2,545 research outputs found

    Development of Nonlinear Filtering Algorithms of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to solving the problem of algorithms and structures investigations for Radio Receiver Devices (RRD) with the aim of the nonlinear filtering of Digital Half-Tone Images (DHTI) representing the discrete-time and discrete-value random Markovian process with a number of states greater than two. At that, it is assumed that each value of the DHTI element is represented by the binary g-bit number, whose bits are transmitted via digital communication links in the presence of Additive White Gaussian Noise (AWGN). The authors present the qualitative analysis of the optimal DHTI filtering algorithm. The noise immunity of the optimal radio receiver device for the DHTI filtering with varying quantization and dimension levels is investigated

    Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

    Get PDF
    Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.This research leading to these results was funded by the EUROPEAN COMMISSION, grant number 787011 (SPEAR Horizon 2020 project) and 780351 (ENACT Horizon 2020 project)

    Attack-Tree Series: A Case for Dynamic Attack Tree Analysis

    Get PDF

    A Probabilistic Framework for Security Scenarios with Dependent Actions

    Get PDF
    This work addresses the growing need of performing meaningful probabilistic analysis of security. We propose a framework that integrates the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. This allows us to perform probabilistic evaluation of attack–defense scenarios involving dependent actions. To improve the efficiency of our computations, we make use of inference algorithms from Bayesian networks and encoding techniques from constraint reasoning. We discuss the algebraic theory underlying our framework and point out several generalizations which are possible thanks to the use of semiring theory
    • …
    corecore