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Abstract
Attack–defense trees are a novel methodology for graphical security modelling and assessment. They extend the well- known
formalism of attack trees by allowing nodes that represent defensive measures to appear at any level of the tree. This enlarges
the modelling capabilities of attack trees and makes the new formalism suitable for representing interactions between an
attacker and a defender. Our formalization supports different semantical approaches for which we provide usage scenarios.
We also formalize how to quantitatively analyse attack and defense scenarios using attributes.
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1 Introduction

It is a well-known fact that the security of any sufficiently valuable system is not static. To keep
a system secure, it has to be defended against a growing number of attacks. As better defensive
measures get deployed, more sophisticated attacks are developed, leading to an endless arms race
and an increasingly complex system.

A mature, large and complex system poses several challenges. How can it be decided whether a
costly defensive measure implemented in the distant past is still necessary today? What are the best
defensive measures worth currently investing in? How can newly discovered attacks and implemented
defenses be efficiently and systematically documented?

In 1999, Schneier popularized attack trees as a tool to evaluate the security of complex systems [29].
An attack tree is a tree-like representation of an attack scenario. The root of an attack tree corresponds
to an attacker’s goal. The children of a node in the tree are refinements of the node’s goal into sub-goals.
The leaves of the tree are the actions to be executed by the attacker.

An obvious limitation of attack trees is that they cannot capture the interaction between attacks
carried out on a system and the defenses that could be put in place to fend off the attacks. This
consequently limits the precision with which the best defensive strategies can be analysed, since

1A preliminary version of this article has appeared in the proceedings of FAST 2010.
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it does not take into account the effects of potential defensive measures which would need to be
overcome by new attacks. Similarly, a regular attack tree does not allow for the visualization and
consideration of the evolution of a system’s security, because the evolution can only be understood
in view of both, the attacker’s, as well as the defender’s, actions.

These limitations can be overcome by introducing defensive actions as countermeasures to attacks.
To model the ongoing arms race between attacks and defenses, it is necessary to allow for alternation
between these two types of actions. We therefore introduce attack–defense trees (ADTrees) as a
graphical representation of possible measures an attacker might take to attack a system and the
defenses that a defender can employ to protect the system.

The contributions of this article are as follows:

(1) We develop an extension of attack trees with defense nodes.
The new formalism is called ADTrees. It generalizes and unifies existing approaches to extend
attack trees.

(2) We formalize the meaning of an ADTree.
We propose a framework in which a variety of semantics can be defined. This is motivated by
the fact that different applications require different interpretations of ADTrees. We develop the
following semantics:

– The class of semantics induced by De Morgan lattices.
This class contains the propositional semantics which is the most frequently used semantics
for attack trees.

– Multiset semantics.
This class extends the semantics proposed for attack trees in [21] to ADTrees.

– The class of equational semantics.
Equational semantics are defined by sets of equations over ADTrees. They constitute,
therefore, a very general class of semantics and aid in establishing relations between
different semantics for ADTrees.

We provide a complete axiomatization for the propositional and the multiset semantics.
(3) We introduce the notion of an attribute for ADTrees.

The introduction of attributes enables a quantitative analysis of attack–defense scenarios. It
requires the formalization of a compatibility condition, which guarantees that the evaluation of
an attribute on two semantically equal ADTrees results in the same value for both trees.

The article is structured as follows. In Section 2 we formally introduce ADTrees, give an example,
and define attack–defense terms (ADTerms) which are a formal representation of ADTrees. We
present various semantics for ADTrees in Section 3. We show how to compare different semantics
introduced in this article in Section 4 where we also provide complete axiomatizations for the
propositional and the multiset semantics. In Section 5, we study how to quantitatively analyse
ADTrees with the help of attributes. We review related work in Section 6 and conclude in Section 7.

2 Attack–defense trees

2.1 Terminology

An attack–defense tree (ADTree) is a node-labelled rooted tree describing the measures an attacker
might take to attack a system and the defenses that a defender can employ to protect the system.
ADTrees have nodes of two opposite types: attack nodes and defense nodes, which correspond to an
attacker’s and a defender’s (sub-)goals, respectively.
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The two key features of an ADTree are the representation of refinements and countermeasures.
Every node may have one or more children of the same type representing a refinement into sub-goals
of the node’s goal. If a node does not have any children of the same type, it is called a non-refined
node. Non-refined nodes represent so-called basic actions.

Every node may also have one child of opposite type, representing a countermeasure. Thus, an
attack node may have several children which refine the attack and one child which defends against
the attack. The defending child in turn may have several children which refine the defense and one
child, i.e. an attack node and counters the defense.

The refinement of a node of an ADTree is either disjunctive or conjunctive. The goal of a
disjunctively refined node is achieved when at least one of its children’s goals is achieved. The
goal of a conjunctively refined node is achieved when all of its children’s goals are achieved.

The purpose of ADTrees is to model attack–defense scenarios. An attack–defense scenario can be
seen as a game between two players, the proponent (denoted by p) and the opponent (denoted by o).
The root of an ADTree represents the main goal of the proponent. When the root is an attack node,
the proponent is an attacker and the opponent is a defender. Conversely, when the root is a defense
node, the proponent is a defender and the opponent is an attacker.

When drawing ADTrees, we depict attack nodes by circles and defense nodes by rectangles,
as shown in Figure 1. Refinement relations are indicated by solid edges between nodes, and
countermeasures are indicated by dotted edges. We depict a conjunctive refinement of a node by
an arc over all edges connecting the node and its children of equal type.

2.2 Example

To demonstrate the features ofADTrees, we consider the following fictitious scenario concerning data
confidentiality in a data hosting center. TheADTree representing the scenario is shown in Figure 1. Its
root node is a defense, thus the main goal expressed by the tree is the protection of data confidentiality.

To protect the confidentiality of costumer data, the hosting company needs to invest in network
security as well as in physical security measures. These measures break up into several aspects that
need to be taken care of. However, even if both of physical and network security were to be infallible,
the company’s employees would still be a weak point. Two common options to subvert a company
through its employees are corruption and social engineering. These attacks can be mitigated through
employee screenings and sensitivity training for social engineering techniques.

Network security is a very complex problem, and it is beyond the purpose of this introductory
example to show all possible defenses. Some standard measures employed towards network security
are firewalls, intrusion detection and access control systems. Of these, we are displaying the evolution
of access control through the use of passwords. In many access controlled services, passwords used
to be free of any restrictions regarding the type of characters they need to contain. Consequently, a
significant number of passwords chosen consisted of a name or dictionary word, since these are much
easier to remember than a random sequence of characters. This has led to access control breaches
through so-called dictionary attacks. To prevent these attacks, computer systems nowadays require
‘strong’ passwords, which are to consist of letters, numbers and non-alphanumeric characters. This
mechanism, however, induces people to write up their passwords on easily accessible sticky notes
or to reuse the same strong password for different accounts and services. Thus, the strong password
required for the data center may be recovered by attacking an unrelated and possibly weaker system
the target user has an account on.

Regarding physical security, a building can be broken into through back doors, windows or fire
escapes. It is, therefore, common to reinforce windows and to protect other entrances with locks. The
locks can be circumvented by forcing them open or by obtaining a key. It is therefore increasingly
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Figure 1. An ADTree for protecting data confidentiality.

common to employ security guards to monitor the building. To effectively monitor the building, a
security guard will typically have the keys not only to the building itself, but also to all rooms in the
building. This makes the security guard a possible attack vector. He could be bribed or overpowered,
or his keys could be stolen in some manner. To overpower the guard, it would be necessary to
outnumber him and threaten him with weapons. To prevent these three attacks, video cameras with
remote surveillance could be employed.

The scenario as described thus far is obviously incomplete. It is clear, however, that for any addition
to the scenario, it would be very simple to extend the ADTree shown in Figure 1 with new attacks
and defenses.

2.3 Formal representation

To formally analyse ADTrees, we define an abstract syntax which we call ADTerms. ADTerms are
typed terms over a particular signature called the AD-signature. To define the AD-signature, we
make use of the notion of an unranked function. An unranked function F with domain D and range
R denotes a family of functions (Fk)k∈N, where Fk : Dk →R, for k>0. Given a set S, we denote by
S∗ the set of all finite strings over S and by ε the empty string.

Definition 2.1
The AD-signature is a pair �= (S,F), where

• S ={p,o} is a set of types, and
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• F ={(∨p
k)k∈N,(∧p

k)k∈N,(∨o
k)k∈N,(∧o

k)k∈N,cp,co}∪B
p ∪B

o is a set of function symbols, such
that {(∨p

k)k∈N,(∧p
k)k∈N,(∨o

k)k∈N,(∧o
k)k∈N,cp,co}, B

p and B
o are pairwise disjoint.

Every function symbol F ∈F is equipped with a mapping rnk : F →S∗×S, called rank. The rank of
a function symbol F is a pair rnk(F)= (arity(F),(F)), where the first component describes the arity
of F and the second specifies its type. For the function symbols in F and k ∈N, we define

rnk(b)= (ε,p), for b∈B
p, rnk(b)= (ε,o), for b∈B

o,

rnk(∨p
k)= (pk,p), rnk(∨o

k)= (ok,o),

rnk(∧p
k)= (pk,p), rnk(∧o

k)= (ok,o),

rnk(cp)= (po,p), rnk(co)= (op,o).

The elements of B
p and B

o are typed constants, which we call basic actions of the proponent’s
type and basic actions of the opponent’s type, respectively. We denote the set of all basic actions by
B=B

p ∪B
o. The unranked functions ∨p,∧p,∨o and ∧o represent disjunctive (∨) and conjunctive

(∧) refinement operators for the proponent and the opponent, respectively. We set p=o and o=p.
The binary functions cs, for s∈S, connect actions of type s with actions of the opposite type s.

Definition 2.2
Typed ground terms over the AD-signature� are called ADTerms. The set of all ADTerms is denoted
by T� .

For s∈{p,o}, we denote by T
s
� the set of all ADTerms with the head symbol of type s. We have

T�=T
p
�∪T

o
� . The elements of T

p
� and T

o
� are called ADTerms of the proponent’s and of the

opponent’s type, respectively. TheADTerms of the proponent’s type constitute a formal representation
of ADTrees. Attack trees are formally represented by ADTerms of the proponent’s type that are built
exclusively from basic actions of the proponent’s type and functions ∨p and ∧p.

In the remaining part of this section, we give a formal definition of ADTrees and we show how
ADTrees correspond to ADTerms.

The definition of an ADTree is based on the notion of a finite ordered tree, as introduced in [9].
A finite ordered tree T over a set of labels L is a function T : Pos(T )→L, where Pos(T ) is a prefix-
closed subset of (N\{0})∗, called the set of positions of T . We depict T as a graph in the following
manner. The positions in Pos(T ) are drawn as nodes labelled with elements of L. The position ε is
the root node of the graph, depicted as the topmost node. The positions pi, where i∈{1,...,k} for
some k>0, are the children of the node corresponding to the position p. Since T is ordered, the node
corresponding to the position pi is drawn left of the node depicting position pj, for all i< j.

