1,089 research outputs found

    The neural basis of centre-surround interactions in visual motion processing

    Get PDF
    Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Attention model of binocular rivalry

    Get PDF
    This is the final version of the article. Available from National Academy of Sciences from the DOI in this record.When the corresponding retinal locations in the two eyes are presented with incompatible images, a stable percept gives way to perceptual alternations in which the two images compete for perceptual dominance. As perceptual experience evolves dynamically under constant external inputs, binocular rivalry has been used for studying intrinsic cortical computations and for understanding how the brain regulates competing inputs. Converging behavioral and EEG results have shown that binocular rivalry and attention are intertwined: binocular rivalry ceases when attention is diverted away from the rivalry stimuli. In addition, the competing image in one eye suppresses the target in the other eye through a pattern of gain changes similar to those induced by attention. These results require a revision of the current computational theories of binocular rivalry, in which the role of attention is ignored. Here, we provide a computational model of binocular rivalry. In the model, competition between two images in rivalry is driven by both attentional modulation and mutual inhibition, which have distinct selectivity (feature vs. eye of origin) and dynamics (relatively slow vs. relatively fast). The proposed model explains a wide range of phenomena reported in rivalry, including the three hallmarks: (i) binocular rivalry requires attention; (ii) various perceptual states emerge when the two images are swapped between the eyes multiple times per second; (iii) the dominance duration as a function of input strength follows Levelt’s propositions. With a bifurcation analysis, we identified the parameter space in which the model’s behavior was consistent with experimental results.This work was supported by NIH National Eye Institute Grants R01-EY019693 (to M.C. and D.J.H.) and R01-EY025673 (to D.J.H.). H.-H.L. was supported by NIH Grant R90DA043849. J. Rankin was supported by the Swartz Foundation

    A cross-modal investigation into the relationships between bistable perception and a global temporal mechanism

    Get PDF
    When the two eyes are presented with sufficiently different images, Binocular Rivalry (BR) occurs. BR is a form of bistable perception involving stochastic alternations in awareness between distinct images shown to each eye. It has been suggested that the dynamics of BR are due to the activity of a central temporal process and are linked to involuntary mechanisms of selective attention (aka exogenous attention). To test these ideas, stimuli designed to evoke exogenous attention and central temporal processes were employed during BR observation. These stimuli included auditory and visual looming motion and streams of transient events of varied temporal rate and pattern. Although these stimuli exerted a strong impact over some aspects of BR, they were unable to override its characteristic stochastic pattern of alternations completely. It is concluded that BR is subject to distributed influences, but ultimately, is achieved in neural processing areas specific to the binocular conflict

    Low attention impairs optimal incorporation of prior knowledge in perceptual decisions

    Get PDF
    When visual attention is directed away from a stimulus, neural processing is weak and strength and precision of sensory data decreases. From a computational perspective, in such situations observers should give more weight to prior expectations in order to behave optimally during a discrimination task. Here we test a signal detection theoretic model that counter-intuitively predicts subjects will do just the opposite in a discrimination task with two stimuli, one attended and one unattended: when subjects are probed to discriminate the unattended stimulus, they rely less on prior information about the probed stimulus’ identity. The model is in part inspired by recent findings that attention reduces trial-by-trial variability of the neuronal population response and that they use a common criterion for attended and unattended trials. In five different visual discrimination experiments, when attention was directed away from the target stimulus, subjects did not adjust their response bias in reaction to a change in stimulus presentation frequency despite being fully informed and despite the presence of performance feedback and monetary and social incentives. This indicates that subjects did not rely more on the priors under conditions of inattention as would be predicted by a Bayes-optimal observer model. These results inform and constrain future models of Bayesian inference in the human brain

