samples. It changes the
procedure of construction in the case of a regression tree.
RF is quite similar to bagging, but it contains another extra
layer to introduce randomness. It has the ability to acquire
high accuracy and can handle massive datasets efficiently.
The decision-making process of an RF classifier is shown

in Fig. 6(e). This method does not need hyperparameter opti-
mization, therefore, it is a simple but effective ML method.

5) DECISION TREE C4.5 ALGORITHM
This is a statistical classifier that works by generating deci-
sion trees based on information gain, where the highest nor-
malized gain is selected as the criterion of splitting [30]. It is
an improved version of the Iterative Dichotomiser 3 algo-
rithm, which can deal with continuous variables, discrete
variables and missing values. It builds a classifier by analyz-
ing the training set to classify the test set. C4.5 builds decision
trees that respect Occam’s Razor. In C4.5, missing values are
dealt with by estimations from the dataset. This algorithm
supports tree pruning to deal with overfitting. Here a subtree
can be replaced by a leaf node. Meanwhile, small changes
in a dataset can lead to a change in the decision tree. This
algorithm is easy to implement and works well, even with a
noisy dataset. Fig. 6(g) shows how DT algorithms come to a
conclusion based on conditions in the data.

6) K-MEANS CLUSTERING
Clustering is an unsupervised learning technique that seg-
ments data into different sub-divisions. K-means clustering
is a prevalent iterative clustering technique that finds local
maxima in each iteration [31]. For this algorithm, initially,
the value of k is fixed. The optimum value can be found
by using the elbow method. The algorithm first assigns ran-
dom means on each cluster and classifies the data based on
distance from the mean. Usually, Euclidean or Manhattan
distances are used for calculating distance. Based on the
assigned clusters, the mean is again calculated for each clus-
ter, and then the data are reclassified. This process continues
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FIGURE 7. (a) An ANN architecture consisting of two hidden layers. In the input layer, there are three nodes, and there are two nodes for each
hidden layer. In each node, an activation function takes the input from the previous layer. (b) An RBFNN architecture. The nodes denoted by 8
implements radial functions. (c) A PNN architecture. The pattern layer is denoted by �, and the summation layer is denoted by

∑
. This

algorithm uses a probability distribution function. (d) DNN architecture. This network consists of four hidden layers which are fully connected.
(e) RNN architecture. There are two recurrent layers which has some feedback connection. These connections help finding historical patterns
in data. (f) LSTM cell structure. It uses some parameters which are, ht (output value of a cell), xt (input value of a cell), ft (forget gate value), it
(input gate value), Ot (output gate value), Ct (cell state), C̃t (candidate value). σ , and tanh are the activation functions. The output ht is
calculated as ht = tanh(ct )×Ot , where Ct = ft Ct−1 + it C̃t .

until there is no change in means between successive itera-
tions. The mean is calculated again to obtain the classified
data. Fig. 6(d) shows the workflow of this algorithm.

7) HIERARCHICAL CLUSTERING
Hierarchical clustering is a hierarchical decomposition of
data. For this, a dendrogram is built. Fig. 6(f) shows an
example of a dendrogram. Initially, this algorithm considers
each data points as an individual cluster [31]. Then two
clusters with the lowest Euclidean distance are combined into
one cluster. This distance is assigned as the height of the
dendrogram. Afterwards this cluster is compared with other
clusters to find two clusters with the lowest distance. This
process continues until k number of clusters are obtained,
or only one cluster is left. The value of k can be found from
the dendrogram by a horizontal line that is not crossed by the
verticle lines. Although it is a high-speed algorithm, it cannot
be used for a large dataset.

8) ARTIFICIAL NEURAL NETWORK (ANN)
The ANN is a synthetic mimic of the human brain in response
to some event. It is composed of some neurons, which are
linked together with some weights and biases. By training an
ANN, the biases and weights are tuned in such a way that
it produces output closer to the actual result [32]. Typically,
an ANN has an input layer that takes data, one or more
hidden layers for feature generation, and an output layer for

classification. Fig. 7(a) shows a common ANN architecture.
Each layer consists of neurons that have activation functions
inside. These activation functions take the inputs and biases
of the previous layers, calculate the weighted sum, and scale
it within some range. This way, the data move forward, and
the output layer produces predicted output. After this forward
pass, the error is calculated by the sum square function which
is the residue of actual output and predicted output. This error
function needs to be minimized. The BP algorithm is adopted
to minimize the error and adjust the biases and weights
accordingly. The first derivative of the error is calculated with
respect to the weights. Then learning rate is multiplied with
these values and is deducted from the weights to adjust them.

This method can be slow to converge to the optimal value.
To resolve this, the Levenberg-Marquardt method can be
used for faster convergence [33]. This method can approach
second-order training speed as the Hessian matrix is not
computed [33]. Since the error function is in sum squared
form, the Hessian function can be estimated as H = JT J ,
and its gradient is g = JT e, where J is the Jacobian matrix,
e is a vector of the network error, and T means transpose.
The Jacobean matrix is calculated using BP. The LM approx-
imates the Hessian matrix as Eq. (4).

XK+1 = XK − [JT J + µI ]−1JT e (4)

where I is an identity matrix and µ is a control parameter.
When µ is equal to zero, it works like Newton’s method,
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and when it is big, it works like a gradient descent with a
small step size. Newton’s method is faster for reaching the
minimization of the error. When a successful step is taken,
the value of µ is decreased, and vice versa.
GA is a nonlinear optimization technique with impressive

global searching ability [34]. This algorithm is often used
to set the initial weights and biases of the NN so that it
converges to its optimal form fast and gets out of the local
minima. In GA, a set of individuals are taken, which are
called population. Each individual in the population is called
chromosomes, and chromones are composed of genes. There
are five steps in this algorithm as follows:

1) initialization
2) computation of fitness function
3) selection of parent chromosomes
4) crossover between them
5) mutation

First, the initial population is selected, and the fitness score
is computed based on the ability of each chromosome to
compete with others. Interconnecting weights and biases of
NN can be encoded as a chromosome. Based on the fitness
score, a rank is provided, and chromosomeswith better fitness
scores have more chances of crossover. During the crossover
stage, a random point is selected from the parent gene. From
here, the genes of each parent chromosomes are exchanged
to produce an offspring. In the mutation stage, some bits of
the offspring are flipped, which helps them better the fitness
scores. Next, the fitness score of the offspring is calculated
to test if they are the next generation chromosomes [35].
This process is repeated for some generations and stops if
some specific number of generations are completed, or some
condition is reached.

In the particle swarm optimization (PSO) algorithm, par-
ticles are used to find the best solution. If the best set of
structural parameters for ANN needs to be calculated, this
method can be used to optimize it. In PSO, the particles
are initialized with some random value [36]. Then distance
is measured from the goal state to the current state of each
particle. There are two values which are the personal best
value (PBV) and the global best value (GBV). If the PBV
is higher than the particle’s previous best values, it updates
its PBV. The GBV is the best PBV achieved among all the
particles in that iteration. Based on the GBV, velocity is
calculated for each particle, and their data are changed. This
process will be terminated when all the particles reach the
goal state, or some predefined conditions are met.

Any boosting classifier uses weak classifiers to build a
robust classifier. In Adaptive boosting (AdaBoost), some very
simple classifiers are selected, which uses specific features
to classify data [37]. These classifiers can run very fast.
In AdaBoost first, a classifier classifies the data and looks
for the misclassified data points. Based on its performance,
a weight is given to this classifier. Then the misclassified data
points are given more importance, and the classifier’s goal
is to classify most weighted data points with more accuracy.

This process continues, and eventually, a collection of weak
classifiers with optimizedweights is obtained. This collection
of weighted weak classifiers can classify data with high
accuracy.

9) RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)
This is an NN that works with some variation in the activation
function. This RBFNN has three layers that are an input layer
which is not weighted and is connected to the input parame-
ters; a hidden layer where the radial basis functions are used
as activation function; and an output layer which is fully
connected to the hidden layer outputs. The layer structure is
represented in Fig. 7(b). In this network, some radial func-
tions, which can be a circle, describe different classes. From
the center of the circles, as we go away, the function drops
off. This drop-off is commonly represented by exponentially
decaying functions like e−bd

2
, where b controls the drop-

off [38]. If b is significant, then drop-off is sharp. When some
input is fed into the network, Euclidean distance is calculated
between that point and the center of the radial function.
The output of different hidden neurons is multiplied with
weights and forwards to the output neuron. In output neurons,
the linear activation function is used, and a weighted sum of
the output of the previous layer is calculated to generate an
output.

10) PROBABILISTIC NEURAL NETWORK (PNN)
The PNN algorithm works based on the Parzen window
classifier. The parent probability density function of all the
classes is approximated using a Perzon window function [3].
The Bayes rule is applied to the allocated highest posterior
probabilities for each class. The network architecture has
an input layer, a pattern layer, a summation layer, and an
output layer. The input vector is fed into the input layer.
The number of training vectors determines the number of
neurons in the pattern layer. The Gaussian function is applied
to the Euclidean distance of the input vector and each training
vector. This process is similar to RBFNN. In the summa-
tion layer, each neuron represents a specific class and com-
putes a weighted sum of all the pattern layer values it is
related to. This way, the class, which has maximum pattern
output, determines the maximum PDF. In the output layer,
the class that has the highest joint PDF is assigned as one,
and the rest are assigned zero. The PNN does not use general
ANN concepts like learning rules. Fig. 7(c) shows the basic
PNN architecture.

C. DEEP MACHINE LEARNING
1) DEEP NEURAL NETWORK (DNN)
This is a subclass of the ANN, which does not need hand-
crafted features to be fed into the network as it has the
capability of calculating complex features from the data. For
unstructured data, DNN works best. A DNN model has a
dense architecture of many hidden layers [39]. Each layer is
composed of neurons, and the neurons are connected with

VOLUME 8, 2020 11



M. H. A. Banna et al.: Application of AI in Predicting Earthquakes: State-of-the-Art and Future Challenges

weighted links and biases. The goal of the network is to
optimize them so that they can produce good classification
accuracy. A loss or error function like the MSE is defined for
this purpose. There are lots of DL-based models such as deep
belief network, convolutional neural network (CNN), RNN,
and so on. If there are 2N data points, usually an N number of
hidden layers are used. For the CNN, hidden layers compute
convolution operations with some fixed filter size and stride.
Each neuron has an activation function that is fired when the
input to that neuron is over some specified value. Because of
complex patterns, DNNs can face difficulties such as overfit-
ting. Regularization techniques like dropout of some neurons
can be used for solving this problem. Learning rates and
batched processing are used for computational convergence
with some optimization algorithms. Batch normalization is
used in some cases. Fig. 7(d) shows a DNN architecture.

2) RECURRENT NEURAL NETWORK (RNN)
Usually, NN does not have any feedback connection from the
output layer, for which these algorithms are not suitable for
operations where time-series data are involved. RNN works
best for activities that include time-series data [40]. Normally,
in an RNN, there is more than one recurrent layer. The
recurrent layers have feedback connections from the model
output. An RNN architecture is shown in Fig. 7(e). On every
iteration, the output of the model of the previous iteration
is passed through to recurrent layers and to the hidden layer
outputs. These outputs aremodified by the activation function
of the output layer and produce a new output. This whole
procedure can be illustrated by Eq. (5).

Oi =
n∑
j=1

f [Si.Wj + Oi−1.Wr ] (5)

where Oi is the output of the model after ith iteration, Si is
the input parameters, Wi is the weight of the input layer, and
Wr is the weights of the recurrent layer. RNN uses BP to
optimize the network [41].

3) LONG SHORT-TERM MEMORY (LSTM)
RNN can be prone to vanishing or exploding gradient prob-
lem where the gradient of the error becomes very small or
very large. Consequently, the network does not learn any-
thing. It also cannot handle long term dependencies. For
solving these problems, the LSTMwas introduced. It also has
a chain-like structure and has memory cells which consists of
three gates that are the input gate, the forget gate, and the
output gate [42].

Fig. 7(f) shows how an LSTM cell works. The forget gate
decides howmuch cell state would be stored. The information
that needs to be stored in the cell state happens in two seg-
ments. The input gate layer determines the values that need to
be updated. A vector of new candidate values is created using
a tanh function. These two are summed together and used to
update the state. The output gate uses a filtered version of
the output. A sigmoid layer determines which portion of the

previous cell state will be shown. This portion ismultiplied by
the tanh function of the cell state to produce the final result.
It overcomes vanishing or exploding gradient effect and can
learn long term dependencies [43].

Bi-directional LSTM is an LSTM network extension that
uses forward and backward pass to retain past and future
knowledge. Generally, this network works better than general
LSTM because bi-directional LSTM can better grasp func-
tion meaning. For this network layout, replication of the same
LSTM layer is used, but the input direction is reverse for one
layer. Bi-directional LSTM networks tend to do better than
one-way classification problems.

IV. AI FOR EARTHQUAKE PREDICTION
A. RULE-BASED APPROACHES
In rule-based approaches of predicting earthquakes, from
the knowledge base or from expert opinion, some rules are
defined. The input signals are fuzzified by some membership
functions so that they can be compared with the rules. The
output of this comparison is defuzzified to get the actual
output. This process is illustrated in Fig. 8, where the training
and testing data flow in a different path to get a prediction of
the earthquake. The studies are divided into two categories,
which are earthquake’s characteristics studies for rule-based
approaches, and earthquake and aftershock prediction studies
for rule-based approaches.

1) EARTHQUAKE’s CHARACTERISTICS Studies
In this portion, the studies that are related to earthquake
prediction studies but not performed earthquake prediction
are discussed. Earthquakes explanation system, usage of SES,
seismic moment studies and prediction of b-value related
researches are presented here.

Bofeng and Yue [44] proposed an explanation system
named ESEP3.0 for providing information about earthquake
prediction to people with different knowledge level. They
have used a Fuzzy user model (FUM) based customized
explanation system which categorizes users based on their
knowledge. First of all, the user’s description was given
using FUM. FUM used trapezoid membership functions to
convert the knowledge level to a fuzzy set. An adaptive inter-
view algorithm was used for determining the initial knowl-
edge of the user using random sequences, which consisted of
a random interview and adaptive interview. When the user’s
knowledge increased, their level needed to be changed, which
was done by the Adaptive update algorithm. This was done
based on the history of the user’s dialogue. Based on this
updated knowledge level, the explanation about earthquake
prediction was provided.

Zhong and Zhang [45] proposed a mathematical pre-
diction model for predicting cause of Reservoir-induced
earthquakes in the three-gorge reservoir and its peripheral
regions in the Yangtze River using fuzzy theory. They con-
structed the fuzzy evaluation system based on two main
factors: water permeation-accumulations and strain energy
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FIGURE 8. Prediction process of rule based approaches. Usually, the dataset is divided into
training and testing samples. Based on the training data, rules are generated. The testing
samples are fuzzified and compared with the rules to infer an output.

accumulation-elimination, which corresponds to another six
sub-factors (fractures, fracture angle, rock, water load, karsts,
and crack). A fuzzy matrix was developed for weight calcu-
lation. These weights were used to compare the sub-factors
to find the cause of an earthquake. In the upper level, factors
were compared with the immediate lower level factors, and
thus a reciprocal matrix was generated. The consistency ratio
was showed to indicate the level of consistency of pairwise
comparison. The factors for reservoir induced earthquakes
were determined based on these pairwise comparisons.

