1,354 research outputs found

    Epidemiological Prediction using Deep Learning

    Get PDF
    Department of Mathematical SciencesAccurate and real-time epidemic disease prediction plays a significant role in the health system and is of great importance for policy making, vaccine distribution and disease control. From the SIR model by Mckendrick and Kermack in the early 1900s, researchers have developed a various mathematical model to forecast the spread of disease. With all attempt, however, the epidemic prediction has always been an ongoing scientific issue due to the limitation that the current model lacks flexibility or shows poor performance. Owing to the temporal and spatial aspect of epidemiological data, the problem fits into the category of time-series forecasting. To capture both aspects of the data, this paper proposes a combination of recent Deep Leaning models and applies the model to ILI (influenza like illness) data in the United States. Specifically, the graph convolutional network (GCN) model is used to capture the geographical feature of the U.S. regions and the gated recurrent unit (GRU) model is used to capture the temporal dynamics of ILI. The result was compared with the Deep Learning model proposed by other researchers, demonstrating the proposed model outperforms the previous methods.clos

    Neural network based country wise risk prediction of COVID-19

    Get PDF
    The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the uncertain nature. Here, we propose a shallow long short-term memory (LSTM) based neural network to predict the risk category of a country. We have used a Bayesian optimization framework to optimize and automatically design country-specific networks. The results show that the proposed pipeline outperforms state-of-the-art methods for data of 180 countries and can be a useful tool for such risk categorization. We have also experimented with the trend data and weather data combined for the prediction. The outcome shows that the weather does not have a significant role. The tool can be used to predict long-duration outbreak of such an epidemic such that we can take preventive steps earlie

    Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19

    Full text link
    Forecasting influenza in a timely manner aids health organizations and policymakers in adequate preparation and decision making. However, effective influenza forecasting still remains a challenge despite increasing research interest. It is even more challenging amidst the COVID pandemic, when the influenza-like illness (ILI) counts are affected by various factors such as symptomatic similarities with COVID-19 and shift in healthcare seeking patterns of the general population. Under the current pandemic, historical influenza models carry valuable expertise about the disease dynamics but face difficulties adapting. Therefore, we propose CALI-Net, a neural transfer learning architecture which allows us to 'steer' a historical disease forecasting model to new scenarios where flu and COVID co-exist. Our framework enables this adaptation by automatically learning when it should emphasize learning from COVID-related signals and when it should learn from the historical model. Thus, we exploit representations learned from historical ILI data as well as the limited COVID-related signals. Our experiments demonstrate that our approach is successful in adapting a historical forecasting model to the current pandemic. In addition, we show that success in our primary goal, adaptation, does not sacrifice overall performance as compared with state-of-the-art influenza forecasting approaches.Comment: Appears in AAAI-2

    Data-Centric Epidemic Forecasting: A Survey

    Full text link
    The COVID-19 pandemic has brought forth the importance of epidemic forecasting for decision makers in multiple domains, ranging from public health to the economy as a whole. While forecasting epidemic progression is frequently conceptualized as being analogous to weather forecasting, however it has some key differences and remains a non-trivial task. The spread of diseases is subject to multiple confounding factors spanning human behavior, pathogen dynamics, weather and environmental conditions. Research interest has been fueled by the increased availability of rich data sources capturing previously unobservable facets and also due to initiatives from government public health and funding agencies. This has resulted, in particular, in a spate of work on 'data-centered' solutions which have shown potential in enhancing our forecasting capabilities by leveraging non-traditional data sources as well as recent innovations in AI and machine learning. This survey delves into various data-driven methodological and practical advancements and introduces a conceptual framework to navigate through them. First, we enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting, capturing various factors like symptomatic online surveys, retail and commerce, mobility, genomics data and more. Next, we discuss methods and modeling paradigms focusing on the recent data-driven statistical and deep-learning based methods as well as on the novel class of hybrid models that combine domain knowledge of mechanistic models with the effectiveness and flexibility of statistical approaches. We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems including decision-making informed by forecasts. Finally, we highlight some challenges and open problems found across the forecasting pipeline.Comment: 67 pages, 12 figure
    corecore