An ADTree is then formally defined as follows.

Definition 2.3
An ADTree (ADTree) is a finite ordered tree T over the set of labels LT =B

p ∪B
o ∪{∨p,∧p,∨o,∧o},

together with a function λ : Pos(T )→{ �, } which satisfies the following two conditions for every
p∈Pos(T ).

(1) If there exists i∈N\{0}, such that pi∈Pos(T ) and λ(pi)=λ(p), then

T (p)∈
{

{∨p,∧p} if λ(p)=λ(ε),

{∨o,∧o} else,
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Table 1. Transformation from ADTrees to ADTerms

otherwise

T (p)∈
{

B
p if λ(p)=λ(ε),

B
o else.

(2) For every i∈N\{0}, if λ(pi) �=λ(p), then ∀j> i pj �∈Pos(T ).

The function λ allows us to distinguish between attack nodes ( �) and defense nodes ( ). Value
λ(ε) determines for the considered tree which player (attacker or defender) is the proponent and which
is the opponent. By comparing the values of λ applied to a parent node with the values of λ applied
to its children we can decide which nodes are refined and which non-refined. A node p is refined if
it has at least one child pi such that λ(p)=λ(pi). A non-refined node can have at most one child p1,
and this child needs to satisfy λ(p) �=λ(p1). Condition 1 of Definition 2.3 guarantees that each node
p of an ADTree is either refined in a conjunctive or disjunctive way (T (p)∈{∨p,∧p,∨o,∧o}) or is a
non-refined node (T (p)∈B

p ∪B
o). Condition 2 states that each node p may only have one child of

the opposite type. Moreover, if such a child exists, it is always depicted as the rightmost child node
of p.

In the formal definition ofADTrees, refined nodes are labelled with the associated refining symbols.
In practice, such nodes are typically labelled with descriptive names of the (sub-)goals they represent,
as shown in Figure 1.

Tables 1 and 2 show how to obtain the ADTerm corresponding to an ADTree and vice versa. Given
an ADTree T , we denote by ι(T ) the ADTerm representing T . Given an ADTerm t, we denote by
I(t) the corresponding ADTree. In Tables 1 and 2, we assume that the proponent is an attacker. If the
proponent is a defender, circular nodes have to be replaced with rectangular nodes and vice versa.
To condense the presentation even further, we leave out the arcs, denoting conjunctions, in the cases
where f =∧s, for s∈{p,o}.
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Table 2. Transformation from ADTerms to ADTrees

Example 2.4
The ADTerm representing the sub-tree of the ADTree in Figure 1, rooted at the Security Guard node,
is the following

cp
(

SecGuard,co
(
∨o (

Bribe,∧o(Outnumb,Weapons),StealKeys
)
,Cameras

))
.

Note that the names of refined nodes in the ADTree, such as ‘Defeat Guard’ and ‘Overpower’, do not
appear in the ADTerm. Instead, these nodes are represented with the corresponding refining symbols
∨o and ∧o.

2.4 Design choices

When designing the ADTree formalism, we have deliberately made the following modelling choices
to keep a balance between usability, complexity and representational impact.

(1) Refinements and countermeasures. An ADTree node is refined either conjunctively or
disjunctively. Refinement operators are unranked. Each ADTree node may only have one child
of opposite type. These choices were made in order for ADTrees to reflect as closely as possible
a description of an attack–defense scenario in natural language.
These choices do not limit the expressiveness of the formalism. We would obtain an equally
expressive formalism by restricting ADTrees to binary refinements, by allowing nodes with
multiple countermeasures, or by allowing nodes that are conjunctively and disjunctively refined
at the same time.

(2) ADTrees versus parse trees of ADTerms. The ADTree corresponding to an ADTerm of the form
t =cp(t1,t2) differs from the parse tree of t. We depict the root of the tree corresponding to
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t2 as a child of the root node of the tree corresponding to t1. In this manner we illustrate that
t2 represents a countermeasure for the scenario depicted by t1. Such an illustration helps us
to model interactions between the two players involved in an attack–defense scenario in an
intuitive and understandable way.

(3) Finite trees. We consider only finite ADTrees in this article for the sake of simplicity. Infinite
ADTrees are conceivable, for instance, to model recursive goals, such as obtaining keys to a
locked box which contains the keys. Infinite ADTrees would also be a useful tool to study the
limit case of evolving attack–defense scenarios, such as automated attacks and defenses.

(4) Ordered trees. We define ADTrees to be ordered trees. This choice makes ADTrees suitable
for the analysis of scenarios in which the order between actions is relevant. This could, for
instance, be the case when temporal relations are taken into account.

(5) Trees versus DAG. We use trees instead of directed acyclic graph (DAG) for simplicity of
the formalism. DAGs are more expressive because they can be used to indicate dependencies
between nodes. For instance, the two nodes labelled ‘Window’ in Figure 1 could be replaced
by a single node to express that they concern the same physical window or that all attacks
to one window also apply to the other window. Since such shared nodes give rise to different
possible interpretations and to a more complicated semantical treatment, we leave the extension
to DAGs for future research.

3 Semantics for ADTerms

3.1 Definition of semantics

ADTerms represent attack–defense scenarios. Depending on how ADTerms are interpreted,
syntactically different terms may be considered equivalent. A semantics for ADTerms defines such
equivalence classes. Terms that belong to the same equivalence class represent the same scenario.

Definition 3.1
A semantics for ADTerms is an equivalence relation on T� that preserves types.

Depending on the semantics, the most naturalADTerm for a scenario may not be the simplest possible.

Example 3.2
Consider an attack scenario in which three different doors need to be opened with the same key. The
scenario can be represented by the ADTerm t =∧p(OpenDoor,OpenDoor,OpenDoor). If it is only
the feasibility of the scenario which is of interest, the number of doors to be opened is irrelevant. In
this case, t represents the same scenario as t′ =OpenDoor.

An essential feature of the ADTree methodology is that ADTerms can be equipped with multiple
semantics. Different applications require the use of different semantics. The two terms t and t′ in
Example 3.2 are equivalent if the feasibility of the attack scenario is examined. However, t and t′
are no longer equivalent if the attacker is interested in how much time is required to achieve his
attack. The choice of an appropriate semantics becomes crucial when a quantitative analysis of an
attack–defense scenario is to be performed. We will discuss this issue in Section 5.

3.2 Propositional semantics

Attack trees are often seen as representations of and– or formulæ.Thus, one of the most frequently used
semantics for attack trees is the propositional semantics [16, 17, 26, 34]. In this section, we extend
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this semantics to ADTerms. When the propositional semantics is used, ADTerms are interpreted
as propositional formulæ. The satisfiability of the formula interpreting an ADTerm t models the
feasibility of the scenario represented by t. The propositional semantics is well-suited to evaluate
whether a system is vulnerable to an attack, in how many different ways a system can be successfully
attacked, or whether special equipment is needed to perform an attack.

We assign a propositional variable xb to every basic action b∈B. We assume that different basic
actions give rise to different propositional variables. In particular, since the sets of basic actions of
the proponent’s and of the opponent’s type are disjoint, we have

{xb |b∈B
p}∩{xb |b∈B

o}=∅.
A propositional formula tP , called a propositional ADTerm, is associated with every ADTerm t as
follows. Let t1,t2,...,tk ∈T� , s∈{p,o} and k>0. Then

bP =xb, for b∈B, (∨s
k(t1,...,tk))P = t1

P ∨···∨tk
P ,

(cs(t1,t2))P = t1
P ∧¬t2

P , (∧s
k(t1,...,tk))P = t1

P ∧···∧tk
P .

Every assignment of Boolean values (0 standing for false and 1 standing for true) to the propositional
variables xb, for b∈B, which satisfies a propositional ADTerm tP , describes a way to achieve the
proponent’s goal represented by the ADTerm t.

Example 3.3
Consider theADTerm t =cp(b,∧o(d,e)), where b∈B

p and d,e∈B
o. The corresponding propositional

ADTerm tP is xb ∧¬(xd ∧xe). The formula tP is satisfied if and only if variable xb is set to 1 and
at least one of the variables xd or xe is set to 0. This models the fact that, to achieve his goal, the
proponent needs to execute action b while at least one of the two actions d and e must not be executed
by the opponent.

By ≈ we denote the canonical equivalence relation on propositional formulæ. Recall that two
propositional formulæ ψ and ψ ′ are equivalent (ψ≈ψ ′) if and only if, for every assignment ν of
Boolean values to propositional variables, we have ν(ψ)=ν(ψ ′).
Definition 3.4
The propositional semantics for ADTerms is the equivalence relation ≡P on T� defined, for all
t,t′ ∈T� , by

t ≡P t′ if and only if tP ≈ t′P .
The following example illustrates the use of the propositional semantics.

Example 3.5
Consider the ADTerm t =cp(b,∧o(d,e)), introduced in Example 3.3 and the ADTerm t′ =
cp(∧p(b,b),∧o(d,e)). Due to the idempotency of the propositional conjunction, the corresponding
propositionalADTerms are equivalent formulæ, i.e. tP =xb ∧¬(xd ∧xe)≈ (xb ∧xb)∧¬(xd ∧xe)= t′P .
Therefore, we have t ≡P t′.

3.3 Semantics induced by a De Morgan lattice

In the propositional semantics, ADTerms are interpreted as propositional formulæ. Such an
interpretation limits the usefulness of the propositional semantics to those applications which take
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only binary properties into account. Examples of such properties are feasibility or presence of an
attack. This implies that the propositional semantics is not well-suited to reason about properties,
such as effectiveness or usefulness of an attack’s components, which may have more than two states.
To overcome this limitation of the propositional semantics, we propose the use of semantics induced
by De Morgan lattices. In a semantics induced by a De Morgan lattice, ADTerms are interpreted as
functions whose range is the De Morgan lattice.

Let 〈A,+,×〉 be an algebraic structure defined over a non-empty set A with two binary operations +
and ×. The structure 〈A,+,×〉 is called a distributive lattice if the operators + and × are associative
and commutative and if the following laws hold: a×(a+b)=a, a+(a×b)=a (absorption) and
a×(b+c)= (a×b)+(a×c) (distributivity of × over +). It is a basic fact in lattice theory that the
last condition is equivalent to its dual, i.e. a+(b×c)= (a+b)×(a+c). Furthermore, it is well-known
that if 〈A,+,×〉 is a lattice it can always be equipped with a canonical partial order, defined for all
a,b∈A, by

a�b if and only if a+b=b. (�)

This order is monotonic with respect to the operations + and ×, see [11].
To introduce the notion of a De Morgan lattice, we extend a distributive lattice 〈A,+,×〉 with a

unary operation, denoted by ¬, satisfying De Morgan’s laws and double negation.