Konstantaras et al. [46] proposed an NFM based on an
adaptive filter for detecting electric earthquake precursors for
the earth’s seismic electric signal (SES). They have used two
NFMs. In the first model, the effect on the earth’s electric
field by the magnetotelluric variations was predicted by using
the variations of the earth’s magnetic field. The magnetic
field distribution and electric field distribution of 2 hours
of 29 December 2005 from Greece were used for training
and testing purposes. They have used 7200 samples from
these distributions. Current data, along with the previous
three data, were used as input to the model to get the fol-
lowing data. This model used subtractive clustering (SC),
and the least square estimator was used for rules generation
and membership functions. The second model predicted the
electric signal variation by using electric signals when no
seismic events were happening in the recorded signal. If there
was some residual available, then that could be detected
as an anomaly in the SES. Both the NFMs had six layers
where, the first layer took input, the second layer assigned
membership functions, the third layer guided the data using
16 rules, the fourth layer provided output membership degree,
the fifth layer defuzzified the membership degree and layer
six provided the crisp output.

Mirrashid et al. [47] investigated the capability of ANFIS
to predict the next earthquake’s potential seismic moment.
A dataset consisting of 1480 records that occurred between
1950 and 2013 in the region of Iran was selected for
this research. Two seismic indicators, the Gutenberg-Richter
b-value and the period of earthquake occurrences, were
chosen as input. The logarithm of the cumulative amount
of seismic moment between the original event and the
future earthquake was the output indicator. A Sugeno
type fuzzy system containing five layers was proposed
in this research. The antecedent parameters like LSE

(Widrow-Hoff learning rate) and the membership functions
were trained using the BP algorithm. An SC method based
ANFIS was proposed in this research. This generated ANFIS
with five fuzzy rules and nine membership functions for each
input, considering a range of influence of 0.17.

Rahmat et al. [48], compared extreme learning machine
and neuro-fuzzy based ANFIS model in prediction of b-value
in the Andaman-Nicobar area. The ANFIS had four inputs
and one output with five layers. For fuzzification, the bell
membership function was used. To adjust the weights,
the model used gradient descent with the BP algorithm. The
ELM was a single, hidden layer feed-forward network that
randomly selected weights to make the model faster and
more generalized. It used auto-correlation and normalization
before training the model. The ELM parameters were chosen
randomly for increasing generalization capabilities. Gradient
descent algorithm was used for error correction.

2) EARTHQUAKE AND AFTERSHOCK PREDICTION STUDIES
In this portion, the studies that performed earthquake predic-
tion are studied. Earthquake magnitude prediction, time of
occurrence prediction, location prediction, aftershock predic-
tion, epicentral prediction-based studies are discussed in this
portion.

Ikram and Qamar [49] designed an expert system that
could predict earthquakes at least twelve hours before its
occurrence. The data were selected from the USGS repos-
itory, and the necessary features were selected. Data from
all around the world were considered for this system. Based
on the location of the epicenter, the world was divided into
12 portions. Then they used frequency pattern mining with
the help of a frequency pattern growth algorithm. This algo-
rithm used a divide-and-conquer method and generated a
frequency pattern tree to find fifty-six frequent items. From
that, eighty rules were derived. The rules were then converted
to inferential rules and then to predicate logic. Then they
found only seventeen distinct rules. The rule-based expert
system was composed of a user interface, a knowledge base,
and an inference engine. The inference engine matched the
input from the user with each rule in the knowledge base
and predicted the magnitude, location, and depth of the next
earthquake.

Konstantaras et al. [50] have proposed a hybrid NFM to
predict the interval between two high magnitude seismic
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events in the southern Hellenic arc. They tried to draw a
relation between the seismic frequency and the occurrence of
high magnitude seismic events. The smaller seismic events
accumulate energy in the earth’s crust, and a series of these
events leads to a high magnitude seismic event. There were
four inputs to the fuzzy system, which were related to the
mean seismic rates and duration between two seismic events
having a magnitude greater than 5.9. In a fuzzy network,
the number of neurons depends on the input and number of
membership functions. The proposed fuzzy network worked
in a similar way of the feed-forward network where weight
was updated based on the difference of actual output and
expected output. They trained the NFM for 20 epochs, where
the error was ideally zero. There was only one output neuron
that provided the date of the next big seismic event.

Dehbozorgi and Farokhi [51] proposed a neuro-fuzzy clas-
sifier for predicting short-term earthquakes using seismogram
data five minutes before the earthquake. The equal num-
ber of seismogram signals were selected, which have and
do not have an earthquake after five minutes. The selected
data were from Iranian region and to give them as an input
to the model, they were sliced. The baseline drift of the
signals was removed by the fourth-order Butterworth high
pass filter, which normalized the data. Fifty-four features
were calculated by statistical analysis, wavelet transforma-
tion by Daubechies-two methods, fast Fourier transform,
entropy calculation, and power spectral density calculation.
There were sixty rules for the NFM, which was compared
with a multi-layer perceptron (MLP) with two hidden layers
having thirty neurons. After training, the feature selection
was performed using the UTA algorithm which replaces a
feature with the mean value of that feature and measures the
performance. If the performance decreases, then the feature
is considered as an important one. This feature selection
procedure improved the base model.

ANFIS is a very popular model among the earthquake
prediction researchers as many models were developed based
on them [52]–[57]. Zeng et al. [52] proposed an adaptive
fuzzy inference model to predict epicentral intensity. They
used the magnitude and depth of hypocenter as input to the
model, and the model provided the intensity of hypocenter as
output. The data from the Sichuan province of China from the
year 2004 to the year 2015 were used for this study. They also
calculated the mean of the magnitudes and variance of the
substantial magnitudes. The membership function was ridge
shaped, and the membership degree was one as the mean was
in the center, and the variance was the same as the width. The
samples were classified according to the magnitude Ai and
the depth of hypocenter Bj. Then they calculated the mean of
magnitude, depth, and epicentral intensity. When there were
less than three samples, the mean of epicentral intensity was
adjusted by using the growth rate.

Andalib et al. [53] came up with the idea of using a Fuzzy
expert system for solving the problem of predicting time
between two earthquakes and their distance of occurrence.
Sugeno type ANFIS was used for this purpose. The data

were collected from the Zagros earthquake catalog and used
four parameters as input to the inference system. The input
parameters were the magnitude of two earthquakes, time
distance, and geographical distance. The knowledge of the
human experts were used to generate the rules for the ANFIS
as this model tries to replicate the performance of the human
experts. Expert opinion was used to fuzzify the crisp inputs
as well. Based on the rules of the FIS the crisp outputs
were generated which was the prediction of an earthquake
before 6 months. This model considered the most powerful
earthquake in the area and compared it with a magnitude
thresholdM and distance Nmiles. The value of N andMwere
optimized for the prediction.

Shodiq et al. [54] came up with the idea of using a
combination of automatic clustering and ANFIS for earth-
quake prediction. The proposed model involves pre-
processing, automatic clustering, and ANFIS. Automatic
clustering used hill climbing and valley tracing for finding the
optimum number of clusters, and for the clustering between
zones, the K-means algorithm was used. The data were
clustered in seven zones. They selected the magnitude of
completeness as 5.1 Mw. In the ANFIS portion, seismic
indicators were calculated and normalized within a range
of 0.1 to 0.9. The ANFIS model used a Sugeno model having
five layers consisting of adaptive nodes and fixed nodes.
They have used data of Indonesia from the year 2010 to the
year 2017. The ANFIS used 2 Gaussian membership function
to get the membership degree. The model was trained with
100 epochs to predict the occurrence and non-occurrence of
an earthquake.

Kamath and Kamat [55] tried to predict the magnitude
of the next earthquake using ANFIS. Here the ANFIS had
five layers, and the Takagi Sugeno type FIS was used. Data
from Andaman and Nicobar Island was used for training and
testing purposes. While clustering, they checked SC and grid
partitioning (GP) for building the initial FIS. They chose Tri-
angular and Gaussian shapes for input membership function.
The parameters of the membership functions were optimized
using BP and hybrid algorithms. The SC performed best with
8 fuzzy rules and 70 neurons, which varied the influence and
squash factor. The model was trained for 50 epochs, and the
squash factor was selected as 1.25 for the training process.
Pandit and Biswal [56] proposed ANFIS with GP and SC for
predicting the magnitude of an earthquake. Ground motions
of 45 earthquakes from the USA, Canada, Japan,Mexico, and
Yugoslavia were selected as a dataset. In GP, a uniformly por-
tioned grid with defined membership functions and param-
eters were generated to produce an initial FIS. In SC, each
data point was selected as a cluster center according to the
surrounding data point’s density and found out the form
and an optimum number of fuzzy rules. Triangular member-
ship function was used to generate the membership degree.
Hybrid optimization and BP were used for training using
MATLAB GUI.

Mirrashid [57] proposed ANFIS for the prediction of the
earthquake over the magnitude of 5.4. Earthquake catalog
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TABLE 2. A summary of used algorithms and features by rule-based earthquake prediction approaches.

from the year 1950 to 2013 in the Iranian region was used as
a dataset. The dataset had different magnitude scales which
were converted to the moment magnitude scale. They used
seismicity indicators as input to the model and normalized
them between 0.1 and 0.9. Generally, the seismicity indica-
tors are elapsed time (te), mean magnitude (Āe), earthquake
energy (Ee), slope of magnitude (dB) ( dAedt (dB)), mean square
deviation (1e), meantime (t̄e), magnitude deficit (δAe), and
coefficient of variation (ρ). The ANFIS that they proposed
was the Sugeno type five-layer model, which is composed
of BP and least square estimates. GP, SC, and fuzzy c-mean
algorithms were used along with ANFIS. The GP model used
a predefined number of membership functions to divide the
data spaces into rectangular sub-spaces. The SC algorithm
calculated the potential of each data point for being the cluster
center. The unsupervised FCM learning algorithm considered
each data to be part of all classes.

Bahrami and Shafiee [58] proposed a fuzzy descriptor
model with a generalized fuzzy clustering variety (GFCV)
algorithm to forecast earthquakes in Iran. Linear descriptor
systems and fuzzy validity functions were used to divide the
input space of a fuzzy descriptor into linear sub-spaces. The
normalized Gaussian type functions were used as validity
functions. This model is an extension of the Takagi-Sugeno
fuzzy model. The linear system descriptors and validity func-
tions were adjusted using the GFCV algorithm, which calcu-
latedMSE and stopped the system’s trainingwhen it started to
increase. They have used 560 seconds of seismograms signal
of an earthquake sampled at 50 Hz.The model used 7 neurons
and was trained for 7 epochs only to produce a better result
than other fuzzy descriptor algorithms.

Table 2 summarizes the used algorithms and the
features of the studies that used rule-based prediction
approaches.

B. SHALLOW MACHINE LEARNING
In shallow ML, there are classical ML approaches, clus-
tering approaches, and NN-based approaches. The classical
ML algorithms such as SVM, SVR, KNN, RF, DT, etc.,
use handcrafted features for prediction of an earthquake.
As they cannot generate feature themselves, feature selection
is an essential aspect of this prediction process. Fig. 9 shows
a basic diagram of these algorithms classifying earthquake
events. This section will be divided into two categories to
keep similar studies under the same hood. The categories
are- earthquake and aftershock prediction studies for shal-
low machine learning-based techniques, and earthquake’s
characteristics studies for shallow machine learning-based
studies.

1) EARTHQUAKE AND AFTERSHOCK PREDICTION STUDIES
In this portion, the studies that performed earthquake and
aftershock prediction are studied. Earthquake magnitude
prediction, time of occurrence prediction, location predic-
tion, earthquake detection, aftershock prediction, and energy
prediction-based studies are discussed in this portion.

Jiang et al. [59] tried to predict the most significant annual
magnitude of the earthquake in China synthetically. Differ-
ent seismic precursors such as stress, water level, hydro-
chemistry, gravity were collected for the north region of
China, and Beijing. Their choice of the algorithm was SVM,
and they have selected twelve seismic precursors as features.
The SVM algorithm maps the sample space into a high
dimensional Eigenspace with the use of nonlinear functions.
Since seismic events are very nonlinear, SVM helps in pre-
dicting them accurately. The SVM model used the polyno-
mial kernel function and tried to optimize the value C, which
is the punishment of samples for which the error is more
than ε. The suitable value for ε was found to be 0.6707.
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FIGURE 9. Earthquake prediction process of classical ML approaches. First, the earthquake
parameters are preprocessed to remove missing values. Then features are calculated from
them. Selected features are fed to the ML algorithms to provide an output. Based on the
performance, the hyperparameters of the algorithms are changed.

Astuti et al. [60] proposed a method to predict earthquake
location, magnitude, and time using singular value decompo-
sition (SVD) and SVM. They have used the earth’s electric
field signal as input to the model. They have used data from
Greece for the year 2003 to the year 2010. In the preprocess-
ing stage, the E-W and N-S pole field values were squared
and summed, and then their root was calculated. The Gfdiff
was calculated from the input signal, whichwas the difference
between the nth sample and (n-1)th sample electric field. The
peak from the Gfdiff was calculated, and the slope to the next
day’s peak was captured. For feature extraction, first SVD
was applied for orthogonal transformation, and segments of
Gfdiffs of 180 samples were separated. The LPC coefficients
were found using the Levinson-Durbin algorithm. Then the
features were used as input to the SVM classifier, where a
hyperplane was determined to separate the data into differ-
ent classes. The optimization was done using the Lagrange
multiplier, and for nonlinearity, kernel functions were used.

Hajikhodaverdikhan et al. [61], proposed an SVR model
optimized by particle filter to predict mean magnitude and
number of earthquakes in the next month in Iran. They have
evaluated 30 precursors for this study. In SVR, the model
searches for a hyperplane that can separate the dataset into
different portions based on classes. Particle filters estimate
the state of a linear system and convert it to have some ran-
domness in the presence of noise. SVR has some parameters
like C, ε, and kernel scale. When C value increases, the gen-
eralization of that model decreases, but error performance
increases. ε represents loss function whose lower value is
desired, but if it is zero, than there may be some overfitting
present. In this model, Gaussian RBF was used as a kernel
filter. These three parameters were selected using the particle
filter by calculating probability density function with particle
weights. The kernel width, C, and ε are the parameters that
were optimized by the PSO to improve performance of SVR.

Huang et al. [62] proposed a hybrid algorithm of SVR and
NNs to predict earthquake over magnitude five in Hindukush,
Chile, and South California. The cutoff magnitude for Hin-
dukush, Chile, and South California are 2.6M, 3.4M, and
4.0M, respectively, which are calculated from the GR-curve.
They have calculated 60 parametric and non-parametric fea-
tures. The maximum-relevance-and-minimum-redundancy
feature selection technique was used for each region, and

separate features were selected for a different region. Based
on the features, the input vector was given to the SVR
model. The output was used as the input of the LM-NN.
The weights were passed to the Quasi newton network and
from that to the Bayesian regularization NN. With each NN
to escape local minima, an enhanced PSO was used. MCC
was chosen as optimization criteria for PSO. It optimized the
hyper-parameters of SVR to increase its efficiency.

Li and Kang [63] proposed a hybrid algorithm of KNN
and Polynomial regression (PR) to predict the aftershock of
an earthquake. The time intervals of aftershocks were the
conditional attribute, which was converted to seconds, and
aftershock magnitude was the decision attribute. They have
collected the time intervals of the earthquake aftershocks
of the Wenchuan region of China. The shortest distance of
a sample to other samples was calculated using Euclidean
distance, and these values were sorted to find K neighbors.
The decision attributes were modeled by PR, calculating the
least square estimation of the coefficient vector. Then the
model was compared with the regular KNN and distance
weighted KNN based on absolute error (AE) and RE.

