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Abstract

Accurate and real-time epidemic disease prediction plays a significant role in the health

system and is of great importance for policy making, vaccine distribution and disease control.

From the SIR model by Mckendrick and Kermack in the early 1900s, researchers have developed

a various mathematical model to forecast the spread of disease. With all attempt, however, the

epidemic prediction has always been an ongoing scientific issue due to the limitation that the

current model lacks flexibility or shows poor performance. Owing to the temporal and spatial

aspect of epidemiological data, the problem fits into the category of time-series forecasting.

To capture both aspects of the data, this paper proposes a combination of recent Deep Leaning

models and applies the model to ILI (influenza like illness) data in the United States. Specifically,

the graph convolutional network (GCN) model is used to capture the geographical feature of

the U.S. regions and the gated recurrent unit (GRU) model is used to capture the temporal

dynamics of ILI. The result was compared with the Deep Learning model proposed by other

researchers, demonstrating the proposed model outperforms the previous methods.
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I Introduction

Epidemiology is the study of the distribution and determinants of the health-related states or

events, and the application of this study can be used to the control of disease or other health

problem [3]. The concerning infectious disease is caused by pathogens such as bacteria, virus, or

fungus and the infected host act as a secondary medium for the transmission of the disease. This

medium includes water, air, or living organisms such as mosquitos which is the major cause of

various diseases including dengue fever and Zika. Due to its high spreading ability, the infectious

disease is a major concern in public health. Recently, there were several major outbreaks such

as SARS, swine flu and MERS and the annual global cost of such pandemics is estimated to be

over $570 billion [4].

Mankind effort to predict such disease has a long history, starting from 400 B.C. Athens

philosopher Hippocrates’s attempt to explain the role of environment and host in spreading of

the disease to the 1800s anesthesiologist John Snow’s systemic work for investigation of the

prevalence of cholera. The milestone in explaining the spread of disease using mathematics was

set by Mckendrick and Kermack in 1927. For most of the disease, the host gets the immune

system after it cured. Based on the fact, the two scientists translated the dynamics of disease

into three representations: susceptible(S), Infected(I), and Removed(R). Assuming the number

of people is N and there is no change from birth or death, the total number of the sum of S(t),

I(t) and R(t) is kept the same for all time. With appropriate choice of the transmission rate

(S → I) and recovery rate(I → R), the SIR model can be solved using ordinary differential

equation [5].

dS

dt
= −βSI (1)

dI

dt
= βSI − αI (2)

dR

dt
= αI (3)

S(t) + I(t) +R(t) = N (4)

Above equations are the basic SIR compartment model which was introduced by Mckendrick

and Kermack where the β represents the transmission rate and α the recovery rate. Here, the

variables and parameters are positive. The SIR model can be simplified or altered according the

types of disease. For example, chronic disease such as herpes cannot be cured hence it fits SI

model which stated below [5].
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dS

dt
=
−βSI
N

(5)

dI

dt
=
βSI

N
= βI(1− I

N
) (6)

For the case of sexually transmitted disease such as chlamydia, the pathogen does not confer

immunity. Therefore, SIS model fit into this category [6] since the immunity wanes over times

and the host can be infected again. In other case the model can be lengthened by introducing a

new status called exposed state (E). When the amount of pathogen in the host is smaller than

its threshold, the host does not show a symptom but still act as a carrier. The SEIR model

may resembles real development of epidemics better than SIR model and hence more exact

prediction can be made. These SI, SIR and SEIR models can be further altered or developed

in various ways. Lee et al. examined the effect of previously neglected birth and death rate and

suggested SEIR-BD model, describing the transmission of influenza [7]. Brauer focused on the

asymptomatic stage of some disease, suggested SLIAR model which contains a latent (I) and

asymptotic (A) stage [8].

Where the above models are based on the assumption that the process of transmission is

deterministic, several models are assuming the process is stochastic. Such stochastic chemical

reaction model, originally used to explain the biological system, can be applied to the traditional

SIR model. Ryu et al. used the Gillespie algorithm on the top of the SIR model to predict the

spread of malaria [9]. Britton et al. assumed the transmission rate follows Markov Chain, and

used Markov Chain Monte Carlo to estimate the parameters which govern the rate of infection,

the length of the infectious period, and the probability of social contact [10]. Streftaris and

Gibson extended the Markovian epidemic model with the assumption that the infectious period

of an individual follows Weibull distribution [11]. Vaidya et al. used the nonlinear least square

method to estimate the parameter for SPIR model and SIQR model which involves the protection

(P ) and quarantine (Q) terms respectively.