Definition 3.6
An algebraic structure 〈A,+,×,¬〉 is called a De Morgan lattice if the sub-structure 〈A,+,×〉 is a
distributive lattice and, for all a,b∈A, we have

¬(a+b)= (¬a)×(¬b), ¬(a×b)= (¬a)+(¬b), ¬(¬a)=a.

We assume that every De Morgan lattice 〈A,+,×,¬〉 contains the neutral elements 0 for + and 1 for
×. This is not a significant restriction, since using a result of Pouly [25], it can be easily shown that
〈A,+,×,¬〉 can always be adjoined with such elements.

De Morgan lattices are well-suited to represent outcomes requiring more than just the two Boolean
values 0 and 1.

Example 3.7
The tuple 〈{F,M,T},max,min,¬〉, where F≤M≤T and ¬F=T, ¬M=M and ¬T=F is a De Morgan
lattice1. The values T, M and F, for instance, could allow us to distinguish between fully effective,
partially effective and ineffective actions, respectively.

Furthermore, De Morgan lattices are more general than Boolean algebras, as shown in the following
example.

Example 3.8
Consider the De Morgan lattice 〈{T,M,F},max,min,¬〉 introduced in Example 3.7. Note that F
and T are neutral elements for max and min, respectively. However, this De Morgan lattice is not
a Boolean algebra. It does not satisfy the laws of complements, because max{M,¬M}=M �=T and
min{M,¬M}=M �=F.

We now introduce De Morgan valuations which are functions represented by ADTerms when a
semantics induced by a De Morgan lattice is used. As in the case of the propositional semantics, we

1One can show that order ≤ coincides with the canonical order given by (�) for +=max.



Copyedited by: TRJ MANUSCRIPT CATEGORY: Original Article

[12:21 3/1/2014 exs029.tex] LogCom: Journal of Logic and Computation Page: 65 55–87

Attack–defense trees 65

assign a propositional variable xb to every action b∈B. Given a set V ⊆{xb |b∈B}, we denote by
x∈{0,1}V a function that associates a value x(xb)∈{0,1} with every variable xb ∈V . In other words,
every such function x∈{0,1}V represents an assignment of Boolean values to the variables in V .

Definition 3.9
Let 〈A,+,×,¬〉 be a De Morgan lattice and let V ⊆{xb |b∈B} be a set of propositional variables. A
De Morgan valuation f with domain V is a function f : {0,1}V →A assigning a value f (x)∈A to each
x∈{0,1}V .

Example 3.10
The propositional Boolean algebra 〈{0,1},∨,∧,¬〉 is an example of a De Morgan lattice. In this case,
the De Morgan valuations are simply Boolean functions, i.e. functions of the form f : {0,1}V →{0,1}.

Given a function x∈{0,1}V , we denote by x↓W the projection of x to a subset W ⊆V . This notation
allows us to define the sum and the product of De Morgan valuations. Let 〈A,+,×,¬〉 be a De Morgan
lattice and let f and g be two De Morgan valuations with domains V and U, respectively. The sum of
f and g (denoted by f +g) and the product of f and g (denoted by f ×g) are De Morgan valuations
with domain V ∪U, defined for every x∈{0,1}V∪U by

(f +g)(x)= f (x↓V )+g(x↓U ) and (f ×g)(x)= f (x↓V )×g(x↓U ).

The negation of the De Morgan valuation f (denoted by ¬f ) is the De Morgan valuation with domain
V , defined for every x∈{0,1}V by (¬f )(x)=¬(f (x)).

Example 3.11
Consider the De Morgan lattice 〈{T,M,F},max,min,¬〉 introduced in Example 3.7. Let f : {0,1}{y} →
{T,M,F} and g : {0,1}{z} →{T,M,F} be two De Morgan valuations, given by

f (y=0)=F, g(z=0)=F,

f (y=1)=M, g(z=1)=T.

Negations of f and g are defined as

¬f (y=0)=T, ¬g(z=0)=T,

¬f (y=1)=M, ¬g(z=1)=F.

Table 3 illustrates the sum of f and g as well as their product. Note that, in this case +=max and
×=min.

To define a semantics induced by a De Morgan lattice 〈A,+,×,¬〉, we first associate, with every
ADTerm t, a De Morgan valuation ft . If t =b and b is a basic action, then ft is a De Morgan valuation
with domain {xb}, i.e. a function of the form fb : {0,1}{xb} →A. With the help of fb, we express how
the value assigned to action b changes, depending on whether this action is present (xb =1) or absent
(xb =0). De Morgan valuations associated with composed ADTerms are then defined recursively, as
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Table 3. Sum and product of two De Morgan valuations

y z f +g=max{f ,g} f ×g=min{f ,g}
0 0 F F
0 1 T F
1 0 M F
1 1 T M

follows. For s∈{p,o}, k>0, we set 2

f∨s(t1,...,tk) =
k∑

i=1

fti , f∧s(t1,...,tk) =
k∏

i=1

fti , fcs(t1,t2) = ft1 ×¬ft2 .

Note that the same De Morgan lattice may induce several semantics. In fact, each semantics induced
by a De Morgan lattice is fully determined by a De Morgan lattice 〈A,+,×,¬〉 and a given set of
De Morgan valuations {fb : {0,1}{xb} →A |b∈B}. Modification of at least one De Morgan valuation
fb results in a different semantics induced by the lattice 〈A,+,×,¬〉.

The purpose of a semantics for ADTerms is to define which ADTerms are equivalent. This is
achieved with the help of equivalent De Morgan valuations. Consider a De Morgan lattice 〈A,+,×,¬〉
and two subsets of propositional variables V ,U ⊆{xb |b∈B}. Two De Morgan valuations f and g,
with respective domains V and U, are said to be equivalent (denoted by f ≡g) if and only if, for
every x∈{0,1}V∪U , we have f (x↓V )=g(x↓U ).

Definition 3.12
The semantics for ADTerms induced by a De Morgan lattice 〈A,+,×,¬〉 and a set of De Morgan
valuations {fb : {0,1}{xb} →A |b∈B} is the equivalence relation ≡DM on T� defined, for all t,t′ ∈
T� , by

t ≡DM t′ if and only if ft ≡ ft′ .

Since every Boolean algebra satisfies the properties of a De Morgan lattice, the propositional
semantics introduced in Section 3.2 is a semantics induced by a De Morgan lattice.

Remark 3.13
The propositional semantics for ADTerms is the semantics induced by the Boolean algebra
〈{0,1},∨,∧,¬〉, where a basic action b∈B represents the Boolean function fb : {0,1}{xb} →{0,1},
given by fb(xb =v)=v, for v∈{0,1}.

We end this section with a discussion showing how a semantics induced by a De Morgan
lattice different from the Boolean algebra 〈{0,1},∨,∧,¬〉 extends the expressive capabilities of the
propositional semantics. Boolean functions interpreting basic actions in the propositional semantics
are of the form fb(xb =v)=v. Such an interpretation does not allow us to differentiate between the
execution of an action and its effectiveness. In other words, the propositional semantics assumes that
actions which are executed are always fully effective. However, this is rarely the case in a real life
scenario. For instance, the execution of a dictionary attack to guess a password does not guarantee
that the password will be found. The following example illustrates how to more accurately model
such an attack by using a semantics induced by the De Morgan lattice 〈{F,M,T},max,min,¬〉.

2∑ and
∏

stand for extensions of sum and product of two valuations to any finite number of valuations. They are
well-defined by associativity of + and ×.
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Example 3.14
Let us consider the De Morgan lattice introduced in Example 3.7 and let t =cp(b,∧o(d,e)) be the
ADTerm in Example 3.3. We use De Morgan valuations to describe efficiency levels of actions b,
d and e. We assume that when actions b,d and e are not executed (xi =0, i∈{b,d,e}), they are
ineffective (F)

fb(xb =0)=F, fd(xd =0)=F, fe(xe =0)=F.

Moreover, executing actions b and e (xi =1, i∈{b,e}) ensures their full effectiveness (T), but executing
action d guarantees its partial effectiveness only (M)

fb(xb =1)=T, fd(xd =1)=M, fe(xe =1)=T.

Analysing the De Morgan valuation associated with t, given by ft(xb,xd,xe)=min
{fb(xb),¬(min{fd(xd), fe(xe)})}, allows us to reason about effectiveness of the scenario represented
by t. We have

ft(0,0,0)=F ft(0,1,0)=F ft(1,0,0)=T ft(1,1,0)=T

ft(0,0,1)=F ft(0,1,1)=F ft(1,0,1)=T ft(1,1,1)=M.

From f −1
t ({M,T}), we deduce that the scenario is at least partially effective for the proponent if action

b is executed, independent of actions d and e.

3.4 Multiset semantics

In every semantics considered so far, the refining symbols ∨s and ∧s, for s∈{p,o}, have been
interpreted with idempotent operators. Therefore, all these semantics assume that the multiplicity
of a sub-goal is irrelevant. This assumption, however, might not be intended in all applications of
ADTrees. It might, for instance, depend on whether the components can be reused or not.

Example 3.15
Consider the scenario illustrated in Figure 1. To deprive the attacker of the possibilities to break in
through the back door and to break in through the main door, the defender has to install locks on both
doors. Since the two doors are in two physically distinct locations, a reuse of locks is not possible in
this case.

The multiset semantics, introduced in this section, allows us to distinguish between multiple
occurrences of the same actions. Thus, it is suitable for analysing scenarios in which such multiple
occurrences of the same sub-goal are significant, as in Example 3.15. The multiset semantics has
initially been defined for attack trees in [21]. Our construction extends this framework to ADTrees.

Given a set H, we use 2H to denote the power set of H, and M(H) to denote the set of all multisets
of elements in H. We use {|a1,...,an|} to denote a multiset composed of (not necessarily distinct)
elements a1,...,an. The symbol � stands for the multiset union.

In the multiset semantics, ADTerms are interpreted as a set of pairs of the form (P,O)∈
M(Bp)×M(Bo), called bundles. A bundle (P,O) encodes how the proponent can achieve his goal:
the proponent must perform all actions present in P whereas the opponent must not perform any of
the actions in O. The set of bundles corresponding to an ADTerm t is an element of 2M(Bp)×M(Bo),
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denoted by tM. It represents alternative possibilities for the proponent to achieve his goal. A basic
action b of the proponent’s type is interpreted as a singleton bM ={({|b|},∅)}, because to achieve his
goal it is sufficient for the proponent to execute action b. A basic action b of the opponent’s type is
interpreted as bM ={(∅,{|b|})}, because in order for the proponent to be successful, action b must not
be executed by the opponent. To obtain the multiset interpretation of the composed ADTerms, we use
the union of sets of bundles (∪) and the distributive product of sets of bundles (⊗). The distributive
product of two sets of bundles S and Z is defined as the set of bundles

S⊗Z ={(PS �PZ ,OS �OZ ) | (PS,OS)∈S and (PZ ,OZ )∈Z}.
The distributive product can be extended to any finite number of sets of bundles. The multiset
interpretation tM of a composed ADTerm t is then given by

(∨p
k(t1,...,tk))M = t1

M∪···∪tk
M, (∨o

k(t1,...,tk))M = t1
M⊗···⊗tk

M,

(∧p
k(t1,...,tk))M = t1

M⊗···⊗tk
M, (∧o

k(t1,...,tk))M = t1
M∪···∪tk

M,

(cp(t1,t2))M = t1
M⊗t2

M, (co(t1,t2))M = t1
M∪t2

M.