Prasad et al. [64] proposed a seismic wave-based earth-
quake detection method that used Haar Wavelet transforma-
tion (HWT) for denoising purposes. They collected seismic
signal of 140 earthquakes from different sources. These data
were de-noised using HWT. The next step was to apply a
fast Fourier transformation spectrum analysis to calculate the
energy and frequency of the concerned signal. Using this
energy E of the signal, the magnitude M was calculated with
the formula Eq. (6) [65].

M = |(logE − 11.8)/1.5| (6)

If the magnitude was greater than three, then it was called
an earthquake. These data were then selected as a dataset
for different ML algorithms, such as- RF, Naïve Bayes (NB),
j48, REP tree, and BP.

Sikder and Munakata [66] tried two algorithms that are
rough set and DT for identifying their performance in pre-
dicting an earthquake. They have used fifteen attributes
related to Radon concentration and climatic factors. For the
Rough set, the decision table was generated with these fifteen
attributes. They used 155 records of weekly geo-climatic
conditions regarding earthquake. Then approximation of each
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FIGURE 10. Earthquake prediction process using clustering approaches. The processed seismic data
are given as input to the clustering layer, which divides them into different clusters. For example,
here, Cluster 1, Cluster 2, and Cluster 3 are three clusters calculated from the seismic data. Each
cluster is classified using different versions of the classification algorithm based on their
characteristics, which produce the desired output.

decision class was constructed considering all the conditional
attributes. They have used the discernibility matrix algorithm
to find the smallest subset of attributes that represents the
data. 440 reducts were found with whom fifteen decision
rules were made using the learning from example, module 2
algorithm. For the DT algorithm, tree-building was done
using the C4.5 learning scheme. For both cases, the model
was validated using leave one out cross-validation method.

Marisa et al. [67] tried to predict the probability of the
number of earthquakes in 15 days period in Sumatra. First,
the earthquakes with a magnitude greater than 4.9 and
depth less than 70 km were selected. They collected earth-
quake catalog of Sumatra island from the year 2008 to the
year 2018. Then the variance value and average value were
calculated. The variance value was 3.463, which was higher
than the average value of 1.676. This indicated that there
was oversampling. Hence, they should have used a Pois-
son mixture model, but the earthquake data showed auto-
correlation. So, they selected Poisson Hidden Markov Model
(PHMM). The model parameters were selected using the
Expectation-Maximization (EM) model and parameters with
two, three, and four hidden models were selected. With the
model, they predicted the earthquakes for 2017 and 2018,
compared them with the actual prediction, and used the
chi-square test for validation.

In clustering-based studies, first, the study area is divided
into different clusters. The data which are of the same qual-
ity and characteristics are clustered in a group. Based on
individual clusters, the decision making process changes.
Fig. 10 shows this process of clustering, leading to earthquake
prediction.

Florido et al. [68] proposed a clustering-based model for
the prediction of an earthquake in Chile. First of all, in the

preprocessing stage, they removed all the foreshock and after-
shocks from the dataset. This is done to get only the main-
shocks. They collected data for Talca, Pichilemu, Santiago,
and Valparaiso region for this study. Then they calculated the
b-value, magnitude, and time of occurrence to get the dataset
prepared. For calculating the b-value, 50 earthquakes with a
magnitude of more than three were used. Then they used the
clustering algorithm to make clusters that need the optimum
value of the number of clusters. Silhouette index was used to
get the value. Then using Euclidean distance for the K-means,
the clusters were defined. For earthquakes with a magnitude
of more than 4.4, patterns were searched, which can be used
for predicting future earthquakes.

Florido et al. [69] have used a tree-based algorithm that
used exhaustive search for predicting an earthquake in seven
different datasets. They used an earthquake catalog to gen-
erate a propositional dataset which has Gutenberg-Richter
parameters to predict the earthquake with the highest magni-
tude. They have collected earthquake catalog of Chile, Iberian
Peninsula, and Japan for this study. From this dataset, for
training purposes, clustering and groupingwere done. For this
grouping, the number of clusters (K) and the length of the
pattern (A) were used. With exhaustive searching, the best
combination of A and K was obtained. Then a tree of the
precursors was extracted, and patterns were captured using
the best precursors from each sub-tree. Based on these proce-
dures, an earthquake of the next day was predicted.

Hierarchical K-means algorithm was used by Shodiq et al.
for researches [70]–[71]. Shodiq et al. [70] proposed a spatial
analysis and automatic clustering-based technique to predict
earthquake’s time period. They collected earthquake data
from the year 2004 to the year 2014 for the Indonesian region.
At first, they collected data, normalized, and vectorized it.
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Then they used the valley tracing technique. They calculated
the accuracy of clustering and found that six clusters can opti-
mally separate the data. Then hierarchical K-means cluster-
ing is done where centroid K-means outperformed the other
K-means. Then the probability is calculated using Eq. (7).

P(M ,T ) = (1− e−N (M )T ) (7)

where P is the probability of an earthquake with magnitudeM
and time period T, and N(M) is index seismicity. Then they
divided the dataset into learning samples and testing samples.

Shodiq et al. [72] also proposed an automatic clustering
and ANN-based method to predict an earthquake of magni-
tude higher than 5.5 within 5 days of the occurrence of an
earthquake. They have collected information about 82,580
earthquakes in the Indonesian region from the year 1910 to
the year 2017. At first, they preprocessed the dataset and
prepared the dataset for clustering. The optimum number of
clusters was obtained using valley tracing and hill-climbing
algorithms and then clustered the data using the K-means
clustering algorithm. Then they sub-clustered the seismic
parameters and calculated the input parameters. There were
seven input parameters, and five of them were obtained
using the Gutenberg-Richter law. Then a NN consisting of
seven input neurons, two hidden layers where each layer had
thirty-two neurons, and one output was used to predict the
earthquake. They performed 100,000 training iterations with
a learning rate of 0.01 to the BP algorithm.

Shodiq et al. [71] proposed a hierarchical K-means clus-
tering algorithm for predicting aftershocks of earthquakes
within five days. The earthquakes of magnitude greater or
equal to 5.1 were selected for calculating seismicity param-
eters. This research used earthquake catalog of 1910 to
2017 for Indonesia by the BMKG andUSGS repositories. For
clustering the data based on epicenter parameters, the first
valley tracing and the hill-climbing algorithm were used
to find the optimal number of clusters which analyzed the
moving variance of the clusters and used it to find local and
global minima. The optimal cluster number was six. Then
hierarchical clustering was used for clustering the data into
six clusters. An NN was used to predict aftershocks. The
number of hidden layers and neurons was found by trial
and error. The best combination had two hidden layers, with
thirty-two neurons in each, having a learning rate of 0.1.
This model performed better for earthquakes with a higher
magnitude than 6.

Mejia et al. [73] used the Dobrovolsky clustering and
Kannan-Mathematical model for predicting earthquakes with
a magnitude of more than 3.9 in the Philippines. The data for
earthquakes in the year 2011 to the year 2013 were collected
for this research. Since there are many fault lines in this area,
the earth’s electric field was used to cluster the area. To find
the radial area, Dobrovolsky-Megathrust equation was used.
The epicenter of the megathrust was found using the latitudi-
nal cluster’s geometrical center. Then Kannan-Mathematical
model was applied, which is based on the spatial connection
theory. According to this theory, the earthquakes in the same

fault line are connected historically. So, they calculated the
Poisson range identifier (PRI) in this work. Poisson distri-
bution was used to calculate distance factors. The distance
factor and recursive Poisson distribution were used to predict
an earthquake.

Tan and Cai [74] proposed an agglomerative hierarchical
clustering (AHC) based earthquake prediction algorithm that
can reduce the effect of an imbalanced dataset. They ana-
lyzed the earthquake events in the Yunnan Region between
1970 and 1998, and they only took the events whose magni-
tude was greater than 3.5. They found that positive classes
are in very fewer numbers compared to negative classes,
which make the dataset imbalanced. They imposed the AHC
method, which was proposed by Cohen to oversample posi-
tive class and then applied Biased SVM for classification pur-
poses. AHC constructed the dendrogram using single linkage,
group average or multiple linkage algorithm and calculated
centroids from all the clusters. The centroids were joined with
the minority samples and dealt with the data imbalance.

Lu et al. [75] proposed a GA-based clustering algorithm
to predict the location and timing of earthquake aftershocks.
They have used seismographs of Southern California and
Japan, which was used to create a directed graph. The correla-
tion between each nodewas calculated, which represents rela-
tion tremors and time-stamps of two points. The connection
weights were converted to one or zero based on whether there
was a connection between the two points or not. After doing
clustering on this directed graph using a GA, a central point
was found, which was the epicenter of the main earthquake.
From here, some sub-clusters can be found, which reoccurred
in different places of the graph. A regression algorithm was
used to predict future re-occurrence of the aftershocks.

Shao et al. [76] proposed an ant-colony clustering (ACC)-
based method for earthquake prediction. At first, they
selected the duration of 14 different anomalies and classi-
fied them into seismological and precursory anomalies. The
number of anomalies was also considered as input. They
classified the magnitudes into three groups and the ACC was
done. In the ACC, an ant calculates its similarity among its
neighborhood and decides whether to make a cluster with
it or not. The agent can change the similarity and exert
its influence in clustering. The parameters they used were
α = 0.8, k + = 0.8, and k− = 0.2 for the optimized model.
Zhang et al. [77] proposed a PSO based clustering tech-

nique to predict earthquake and compared the proposed
model with a model using the K-means clustering tech-
nique. PSO has fewer parameters and can solve multi-domain
and nonlinear problems. In the research work, 14 different
abnormal indices were considered for earthquake predic-
tion. This research tried to find a connection between the
earthquake magnitude and precursors such as short levelling,
belt, and seismic gap. At first, they normalized the data to
remove the dimensional effect. Then parameters were ini-
tialized automatically, and the PSO algorithm was applied
to it. Then an evaluation function was designed. They set
the number of particle swarms to 500, α = 0.8, k+ = 0.8,
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TABLE 3. A summary of used methodologies and features by the earthquake prediction researches that included classical ML and clustering techniques.

k− = 0.2 for finding optimized output. Table 3 shows
the research methods and used parameters by the classical
ML-based and clustering-based researches.

The NN-based methods for prediction of earthquakes use
an architecture that consists of weights, biases, connections,
and neurons. In each neuron, there is an activation function
that is connected to links from the previous layer. This acti-
vation function fires when the value of the input is higher than
the threshold of the activation function. An error is calculated
using the predicted output and actual output. Some optimiza-
tion function try to minimize the error value by updating
the weights and biases of the network to achieve the final
output. Fig. 11 depicts this process of output generation by
a NN-based model.

ANN-based researches are used in many cases for predic-
tion of earthquake [78], [79]. Alarifi et al. [78] tried to find
out the best feed-forward NN for prediction of an earthquake.
After collecting data from the earthquake catalog of the north-
ern Red Sea area, first, they filtered the noise from the data
and then reformatted the location parameter with 16 × 16
tallies. This reduced the possibility of different locations
by 99.84%. They calculated different statistical features on
the different features. They calculated earthquake sequence
number, tile location, earthquake magnitude, and the depth
of source to use them as features. Then they tried different
delays, the number of hidden layer neurons, and activation
functions and calculated MSE and MAE to find the best
combination. The best combination was found with a delay
of three. The number of hidden layers was two. The first
hidden layer had three neurons, the second had two, and the
activation function is Tansig.

Reyes et al. [80] proposed a NN-based model that could
predict earthquakes more than a specific threshold five days
before the earthquake in Chile. Since Chile is a country with a

large area and the seismicity of different areas does notmatch,
they divided the country into six different regions based
on Kohonen-self organized map. Among them, four cities
(Talca, Pichilemu, Santiago, and Valparaiso) were selected
for analysis using four different ANNs. All four ANNs had
the same structure, but the weights were different. The input
layer of the ANN had seven inputs, and the hidden layer
had fifteen neurons. The learning was done using BP with
a sigmoid activation function. The model was then compared
with SVM, KNN, and K-means algorithm based on zero level
hit, one level hit, Sp, and Sn.

Morales-Esteban et al. [81] proposed an ANN for pre-
diction of earthquake magnitude greater than a threshold or
between some range in the area of the Alboran Sea and
Azores-Gibraltar Fault. For training the model of the Alb-
oran Sea, data from December 2004 to May 2005 were
used whereas for Azores-Gibraltar earthquakes. data from
July 2003 to June 2005 were considered. For this model,
as the dataset behaves like episodes of events, no preprocess-
ing was done. They used a three-layer feed-forward network
with a BP learning algorithm. The hidden layer has seven
inputs and fifteen neurons. Hence, the number of neuron con-
nections was 122. The model was trained with 300 epochs,
and the activation function was sigmoid shaped.

Moustra et al. [82] used time-series magnitude and SES for
prediction of the most significant seismic event in the next
day. They used data of Greece for the year 1980 to the year
2001. First, they used a three-layer perceptron model with
a learning rate of 0.4, a momentum of 0.8, and the optimal
width of time moving window before the concerned day was
30 days. The outliers of the data were the seismic events,
which had a magnitude greater than 5.2. Next, they used only
the outliers for training all the data. Afterwards, they used
seismic signals calculated by the VAN team, which had only
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FIGURE 11. Earthquake prediction process of a NN-based model. The seismic inputs of the network go through the activation functions to
produce some output which is multiplied by weights. The difference between the final output and the actual output is the error which is used to
adjust the weights to predict earthquake more accurately.

29 instances. These seismic signals were collected between
the year 1983 and the year 1997. They randomly selected the
values for other 157 events, and the model did not work out.
Then they used the NN model to work reversely to generate
the SES for the 157 events, which led to excellent results.

Xu et al. [83] proposed a method for predicting earth-
quakes, which are greater than a magnitude of 5, using
DEMETER satellite data and seismic belt information.
They first converted the DEMETER data to raster data
and considered a lithospheric abnormal electrical signal of
(30km × 30km) area around the epicenter. The variations of
electron and ion densities within 30 days of the earthquakes
were used. For seismic belt information, if the epicenter of
an earthquake was within 60 km of any seismic belt, then
the parameter was set to one. They also calculated global
background signal based on seasons when there were no
seismic events available. They used a three-layer BPNN with
a linear activation function. The number of hidden neurons
was 20, and the output activation function was sigmoid.

Narayanakumar and Raja [84] have proposed a BPNN
model for the prediction of an earthquake in the Himalayan
region of India. They have used eight seismicity indicators,
which have been calculated from the earthquake catalog using
Gutenberg-Richter law. The earthquakes over 2.5 magnitudes
were considered for this study, which was collected from
the Global Hypocenter Database. The eight input seismicity
parameters were calculated using data of the Himalayas from
the year 1987 to the year 2015. Then they have used a NN
with input neurons having nine neurons, a hidden layer with
twelve neurons, and an output layer with a single neuron.
The choice of activation function was Tan-Sigmoid and Pure-
lin. They trained the model with the LM algorithm with

10,000 epochs. The initial learning rate was 0.01, and the
momentum was set to 0.94.

Cheraghi and Ghanbari [85], predicted the timing of an
earthquake and its energy using an NN. They have used
earthquake timing, depth, magnitude, and distance to the
fault line from the epicenter as input. At first, all the data
were normalized at first. The NN used a BP algorithm as a
learning algorithm, and MSE was used for error calculation.
The NN had two hidden layers with three and two neurons,
respectively. A sigmoid function was used as an activation
function that brings nonlinearity to the network. For energy
prediction, they used the predicted magnitude. The initial
learning rate was set to 0.001 and the momentum of the first,
second, and output layer was 0.02, 0.01 and 0 respectively.

Xie et al. [86] proposed a NN model for predicting an
earthquake in the East Chinese region. For this, at first, they
collected the data from CENC and removed the aftershocks
by using K-K rule. Then two seismicity rate variations V1
(3.5 < M < 4) and V2 (M < 4.5) were calculated. These
variation rates and time intervals were the input to the BPNN.
The model provided the time of occurrence of the earthquake.