    Perceptual Rivalry: Reflexes Reveal the Gradual Nature of Visual Awareness

    Get PDF
    Rivalry is a common tool to probe visual awareness: a constant physical stimulus evokes multiple, distinct perceptual interpretations (“percepts”) that alternate over time. Percepts are typically described as mutually exclusive, suggesting that a discrete (all-or-none) process underlies changes in visual awareness. Here we follow two strategies to address whether rivalry is an all-or-none process: first, we introduce two reflexes as objective measures of rivalry, pupil dilation and optokinetic nystagmus (OKN); second, we use a continuous input device (analog joystick) to allow observers a gradual subjective report. We find that the “reflexes” reflect the percept rather than the physical stimulus. Both reflexes show a gradual dependence on the time relative to perceptual transitions. Similarly, observers' joystick deflections, which are highly correlated with the reflex measures, indicate gradual transitions. Physically simulating wave-like transitions between percepts suggest piece-meal rivalry (i.e., different regions of space belonging to distinct percepts) as one possible explanation for the gradual transitions. Furthermore, the reflexes show that dominance durations depend on whether or not the percept is actively reported. In addition, reflexes respond to transitions with shorter latencies than the subjective report and show an abundance of short dominance durations. This failure to report fast changes in dominance may result from limited access of introspection to rivalry dynamics. In sum, reflexes reveal that rivalry is a gradual process, rivalry's dynamics is modulated by the required action (response mode), and that rapid transitions in perceptual dominance can slip away from awareness

    Willpower and Conscious Percept: Volitional Switching in Binocular Rivalry

    Get PDF
    When dissimilar images are presented to the left and right eyes, awareness switches spontaneously between the two images, such that one of the images is suppressed from awareness while the other is perceptually dominant. For over 170 years, it has been accepted that even though the periods of dominance are subject to attentional processes, we have no inherent control over perceptual switching. Here, we revisit this issue in response to evidence that top-down attention can target perceptually suppressed ‘vision for action’ representations in the dorsal stream. We investigated volitional control over rivalry between apparent motion (AM), drifting (DM) and stationary (ST) grating pairs. Observers demonstrated a remarkable ability to generate intentional switches in the AM and D conditions, but not in the ST condition. Corresponding switches in the pursuit direction of optokinetic nystagmus verified this finding objectively. We showed it is unlikely that intentional perceptual switches were triggered by saccadic eye movements, because their frequency was reduced substantially in the volitional condition and did not change around the time of perceptual switches. Hence, we propose that synergy between dorsal and ventral stream representations provides the missing link in establishing volitional control over rivalrous conscious percepts

    Flash suppression and flash facilitation in binocular rivalry

    Get PDF
    We show that previewing one half image of a binocular rivalry pair can cause it to gain initial dominance when the other half is added, a novel phenomenon we term flash facilitation. This is the converse of a known effect called flash suppression, where the previewed image becomes suppressed upon rivalrous presentation. The exact effect of previewing an image depends on both the duration and the contrast of the prior stimulus. Brief, low-contrast prior stimuli facilitate, whereas long, high-contrast ones suppress. These effects have both an eye-based component and a pattern-based component. Our results suggest that, instead of reflecting two unrelated mechanisms, both facilitation and suppression are manifestations of a single process that occurs progressively during presentation of the prior stimulus. The distinction between the two phenomena would then lie in the extent to which the process has developed during prior stimulation. This view is consistent with a neural model previously proposed to account for perceptual stabilization of ambiguous stimuli, suggesting a relation between perceptual stabilization and the present phenomena

    Crowding by Invisible Flankers

    Get PDF
    BACKGROUND: Human object recognition degrades sharply as the target object moves from central vision into peripheral vision. In particular, one's ability to recognize a peripheral target is severely impaired by the presence of flanking objects, a phenomenon known as visual crowding. Recent studies on how visual awareness of flanker existence influences crowding had shown mixed results. More importantly, it is not known whether conscious awareness of the existence of both the target and flankers are necessary for crowding to occur. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that crowding persists even when people are completely unaware of the flankers, which are rendered invisible through the continuous flash suppression technique. Contrast threshold for identifying the orientation of a grating pattern was elevated in the flanked condition, even when the subjects reported that they were unaware of the perceptually suppressed flankers. Moreover, we find that orientation-specific adaptation is attenuated by flankers even when both the target and flankers are invisible. CONCLUSIONS: These findings complement the suggested correlation between crowding and visual awareness. What's more, our results demonstrate that conscious awareness and attention are not prerequisite for crowding
    corecore