Let t be an ADTerm and let t′ be one of its sub-terms. Note that the set of bundles t′M encodes
how the proponent of term t can be successful in the situation described by sub-term t′, regardless
of the type of t′. In particular, to achieve a disjunctive goal, the proponent has to achieve at least
one of the corresponding sub-goals. Similarly, to successfully prevent a conjunctive countermeasure
of the opponent, it is sufficient for the proponent to prevent at least one of the corresponding sub-
countermeasures. An analogous reasoning holds for a goal of the proponent which is conjunctively
refined and a disjunctively refined countermeasure of the opponent. This is the reason why the
operator used to define the multiset interpretation of a disjunctively refined goal for one player is the
same as the operator used to define the multiset interpretation of a conjunctively refined goal for the
other player.

Definition 3.16
The multiset semantics for ADTerms is an equivalence relation on T� , denoted by ≡M and defined
for all t,t′ ∈T� by

t ≡M t′ if and only if tM = t′M.

Example 3.17 shows that the multiset semantics takes into account multiple occurrences of the same
actions.

Example 3.17
The ADTerms t =cp(b,∧o(d,e)) and t′ =cp(∧p(b,b),∧o(d,e)) from Example 3.5 have been shown
to be equivalent with respect to the propositional semantics. The multiset interpretation of t is tM =
{({|b|},{|d|}),({|b|},{|e|})} and the multiset interpretation of t′ is t′M ={({|b,b|},{|d|}),({|b,b|},{|e|})}. Since
tM �= t′M, the ADTerms t and t′ are not equivalent with respect to the multiset semantics.

By comparing Examples 3.5 and 3.17, we deduce that the partition of T� defined by the multiset
semantics does not coincide with the partition defined by the propositional semantics.Amore detailed
comparison of these two semantics is presented in Section 4.1.

3.5 Equational semantics

As discussed in previous sections, the choice of an appropriate semantics depends on the requirements
imposed by the domain the ADTrees are applied to. Such requirements can frequently be modelled as
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mathematical properties. For example, if the order in which sub-goals of conjunctively refined goals
are executed is irrelevant, we should model the conjunctive refinement using an operator which is
commutative. Similarly, if executing the same action twice is in practice the same as executing it only
once, the corresponding operator should be idempotent. In this section, we show how to construct
a semantics for ADTerms which takes a given set of properties into account. The idea is to specify
an equivalence relation on ADTerms through a set of equations expressing the desired properties.
This approach covers a concept described by Mauw and Oostdijk in [21], which uses a specific set
of rewrite rules to encode allowed tree transformations. Our framework is more general in that we
allow any set of equations to define an equivalence relation on ADTerms.

Let VAR=VARp ∪VARo be a set of typed variables. We use capital letters such as X,Xi,Y ,Yi, to
denote elements of VAR. We extend the set T� to the set T

VAR
� of typedADTerms over the variables in

VAR. An equation is a pair (t,t′)∈T
VAR
� ×T

VAR
� , where t and t′ have the same type. In the remainder

of this article, equation (t,t′) is denoted by t = t′. An algebraic specification for ADTerms is a pair
(�,E), where � is the AD-signature and E is a set of equations. Given an algebraic specification
(�,E), we define the set of syntactic consequences of E as the smallest subset of T

VAR
� ×T

VAR
�

containing E and being closed under reflexivity, symmetry, transitivity, substitutions and contexts.
In other words, the equation t = t′ is a syntactic consequence of E (denoted by E � t = t′) if it can be
derived from E by using the following rules

• if t = t′ ∈E, then E � t = t′,
• for every t ∈T

VAR
� , E � t = t,

• if E � t = t′, then E � t′ = t,
• if E � t = t′ and E � t′ = t′′, then E � t = t′′.
• if ρ : VAR→T

VAR
� is a substitution, and E � t = t′, then E �ρ(t)=ρ(t′),

• if E � t = t′, and C[ ] is a context (i.e. a term with a hole of the same type as t), then E �C[t]=
C[t′].

In the following definition we introduce the notion of equational semantics for ADTerms.

Definition 3.18
The equational semantics forADTerms induced by an algebraic specification (�,E) is the equivalence
relation ≡E on T� , defined by

t ≡E t′ if and only if E � t = t′.

Example 3.19 illustrates the use of equational semantics.

Example 3.19
Let Symk denote the set of all bijections from {1,...,k} to itself. Consider the equational semantics
induced by an algebraic specification (�,E), where

E ={∨p(X1,...,Xk)=∨p(Xσ (1),...,Xσ (k)) |σ ∈Symk}.
The equations in E encode the commutativity of the disjunctive operator for the proponent. Thus, for
the ADTerms t1 =∨p(a,b) and t2 =∨p(b,a), we have t1 ≡E t2, i.e. t1 and t2 model the same situation
when the semantics ≡E is used. In contrast, t′1 =∧p(a,b) �≡E t′2 =∧p(b,a), because the commutativity
of the conjunctive operator for the proponent is not modelled by E.

The importance of defining a semantics, given a set of equations, is twofold. First, equations allow
us to encode many of the mathematical properties desired for analysis of ADTrees. Second, the
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equations in E model all possible transformations of ADTerms, which preserve the semantics ≡E . In
the next section, we use the notion of equational semantics to axiomatize the propositional and the
multiset semantics for ADTerms.

4 Axiomatization of semantics for ADTerms

4.1 Complete set of axioms

We start by providing a definition of a complete set of axioms for a semantics for ADTerms.

Definition 4.1
Let (�,E) be an algebraic specification and let ≡ be a semantics for ADTerms. Set E is a complete
set of axioms for the semantics ≡ if and only if ≡ is equal to the equational semantics induced by
the algebraic specification (�,E).

Remark 4.2
It follows directly from Definition 4.1 that E is a complete set of axioms for the equational semantics
induced by an algebraic specification (�,E).

The importance of a complete set of axioms for a semantics of ADTerms is manifold. First, having
complete sets of axioms unifies the treatment of different semantics for ADTrees. Instead of having to
argue within different domains, such as sets of multisets or propositional logics, we can reason with
ADTerms over the AD-signature. Second, the equations of a complete set of axioms state important
properties modelled by a semantics, as shown in Example 3.19. We see in Section 5 that this helps
us to formally define how to quantitatively analyse attack–defense scenarios using attributes. Third,
knowing a complete set of axioms is a crucial step in developing algorithms which assign unique
representatives to every equivalence class arising from a semantics. This simplifies the development
of a computer tool supporting the ADTree methodology. Finally, we can use complete sets of axioms
to facilitate a comparison between different semantics. In the remainder of this section we take a
closer look at this issue.

To decide whether properties ofADTerms interpreted using one semantics can be exported to reason
about ADTerms within a different semantics, we need to compare the corresponding partitions of the
set of ADTerms. To this end, we define the notions of finer and coarser semantics. Intuitively, given
two semantics, we say that one is finer than the other if it partitions the set of ADTerms in a finer
way.

Definition 4.3
Let ≡1 and ≡2 be two semantics for ADTerms. The semantics ≡1 is finer than the semantics ≡2
if and only if ≡1⊆≡2, i.e., for t,t′ ∈T� , t ≡1 t′ ⇒ t ≡2 t′. If ≡1 is finer than ≡2, we say that ≡2 is
coarser than ≡1.

The fact thatADTerms which are equivalent according to a semantics which is finer are also equivalent
according to any semantics which is coarser, allows us to import properties of a finer semantics into
any coarser semantics.

In general, given two semantics for ADTerms, it is not easy to decide whether they are comparable,
and if so, which one is finer. However, this task may become trivial, if we are able to appropriately
axiomatize both semantics using complete sets of axioms.
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Theorem 4.4
Let ≡1 and ≡2 be two semantics for ADTerms with complete sets of axioms E1 and E2, respectively.
If E1 ⊆E2, then ≡1 is finer than ≡2.

Proof. An immediate consequence of E1 ⊆E2 is that every equation derivable from E1 is also
derivable from E2, which proves the theorem. �

In Sections 4.2 and 4.3, we construct complete sets of axioms for the propositional and the
multiset semantics, respectively. These sets help us to compare the two semantics. For instance,
the idempotency laws hold in the propositional but not in the multiset semantics. The relationship
between the propositional and the multiset semantics is captured by the following theorem.

Theorem 4.5
The multiset semantics for ADTerms is finer than the propositional semantics for ADTerms.

Proof. It is sufficient to consider the complete sets of axioms EP for the propositional semantics
and EM for the multiset semantics, that we introduce in Theorems 4.6 and 4.9, respectively. We
observe that EM ⊆EP , which according to Theorem 4.4 finishes the proof.

�
To conclude this section, we remark that the propositional semantics is not finer than the

multiset semantics, as shown by Examples 3.5 and 3.17. Thus, these two semantics are not
equal.

4.2 Complete set of axioms for ≡P
We give a complete set of axioms for the propositional semantics in Theorem 4.6. This set of axioms is
then used to compare the propositional semantics to other semantics induced by De Morgan lattices,
as shown in Theorem 4.8.