Hu et al. [79] proposed an integrated NN and LR-based
model to predict the magnitude of an earthquake. They col-
lected earthquake catalog of north and south China from
the year 1970 to the year 2000. They calculated seismic
indicator for the range of six months leading to 61 sam-
ples. They selected 51 samples for training the models and
10 samples for testing. They evaluated the performance of
LR and the performance of three-layered BPNN where the
parameters were the input. They calculated the regression
prediction value (MLR). After that, they found the difference
between regression value and actual magnitude (1MLR).
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Next, the BPNN took 13 parameters as input: six seismic
parameters, six cosmological parameters, and the difference
between actual magnitude and regression magnitude. They
set the number of neurons in hidden layers to 25, and the
output layer provided the predicted deviation (1MLN ). The
final estimated output was calculated using Eq. (8).

MLRN = MLR +1MLN (8)

Some of the earthquake researches are based on LM algo-
rithm [32], [87], [88]. For instance, Zhou and Zhu [87] pro-
posed an LM-BP based model to predict the magnitude of an
earthquake. Usually, BP models face problems such as slow
learning and can not find the global minima. LM algorithm
can solve this problem. This model converges to the goal
at a faster speed and significantly reduces the problem of
not reaching global minima. They proposed this model to
have one input layer with seven inputs, one hidden layer with
sixteen neurons, and one output layer. They tried different
combinations of hidden layer neurons for achieving the goal.
The S-tangent transfer function was used as an activation
function for the hidden layer, and S-logarithmic was used for
output layer.

Kulahci et al. [32] proposed a three-layer feed-forward
NN algorithm for earthquake prediction using the monitoring
of Radon gas concentration. Data have been collected from
the Turkish-Arabian fault boundary, where Radon started to
concentrate from 2004. They have used eight parameters
that are related to Radon concentration and soil tempera-
ture. By using statistical analysis, they saw that two-third of
the attributes are essential, and they must be used in every
case. The model uses gradient-descent for weight update and
LM algorithm for BP procedure as it converges fast. The
transfer function used for the input layer to the hidden layer
was tangent sigmoid function, and the hidden layer to the
output layer is the Purelin function. To avoid overfitting,
automated training-testing was used while training where the
training process halts at some random time to check error.

Ma et al. [88] proposed a BP-basedmodel using the param-
eters from the DEMETER satellite for prediction earthquake
before thirty days. The DEMETER satellite provides data
of seismic electromagnetic radiations like ion and electron
densities, and temperatures. When there is no earthquake
distribution of wave intensity, they called it background,
which gets affected by environmental parameters. To predict
an earthquake, they removed the background from the signal.
Then they used it as input to the three-layer perceptronmodel.
The LM algorithm was used for learning as it works fast.
The MAE was used for error calculation, and the activation
function was sigmoid to add nonlinearity. The validation
of the model was performed based on the seismic events
happened in the year 2008.

Hu et al. [89] have used a hybrid algorithm of linear regres-
sion (LR) and BP to predict earthquakes in three months of
range. The study area for this research was Beijing and they
collected earthquake catalog of the year 1990 to the year
2003. They converted the different earthquake magnitude

scales to the Richter scale value. They have used five seismic
parameters and two-time varying parameters for training the
model. First, LR was used to calculate MR (regression pre-
diction value) based on the seismic parameters. Then 1MR
was calculated as 1MR = MA − MR, where MA is the
actual magnitude of the earthquake. After that, BP was used
to predict the magnitude of the earthquake, which is 1MN .
Then they integrated both the models, and the final output of
the integrated model (MI ) was calculated using Eq. (9).

MI = MR +1MR (9)

Zhou et al. [95] proposed a NN and an SVM model to
predict the magnitude of seismic events. They also showed
that the combination of these two algorithms performed bet-
ter than they performed independently. They collected data
around the world from the year 1999 to the year 2016 and
selected latitude, longitude, and focal depth as training factors
and magnitude as testing factor in achieving data reduction.
They trained the SVM model with a linear kernel, and the
cost function of the violation was set to 10. They also trained
an error inverse propagation-based NN with 5000 iterations.
They combined the result using Eq. (10).

γ = αy1 + (1− α)y2 (10)

where y1 and y2 is the prediction result of SVM and NN,
γ was the final result, and α was set to 0.5.
Suratgar et al. [96] proposed a NN-based solution for

prediction of earthquake magnitude. They used data of Iran
from the year 1970 to the year 1976 for simulation purposes.
They considered the absolute value of declination and hor-
izontal geomagnetic field in this prediction. 5 parameters
of 9 days were used as input to the two-layered nonlin-
ear auto-regressive networks with exogenous input (NARX)
algorithm. NARX is a recurrent dynamic network. For error
correction of the weights, the LM algorithm was used, which
was modified by the Gauss-Newton method.

Rafiei and Adeli [97] predicted earthquake magnitude
using neural dynamic classification algorithm and the loca-
tion of it using an optimization algorithm named neural
dynamic optimization of Adeli and Park (NDAP). Based on
a time resolution of one week, the time lag number was
calculated with a magnitude threshold of 4.5, 5.0, 5.5, 6.0,
and 6.5. 8 seismicity indicators of an earthquake were calcu-
lated using the earthquake catalog. They collected earthquake
catalog of 1932 to 2016 for the southern Californian region
and calculated features for a range of half months. Therefore,
the number of feature vectors for each year was 24. The
NDC network had five layers that are an input layer, feature
vector representation layer, pattern layer, summation layer,
and output layer. The input feature vector was transformed
into a 3-dimensional feature vector twice in the second layer
of the network. The transformation parameters are optimized
using the NDAP algorithm. In this network, if the prediction
of magnitude is larger than the threshold value, only then the
location is predicted using the NDAP algorithm.
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Majhi et al. [99] proposed a functional linkANNoptimized
by the moth flame optimization (MFO) algorithm to predict
the magnitude of an earthquake. The FLANN has no hidden
layers where some nonlinear function obtains nonlinearity.
They have used regular BP, least-square optimization, Gra-
dient descent, and LM-BP and MFO algorithm as a learning
algorithm to see which one works better. These algorithms
were used to find the optimal weights of the model. First,
earthquake data with a magnitude greater or equal to 5.5 was
selected. After that the time and date attributes were com-
bined as one attribute. All the attributes were normalized and
then expanded. Five seismicity indicators were calculated and
then expanded using 7 different nonlinear functions. Finally,
the model was trained with them.

Zhang and Wang [34] proposed a combination of a GA
and BPNN model for earthquake prediction. They imposed
a GA to obtain better convergence and to avoid local minima.
They considered 17 groups of input-output data for this study,
where 14 groups were used for training the model. They
used 7 features that were calculated from the dataset. These
features were the input to the BPNN. The architecture of the
BPNN had a hidden layer with 15 neurons and an output layer
with 1 neuron. There were around 136 connections; among
them, 105 connections were between input and hidden, and
15 connections were between the hidden and output layer.
The weights were updated using the GA. A colony composed
of two hundred individuals and twenty sub-colonies was used
to update the weights. The generation gap was 0.8, the inter-
crossing rate was 1, the mutating rate was 0.01, the max
generation was 500, the rate of migration was 0.2, and the
insertion rate was 0.9. After a set of selection, mutation, and
intercrossing, GA erased the lower adapted chromosomes and
set the optimal weight for the BPNN connection.

Tao [100] tried to predict long-term earthquakes with high
magnitudes with the use of BP and BP with GA. He con-
sidered data from the Himalayan region and Nepal for this
study. The data was calculated for 2150 B.C. to 2014 A.D.
A three-layer feed-forward network was used where the hid-
den layer had 6 neurons, and the activation function was
S-tangent function. The output layer used the S-algorithm
activation function. The steepest descent algorithm trained
the model. The weights and thresholds of the BP network
were then obtained using the GA where the maximum gen-
eration was 2000, and the size of the population was 10.
The mutation rates and cross probability were 0.1 and 0.5,
respectively.

Li and Liu [36] proposed a hybrid algorithm of PSO and a
BPNN for predicting the magnitude of an earthquake. They
calculated six features from the earthquake catalog of longi-
tude 117 degrees to 120 degrees east and latitude 22 degrees
to 26 degrees east. These data were divided into 29 groups
of which first 20 groups were taken for training and rest
were used for testing purposes. They have used an improved
PSO algorithm as it is strong in global search at first and
becomes good at local search eventually because of inertia
weight (ω). To improve the PSO, the nonlinear algorithm

function was used as inertia weight, which made it capable of
being strong in local search in initial stages as well. This PSO
algorithm was used in optimizing the weights and thresholds
of a three-layer BPNN to make it faster and more effective.
The NN had 6 input neurons and 15 hidden layer neurons,
which used the Tan sigmoid activation function.

Shah and Ghazali [101] proposed the improved artificial
bee colony (IABC) algorithm for training MLP in time series
earthquake data. They selected the earthquake data of Cali-
fornia of the year 2011 for this study. This dataset contained
6000 instances, and 70% of the data were used for training
the model and rest were used for testing. IABC algorithm
reduced the weight areas and used 3 control parameters.
In this algorithm, agents divided the food area, and the bees
searched for the best weights. Every bee suggested a solution
area where the best among them were selected using a greedy
algorithm. In this work, the learning rate was 0.6, and the
momentumwas 0.5. TheMLPmodel had 2 hidden layers and
an output layer. The weights of the model were initialized
randomly, and the IABC algorithm was used to find the
optimized configuration.

Maya and Yu [102] proposed the use of transfer learning
and meta-learning in a NN for improving the learning process
to predict an earthquake. Transfer learning and meta-learning
are capable of increasing the speed of convergence in the NN.
They at first trained a simple MLP consisting of a hidden
layer with 10 neurons and one output layer where the learning
rate was 0.155. This method was proved to be inconvenient.
Then they made the same prediction by using the fusion of
MLP and SVM with only 100 iterations. This time, the per-
formance was improved than the previous MLP, but the delay
elements were more significant than expected. They intro-
duced transfer learning by choosing the last weights as initial
weights of the newmodel, and the combination ofMLP,meta-
learning, and transfer learning improved the performance of
MLP with a less amount of time.

Liu et al. [103], proposed an ensemble procedure of
RBFNN called CERNN for earthquake prediction. Here,
the number of neurons in hidden layers and the number of
training epochs were determined automatically. They have
used 14 earthquake precursors as input to the network and
generated training subsets using a Bootstrap algorithm. The
model was built by training the RBFNNwith 23 earthquakes.
A group of 11 earthquakeswere used for validation, and a sep-
arate group of 11 earthquakes were used for testing themodel.
The RBFNNwas designed using nearest neighbor clustering.
They have trained the RBFNN for a certain amount of time
then they checked if it produces error less than a definite
value. When the error was minimum than the threshold, it is
added in the CERNN.

RBFNN was successfully used in earthquake prediction
researches [38], [104]–[106]. For example, Wang et al. [38]
proposed an RBFNN to predict the earthquake magnitude.
They experimented with data of south-west Yunnan province.
They selected 7 different factors such as accumulation
of energy, b-value, number of earthquakes, activity cycle,
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magnitude, and so on, as input and value of magnitude were
normalized to prevent over-saturation of neurons. They pro-
posed a model containing an input layer, a hidden layer, and
an output layer. The network output was counter normalized
to achieve actual prediction. For training purposes, 10 sam-
ples were used, whereas 7 samples of the earthquake were
used for testing purposes. The result of the RBFNN was
compared with the performance of BPNN.

Amar et al. [106] proposed a BPNN and an RBFNN in
predicting an earthquake. The RBFNN had 3 layers where
output is generated based on the linear combination of the
hidden layer outputs. Each hidden layer used the RBF func-
tion as the activation function. RBFNN showed impressive
generalization ability, and lengthy calculation was avoided.
Parzen windows classification was used to divide the dataset
into different magnitude groups. It divided the dataset into
four classes. Then they trained the model with data from
around the world of the year 2000 to the year 2011. The data
of the year 2011 was used for testing purposes of the two
models. The RBFmodel performed better than the vanilla BP
model.

PNN was used for earthquake prediction in some
studies [3], [107]. For example, Adeli et al. [3] predicted
earthquake with a PNN, which can predict class ranges but
not specific values. Therefore, this model can be used for
magnitude range prediction but not for time or place of occur-
rence of an earthquake. The historical data of 1950 to 1990 of
the southern California region was used for this study. The
seismicity indicators were calculated for every 15 days of the
concerned data range. They have used 8 seismicity indicators
as an input vector, which are normalized with RMS values.
Themodel consisted of one input layer, a pattern hidden layer,
a summation layer, and one output layer. The pattern layer
computed the Gaussian function of the Euclidean distance
between the input vector and the training vector. It did not
use the learning rate or predefined convergence criteria. The
Parzen window classifier was used for PDF calculation and
classification. Huang [107] proposed a PNN model for pre-
dicting the magnitude of earthquakes. At first, he calculated
8 different seismic indicators, which was given as input to
the PNN model. The PNN model consisted of an input layer
having 8 neurons, 2 hidden layers named pattern layer and
summation layer, and an output layer. There were 7 different
input classes which were based on the magnitude of earth-
quakes and 7 output classes according to different range of
magnitude. They have used data from Northern China, and
997 feature vectors were used for training this model. The
performance of each class range was evaluated separately to
have a profound realization of the performance of this model.

Li et al. [109] used an ML approach for distinguishing the
earthquakes from seismic data and predicting the arrival time
of primary (P) wave and secondary (S) wave. They collected
data from 16 seismological stations. The data were in SAC
format. At first, they performed some data preprocessing
tasks and extracted 6 features from the file header. As each
data file was around 100 MB in size, data clipping was done

using a trigger picker algorithm, such as recursive short time
average or long time average, to capture the seismic event.
The signals were also processed using a band-pass filter and
detrend algorithm to remove noise. They used the autoregres-
sive (AR) Picker algorithm for estimating the arrival time of
P and S waves. Then different ML algorithms such as SVM,
DT, RF, and LRwere used to detect earthquakes and predicted
the arrival time of P and S wave. They also calculated the
epicenter using a triangulation technique.

Asim et al. [110] proposed a seismicity analysis for extract-
ing features and ML algorithms for prediction of earthquakes
in Cyprus where thresholding magnitudes were 3, 3.5, 4,
and 4.5. They collected the data from Euro-Mediterranean
Seismological Center, which was comprised of around
10000 events from the year 1924 to 2018. The aftershocks
were removed from the data using de-clustering method-
ologies. All the earthquake events below the corresponding
threshold were removed as well. Sixty different seismic fea-
tures such as energy release, seismic rate, change of seismic
rate, and so on were calculated from the dataset. Then ANN,
RF, and SVM were used for prediction purposes. The pro-
posed ANN was three-layered, and there were 20 neurons in
the hidden layer where the weights were updated using BP.
Radial kernel-based SVM and an RF comprised of 20 deci-
sion trees were also used for prediction purposes. This model
could predict an earthquake for different magnitudes and
period thresholds.

Asim et al. [111], used seismic indicators and tree-based
ML algorithms for predicting an earthquake in Hindukush.
The proposed model was capable of predicting earthquake
whose magnitude was greater than 5.0 and which would pos-
sibly occur within 15 days. They considered the classification
task as a binary classification task. At first, they calculated
51 different seismic features from seismic data of the pre-
vious 50 events. They mainly calculated Gutenberg-Richters
law, energy release, and seismic rate change using different
procedures that extracted themaximumpossible features. DT,
J48, RF with 20 decision trees and depth of 10, Rotation
forest with 8 subsets, RotBoost with 10 iterations were com-
pared for binary classification from extracted features. They
employed 10-fold cross-validation scheme for evaluating the
performance of the models.

Karimzadeh et al. [112] used ML classifiers along with
Coulomb stress change, stress distribution, and fault map to
predict the aftershock of the Kermanshah earthquake. They
treated this problem as a binary classification problem and
predicted the location of aftershock with magnitude greater
than 2.5. The slip distribution was calculated from a nonlinear
and linear inversion process. The Coulomb stress change,
which defines the faults and the surrounding faults caused
by the earthquake, was calculated using the slip distribution,
friction coefficient, and Skemton’s coefficient. A binary grid
map was generated from the geographical coordinates of
the aftershocks and NB, KNN, SVM, and RBF classifiers
predicted whether any aftershock occurred on a specific grid
or not. These models simply predicted zero or one for a point
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for which Coulomb stress change, slip distribution, and slip
distribution was represented.

Celik et al. [113] proposed an earthquake magnitude pre-
diction method based on analyzing the time series and imple-
menting ML algorithms. The date, time, depth, location,
and local magnitude of 3000 earthquake events in Turkey
were used for this study. The magnitude range of the earth-
quakes was between 1 and 5. Auto-correlation, and partial
correlation of the delay were also considered along with
earthquake catalog parameters. LR, DT, Additive Regression,
Rap Tree, and MLP were used for comparison of prediction
performance. For forecasting, Weka application was used.
The longitude, latitude, depth, and magnitude were predicted
by turns. Table 4 shows the summary of the publication
years, used methods, and parameters for studies that involve
NN-based researches.

2) EARTHQUAKE’s CHARACTERISTICS STUDIES
In this portion, the studies that are related to earthquake pre-
diction studies but not performed earthquake prediction are
discussed. Earthquakes best set of features, precursors, model
behavior, explosions, forecasting error reduction, anomaly
detection, and earthquake modelling related researches are
presented here.

Martínez-Álvarez et al. [90] tried to use feature selection in
predicting earthquakes. They selected the region of Chile and
the Iberian Peninsula for seismic data. The basis for feature
selection was information gain. First of all, they converted the
problem to a prediction problem to a classification problem.
Then information gain for each set of features was calcu-
lated. They have calculated 16 seismicity indicators based on
GR-Law and OU’s Law. Based on that, a rank was given to
the samples. Then seven best features were selected and used
as input to an ANN model. The model’s statistical perfor-
mance was calculated next using non-parametric analysis of
variance, which is also called the Friedman test. This feature
selection technique improved the performance of the ANN
model a lot.

Okada and Kaneda [91] proposed a NN model for find-
ing indicators of an earthquake. They collected data from
the dense oceanfloor network system for earthquakes and
tsunamis, which is a multi-channel observatory. Fifteen chan-
nels of ocean bottom pressure gauge were taken as input data.
The data were normalized between -1 and 1. The NN has
three layers with a hidden layer having three neurons and
one bias. They have used gradient descent for optimization
and BP for learning. For nonlinearity, the hyperbolic tangent
tanh activation function was used. From the training data,
an output curve was generated, and its trajectory was found.
They assumed that this trajectory could be used as a precursor
for an earthquake as it moves back to the normal position after
an earthquake.

Lin et al. [92] tried to find out the optimal number
of neurons in hidden layers of a BPNN to predict earth-
quakes. They used the data from Philippines to construct the
model. At first, they created the initial magnitude prediction

BPNN model using two hidden layers with data from the
year 2000 to 2010. The best prediction was achieved using
10 neurons for hidden layers and a learning rate of 0.83. Then
they used an embedded BPNN model with initial weights
same as the previous model and also used the slip rate of the
plate so that it can predict data in the future. It was trained
with data from the year 1990 to 1999 and year 2011 to 2014.
Then the initial BPNN was trained with data from the year
1990 to 2014 and learning rate 0.33, and had a similar result as
the previous model. They calculated correlation coefficient,
standard deviation and MSE for the predicted and the actual
magnitudes on a yearly basis to evaluate the methods.

Lakshmi and Tiwari [93] proposed a nonlinear forecasting
technique and ANN-based model for earthquake prediction.
They used data from the year 1960 to the year 2003 of
the North-East Indian region. Data with magnitude greater
or equal to 4.0 were selected for this study. Initially, they
reconstructed the data into a two-dimensional phase plane to
use in nonlinear forecasting. They considered each event as
m-dimensional points, and a time delay was also calculated
comparing with previous events. A neighborhood was chosen
from the m-dimensional points for which the prediction got
the smallest simplex. The optimum simplex had theminimum
phase volume and vector displacement. They also proposed
an ANN approach with one hidden layer and an input layer
with 2 to 10 neurons. They used the LM algorithm for this
analysis. The output of ANN was the frequency value of the
next month. They set the number of neurons in the hidden
layer to 10, learning rate to 0.01, and momentum to 0.9 after
the trial and error process. They also used LR to evaluate the
model where they used the output of the model and the target
output.

Niksarlioglu and Kulahci [94] tried to estimate earthquake
magnitude using the change of concentration of Radon gas,
the relation of this gas with seismic events, and other envi-
ronmental changes. An ANN and clustering were used for
achieving this goal. The input to the ANN model was data
related to Radon gas volume and temperature by which the
magnitude of the earthquake is estimated. Next, clustering
was applied using non-hierarchical clustering, which uses
Euclidean distance. The seismic data from the East Anatolian
fault was collected for the year 2005 to the year 2010. They
recorded 69 earthquakes with magnitude greater than 3. The
ANN used LM algorithm for BP operation. For the 3 clusters,
this ANN model predicted the magnitude of earthquakes.

Zhao et al. [37] came up with an ensemble algorithm
of BP and AdaBoost to differentiate between natural and
explosion-based earthquakes. They used data from the China
earthquake science data center, which had 656 samples.
Among the samples, 138 of them were earthquakes, and the
rest were explosion data. This method utilizes some weak
BP classifiers to make a strong one. They have used seismic
wave signals as input and calculated 27 features from them.
The features were then normalized. The weak classifiers
were made of only one hidden layer with three neurons,
which helps in having excellent generalization capabilities.
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TABLE 4. A summary of used methodologies and features used in NN based researches for earthquake prediction.

10 weak classifiers were used to create the proposed clas-
sifier, and a comprehensive decision-maker predicted the
output class based on them. The classifier was then com-
pared with principal component analysis (PCA)-SVM and
BPNN models.

Fong et al. [98] proposed an extension of the existing group
method of data handling (GMDH) algorithm to reduce errors
in forecasting rare events. The proposed method consisted of
three stages. At first, they converted the time series data to
multivariate format from univariate format. Then a feature
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selection was made to find out the relevant variables. The
selected variables were the input of GMDH modeling, which
was done using the models, inference and algorithms or com-
binational (COMBI) algorithm. Lagged time series data and
residuals were also the input of the first layer of GMDH. The
coefficients of each neuron were calculated using the least
square regression method. The fittest nodes were the input to
the next layer of the NN. This process continues until finding
out the best neurons for a layer. For testing their theory, they
collected earthquake data from 1973 to 2012 around theworld
and evaluated the performance. There were 663,852 events
on which the model was built. Their proposed model worked
well on the rare earthquake events.

Akhoondzadeh [35] proposed using GA to detect anomaly
of total electron content (TEC), which can help in the pre-
diction of an earthquake. TEC is the integrated number of
electrons between two satellites or between a satellite and
a receiver. The TEC related to the 8.0 magnitude Solomon
earthquake was considered for this study. The bio-inspired
GA algorithm was used, which has three major states such as
crossover, mutation, and reproduction. In the crossover stage
of the GA, two chromosomes were taken to create a new one.
In the mutation stage, some of the gene values were changed,
and in the reproduction part, the new chromosome’s fitness
function was calculated to verify if it is a new generation
chromosome. The higher bound of TEC can be calculated
using Eq. (11).

µ+ 1.5σ (11)

where µ is the mean and σ is the SD of the differences
between the actual and predicted TEC value. Different other
models were compared with this model to detect anomalies.

Chen et al. [104] proposed a seismic time series prediction
algorithm using chaos theory and RBFNN. They used the
seismic event that occurred in Guanxi as their dataset. The
earthquakes with magnitude less than 0 and greater than
9 were trimmed from the dataset. At first, they calculated the
parameter from a time series dataset and reconstructed phase
space using them. Then they established the RBFNN. The
momentum term was calculated by adding an adaptive factor
into gradient descent, and a Gaussian function was used as
a transfer function. The number of the neurons of the hid-
den layers was selected using mutual authentication, which
reduced the RMSE. A linear activation function was used for
the output layer. Iteration of one step was used to carry a
multi-step prediction. The time series analysis of earthquakes
revealed chaotic behavior which could be formulated as a
deterministic process.

D’Amico et al. [105], compared the RBFNN and SVR as
a heuristic method to overcome the contemporary anomaly
problem of the delta-sigma method to forecast the number of
aftershocks. They used the aftershocks which occurred in the
Australian-Pacific plate boundary with main shocks having
a magnitude greater or equal to 7. The ratio of differences
between the observed temporal trend and the theoretical trend
was used for finding anomalies in the delta-sigma method.

Using this approach, if 1
σ
> 2.5, then an anomaly was

detected. First, the RBFNNwas created using two hidden lay-
ers, the first layer having RBF transfer function and the sec-
ond one having linear transfer function. The weighted input
function was calculated by |dist| function, and element by
element product for the first and second layers, respectively.
The SVR method used Vapnik ε-insensitive loss function
with linear kernel and the libsvm optimizer. The perfor-
mance of the two methods combined with the delta-sigma
algorithm was tested using RMSE and Willmott’s index of
agreement (WIA).

Asencio-Cortés et al. [108] tried to determine the parame-
ters which work best predicting an earthquake. A set of earth-
quake parameters were calculated from an earthquake catalog
of Chile. These parameters could have different parameter-
izations. Based on the parameters, 5 different studies were
done using a different subset of the parameters and different
parameterization values. Their Sn was observed, and opti-
mized values for them were selected. Then some popular
supervisedML classifiers such as KNN, NB, SVM, C4.5, and
ANNwere used to see the classification accuracies. Different
studies provided different feature sets, which means that the
best set of features may vary based on the data used for
building the model. But this process can help to find the best
set of features.

C. DEEP LEARNING (DL)
DL is the hot topic of AI-based researches. This ML process
does not need handcrafted features and can generate thou-
sands of very sophisticated features, which is very difficult
for a human to find by hand. These DL-based models use
multiple hidden layers, that can be time-consuming. Because
of sophisticated features, thesemodels can face the overfitting
problem. Therefore, dropout and regularization concepts are
used. The process of earthquake prediction with DL-based
approaches is presented in Fig. 12. Here, the multiple hidden
layers are used to find the features which are used in classi-
fication using a fully connected layer. We will categories the
studies into two groups such as earthquake’s characteristics
studies for deep learning-based approaches, and earthquake
and aftershock prediction studies for deep learning-based
approaches.

1) EARTHQUAKE’s CHARACTERISTICS STUDIES
In this portion, the studies that are related to earthquake
prediction studies but not performed earthquake prediction
are discussed. Earthquake’s SES anomaly prediction studies
and earthquake trend prediction related researches are pre-
sented here. DNN is getting popular in earthquake prediction
researches [39], [114]. Kanarachos et al. [114] proposed a
hybrid algorithm comprising of the wavelet transform, DNN,
and Hilbert transformation for detecting anomalies in time
series data. They used this model to predict the anomaly
in SES during an earthquake. They collected SES of the
18th and 19th of December 1995 after the Kozani-Grevena
earthquake. These SES were used for anomaly prediction.
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FIGURE 12. Prediction process of an earthquake using DL-based approaches. The DNN uses
multiple pooling, batch processing, dropout layers to produce features. It can generate
sophisticated features which are very difficult to calculate by hand. Based on these features,
an earthquake is predicted.

Their transferable algorithm was used for wavelet decom-
position for de-noising purposes and used the Daubechies
basis function. The output from the wavelet decomposition
was used as input to the DNN, which first learned hidden
patterns in the data and then generalized them. The hidden
layer was comprised of an ensemble of different stacked
NN, where for activation, logistic sigmoid functions were
used. The next layer was used to learn the temporal structure
of the signal. The output of this model was then compared
with the wavelet decomposition output for error calculation.
The Hilbert transformation was used for the detection of
anomalies in the signal. For seismic application, they used
SES’s long dipoles L’s - I, L’, L.

Bhandarkar et al. [115] compared the feed-forward NN
and LSTM to predict the trend of an earthquake. From the
Afghanistan and Tajikistan area, 5000 samples were taken
for this study. The data from Thailand, North-East India,
and Lakshadweep were also collected. The feed-forward NN
had 2 hidden layers with 20 and 40 neurons, each having a
sigmoid activation function. The learning rule they have used
was RMSprop. The LSTM model finds the dynamics of the
sequence using cycles in the structure. LSTM removed the
problem of vanishing effect from an RNN. The LSTMmodel
they have used has 2 hidden layers with 40 hidden units in
each LSTM cell, and BP was limited to 15 steps. A drop out
layer was placed between the 2 hidden layers. They reduced
the RMS loss using the Adagrad algorithm.

2) EARTHQUAKE AND AFTERSHOCK PREDICTION STUDIES
The earthquake magnitude prediction-based studies are dis-
cussed in this portion.

Wang et al. [39] proposed a DL-based magnitude predic-
tion model for earthquakes using the P-wave to give fore-
casting information. They have used 30,756 accelerograms
from the year 1997 to the year 2019 for this study. The
data were collected with the Kiban Kyoshin network for
magnitude range of 4 to 9. This model did not need to adjust
the hyperparameters as they were adjusted adaptively. The
model took the first 2.56 seconds (28 samples) of the p-wave
of an earthquake as input to the model and predicted the
logarithm of the maximum displacement in the horizontal
components. They have used MSE as a loss function. For
each filter, the kernel size was 2, and the stride was 1.

The choice activation function was a rectified linear unit,
in short ReLU. For the pooling layer, max-pooling was cho-
sen where the dropout rate was 0.5 to remove overfitting.
The Adam optimizer was used along with a learning rate
of 0.0001.

LSTM is good method for finding pattern in data. There-
fore, researchers are using it for earthquake prediction [42],
[115]. Wang et al. [42] proposed to use LSTM for earthquake
prediction, which used spatio-temporal correlation. LSTM
uses memory-cells, which helps in predicting long-term
events. They have used data of China and divided the region
into equal-sized sub-divisions. Earthquakes of magnitude
higher than 4.5 were collected for this study from the year
1966 to the year 2016. They have used a 2-dimensionalmatrix
to represent earthquake data having the same timestamp but
of different locations to achieve spatial and temporal corre-
lation. They used this matrix as input to the LSTM layer.
The output of this layer went to the drop out layer to over-
come the overfitting problem. Then it was passed to a fully
connected layer whose output was passed through a softmax
activation function. The error function they have used was
cross-entropy, and to optimize it, RMSprop optimizer was
used.

Asim et al. [116] tried to evaluate the performances of
pattern recognition NN (PRNN), RF, RNN, and Ensemble of
linear programming boost (LPBoost) algorithm in predicting
earthquake greater than 5.4 before 1 month. They used earth-
quake data of Hindukush region from the year 1976 to the
year 2013. A total of 11,137 events were used for this study.
The PRNN used LM-BP for training as it works faster than
the normal BP. It was made with 2 hidden layers, each having
12 neurons, and the transfer function was tan Sigmoid. The
RNN algorithm could save the internal state as there were
directed cycles present between the units. It was composed
of 2 hidden layers with 6 and 7 neurons, respectively. The
RF algorithm was an ensemble of many decision trees that
were merged through Bootstrap aggregating or bagging with
50 trees. The ensemble of LPBoost maximized a margin
between training data of different classes and linearly added
many tree-based classifiers.