Theorem 4.6
Let s∈{p,o} and X,Y ,Xi,Yj ∈VAR, for i,j≥1 and k,n∈N\{0}. Moreover, let Symk denote the set
of all bijections from {1,...,k} to itself. The following set of equations, denoted by EP , is a complete
set of axioms for the propositional semantics.3

∨s (X1,...,Xk)=∨s(Xσ (1),...,Xσ (k)), ∀σ ∈Symk (Es
1)

∧s (X1,...,Xk)=∧s(Xσ (1),...,Xσ (k)), ∀σ ∈Symk (Es
2)

∨s (X1,...,Xk,∨s(Y1,...,Yn))=∨s(X1,...,Xk,Y1,...,Yn) (Es
3)

∧s (X1,...,Xk,∧s(Y1,...,Yn))=∧s(X1,...,Xk,Y1,...,Yn) (Es
4)

∨s (X)=X (Es
5)

∧s (X)=X (Es
6)

3Note that the set of axioms given in Theorem 4.6 is in fact an axiom scheme. This is unavoidable, because theAD-signature
contains infinitely many function symbols modelled using unranked functions.
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∨s (X,∧s(X,X1,...,Xk))=X (Es
7)

∧s (X,∨s(X,X1,...,Xk))=X (Es
8)

∨s (X,∧s(X1,...,Xk))=∧s(∨s(X,X1),...,∨s(X,Xk)) (Es
9)

∧s (X,∨s(X1,...,Xk))=∨s(∧s(X,X1),...,∧s(X,Xk)) (Es
10)

∨s (X,X,X1,...,Xk)=∨s(X,X1,...,Xk) (Es
11)

∧s (X,X,X1,...,Xk)=∧s(X,X1,...,Xk) (Es
12)

cs(∨s(X1,...,Xk),X)=∨s(cs(X1,X),...,cs(Xk,X)) (Es
13)

cs(∧s(X1,...,Xk),X)=∧s(cs(X1,X),...,cs(Xk,X)) (Es
14)

cs(X,∨s(X1,...Xk))=∧s(cs(X,X1),...,cs(X,Xk)) (Es
15)

cs(X,∧s(X1,...Xk))=∨s(cs(X,X1),...,cs(X,Xk)) (Es
16)

cs(cs(X,X1),X2)=cs(X,∨s(X1,X2)) (Es
17)

cs(X,cs(X1,X2))=∨s(cs(X,X1),∧s(X,X2)) (Es
18)

∨s (cs(X1,Y ),X2,...,Xk)=cs(∨s(X1,...,Xk),cs(Y ,∨s(X2,...,Xk))) (Es
19)

∧s (cs(X1,Y ),X2,...,Xk)=cs(∧s(X1,...,Xk),Y ) (Es
20)

∨s (cs(X,Y ),X)=X (Es
21)

∧s (cs(X,Y ),X)=cs(X,Y ). (Es
22)

Proof. To prove Theorem 4.6, we define the notion of a complete set of axioms for a set of
propositional formulæ. We transform the problem of finding a complete set of axioms for the
propositional semantics into the problem of finding a complete set of axioms for the set of all
propositional ADTerms. The outline of the remaining part of the proof runs as follows.

(1) By reformulating equations in EP , we define a complete set G of axioms for the set of
propositional ADTerms.

(2) We show using axioms in G that every propositional ADTerm can be transformed into a
disjunctive form.

(3) We transform the obtained disjunctive forms further into minimal disjunctive forms.
(4) We prove that these minimal disjunctive forms are unique modulo associativity and

commutativity.

The above considerations help us to conclude that two ADTerms are equivalent with respect to
the propositional semantics if and only if the minimal disjunctive forms for the corresponding
propositional ADTerms are equal modulo associativity and commutativity. This finishes the proof
of Theorem 4.6, due to the fact that each axiom in G constitutes a propositional interpretation of an
axiom scheme in EP . �

In the remainder of this section, we give details for Steps 1–4.
1. We first define a grammar that generates all propositional ADTerms, which are defined
in Section 3.2. Let XG ={xb |b∈B

p} and YG ={xb |b∈B
o} be two sets of propositional variables

that correspond to basic actions in the propositional semantics. We have XG ∩YG =∅. Consider the
propositional formulæ over XG ∪YG generated by the following grammar, denoted by G, where
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xbi ∈XG, ybj ∈YG and ψ
φ=ψ∧¬φ:

P : xbi | P∨P | P∧P | P
N
N : ybj | N ∨N | N ∧N | N 
P.

Often we write that ψ ∈G if ψ is generated by G. Thus, we abuse notation and let G denote both
the grammar and the set of formulæ generated by the grammar. It is easy to see that t ∈T

p
� (resp.

T
o
�) if and only if there exists a formula P∈G (resp. N ∈G), such that tP =P (resp. tP =N) modulo

associativity.
Let A be a set of equations of the form ξ=ζ , where ξ and ζ are propositional formulæ and let A

be a set of propositional formulæ. We say that A is a complete set of axioms for A if and only if two
propositionally equivalent formulæ in A can be transformed into each other by applying substitutions
and context to equations in A. The problem of finding a complete set of axioms for the propositional
semantics can be reduced to finding a complete set of axioms for the set of propositional formulæ
generated by G.

Lemma 4.7 (Complete set of axioms for G)
Let X,Y ,Z be propositional variables. The following set G is a complete set of axioms for G.4

X ∨Y =Y ∨X X ∧Y =Y ∧X

X ∨(Y ∨Z)= (X ∨Y )∨Z X ∧(Y ∧Z)= (X ∧Y )∧Z

∨(X)=X ∧(X)=X

X ∨(X ∧Y )=X X ∧(X ∨Y )=X

X ∨(Y ∧Z)= (X ∨Y )∧(X ∨Z) X ∧(Y ∨Z)= (X ∧Y )∨(X ∧Z)

X ∨X =X X ∧X =X

(X ∨Y )
Z = (X 
Z)∨(Y 
Z) (X ∧Y )
Z = (X 
Z)∧(Y 
Z)

X 
(Y ∨Z)= (X 
Y )∧(X 
Z) X 
(Y ∧Z)= (X 
Y )∨(X 
Z)

(X 
Y )
Z =X 
(Y ∨Z) X 
(Y 
Z)= (X 
Y )∨(X ∧Z)

(X 
Y )∨Z = (X ∨Z)
(Y 
Z) (X 
Y )∧Z = (X ∧Z)
Y

(X 
Y )∨X =X (X 
Y )∧X = (X 
Y ).

Proof. For every axiom ξ=ζ in G, we have ξ≈ζ . Therefore, if a formula ψ ′ is obtained from a
formula ψ by using axioms in G, we have ψ≈ψ ′. This proves soundness.

Proving completeness is done by showing that, using axioms in G, every formula ψ ∈G can be
transformed into a minimal disjunctive form, denoted by mdf (ψ). In Steps 2–4 below, we prove that
this minimal disjunctive form is unique up to commutativity and associativity of ∨ and ∧, denoted
by =AC . In other words, we show that, for ψ,ψ ′ ∈G,

ψ≈ψ ′ if and only if mdf (ψ)=AC mdf (ψ ′) (1)

holds. �

4Note that contrary to the set EP , the set G is finite. The reduction of the number of equations is made possible, because
the unranked function symbols ∨s and ∧s, for s∈{p,o}, are interpreted with the associative operators ∨ and ∧.
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2. Note that for all P,N ∈G, we have that P �≈N , because XG ∩YG =∅. To define minimal disjunctive
forms for the formulæ in G, we first introduce a grammar B generating propositional formulæ in
disjunctive form, and we show that every formula generated by G can be transformed, using axioms
in G, into an equivalent formula in disjunctive form, generated by B. We later use these disjunctive
forms to obtain minimal forms.

Let the following grammar be denoted by B:

KP :xbi | KP ∧KP

DN :ybj | DN ∨DN

BP :KP | KP 
DN | BP ∨BP

KN :ybj | KN ∧KN

DP :xbi | DP ∨DP

BN :KN | KN 
DP | BN ∨BN .

It is clear that every formula generated by B is also generated by G. To prove the converse, we show
that, for every P∈G (resp. N ∈G), there exists an equivalent disjunctive formula, denoted by df (P)
(resp. df (N)) of the form BP ∈B (resp. BN ∈B). The formula df (P) (resp. df (N)) is obtained from P
(resp. N) by using axioms in G. This is proven by induction on the structure of P (resp. N), by using
the following two statements, for S ∈{P,N}.

• If BS
1,B

S
2 ∈B, then BS

1 ∧BS
2 can be transformed, using axioms in G, into a formula of the form

BS ∈B.
• If BS

1,B
S
2 ∈B, then BS

1 
BS
2 can be transformed, using axioms in G, into a formula of the form

BS ∈B.

The statements themselves can easily be proven by structural induction. The technical details are
omitted.

Let I ⊆N be a non-empty, finite index set. From B we see that every formula df (P) is in the
following disjunctive form

df (P)=BP =
∨
k∈I

αk 
βk,

where αk = (xbk1 ∧···∧xbku ) and βk = (ybk1 ∨···∨ybkl ), for some xbk1 ,...,xbku ∈XG, ybk1 ,...,ybkl ∈
YG, ku ≥1 and kl ≥0. (A similar disjunctive form exists for NP.)
3. Our goal is now to minimize the obtained disjunctive forms. We show that, using axioms in G, we
can transform every P∈G into an equivalent formula, denoted by mdf (P), which is of the form

mdf (P)=
∨
k∈I

αk 
βk (2)

where αk = (xbk1 ∧···∧xbku ),βk = (ybk1 ∨···∨ybkl ), and for all k,k′ ∈ I , k �=k′ we have αk′ 
βk′ does
not imply αk 
βk and for i �= j we have xbki �=xbkj and ybki �=ybkj . We proceed by contraposition. We
already know that, by using axioms in G, every P∈G can be transformed into the formula df (P)=
BP ∈B. Assume that df (P)=∨

k∈Iαk 
βk is not minimal. This means that either there exist k,k′ ∈ I ,
such that αk′ 
βk′ implies αk 
βk or there exists k ∈ I and i �= j, such that xbki =xbkj or ybki =ybkj . In the
latter case, we minimize the formula with the help of the idempotency axiom. From [18], we know
that every P represents a monotone Boolean function, hence the former case may only happen if,
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for αk = (xbk1 ∧···∧xbku ),βk = (ybk1 ∨···∨ybkl ), αk′ = (xbk′
1
∧···∧xbk′

u
) and βk′ = (ybk′

1
∨···∨ybk′

l
), it

holds that {xbk1 ,...,xbku}⊆{xbk′
1
,...,xbk′

u
} and {ybk1 ,...,ybkl }⊆{ybk′

1
,...,ybk′

l
}. We now sketch how

to minimize df (P), using axioms in G, in all possible cases. For ease of notation, we assume that
αk =xb, αk′ =xb ∧xb′ , βk =yb and βk′ =yb ∨yb′ , unless otherwise stated.

(a) If αk 
βk =αk′ 
βk′ , then (αk 
βk)∨(αk′ 
βk′ ) can be reduced to αk′ 
βk′ by using idempotency
of ∨.

(b) If {ybk1 ,...,ybkl } �=∅, the following scheme can be used:

(αk 
βk)∨(αk′ 
βk′ )=
= (xb
yb)∨((xb ∧xb′ )
(yb ∨yb′ ))

= (xb
yb)∨((xb
(yb ∨yb′ ))∧(xb′ 
(yb ∨yb′ )))

= (xb
yb)∨((xb
yb)∧((xb
yb′ )∧(xb′ 
yb)∧(xb′ 
yb′ )))

= (xb
yb)=αk 
βk .