Panakkat and Adeli [40] proposed 2 different approaches
for calculating the seismic indicator and showed the
effectiveness of RNN in earthquake location and time
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TABLE 5. A summary of DL-based articles used in this review which include used methodologies and features.

prediction. The earthquake catalog of the southern California
was used for this research from which the 2 different sets
of seismicity features were calculated. In the first approach,
they divided the whole region into some sub-regions and
recorded the earthquakes, which were also divided into some
equal time intervals. From each sub-region and each interval,
seismicity indicators were calculated. In the second approach,
the recordswere not divided into equal periods. Instead, it was
divided according to the period between each large earth-
quakes and seismicity indicators. Here, 8 seismic indicators
were given as input to RNN, which has 1 recurrent layer and
1 output layer. The output layer contained 2 nodes in case
of location prediction and 1 node in case of time prediction.
LM training algorithm was used for minimizing the MSE
between the desired output and network output. The number
of iterations was set to 1000, and the goal MSE was set
to 0.001 as convergence criteria. The proposed methodology
predicted time and location with an error of 56 days and
15.7 miles when the threshold of the earthquake was 6.5.

Panakkat and Adeli [65] have introduced 8 seismicity
indicators and compared RNN, LM-BPNN, and RBFNN in
predicting an earthquake. The best structures for each of the
model were determined. They used Southern California and
San-Francisco Bay region’s earthquake catalog for this study.
They provided an in-depth description of the calculation of
seismicity indicators in this research. The best BP network
had 2 hidden layers, each having 8 nodes. The RNN had
2 hidden layers. One of the hidden layers was a general dense
layer having 8 nodes, and another hidden layer was a recur-
rent layer with 4 nodes, which used tan Sigmoid activation
function. For the south Californian region, the RBFNN used
1 hidden RBF layer with 8 nodes. An architecture of 2 hidden
layers with 8 nodes each were used for the San Francisco
Bay region. The performance of these algorithms was then
compared based on the evaluation metrics.

Asencio-Cortés et al. [117] proposed a cloud-based big
data analysis of earthquake magnitude prediction within
7 days of occurrence, using 5 regression algorithms. They
have considered DL, generalized linear models (GLM), RF,
gradient boosting machines, and stacking ensemble of these
algorithms for this purpose. They collected about 1 GigaByte

of earthquake catalog of California and divided the data into
different cells of size 0.5 longitude × 0.5 latitude. From
there, they selected 27 cells where the number of events
greater than magnitude 5 was more than 500. Then they
calculated 16 features from them. Amazon web services was
used as a cloud-based platform for big data analysis. The
cells were stored in tables using Amazon redshift. For the
implementation of the 5 regressors, the H2O library was used.
The summary of the methods and features used in DL-based
researches are shown in Table 5.

V. EVALUATION METRICS AND PERFORMANCE
CATEGORIZATION
A. POPULAR EVALUATION METRICS
When a model is built, the next important thing is to check its
performance, as a low performing model is of no use and can
lead to some unfavorable conditions. Here, we will briefly
describe some of the most used evaluation techniques in the
reviewed articles. Initially, we will see the basic concept of
true positive, true negative, false positive, and false negative
values. Afterwards, we will explore some of the complex
evaluation metrics.

a: TRUE POSITIVE VALUES (TP)
In the prediction of an earthquake, the number of cases in
which the model predicted earthquake matches the actual
recorded earthquakes are called TP.

b: TRUE NEGATIVE VALUES (TN)
In the number of cases, when the model predicts no earth-
quake, and no earthquake happened indeed is called the TN.

c: FALSE POSITIVE VALUES (FP)
This value states how many times the model predicted earth-
quake but did not happen in real-life.

d: FALSE NEGATIVE VALUES (FN)
The number of times the model did not predict an earth-
quake, but in the real case, there was an earthquake, which is
called FN .
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From these metrics, we can calculate complex matrix such
as Sn, Sp, P0, P1, R− score, and Matthews correlation coef-
ficient (MCC). These metrics are described below:

e: SENSITIVITY (Sn)
This indicates the positive predictions that are predicted
correctly by a model. Mathematically, Sn can be calculated
by Eq. (12).

Sn =
TP

TP+ FN
(12)

f: SPECIFICITY (Sp)
This metric indicates the negative values that were predicted
correctly by the model. Mathematically, Sp can be calculated
by Eq. (13).

Sp =
TN

TN + FP
(13)

g: POSITIVE PREDICTIVE VALUE (P1)
This denotes the proportion of the correctly predicted positive
values out of all the positive predicted values. The mathemat-
ical equation of P1 is calculated by Eq. (14).

P1 =
TP

TP+ FP
(14)

h: NEGATIVE PREDICTIVE VALUE (P0)
The portion of the correctly predicted negative values out of
all the negative predicted values are called P0. This can be
calculated by Eq. (15).

P0 =
TN

TN + FN
(15)

i: FALSE ALARM RATE
It is the probability of detection of false values. It is denoted
as FAR and calculated by Eq. (16).

FAR = 1− P1 (16)

j: ACCURACY, R-SCORE, AND MATTHEWS CORRELATION
COEFFICIENTS
Accuracy (A), R-score (R), and Matthews correlation coef-
ficient (M) are obtained from Eqs. (17) - (19).

A =
TP+ TN

TP+ TN + FN + FP
(17)

R =
(TP× TN )− (FP× FN )
(TP+ FN )× (TN + FP)

(18)

and

M =
(TP× TN )− (FP× FN )

√
[TP+ FP][TP+ FN ][TN + FP][TN + FN ]

(19)

k: MEAN ABSOLUTE ERROR (MAE), MEAN SQUARED ERROR
(MSE), AND ROOT MEAN SQUARE ERROR (RMSE)
The measure of the closeness of the predicted value to
the actual value is calledMAE . The mean of the square of the
residue of the predicted and the actual value is called the

MSE value. They are obtained from Eqs. (20) and (21),
respectively.

MAE =
1
n

n∑
i=1

|Vpredictedi − Vactuali | (20)

and

MSE =
1
n

n∑
i=1

(Vpredictedi − Vactuali )
2 (21)

The RMSE is defined by Eq. (22).

RMSE =

√√√√1
n

n∑
i=1

(Vpredictedi − Vactuali )
2 (22)

l: ABSOLUTE ERROR (AE) AND RELATIVE ERROR (RE)
AE is defined mathematically by Eq. (23).

AE = |Vpredicted − Vactual | (23)

And the relative error (RE) is defined by Eq. (24).

RE =
Vpredicted − Vactual

Vactual
(24)

These are the common evaluation metrics used by most of
the researches reviewed in this article. We can compare the
studies based on these metrics.

B. CATEGORIZATION OF PERFORMANCE
Here, we will introduce a new performance measure for the
different methods based on their relative accuracy, relative
RMSE, and relative average error. The formula for calcu-
lating relative performance is mathematically represented
as Eq. (25),

newvalue =
(Valueold −Minold )(Maxnew −Minnew)

(Maxold −Minold )+Minnew
(25)

where Valueold is the value we want to convert to the new
scale, Minold is the minimum value of the previous per-
formance, Maxold is the maximum value of the previous
performance, Minnew is the minimum range of the relative
performance, and Maxnew is the maximum range of the rel-
ative performance. For all cases, Minnew is 0% and Maxnew
is 100%. For the relative accuracy, if the newvalue is between
0% and 25%, then it is considered low performance, and if
the newvalue is between 75% and 100%, then it is considered
as high performance. The rest are considered as medium
performing methods. This range division is mathematically
represented in Eq. (26), where P is the relative performance
class.

P =


high, if 75 < newvalue ≤ 100
medium, if 25 < newvalue ≤ 75
low, otherwise

(26)

For RMSE and average error, when the newvalue is between
0% and 25%, it is considered high performance, and it is
regarded as low performance when the newvalue is between
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75% and 100%. The rest are considered as medium perfor-
mance. The range classification is presented mathematically
in Eq. (27), where P is the relative performance class.

P =


high, if 0 < newvalue ≤ 25
medium, if 25 < newvalue ≤ 75
low, otherwise

(27)

VI. PERFORMANCE ANALYSIS AND DISCUSSION
A. RULE-BASED APPROACHES
Bofeng and Yue [44] used the FUMCE model to increase the
understandability of an earthquake prediction expert system
by giving different levels of explanations to a user who has
a different knowledge level. They categorized the users as
a novice, common user, advanced user, domain expert, and
knowledge engineer so that an expert system can give an
explanation of the earthquake prediction based on their ability
to understand.

Zhong and Zhang [45] tried to predict earthquakes which
are formed because of reservoirs using fuzzy logic. They
considered the ‘‘Three George’’ reservoir and divided it into
1300 units. They divided the magnitude scale of earthquakes
into 4 classes as v1, v2, v3, and v4 that represents micro,
sensible, devastating and strong earthquakes respectively.
They found that their study area produced the biggest size
of membership function for the class v3, which was 3.155.
Therefore, they expected a devastating earthquake in that
area.

Konstantaras et al. [46] used NFS to detect anomalies in
electrotelluric potentials, which can be used as a precursor
of an earthquake. They found that the ratio of their recorded
magnetic field and residue of predicted and recorded mag-
netic field varied from 57.14 dB to 75.28 dB. For the electric
field, this value varied from 41.86 to 52.23 dB.

Mirrashid et al. [47], in his ANFIS model, tried to predict
the seismic moment of the next earthquake. They found that
there is a correlation between the origin of an earthquake and
the cumulative seismic moment. The R2 value was 98%, and
they achieved an MAE of 0.15%.

Rahmat et al. [48] tried to predict b-value using ANFIS
and ELM algorithm. For training, the ANFIS achieved RMSE
of 0.003, and ELM achieved RMSE of 6.33 × 10−7. Dur-
ing testing, the ELM algorithm performed similarly, but the
ANFIS produce RMSE of 1.507, which led to an inferior suc-
cess rate of 21.84%. Table 6 shows the algorithms, outcomes,
used dataset, and the evaluation metrics by the researches
involving rule-based methods.

Iqram andQamar [49] used predicate logic to predict earth-
quakes before 1/2 hour, 1 hour, 2 hours, 6 hours, and 12 hours.
They found that their system can predict all the earthquakes
within 12 hours margin.

TheNFS of Shodiq et al. [50] revealed the relation between
time intervals and large earthquakes (≥ 5.9). They tested
11 earthquake instances and successfully predicted 8 of them.
The other 3 events happened 12 days after, 5 months before,
and 44 days after the original prediction.

Dehbozorgi and Farokhi [51], in his NFM, tried to predict
earthquake 5 minutes before its occurrence and used feature
selection to see if the accuracy increases. They compared
the model with an MLP model. Without feature selection,
the NFM achieved 82.85% accuracy, where the MLP model
was 71.42% accurate. After the feature selection, the accu-
racy reduced by nearly 2%, but the network complexity
reduced a lot.

Zeng et al. [52] used an ANFIS inference model and
compared it with a fitting model for prediction of epicentral
intensity. Their model performed better than the fitting model
with a mean of error of 0.36, a standard deviation of 0.47, and
a correlation coefficient of 0.9362.

Andalib et al. [53] had the goal of reproducing the per-
formance of human experts for earthquake prediction. Their
model produced 36 false alarms for the 147 tested cases,
which had a magnitude of 5.5 and above. For earthquakes
greater than magnitude 6, this model false alarm was 40%
as there was a lack of data for higher magnitudes.

Shodiq et al. [54] used ANFIS for spatial analysis of
magnitude distribution of aftershocks and found that the
non-occurrence was able to be predicted by the model with
70% accuracy. But the prediction of the occurrence of the
earthquake was 60% accurate.

Kamath and Kamat [55] achieved RMSE of 0.059 for
training and 0.408 for testing in predicting the magnitude of
an earthquake using the ANFIS model.

Pandit and Biswal [56] used ANFIS with SC to achieve
correlation factor (R2) of 0.8699 for forecasting earthquakes.

Mirrashid [57] used ANFIS with fuzzy means clustering
to achieve RMSE of 0.172 for earthquakes with magnitude
greater or equals to 5.5. With 12 clusters and 12 rules,
he achieved an R2 value of 0.95 and an MAE of 0.150.
Bahrami and Shafiee [58] forecasted an earthquake with an
MSE of 0.0395 using their ANFIS model, which had seven
neurons.

For the rule-based approaches, accuracy is converted to
relative performance with Minold equals to 70% and Maxold
equals to 100%. For RMSE conversion,Minold is 6.25×10−7

and Maxold is 0.601. The relative performance classes are
evaluated using Eqs. (26) and (27).

m: THE WORKS REPORTING THE HIGH PERFORMANCE FOR
RULE-BASED APPROACHES
The rule-based expert system method achieved relative accu-
racy of 100% [49]. The ANFIS based methods [55] and [47]
provided relative RMSE of 17.96% and 24.95%. The ANFIS
with ELM method [58] achieved relative RMSE of 19.8%
and GFCV method [48] achieved relative RMSE of 0%.
These methods are considered as high performing methods
according to the criteria described previously.

n: THE WORKS REPORTING THE MEDIUM PERFORMANCE
FOR RULE-BASED APPROACHES
The NFC-based method [51] got relative accuracy of 42.86%
and the ANFIS-based method [57] provided relative RMSE
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TABLE 6. A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of rule-based earthquake prediction researches.

of 28.62%. These two methods are considered medium per-
forming methods.

o: THE WORKS REPORTING THE LOW PERFORMANCE FOR
RULE-BASED APPROACHES
The ANFIS-based method [54] achieved relative accuracy
of 0% and the ANFIS-based method [52] had relative RMSE
of 0%. These two models are reported as low performing
methods. We have presented the categorization of the studies
based on relative performance in Fig. 15.

B. SHALLOW MACHINE LEARNING APPROACHES
Jiang et al. [59], with his SVM based model, predicted the
most significantmagnitude in the following year with training
accuracy of 69%. With ±0.5 error, it increased to 75%. The
testing MSE they achieved was 0.19.

Astuti et al. [60] used the SVD for feature extraction
and SVM for classification of location, time, and magnitude
of an earthquake. For location and magnitude, this method
achieved 77% and 67.67% accuracy on average, respectively.
It could predict earthquakes 2 to 7 days ahead of its occur-
rence.

Hajikhondaverdikhan et al. [61] proposed a PSO based
SVR model, which achieved 96% accuracy for magnitude
prediction and 78% accuracy for predicting the number of
earthquakes in the next month. For magnitude prediction,
the MSE was 0.0015, and 0.017 for the number of earthquake
prediction. This method worked better than the regular MLP
method.

Asim et al. [62] used the SVR with the hybrid PSONN
for prediction of an earthquake and achieved an accuracy
of 82.7%, 84.9%, and 90.6% for Hindukush, Chile, and Soth-
ern California region respectively.

Li and Kang [63] have used polynomial regression with
KNN for the prediction of aftershocks and achieved an
RE of 22.756, which is 6.012% better than that of the
conventional KNN, and 7.75% better than the distance
weighted KNN.

Prasad et al. [64] tried to predict the magnitude of the
seismic signal with Haar wavelet transformation and ML
classifiers. For classification, they used J48 algorithm, RF,
REP tree, LMT, NB, and BP. Among these the RF algorithm
was 100% successful in detecting the magnitude.