(c) If {ybk1 ,...,ybkl }=∅ and {ybk′
1
,...,ybk′

l
} �=∅, the following scheme can be used:

αk ∨(αk′ 
βk′ )=xb ∨((xb ∧xb′ )
yb)=xb ∨((xb
yb)∧(xb′ 
yb))

= (xb ∨(xb
yb))∧(xb ∨(xb′ 
yb))=xb ∧(xb ∨(xb′ 
yb))

=xb =αk .

(d) If {ybk1 ,...,ybkl }=∅ and {ybk′
1
,...,ybk′

l
}=∅, the following scheme can be used:

αk ∨αk′ =xb ∨(xb ∧xb′ )=xb =αk .

4. It remains to be shown that two minimal disjunctive forms are propositionally equivalent if and
only if they are equal modulo associativity and commutativity. This follows from the fact that
formulæ generated by grammar G represent monotone Boolean functions, which have a unique
minimal disjunctive normal form (DNF) representation modulo associativity and commutativity
(see [10]). Hence formulæ in minimal disjunctive forms are in fact unique modulo associativity and
commutativity. This ends the proof of (1) and hence the proof of Lemma 4.7.

The complete set of axioms EP introduced in Theorem 4.6 allows us to compare the propositional
semantics with other semantics induced by De Morgan lattices.

Theorem 4.8
Let ≡P be the propositional semantics and let ≡DM be a semantics induced by a De Morgan lattice.
The propositional semantics is finer than ≡DM.

Proof. It is sufficient to notice that every equation in the complete set of axioms EP for the
propositional semantics is also valid for ≡DM. According to Theorem 4.4, this proves that ≡P
is finer than ≡DM. �
In other words, Theorem 4.8 states that the propositional semantics is the finest among all semantics
induced by De Morgan lattices.

4.3 Complete sets of axioms for ≡M
In Theorem 4.9, we give a complete set of axioms for the multiset semantics. We employ a
standard proof strategy by transforming the equations into a rewriting system and showing its strong
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termination as well as confluence. The proof mainly discusses ADTerms before linking ADTerms to
the multiset semantics. The proof is constructive in that it can easily be turned into an algorithm that
assigns a unique representative to every equivalence class defined by the multiset semantics.

Theorem 4.9
Let the prerequisites of Theorem 4.6 hold. The following set, denoted by EM, is a complete set of
axioms for the multiset semantics

{(Es
1),(Es

2),(Es
3),(Es

4),(Es
5),(Es

6),(Eo
9),(Ep

10),(Ep
11),(Eo

12),

(Ep
13),(Ep

16),(Ep
17),(Ep

18),(Eo
19),(Ep

20)}.
Note that contrary to the equations in the set EP , some of the equations in EM only hold for either
the proponent, e.g. (Ep

10), or the opponent, e.g. (Eo
9).

Proof. We make use of class rewriting by setting up an equational rewriting system. Then, we show
that the system is strongly terminating and class confluent, which guarantees that the system has
unique normal forms modulo the given equations, see [24]. Finally we show how the normal forms
can be used to prove completeness of the axioms. The proof is structured into the following steps:

(1) We transform EM into an equational term rewriting system (ETRS) R.
(2) We provide expressions which describe the normal forms of R.
(3) We show strong termination of R.
(4) We show confluence of R.
(5) We prove that the expressions given in Step 2 describe the normal forms of R.
(6) Using the normal forms, we show that the multiset semantics (≡M) is equal to the equational

semantics induced by EM (≡EM ).

(1) To define the ETRS, see [14], we divide the equations in EM into two parts. Equations (Es
1)–

(Es
6) express commutativity and associativity of the operators ∨s and ∧s and serve in our system

as equations. The remaining ten equations we turn into rewrite rules by directing them from left
to right. By R we denote the ETRS composed of equations (Es

1) – (Es
6) and directed rewrite rules

corresponding to the equations (Eo
9),(Ep

10),(Ep
11),(Eo

12),(Ep
13),(Ep

16),(Ep
17),(Ep

18),(Eo
19),(Ep

20).
(2) We introduce the operator Cp to ease notation. Let M ={|t1,...,tm|}, ti ∈T

p
� , for i∈{1,...,m} and

m∈N\{0}, be a multiset of ADTerms of proponent type and M ′ ={|t′1,...,t′l |}, t′j ∈T
o
� , for j∈{1,...,l}

and l∈N, be a multiset of ADTerms of opponent type. The operator Cp is defined by

Cp : M(Tp
�)×M(To

�)→ T
p
�,

(M,M ′) �→ cp(∧p(t1,...,tm),∨o(t′1,...,t′l)).

With the help of this operator, we define expressions which serve as normal forms for R. Let I ⊆N

be a nonempty index set. For every k ∈ I , let Bk be a finite multiset of basic actions of the proponent,
such that |Bk |≥1, and let Ck be a finite multiset of basic actions of the opponent, such that |Ck |≥0.
Then, the following expressions represent ADTerms which are in normal form with respect to R∨p

k∈I

Cp(Bk,Ck), (3)

where
∨p

represents the unranked function symbol (∨p
k)k∈I . Moreover, we require that, for k �=k′,

we have (Bk,Ck) �= (Bk′ ,Ck′ ).
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Figure 2. ETRS in WST syntax.

(3) We prove strong termination of R with the help of the AProVE tool [1]. AProVE can handle
equational TRS, but it cannot handle unranked functions. To overcome this problem, we use currying
(see [30]). We create curried versions of ∨s and ∧s, which are unary functions, denoted as ∨s

cu and
∨s

cu, respectively. A specific list of arguments of an unranked function would, e.g., be encoded in
the following way: for ∨s(a,b,c), we write ∨s

cu(v(v(u(a),u(b)),u(c))). Therefore, due to currying,
we add the following rewrite rules ∨s

cu(v(x,y))→∨s(∨s
cu(x),∨s

cu(y)) and ∨s
cu(u(x))→u and similar

rules for ∧s.
We input the equational TRS in AProVE using the Workshop on Termination (WST) syntax (see

[20]). Due to input restrictions in AProVE, the syntax, given in Figure 2, uses the transformations
a=∨p,b=∨o,c=∧p,d=∧o,e=cp,f=co,g=∨p

cu,h=∨o
cu,k=∧p

cu,l=∧o
cu.

The line ‘THEORY’together with the first four lines of rewrite rules correspond to equations (Es
1)–

(Es
6) and represent associativity, commutativity and currying of the operators ∨s and ∧s. The other

rules correspond to the remaining ten equations. Strong termination of R is shown by multiple
application of polynomial interpretation and removal of redundant rewrite rules.
(4) To prove confluence of R, it suffices to show that all critical pairs are joinable. We prove the
joinability with the help of the tool TTT2, see [19]. Unfortunately TTT2 cannot handle equational
rewriting. We circumvent this problem by adding one rewrite rule for commutativity and two for
associativity for each of the binary operators, as shown in Figure 3. As output we obtain that all
critical pairs are joinable.

Figure 3. Additional rewrite rules, due to conversion of equation into rewrite rules.
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(5) We show that all ADTerms represented by (3) are irreducible and that all other ADTerms are
reducible.

If the symbol ∨p exists in an ADTerm represented by (3), it is always the head symbol. For these
ADTerms, it is easily seen that, the only rewrite rule corresponding to equation (Ep

11) has ∨p as the
head symbol on the left-hand side. However, an ADTerm can only be rewritten using this rewrite rule
if the arguments of ∨p are not distinct, which is specifically excluded in the ADTerms represented
by (3).

TheADTerms represented by (3) that do not contain ∨p, have either ∧p or cp as the head symbol. In
the former case, the expressions are in normal form. In the latter case, the rewrite rules corresponding
to equations (Ep

13), (Ep
16), (Ep

17) and (Ep
18) may be applicable, because they contain ∨p. In these rules

the other occurring operators are cp,∨p,∧o and co, respectively. None of these, however, appear in
the ADTerms represented by (3). Hence, we conclude that none of the ADTerms represented by (3)
can be rewritten.

Now we show that every ADTerm, which is not represented by (3), can be rewritten. First, we
remark that the ADTerms represented by (3) are of proponent type only. Hence, if an ADTerm is of
opponent type, we know that it is a sub-term of an ADTerm of proponent type. Since the cp is the
only operator that takes an ADTerm of opponent type and outputs an ADTerm of proponent type, we
know that if we discover a sub-term of opponent type, the complete ADTerm must contain cp. We
classify the ADTerms with respect to the number of (not necessarily distinct) constants they contain.

ADTerms with one constant can be divided into two classes: ADTerms of proponent type and
ADTerms of opponent type. The former are in normal form, the latter do not represent any ADTree,
due to our remark above.

ADTerms with two constants we also subdivide into ADTerms of opponent type and ADTerms of
proponent type. The ADTerms in the first class do not represent any ADTree. In the second class, an
ADTerm is either in normal form or it is of the form ∨p(b,b). Then, the rewrite rule corresponding
to equation (Ep

11) can be used.

ADTerms with three or more constants are classified as follows:

(a) ADTerms that contain co or ∧o are either of opponent type or can be rewritten.
(b) If an ADTerm contains a nested ∨p, it is either of opponent type or it can be rewritten or its head

symbol is ∨p.
(c) If an ADTerm contains a cp which is not preceded by a ∨p operator, it is either of opponent type

or can be rewritten.
(d) All remaining ADTerms are in normal form or contain only the same functional symbol ◦ in

{∨p,∧p,∨o}. In the case were ◦=∨o the ADTerm is of opponent type, in case ◦=∧p it is in
normal form and in case ◦=∨p it can be rewritten if and only if the rewrite rule corresponding
to equation (Ep

11) can be applied.

(6) Together Steps 1–5 show that R is a convergent ETRS with the unique normal forms represented
by (3). It remains to be shown that the equations EM, are sound and complete with respect to the
multiset semantics. We can easily verify soundness by proving that every equation in EM holds in
the multiset semantics. In other words, for all t,t′ ∈T

p
� , it holds that from t ≡EM t′ it follows that

tM = t′M. This is essentially due to the fact 〈M,∪,⊗〉 forms a semi-ring. For example, equation (Ep
20)

concretely yields

∧p(x,cp(y,z))M =xM⊗(yM⊗zM)= (xM⊗yM)⊗zM =cp(∧p(x,y),z)M

All other cases are similar.
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Finally, we prove completeness by showing that, for t,t′ ∈T
p
� , from tM = t′M it follows that

t ≡EM t′. To facilitate reasoning, let NF(t) and NF(t′) denote the normal forms obtained by R, given
as expression in (3), in other words, NF(t)≡EM t and NF(t′)≡EM t′. Since the elements considered for
the multiset semantics are sets of pairs of multisets, there exists a 1–1 correspondence between such
sets of pairs of multisets and the normal forms given by the ADTerm represented by the expression
given in (3): each pair of multisets is mapped to a pair (Bk,Ck) which corresponds to ADTerms in
normal form, as shown in Steps 2–5. The pairs (Bk,Ck) are mutually different for different indexes
k, because we map sets which do not have multiple occurrences of the same element. We conclude
that given tM = t′M, it follows that NF(t)=NF(t′). Consequently, from tM = t′M, it follows that
t ≡EM NF(t)=NF(t′)≡EM t′, which concludes the proof of Theorem 4.9. �

5 Attributes

5.1 Bottom-up evaluation

Attributes are used to quantitatively analyse attack–defense scenarios represented by ADTerms. An
attribute expresses a particular property of a scenario, such as the minimal cost of an attack or the
expected impact of a defensive measure. Schneier [29] sketched an intuitive bottom-up algorithm
for calculating the value of an attribute on an attack tree. His procedure was formalized by Mauw
and Oostdijk [21]. In this section, we extend the bottom-up approach for evaluation fo attributes
to ADTerms. We start by introducing the notion of an attribute domain which formally specifies an
attribute.