Sikder and Munakata [66] used rough set theory and
DT to predict an earthquake. The rough set theory
achieved 88.39% accuracy, and the computed receiver oper-
ating characteristics (ROC) curve was 0.60. The DT per-
formed better with 93.55% accuracy and computed ROC
of 0.626.

Marisa et al. [67] predicted the probability of an earthquake
with Poisson HMM. The model with 3 hidden states achieved
Akaike information criteria of 763.074, which was smaller
than other models. Based on this model, they predicted the
number of earthquakes in 1, 2, 10, 30, and 40 years range.
Till 10 years range, the model performed well, which was
validated by the chi-squared test.

Florido et al. [68] have used K-means clustering for main-
shock prediction and achieved 70% accuracy on average.
The Sp for Talca, Pichilemu, Santiago, and Valparaiso was
0.82, 0.86, 0.87, and 0.89, respectively. They have used the
tree-based method along with K-means clustering [69] and
achieved an average accuracy of 91% for the Iberian Penin-
sula, 88% in Chile, and 83.70% in Japan.

Shodiq et al. [70], used Hierarchical K-means clustering to
find the clustering of earthquake affected zones. The centroid
clustering method performed best with the sum squared error
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TABLE 7. A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of classical ML and clustering-based earthquakes
prediction studies.

of 0.98347 and took only 6.11 seconds. They predicted that
there would be no earthquake till 2020 greater than magni-
tude 7. They performed a spatial analysis of the magnitude
distribution and achieved Sp of 100% for earthquakes of mag-
nitude 5.5 to 6 [72]. For earthquakes more significant than 6,
the Sp reduced to 84%. They used ANN with Hierarchical
K-means clustering to predict an earthquake in the next 5 days
and achieved an Sp of 92.73% for a magnitude range of 5.5 to
6 [71]. For earthquakes with a magnitude greater than 6,
the Sp was 99.16%.

Mejia et al. [73] used Debrovolsky based clustering to
create a probability distribution plot of an earthquake. With a
distance of 10 kilometers, an angle of 10 degrees, and a time
lag of 10 days, they were able to give correct predictions for
testing samples.

Tan and Cai [74] proposed a method based on AHC and
SVM and achieved an accuracy of 75% for positive sam-
ples and 68% for negative samples. The achieved G-value
was 0.67.

Lu et al. [75] have used GA based clustering for pre-
dicting the time and location of aftershocks. They created a
weighted graph where the correlated aftershocks were clus-
tered together.

Shao et al. [76] used ACC and compared it with the
K-means clustering. The average distance the K-means
clustering moved was 44.267, and for the ACC model, it
was 41.488.

Zhang et al. [77] used PSO based clustering, and it
achieved 83.3% accuracy. The distance it covered was the
same as the ACC method proposed by Shao et al. In Table 7,
the summary of the algorithms, outcomes, used dataset,

and the evaluation metrics used by the classical ML-based
researches are shown.

For the classical shallow ML methods, Minold is equal
to 69% and Maxold is equal to 100% for relative accuracy
calculation. Based on this range, the relative performance
conversion is done using Eq. (25). The relative performance
classes are evaluated using Eq. (26).

p: THE WORKS REPORTING THE HIGH PERFORMANCE FOR
CLASSICAL MACHINE LEARNING-BASED APPROACHES
The SVR-based method [61] was a high performing
method with a relative accuracy of 87.9%. The HWT-based
method [64] for the feature transformation was found to be
successful as the relative accuracy was 100%. The DT-based
method [66] and the KMC-TBS method [69] were also
high performing as their relative accuracy were 79.03% and
79.32% respectively.

q: THE WORKS REPORTING THE MEDIUM PERFORMANCE
FOR CLASSICAL MACHINE LEARNING-BASED APPROACHES
The bio-inspired PSO-based clustering method [77] achieved
relative accuracy of 46.77%, which makes it a medium per-
forming method. The SVM-SVD method [60] produced rel-
ative accuracy of 29.32%. Therefore, it is a medium perform-
ing model.

r: THE WORKS REPORTING THE LOW PERFORMANCE FOR
CLASSICAL MACHINE LEARNING-BASED APPROACHES
The SVM based method [59] low performing as the relative
accuracy of these models is 0%. The KMC method [68] and
the HKMC with ANN-based methods [71], [72] were also
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low performings with a relative accuracy of 3.23%, 9.68%
and 19.35% respectively. These categorizations are depicted
in Fig. 15.

Alarifi et al. [78] proposed an ANN-based magnitude pre-
diction model of the earthquake which used tan-sigmoid as an
activation function. The model achieved MSE of 0.1153 and
MAE of 0.26371. It works at least 32% better than other
configurations of this model. Rayes et al. [80] used ANN in
the Chile region and found the Sp of 88.5%, 77.8%, 97.9%,
and 93.9% for Talca, Pichilemu, Santiago, and Valparaiso
respectively. The average Sn is a bit small, which was 40.9%.
Morales-Esteban et al. [81] tried to predict earthquakes
within 7 days that are greater than some threshold. For the
Alboran sea region, the training and testing specificities were
77.1% and 25%. For Azores-Gilbraltar fault, the training Sp
was 80.3%, and the testing Sp was 92.8%. Moustra et al. [82]
used ANN to find the magnitude of the next day using SES.
Using time-series data, they achieved an accuracy of 80.55%.
When they used the NN recursively to generate missing
SES, that model achieved 84.01% accuracy for magnitude
prediction and 92.96% accuracy for time lag prediction.
Xu et al. [83] used DEMETER satellite data and predicted
95 positive earthquake instances of the 117 instances cor-
rectly. It could predict only 57.5% non-seismic events with
their ANN-based method. Narayanakumar and Raja [84]
provided an earthquake magnitude prediction model using
BPNN,which predicted small earthquakeswith 66.66% accu-
racy. The moderate earthquakes were predicted with 75%
accuracy. Since there was a minimal amount of training
samples for earthquakes with a magnitude greater than 5.8,
the model could not predict major earthquakes. Cheraghi and
Ghanbari [85] have used ANN to predict the time and magni-
tude of an earthquake. For magnitude prediction, the average
error was 0.5%, and the maximum error was 3.5%. They
could predict the timing of an earthquake with 10 days of the
error. Xie et al. [86] predicted the actual time of the earth-
quake within 2 months range using BPNN. At 221 epochs,
they managed to reduce MSE at the level of 10−3.
Hu et al. [79] predicted the future magnitude of 6 months
using the LR-BPNN method. The LR alone can achieve
RMSE of ±0.78 ML, and the integrated LR-BPNN model
can achieve RMSE of ±0.41 ML.

Zhou and Zhu [87] compared the traditional BPmodel with
the BP-LM model and found that the BP-LM model works
better than BP. This model achieved an error level of 0.0006,
and the traditional BPmodel reached the error level of 0.4159.
This model showed a 5.6% error for testing samples.
Kulachi et al. [32] used the LM-BPNN model for prediction
of the magnitude of an earthquake. The AE they achieved was
2.3%, and the REwas between 0% and 12%. They used factor
analysis and showed that 80.18% of the data were covered
by four factors only. Ma et al. [88] have used an LM-BPNN
model on the DEMETER satellite data. This model cor-
rectly predicted 78 out of 93 seismic samples achieving
83.9% accuracy. For non-seismic events, the accuracy falls
to 46.6%.

Hu et al. [89] compared an LR and LR-BPNN model
for magnitude prediction. The training RMSE for the LR
model was±0.66, and testing was±0.62.With the combined
LR-BPNN model, they achieved training RMSE of ±0.22,
and for testing, it was ±0.28.

Zhou et al. [95] used an ANN-SVM model for earthquake
magnitude prediction. They found that if the error does not
exceed ±0.5, then the SVM model can predict 9 out of 15,
and ANN could predict 10 out of 15 testing samples. The
combination of these two could predict 11 out of 15 samples
with 73.33% accuracy.

Suratgar et al. [96] presented a simulation-based study
of earthquake magnitude prediction. The norm of error they
achieved was 0.047 to 0.067.

Rafiei and Adeli [97] proposed an earthquake magnitude
prediction model using the NDAP-NDC model. This model
achieved an accuracy of 99.4% and an R-score of 0.94. They
also compared it with the EPNN model, which achieved an
accuracy of 99.3%.

Majhi et al. [99] used their MFOFLANN model for earth-
quake magnitude prediction. This model achieved an RMSE
of 0.0565. They have compared it with the IPSO-BPNN
model, which achieved similar RMSE, which is 0.0590.

Zhang and Wang [34] predicted the probability of earth-
quakes using the BP-GA method. The maximum averaged
RE was 0.1585, and its minimum value was 0.0632. For
normal BP, it varied between 0.2495 and 0.5330.

Tao [100] proposed a hybrid algorithm of BPNN and GA
for predicting earthquakes with a magnitude greater than 6.5.
For the Himalayan region, the error was -0.06 to +0.05. Using
only BPNN, it was -0.0062 to -0.0028.

Li and Lu [36] have used the IPSO-BPNN method for the
magnitude prediction of an earthquake. This model achieved
AE between 0.021 and 0.375. Shah and Ghazali [101] pro-
posed an IABC-MLP model for magnitude prediction, which
achieved an accuracy of 99.89%. The MSE varied between
0.001702 and 0.001910.

Maya and Yu [102] proposed a model for short-term earth-
quake prediction with meta-learning and transfer learning.
With MLP-meta-learning, it achieved MSE of 0 to 0.09. With
the MLP-meta learning-transfer learning model, the MSE
was between 0 and 0.07.

Lui et al. [103] predicted the magnitude of an earthquake
using an ensemble of RBFNN. When the magnitude differ-
ence is not more than 0.5, this model achieved an accuracy
of 91%.Wang et al. [38] also used RBFNN for the magnitude
prediction of an earthquake. The maximum prediction error
was 0.8152, and the average prediction error was 0.2722.
Amar et al. [106] predicted the magnitude of an earthquake
before 1 day of its occurrence using RBFNN. They achieved
an average R-score of 0.75. For the prediction of 7 days, this
model achieved an average R-score of 0.88.

Adeli and Panakkat [3] introduced PNN for earthquake
magnitude prediction. For magnitude 4.5 to 6, the aver-
age R-score was 0.68, and the average POD score was
0.84. Huang [107] also used PNN for earthquake magnitude
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prediction. For an earthquake magnitude of 3.5 to 6 in the
Chinese region, the average R-score was 0.59, and the aver-
age POD score was 0.69.

Li et al. [109] compared RF, SVM, and DT algorithms
for prediction of earthquake and arrival time of P-wave and
S-wave. The accuracy of RF, SVM, and DT models were
85%, 83%, and 88%, respectively. Asim et al. [110] compared
different ML algorithms for the magnitude of earthquake
prediction within 15 days. For a magnitude range of 3 to 4,
RF performed best and achieved an MCC of 0.81. For 4 to
4.5 magnitude range, SVM achieved MCC of 0.86, and for
the earthquake over 4.5 magnitude range, RF performed best
with MCC of 0.724. They also compared the ML algo-
rithms for short-term earthquake prediction [111]. The rota-
tion forest algorithmworked best with an F-measure of 0.928.
Karimzadeh et al. [112] tried to predict the location of
earthquakes with different ML algorithms. Without the fault
information and with information of fault 1, NB algorithm
performed best with 78% accuracy. With the information of
fault 2, the RF algorithm achieved the best accuracy of 75%.
Celik et al. [113] compared LR additive regression, REP tree,
MLP, and DT for predicting different aspects of earthquakes.
For longitude and latitude prediction, LR performed best with
MSE of 0.84 and 0.96. For depth and magnitude prediction
MLP performed best with MSE of 1.88, and 0.34. Table 8
shows the algorithms, outcomes, used dataset, and the evalu-
ation metrics by the NN-based researches.

Martinez-Alvarez et al. [90] used feature selection with
ANN to find out if there would be an earthquake greater than
a threshold magnitude. This model achieved Sp of 81.08%,
97.22%, 96.77%, 94.62%, 85%, and 91.30% for Talca,
Santiago, Valparaiso, Pichilemu, Alboran sea, and western
Azores-Gilbraltar fault region respectively.

Okada and Kaneda [91], using ANN, learned a waveform
which replicates waveform of ocean bottom pressure gage.
It exhibits a cyclic trajectory which returns to its initial posi-
tion after an earthquake. They said that this could be used in
predicting aftershocks.

Lin et al. [92] first figured out the best number of neu-
rons in the hidden layer for an ANN model and used their
EEMPBPNN model for magnitude prediction. The average
standard deviation was 0.21, and theMSE varied from 0.01 to
0.09.

Lakshmi and Tiwari [93] tried to evaluate the dynamics of
an earthquake in the northeast Indian region. They have used
nonlinear forecasting and ANN. The highest R-value they
have found is 0.4014 for nonlinear forecasting and 0.520 for
ANN. Because of this low value, they evaluated NEI as a
chaotic plane.

Niksarlioglu and Kulachi [94] used ANN and clustering
for the magnitude prediction of earthquakes and achieved
RE between 0% to 6.25%. They divided the data into three
clusters.

Zhao et al. [37] used different hybrid algorithms to dif-
ferentiate earthquakes and explosions. The BPNN model
achieved 98.21% accuracy, and PCA-SVM achieved 99.23%

accuracy. The best model was the BP-AdaBoost model,
which was 99.49% accurate.

Fong et al. [98] forecasted earthquake magnitude using
the GMDH method. The worst residual error they observed
was 0.2367, and the best was 0.1733. The standard deviation
was between 0.11 and 0.19, which indicates that it is a stable
model.

Akhoondzadeh [35] used GA for detecting anomalies in
TEC before and after an earthquake. His model found that
8 days and 7 days before the earthquake, the TECwas 54.66%
and 21.75% higher than the threshold, respectively. 10 hours
after the earthquake, it was 29.8% higher than the higher
bound.

For earthquake prediction, Chen et al. [104] proposed a
chaos theory based RBFNN. This model achieved training
RMSE of 0.0107 to 0.0109. The prediction RMSE varied
between 0.042 and 0.049. D’Amico et al. [105] compared
RBFNN with SVR for aftershock prediction with global
RMSE values 0.80 and 0.88 for RBFNN and SVR. The
RBFNN achieved a global WIA of 0.94, which was 0.02 bet-
ter than that of the SVR model.

Asencio-Cortes et al. [108] tried to find out the best set
of parameters for earthquake prediction. They tried KNN,
SVM, NB, DT, and ANN algorithm in combination with the
parameters to find the best possible set. They found that the
start and end of the training and testing catalog, calculated b-
value, lower and upper bound of magnitude threshold are the
essential criteria for earthquake prediction.

For the NN-based methods, Minold is equal to 71.5% and
Maxold is equal to 99.89% for relative accuracy calcula-
tion. The relative RMSE is calculated with a lower bound
of 0.0041 and upper bound of 1.19 to convert it to the range
of 0 to 100. For average error, the Minold and the Maxold are
0.0625 and 5.6 respectively. Based on these ranges, the rel-
ative performance conversion is done using Eq. (25). The
relative performance classes are evaluated using Eqs. (26)
and (27).

s: THE WORKS REPORTING THE HIGH PERFORMANCE FOR
NEURAL NETWORK-BASED APPROACHES
The BP-AdaBoost [37] and the NDC-NDAP method [97]
provided relative accuracy of 98.59% and 98.27%. The
bio-inspired IABC-MLPmethod achieved a relative accuracy
of 100%. The RBFNN model [106] also performed well
with a relative accuracy of 86.30%. These models are high
performing methods based on relative accuracy.

The embedded BPNN [92] and the LR-BP [89] methods
achieved relative RMSE of 24.95% and 23.27% respectively.
The GMDHNN method [98], Meta-learning with transfer
learning method [102], and RBFNN-based method [104]
performed well with relative RMSE of 16.98%, 21.97%, and
3.4% respectively. The MFOFLANNmethod [99] performed
best based on the relative RMSE. These methods are high
performing methods based on relative RMSE.

The LM-BP method [32] and the HC-ANN method [94]
provided relative average error of 1.04% and 0%.

34 VOLUME 8, 2020



M. H. A. Banna et al.: Application of AI in Predicting Earthquakes: State-of-the-Art and Future Challenges

TABLE 8. A summary of used algorithms, used datasets, evaluation metrics, and obtained outcomes of NN-based earthquake researches.

The bio-inspired ANN-GA method [34] and the BP-PSO
model [36] provided relative average error of 7.36% and

2.45% respectively. These models, along with the RBFNN
method [38] are considered as high performing methods.
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TABLE 9. A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of DL-based earthquake prediction studies.

t: THE WORKS REPORTING THE MEDIUM PERFORMANCE
FOR NEURAL NETWORK-BASED APPROACHES
The ANN-based models [82]–[84], [90] were all medium
performing based on accuracy as their relative accuracies
were 44.21%, 42.48%, 34.17%, and 29.68% respectively.
The LM-BP model [88] and the ensemble of RBFNN tech-
nique [103] provided relative accuracy of 43.69% and 68.69%
respectively. The PNN method [3], and the DT-regressor
method [109] provided relative accuracy of 58.12% and
65.16% respectively. These models are reported as medium
performing based on relative accuracy.

The ANN-based methods [78], [79] provided relative
RMSE of 28.29% and 34.23% respectively. The RBFNN
method [105] achieved relative RMSE of 67.11%. These are
medium performing methods based on relative RMSE. The
ANN-based method [85] achieved a relative average error
of 34.99% and reported as medium performing.

u: THE WORKS REPORTING THE LOW PERFORMANCE FOR
NEURAL NETWORK-BASED APPROACHES
The ANN-based methods [80], [81] achieved relative accu-
racy of 16.24% and 0% respectively. The ANN-SVM
model [95] and the RF-based method [112] provided 6.59%
and 12.33% relative accuracy, respectively. These models
are reported as low performing methods based on relative
accuracy.

The LR-based method [113] achieved relative RMSE
of 100% and classified as a low performing model. The
LM-BP model [87] achieved a relative average error of 100%
for which it was also enlisted as a low performing model. The
categorization of the studies are depicted in Fig. 15.

C. DEEP LEARNING APPROACHES
Here we will discuss the outcome of DL-based researches.

Kanarachos et al. [114] have usedDNNwithwavelet trans-
form and Hilbert transform form-finding long-term patterns
in the earthquake. They achieved an average TP rate of 83%
on the 18th of April 1995. On the 19th of April, they found a
TP rate of 86% before the Kozani Grevena earthquake.

Vardaan et al. [115] used LSTM for predicting the future
trend of earthquakes. The overall R2 score of the model
was −0.252.
Wang et al. [39] used DL model to predict the magnitude

of P-wave during an earthquake. For the error range of±0.5,
this model predicted 84.21% samples correctly.

Wang et al. [42] proposed an LSTM based model
for the prediction of earthquakes. With one-dimensional
input, this model achieved an accuracy of 63.50%. With
two-dimensional input, this model achieved an accuracy
of 86% for (5× 5) sub-region.

Asim et al. [116] compared PRNN, RNN, RF, and
LP Boost algorithm for magnitude prediction of an earth-
quake. For unseen data, the LP Boost algorithm worked
best with 65% accuracy, and RNN achieved 64% accu-
racy. PRNN produced the least amount of false alarms.
Panakkat and Adeli [40] predicted the time and location
of an earthquake using RNN. This model could predict the
location of an earthquake with an error of 15 to 39 kilome-
ters. The mainshock was predicted with an error of 75 to
94 days, and aftershocks were predicted with an error of 5
to 16 days. Panakkat and Adeli [65] compared BP, RNN,
and RBFNN for predicting the most massive earthquake in
the next month. The RNN based model performed best with
an average R-score of 0.562 for different magnitude ranges.
Asencio-Cortes et al. [117] compared DL, GLM, GBM, and
RF for magnitude prediction of an earthquake. For the mag-
nitude of 3 to 7, the RF algorithm performed best with aMAE
of 0.6. Table 9 shows the algorithms, outcomes, used dataset,
and the evaluation metrics by the DL-based researches.

For the DL-based methods, Minold is set to 65.8% and
Maxold is set to 88.57% for relative accuracy calculation. This
conversion is done based on Eq. (25) so that themodels can be
categorized in three levels. The relative performance classes
are evaluated using Eq. (26).

v: THE WORKS REPORTING THE HIGH PERFORMANCE FOR
DEEP LEARNING-BASED APPROACHES
TheDNNbasedmodels [39], [114] showed high performance
with a relative accuracy of 75.53% and 80.85%. The LSTM
model [42] performed best with a relative accuracy of 100%
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FIGURE 13. Performance comparison of the articles based on accuracy. The different algorithms are presented using different colors. The height of each
bar represents its accuracy. The dataset used by the researches is written over the bar. The rule-based expert system was able to achieve 100% accuracy
in earthquake prediction within 12 days. The NDC-NDAP, BP-AdaBoost, and IABC-MLP algorithms produced accuracy more than 99% for predicting
earthquakes using their datasets. The RF algorithm was 100% successful for detecting earthquakes. All the algorithms are at least 60% successful in
predicting earthquakes.

w: THE WORKS REPORTING THE MEDIUM PERFORMANCE
FOR DEEP LEARNING-BASED APPROACHES
The PRNN method [116] achieved relative accuracy
of 57.97%. Therefore, this method was labelled as medium
performing.

x: THE WORKS REPORTING THE LOW PERFORMANCE
The vanilla RNN-based method [65] performed worst among
the DL-based methods. This method provided a relative accu-
racy of 0% and reported as a low performing model. The
categorization of the studies based on relative performance
are presented in Fig. 15.

In Fig. 13, the performance of the models was compared
based on accuracy of prediction. For the prediction of an
earthquake, all the AI-based algorithms achieved accuracy
by more than 60%. The rule-based expert system was able
to predict earthquakes within 12 hours before an earth-
quake with 100% accuracy. The IABC-MLP method was
also successful, with 99.89% accuracy. The NDC-NDAP
and BP-AdaBoost algorithm also performed very well.

For the detection of P-wave, RF was 100% accurate. For
the sake of comparison, the studies that only used Sp
and Sn as evaluation metrics were converted to accuracy
using MatCal software. In Fig. 14(a), the performance of
the models was compared based on MSE and RMSE. The
ANFIS-ELM algorithm produced the least amount of error.
The MFOFLANN model also produced the least amount
of error. These algorithms did not exceed the MSE value
of 0.8. Therefore, all the AI-based algorithms work well.
In Fig. 14(b), the methods that used average error as eval-
uation metrics were compared. The NARX based method
was most successful. We have observed that the performance
of the NN optimized by the bio-inspired algorithms, per-
formed well. More researches should be done based on these
methods.

D. DISCUSSION ON PERFORMANCE BASED ON STUDY
AREA
Different earthquake-related researches are discussed in this
study. However, the performance of different methods on the
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FIGURE 14. (a) Performance comparison of earthquake prediction methods based on MSE and RMSE. The model with the lowest MSE or RMSE values is
mostly appreciated. The different techniques are represented with different colored bars, and their height represents their value. The respective datasets
are mentioned over the bar. The GMDHNN algorithm produced the highest amount of error. The ANFIS-ELM method performed best, and the bio-inspired
algorithm MFOFLANN also produced excellent results. (b) Performance comparison of earthquake prediction methods based on average error. The LM-BP
method produced the worst performance, with an average error of 5.5%. The NARX algorithm produced the least average error.

same database needs to be addressed. Here, we will discuss
the performance of different models on the different datasets
based on relative performance discussed earlier. The methods
are discussed based on high, medium and low performance.
Some studies were done considering data from the whole
world. The rule-based expert system [49] predicted earth-
quake with high relative accuracy. For reducing errors in fore-
casting GMDHNN [98] showed high performance on world
data. For magnitude prediction based on the data around the
world, RBFNN [106] and MFOFLANN based model [99]
showed high performance. The ANN-SVM model [95] pro-
vided low performance.

For the study area of Iran, ANFIS [47] showed high
performance for seismic moment prediction. For forecast-
ing earthquake ANFIS-ELM model [58] and the SVR-based
model, [61] achieved high performance for Iranian region.
For short-term earthquake prediction, NFC model [51]
showed medium performance. For magnitude prediction,
ANFIS-based model [57] provided medium performance, but

the RF-based model [112] showed low performance on data
of the Iranian region.

Some researches took China as their study area. For
earthquake occurrence, LR-BP [89] and LSTM [42] model
achieved high performance. For earthquake magnitude pre-
diction, RBFNN [38] achieved high relative accuracy, ANN
[79] and ensemble of RBFNN [103] produced medium rel-
ative performance and SVM-based model [59] showed low
performance. Intensity near the epicenter in China was pre-
dicted by ANFIS [52] with low relative performance. After-
shock in China was predicted by PRKNN [63] with low
performance.

For the study area of Indonesia, the magnitude of the
earthquakewas predicted byHKMC-ANN-basedmodel [71],
[72] with low performance and with ANFIS [55] it was pre-
dicted with high relative performance. ANFIS [54] predicted
the occurrence and non-occurrence with low relative perfor-
mance. GFCV-based method [48] showed high performance
for b-value prediction for the Indonesian region.
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FIGURE 15. Categorization of performances for various rule-based, shallow/deep machine learning approaches. The studies are
compared on their relative performance calculated by Eq. (25). Based on the relative performance, the studies are categorized in high,
medium, and low classes.

In southern California, researches were done for earth-
quake magnitude prediction. The NDC-NDAP method [97]
and the IABC-MLP method showed high performance for
this area. The PNN [3] and the SVR-HNN [62] achieved
medium performance. The RNN-based model [65] provided
low performance for the south Californian region.

The KMC-TBS model [69] provided high accuracy for
magnitude prediction, but ANN-based [80] model achieved
low performance for data of Chile. The best set of parameters
were calculated by ANN [90] model with a relative medium
performance for this area. The occurrence of the earthquake
was predicted by KMC [68] with a low performance for the
data of Chile.

For magnitude prediction in Greece, both the ANN-based
model [82] and the SVM-SVD model achieved medium

performance. The DNN-based model [114] showed high
performance for SES anomaly prediction in the Greek
area.

For the Turkish region, LR-based model [113] provided
low accuracy for earthquake magnitude prediction, but
HC-ANN model [94] achieved high relative performance for
the occurrence of earthquake prediction.

In the Iberian Peninsula area, ANNmodel [81] achieve low
performance for earthquake magnitude prediction. For the
Himalayan region, ANN [84] provided medium performance
for magnitude prediction. The optimized neural number was
predicted with high performance by the embedded BPNN
model [92] for the Philippines region. In the Hindukush
region, PRNN [116] provided high relative performance for
magnitude prediction.
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VII. CHALLENGES AND FUTURE RESEARCH
Earthquake researches face great difficulties due to the rar-
ity of data, quality of data collection, lack of pattern, and
variability of performance of the same model in different
geological locations. Most of these problems significantly
affect the performance of the model. Here we will discuss the
difficulties faced in earthquake researches, and somemethods
of overcoming these situations are also presented, which can
be adopted in future studies.

A. PREDICTION ACCURACY LIMITED TO MAGNITUDE
All the earthquake prediction models reviewed in this arti-
cle performed very well in predicting magnitudes between
3 and 5. Naturally, an earthquake with a magnitude greater
than magnitude 6 is rare events. When an earthquake with
a magnitude higher than 6 happens, the AI-based models
show poor performance because of data scarcity. Training the
model separately with earthquake events greater than mag-
nitude 6 can help in these scenarios. Generation of artificial
data using models like generative adversarial networks can be
used as well.

B. TIME PREDICTION ERROR
Since the occurrence of the earthquake does not follow some
specific patterns, the earthquake time prediction usually faces
significant errors. For long-term earthquake time prediction,
20 days to 5 months of error are observed in most cases.
Prediction of earthquakes can be treated as a time-series
analysis problem. Therefore, the best performing models in
time-series analysis can be used for it. The earthquake pre-
diction researchers should explore Attention-based architec-
tures.

C. RESOLUTION
The epicenter is the point on the earth’s surface vertically
above the earthquake’s position of generation. The quake’s
intensity is highest on the epicenter, which leads to the
highest amount of damage. But epicentral location is usu-
ally predicted with 70 miles of error. Therefore, the perfect
occurrence of an earthquake is very tough to predict. Clus-
tering the earthquake events based on their location keeps
the location-based patterns intact. Thus, clustering the earth-
quake events can help a lot for more accurate prediction.

D. NO BENCHMARK DATASETS
The earthquake prediction datasets typically contain earth-
quake catalog, SES, seismic waves, precursory parameters,
or animal behavior. The probability of earthquake occur-
rence is small. Consequently, for a specific area, data is not
sufficient. SES for the historical earthquake catalog is not
available. VAN team managed to record SES for 29 events
in quest of creating an SES dataset. Though this effort is not
enough for machine learning or deep learning researches. The
duration of the P-wave is minimal, which makes earthquake
prediction very difficult. There is no benchmark dataset based

on which model can be evaluated. The DL-based approach
cannot be used due to the scarcity of large benchmark dataset.
An earthquake dataset should be created on which every
earthquake model can be tested for easing the comparison
process of the different models.

E. EFFECT OF ENVIRONMENTAL FACTORS
The physics behind the occurrence of an earthquake is not
easy to understand. Precursors such as radon concentration,
soil temperature, strange waves are very troublesome to
monitor. Monitoring animal behavior is not easy as well.
So, the prediction studies of an earthquake are not built
on strong in-depth knowledge of earthquake science. This
leads to under-performing models. In-depth research on the
location-dependent behavior of an earthquake is necessary for
better understanding of this phenomenon.

F. INSUFFICIENT EFFECTIVE PARAMETERS
For earthquake prediction studies, the best set of earthquake
parameters are not defined. Different studies use different
parameter sets. The magnitude of completeness is different
for different datasets as well. Based on these, b-value param-
eters are calculated. In a single dataset, different earthquake’s
magnitude techniques (Local-scale, Richter scale) are evalu-
ated by different techniques. These kinds of variance make
earthquake prediction studies more difficult. In most cases,
the same method performs very differently, just because the
dataset is different. The best set of earthquake features need to
be defined for different geological locations. While recording
the earthquake data, a specific magnitude scale should be
adopted all over the world.

VIII. CONCLUSION
Of all the natural disasters, earthquake is one of the most
devastating one as it occurs suddenly, damages a significant
number of infrastructures, and takes away lives. Many of the
existing prediction techniques provide high false alarm, there-
fore, lack of accurate prediction process is a contributor to this
catastrophic consequence of earthquake. AI-based methods
have created a new scope for improving this prediction pro-
cess due to their high accuracy when compared to other tech-
niques. Such methods can significantly reduce damages as
the concerned area can be evacuated based on the forecasting.
To facilitate the prediction process, this article reviewed the
existing techniques that involve AI-based earthquake predic-
tion. From the academic research databases 84 papers were
selected between 2005 and 2019. The reported methods were
summarized in tables and extensively discussed. Then these
techniques were compared based on their performances. The
reported results of the methods, used datasets, and applied
evaluation metrics were also summarized in tables. This work
aims to highlight the impact of AI-based techniques in earth-
quake prediction which will help the researchers to develop
more accurate methods.
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