Definition 5.1
An attribute domain for ADTerms is a tuple

Aα= (Dα,∨p
α,∧p

α,∨o
α,∧o

α,c
p
α,c

o
α),

where Dα is a set of values and, for s∈{p,o},
• ∨s

α , ∧s
α are unranked functions on Dα ,

• cs are binary functions on Dα .

Example 5.2
Attribute domain Asat = ({0,1},∨,∧,∨,∧,
,
), where x
y=x∧¬y, for all x,y∈{0,1}, can be used
to decide whether the proponent’s goal modelled by the root of an ADTerm t is satisfied or not.

Since attack trees only have one type of nodes—the proponent’s nodes—an attribute domain in
case of attack trees is a triple Aα= (Dα,∨p

α,∧p
α). In this case, the bottom-up evaluation of an attribute

works as follows: first the values in Dα are assigned to the leaf nodes of an attack tree and then the
values for the remaining nodes are deduced in a bottom-up way, with the help of the operations ∨p

α

and ∧p
α . To extend this procedure to ADTrees, we first assign values in Dα to all non-refined nodes

of an ADTree, then we compute the values corresponding to all its sub-trees by using the operations
∨s
α,∧s

α and cs
α for s∈{p,o}.

Let Aα= (Dα,∨p
α,∧p

α,∨o
α,∧o

α,c
p
α,co

α) be an attribute domain for ADTerms. We now formalize the
bottom-up computation of attribute values on ADTerms. A function βα : B→Dα , which assigns to



Copyedited by: TRJ MANUSCRIPT CATEGORY: Original Article

[12:21 3/1/2014 exs029.tex] LogCom: Journal of Logic and Computation Page: 80 55–87

80 Attack–defense trees

every basic action a value in the set Dα , is called a basic assignment. The function α : T�→Dα ,
which assigns to every ADTerm t the value of an attribute, is defined recursively as follows

α(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
βα(t), if t ∈B,

∨s
α(α(t1),...,α(tk)), if t =∨s(t1,...,tk),

∧s
α(α(t1),...,α(tk)), if t =∧s(t1,...,tk),

cs
α(α(t1),α(t2)), if t =cs(t1,t2),

(4)

where s∈{p,o} and k>0. The following example illustrates the bottom-up evaluation of attribute
values.

Example 5.3
Consider the ADTerm t =cp(∧p(a,b),co(d,e)), where a,b,e∈B

p and d ∈B
o. The objective is

to calculate the proponent’s minimal cost necessary to achieve his goal. We use the attribute
domain Acost = (R+∪{+∞},min,+,+,min,+,min) and the following basic assignment: βcost(a)=
5,βcost(b)=7,βcost(e)=6 andβcost(d)=+∞. These values express the minimal investment required
of the proponent to execute the corresponding action. Since the opponent’s basic action d is not
under control of the proponent, we set βcost(d)=+∞. By countering the opponent’s action d
with the proponent’s action e, and by using appropriate operators cp

cost =+ and co
cost =min, we

can compute the actual minimal cost for the proponent to succeed in the scenario. Using function
α=cost, as defined by (4), we calculate the proponent’s minimal cost in the scenario as follows:
cost(t)=cost(cp(∧p(a,b),co(d,e)))=+(+(5,7),min(6,+∞))=+(12,6)=18.

Example 5.3 demonstrates how to calculate the proponent’s minimal cost to achieve his goal in a
scenario. Since the opponent’s cost has no influence on the proponent’s cost, the values associated
with the opponent’s basic actions express the cost from the proponent’s point of view rather than the
actual cost for the opponent. To reflect this fact, every basic action of the opponent is assigned +∞,
which is the absorbing element for the operation cp

α=+ and the neutral element for the operation
co
α=min.

5.2 Semantics preserving attribute domains

In our framework, we consider equivalent ADTrees to be indistinguishable. Thus, the evaluation of
attributes on equivalent ADTerms should be consistent, i.e. should yield the same values. However,
as shown in the example below, this is not always the case.

Example 5.4
The ADTerm t =cp(∧p(a,b),co(d,e)), considered in Example 5.3, is equivalent to the ADTerm
t′ =cp(∧p(a,a,b),co(d,e)), if the propositional semantics is used. However, the evaluation of the
proponent’s minimal cost in t′, gives cost(t′)=+(+(5,5,7),min(6,+∞))=23 �=18=cost(t).

The problem of consistent bottom-up evaluation of attribute values has already been discussed in the
case of attack trees (see [15, 21]). The authors of [21] identify a sufficient condition guaranteeing
that, when the multiset semantics is used, the bottom-up evaluation of attributes on attack trees is
performed in a consistent way. In the current article, we generalize this result to any semantics for
ADTerms, by introducing the notion of compatibility of an attribute domain with a semantics for
ADTerms. Compatibility constitutes a sufficient condition for consistent bottom-up evaluation of
attributes on equivalent ADTrees.
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Consider an attribute domain Aα= (Dα,∨p
α,∧p

α,∨o
α,∧o

α,c
p
α,co

α) and the set T
VAR
� of typed

ADTerms over the variables in VAR, as introduced in Section 3.5. Given an ADTerm t ∈T
VAR
� ,

we denote by tα an expression built from the elements of B∪VAR and operators ∨s
α,∧s

α,c
s
α , for

s∈{p,o}, recursively defined as follows. Let t1,...,tk ∈T
VAR
� and k>0. Then

tα= t, if t ∈B∪VAR, (∨s(t1,...,tk))α=∨s
α(t1

α,...,t
k
α),

(cs(t1,t2))α=cs
α(t1

α,t
2
α), (∧s(t1,...,tk))α=∧s

α(t1
α,...,t

k
α). (5)

Note that in the expressions tα the elements of B∪VAR are variables ranging over Dα .

Definition 5.5
An attribute domain Aα= (Dα,∨p

α,∧p
α,∨o

α,∧o
α,c

p
α,co

α) is compatible with a semantics ≡ forADTerms
if and only if, for all t,t′ ∈T� , the semantical equivalence t ≡ t′ implies that the equality tα= t′α holds
in Dα .

Example 5.6
Consider two terms t =cp(b,∧o(d,e)) and t′ =cp(∧p(b,b)∧o (d,e)). In Example 3.5, we have shown
that t ≡P t′. By using the attribute domain Asat = ({0,1},∨,∧,∨,∧,
,
), where x
y=x∧¬y, for all
x,y∈{0,1}, introduced in Example 5.2, and the procedure described by (5), we define the expressions
tsat and t′sat as follows

tsat =b∧¬(d∧e) and t′sat = (b∧b)∧¬(d∧e).

Due to the idempotency of ∧, we obtain that the equality tsat = t′sat holds in Dsat ={0,1}.
From Definitions 4.3 and 5.5 we can easily deduce that if an attribute domain is compatible with

a semantics for ADTerms it is also compatible with every semantics which is finer.
In most cases, due to the infinite number of equivalent ADTerms, employing Definition 5.5

is impractical. The next proposition overcomes this obstacle. It follows directly from (5) and
Definitions 5.5 and 4.1.

Proposition 5.7
Let E be a complete set of axioms for a semantics ≡ for ADTerms. An attribute domain Aα=
(Dα,∨p

α,∧p
α,∨o

α,∧o
α,c

p
α,co

α) is compatible with the semantics ≡ if and only if, for every equation
t = t′ in E, the equality tα= t′α holds in Dα .

Proposition 5.7 shows that a complete set of axioms is a powerful tool to ensure the practical usability
of semantics for ADTerms. By making use of a complete set of axioms, Proposition 5.7 gives
us a simple and efficient procedure for checking compatibility of a given attribute domain with
a considered semantics.

Example 5.8
Using Proposition 5.7, we can easily prove that the attribute domain Acost, used in Examples 5.3
and 5.4 to compute the proponent’s minimal cost, is not compatible with the propositional semantics.
Indeed, according to Theorem 4.6, the axiom

∧p(X,X,X1,...,Xk)=∧p(X,X1,...,Xk)
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holds for the propositional semantics, but in R∪{+∞} we have

(∧p(X,X,X1,...,Xk))cost =+(X,X,X1,...,Xk) �=
+(X,X1,...,Xk)= (∧p(X,X1,...,Xk))cost,

because + is not idempotent. This explains why the evaluation of the proponent’s minimal cost on two
equivalent ADTerms in the propositional semantics, presented in Example 5.4, gives two different
results.

We now prove that semantically equivalent ADTerms always yield equal attribute values over
compatible attribute domains.

Lemma 5.9
Consider an attribute domain Aα= (Dα,∨p

α,∧p
α,∨o

α,∧o
α,c

p
α,co

α), a basic assignment βα : B→Dα and
two ADTerms t and t′. If tα= t′α holds in Dα , then α(t)=α(t′).
Proof. Since tα= t′α holds in Dα , we have σ (tα)=σ (t′α), for every substitution σ : B∪VAR→Dα .
Thus, it suffices to show that for every ADTerm t, we have

βα(tα)=α(t). (6)

The proof of (6) is by induction on the structure of t. If t ∈B, then tα= t, thus βα(tα)=βα(t)=α(t).
Suppose now that (6) holds for all ADTerms composing t, and let t =∨p(t1,...,tk). We have

βα(tα)=βα(∨p
α(t1

α,...,t
k
α))=∨p

α(βα(t1
α),...,βα(tk

α))

=∨p
α(α(t1),...,α(tk))=α(t).

The proof for the remaining composed ADTerms is similar.
Using (6), we obtain that, if tα= t′α holds in Dα , then α(t)=βα(tα)=βα(t′α)=α(t′), which finishes

the proof. �
From (4), Definition 5.5 and Lemma 5.9, we obtain the following result.

Theorem 5.10
Let Aα= (Dα,∨p

α,∧p
α,∨o

α,∧o
α,c

p
α,co

α) be an attribute domain compatible with a semantics ≡ for
ADTerms. If t ≡ t′, then, given any basic assignment βα : B→Dα , we have α(t)=α(t′).

5.3 Attribute domains compatible with the multiset semantics

Although performing various case studies using the ADTree methodology, we have noticed that most
of the useful attribute domains for ADTrees admit a structure Aα= (Dα,�,�,�,�,�,�), where
(Dα,�,�) forms an idempotent semi-ring5, i.e. the operations � and � are both commutative
and associative, � distributes over �, operator � is idempotent and Dα contains a neutral
element w.r.t. � which is absorbing w.r.t. �. This is, for instance, the case for the attribute
domain Aα= (R+∪{+∞},min,+,+,min,+,min) which is used to calculate the minimal cost
or the minimal time necessary for the proponent to achieve his main goal. This also holds

5Due to the commutativity of �, the structure (Dα,�,�) is usually called a commutative semi-ring.
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for Aα= (R≥0 ∪{−∞,+∞},min,max,max,min, max,min) which can be used to calculate the
minimal skill level necessary for the proponent to perform an attack. A third example is Aα=
({0,...,k},min,
,
,min,
,min), where 
(a,b)=min{a+b,k}, which helps us to model which goals
of the proponent are executable in <k units of time. Theorem 5.11 shows that the evaluation of
this type of attributes is consistent with the multiset semantics. It therefore implies that the multiset
semantics is one of the most important and useful semantics for ADTerms.

Theorem 5.11
Every attribute domain of the form Aα= (Dα,�,�,�,�,�,�), where (Dα,�,�) forms an
idempotent semi-ring, is compatible with the multiset semantics for ADTerms.

Proof. Let us consider the complete set of axioms EM for the multiset semantics, given in
Theorem 4.9. According to Proposition 5.7, it is sufficient to show that for every l=r ∈EM,
the equality lα=rα holds in Dα . The equalities corresponding to axioms (Es

1), (Es
2) result from

the commutativity of � and �. The equalities corresponding to (Es
3), (Es

4), (Ep
17) and (Ep

20) hold
due to associativity of both operations. Distributivity of � over � guarantees that the equalities
corresponding to (Eo

9), (Ep
10), (Ep

13), (Ep
16), (Ep

18) and (Eo
19) are satisfied in Dα . Finally, the equalities

corresponding to (Ep
11) and (Eo

12) result from the idempotency of �. Note that axioms (Es
5), (Es

6) are
purely syntactical and are needed for technical reasons, only. �

The authors of [21] show that, in the case of attack trees, every attribute domain which is a semi-
ring is compatible with the multiset semantics. Theorem 5.11 extends this result from attack trees to
ADTrees. Note that the result proven in [21] only holds for idempotent semi-rings. Indeed, equations
(Ep

1),(Ep
2),(Ep

3),(Ep
4),(Ep

5),(Ep
6),(Ep

10) and (Ep
11) axiomatize the multiset semantics for attack trees.

Thus, if the attribute domain forms a semi-ring which is not idempotent (as for instance in the case of
the algebraic semi-ring, i.e. (R,+,×)), the computation of attribute values on two equivalent attack
trees, such as t =∨p(a,a) and t′ =a, does not yield the same result.

6 Related work

The idea of using AND–OR trees for security assessment takes its origins from the field of safety
analysis. As early as in the 60s, Vesely et al. [32] proposed fault trees to evaluate safety of critical
infrastructures and analyse associated risks. In early 90s, inspired by fault trees, Weiss [33] and
Amoroso [3] developed threat trees to model vulnerabilities that complex systems, such as hospital
information systems, are subject to. The notion of attack trees is due to Schneier who introduced them
in 1999 as a visual and systematic methodology for security assessment [29]. In 2005, Mauw and
Oostdijk [21] augmented attack trees with semantics, providing a solid, formal and methodological
framework for security analysis. Since then, the attack tree methodology has been taken up by
numerous researchers. An excellent summary about the history of formal graphical security models,
including attack trees, is given by Piètre-Cambacédès and Bouissou [23]. Attack trees constitute a
very popular method for security modelling in both both in industrial and academic environment.
They have been adopted as a support tool in a number of international research projects, for instance
SHIELDS [31], EVITA [13] and ANIKETOS [4]).

Several authors have proposed to augment attack trees with a notion of defense, in the past [2, 5, 8,
23, 27, 36]. Different approaches, ranging from adding defenses to the leaf nodes of the attack tree,
over extending attack trees with various types of defensive measures, such as mitigation, response or
detection nodes, to also considering a separate tree that describes possible protection scenarios and
relates to the root of the attack tree, have been considered.



Copyedited by: TRJ MANUSCRIPT CATEGORY: Original Article

[12:21 3/1/2014 exs029.tex] LogCom: Journal of Logic and Computation Page: 84 55–87

84 Attack–defense trees

Edge et al. [12] have shown how to compute the cost or the probability of an attack from an
attacker’s as well as from a defender’s point of view. Modelling the defender’s point of view was made
possible by creating a protection component, for every leaf of an attack tree, and then constructing
protection trees by using these components as leaf nodes.

It is also possible to unite the attacker’s and the defender’s points of view and create a single
framework, instead of keeping two separated models for the attacker and the defender. Bistarelli
et al. [7, 8] have proposed so-called defense trees, where defensive measures are added to the leaves
of attack trees. Furthermore, they use methods from game theory and answer set programming, to
deduce which defensive measures should be selected.

Roy et al. [27] have introduced attack countermeasure trees, where countermeasures, such as
detection and mitigation, are allowed at any level of the tree. They have studied consequences of
adding countermeasures in a border gateway protocol attack, an attack on a supervisory control and
data acquisition system and a malicious insider attack. The practical feasibility of their approach was
illustrated by computing the impact and the cost of a successful attack as well as the system’s risk to
a particular attack scenario.

Piètre-Cambacédès and Bouissou [23] have used Boolean logic Driven Markov Processes
(BDMPs) to assign a new semantics to attack trees. The general idea of BDMPs is to associate
a Markov process to each leaf of an attack tree. Since BDMPs are dynamic, their use allows for the
modelling of attack sequences. Moreover, BDMPs can also model dynamic defensive aspects, such
as detections or mitigations.

Another extension of attack trees is described by Baca and Petersen [5]. Instead of focusing on the
identification of attacks, they propose to prioritize and evaluate countermeasures, which are again
only assigned to the leaves of the attack trees. Since they allow countermeasures to counter several
attacks, their formalism is based on DAGs. Cost and effectiveness of countermeasures are evaluated
and then depicted in a two-dimensional graph. The approach has been applied on an open source
system, called Code 43. The case study showed that the described method identifies the most effective
and cost-efficient countermeasures.

Extending attack trees with defenses or countermeasures is not the only way of enriching the attack
tree formalism. In [35], Yager introduces ordered weighted averaging trees (OWA trees) by allowing
attack trees with additional refinement of operators. By ordering the children of nodes it is possible
to model how many children of a node must be satisfied, to satisfy the parent node. The introduced
OWA nodes even allow probabilistic uncertainty of the number of children that need to be satisfied,
so that the parent node is satisfied.

In [34], Willemson and Jürgenson also consider ordered attack trees. Their novelty is to introduce
an order on the set of leaves of an attack tree, which allows them to select the best attack option
represented by the tree. Moreover, the authors generalize their framework from tree structures to
DAGs.

Abdulla et al. [2] take generalizing the tree structure even further by defining attack jungles,
allowing for multiple roots, cycles and nodes representing reusable assets. The authors have
implemented a prototype tool and used it to evaluate the security in the GSM radio network using
attack jungles.

The ADTree methodology extends attack trees as formalized in [21], in two ways. It introduces
defenses and it generalizes the notions of semantics and attributes. Consequently, our formalism
provides a single framework covering concepts developed in [12, 22, 26, 28, 34].

The ADTrees formalism has proven to be useful in theoretical considerations. In [16], the relation
between ADTrees and game theory has been studied. This work shows that ADTrees interpreted
with the propositional semantics and binary zero-sum two-player extensive form games can be
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converted into each other. Both formalisms have their advantages. On the one hand, ADTrees provide
easily understandable and intuitive representation of attack–defense scenarios. On the other hand, the
game theoretic approach benefits from the well-studied methodology used in games such as solution
concepts, which can be used to find optimal strategies for involved players.

Computational aspects of ADTrees have been studied in [18]. The paper describes semantics
for which ADTrees extend attack trees to a richer formalism without increasing the computational
complexity of the model. This is the case for the propositional semantics and more generally
for every semantics induced by a De Morgan lattice. In other words, the authors of [18] show
that when ADTrees are interpreted with De Morgan valuations, the analysis of ADTrees does
not require more computational power than the analysis of regular attack trees, as ADTrees
can be processed by algorithms developed for attack trees. This, in particular, implies that
all queries which can be efficiently solved on attack trees can also be efficiently solved on
ADTrees.

Finally, the applicability of the ADTree methodology for quantitative analysis of vulnerability
scenarios has been tested in a case study described in [6]. In this work, a denial of service attack
for an RFID-based goods management system has been analysed. An extensive ADTree modeling
a considered DoS attack have been created and a number of useful attributes have been evaluated.
The case study resulted in a definition of precise guidelines specifying how to use ADTrees in
practice.

7 Conclusion and future work

We have introducedADTrees as a new formal approach for security assessment. TheADTrees provide
an intuitive and visually appealing representation of interactions between an attacker and a defender
of a system. Furthermore, due to the countermeasure operators which connect the opponent’s actions
to the proponent’s actions,ADTrees can be used to represent the evolution of the security mechanisms
and vulnerabilities of a system.

The attack–defense language is based on ADTerms, i.e. the term algebra for ADTrees. We have
introduced several semantics forADTerms, demonstrating their versatility. Our semantics are defined
through equivalence relations on the set of ADTerms. This unifies different approaches [12, 21, 34]
to attack trees that have been proposed in the literature, because they all rely upon an underlying
equivalence relation.

We have introduced attributes for ADTerms and an evaluation algorithm for ADTerms
allowing us to analyse attack–defense scenarios modelled with ADTrees. This extends the
approach proposed for attack trees in [21]. Moreover, we have formulated and proved sufficient
conditions under which the evaluation of an attribute on equivalent ADTerms results in the same
value.

To be able to demonstrate the applicability of ADTrees on real-world examples, we are currently
developing a computer tool. The tool will facilitate the construction of large ADTrees, support
their graphical representation, and assist in the quantitative analysis of attack–defense scenarios.
Furthermore, the complete axiomatization of semantics, as introduced in this article, constitutes a
first step towards automated equivalence checking for ADTrees.

In the future, we plan to extend our framework from ADTrees to attack–defense DAGs. Using
DAGs we can model dependencies between the sub-goals. This issue is crucial when taking the
execution order of sub-goals into account or when analysing an attack–defense scenario from a
probabilistic point of view.
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