The effort to predict the dynamics of the disease using compartment formula, however, has

a limitation since the mathematical model itself cannot contain every geographical or individual

factor. For example, the factor such as peer pressure can be easily neglected but can play a crucial

role in vaccination dynamics [12]. In an attempt to incorporate the specific factors, agent-based

models such as EpiSims or GLEaM are used along with the mathematical model [13]. The agent-

based model makes virtual system where each agent has its own feature and uncertainty, and

simulation is performed on top of the system to know the vaccination or transmission dynamics

of the disease. The other way of incorporating all the missing factor affecting the epidemics is

the data-driven method, which solely relying on the processed or unprocessed data to predict

the epidemics.
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Despite the fact that mechanistic models are intuitive in the sense that the affecting factors

are apparently contained in the equation, the traditional models lack flexibility and is slow

in its application since the research of the corresponding disease and environmental features

should be preceded. The data-driven method can be a good alternative, which relies on the

statistics and time-series data which refers to a series of data points which are successively and

equally indexed. Here, the time series data is of longitudinal data which graphed with time

whereas the cross-sectional data states data index at a certain time. Due to the character of the

longitudinal data, the time series can be represented with a relatively small number of variables.

With the assumption that the current data is affected by the previous data and the future

data by current data, many methodologies have been developed to predict. Before applying

the method, however, the types of the time-series data should be identified. The time-series

data can be divided into two categories; the stationary time-series refers to the data which has

consistent mean and variance and the non-stationary time-series the data lacks the consistency.

Although most of the real data are non-stationary whereas the existing methods are based on

stationary time-series data, this discrepancy can be overcome using the appropriate number of

differencing processes which can approximate the covariance stationarity. The time-series data

normally contain a long-term trend, recursive seasonality and other innate feature such as white

noise. Normally, the white noise shows stationarity whereas the seasonal pattern does not. By

two or more processes of differencing, most of time-series data show stationarity with seasonality.

Some of the basic statistical time-series prediction methods are mean prediction method, naïve

method, seasonal naïve method and regression method which use the least square to minimise

the error. The most classical method in this era was suggested in 1970 by Box and Jenkins

where they combined autoregression model [14] [15], which employ its own value as a variable,

moving average model, which linearly combines the previous values [16], and differencing [17].

The autoregression integrated moving average (ARIMA) model assumes the time-series data as

a sample extracted from the original data and investigate its statistical features. For time-series

data yt, the models can be represented as

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + et (AR(p) model)

yt = c+ et + θ1et−1 + θ2et−2 + · · ·+ θqet−q (MA(q) model)

yt = c+ φ1yt−1 + · · ·+ φpyt−p − θ1et−1 − · · · − θqet−q (ARIMA(p,d,q) model)

where c is the constant, et the white noise, φi the AR parameter, θi the MA parameter. In

ARIMA model, p is the number of AR terms, d the number of nonseasonal differences and q the

number of MA terms. Here, the most important part for ARIMA is to eliminate trend or season-

ality and to transform the non-stationary data to stationary data through model identification,
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estimation and diagnostic checking [18] [19]. Although ARIMA model has been developed to

various model such as VAR, which has the advantage of multivariate time-series forecasting [20],

these traditional time-series methods have limitation as they require the pre-processing which

requires a lot of assumption and have low prediction performance.

Recently from the machine learning literature, nonlinear time-series prediction model such

as the artificial neural network (ANN) or support vector machine (SVM) has been adopted as

the promising alternative to the traditional method. Here, the machine learning is the study of

the algorithm that computer learning by itself without the instruction. The machine learning is

normally divided into three categories: supervised learning, unsupervised learning and reinforce-

ment learning. The first kind is the algorithm where the computer gets the initial instruction

with labelled information and learn by itself to perform a specific task including classification. K-

nearest neighbour [21] or Support Vector Machine, the famous classification method which aims

to find the optimal hyperplane that can classify two types of data [22], falls into this category.

The second category is the opposite of supervised learning where the computer does not have

the result instruction and find the data pattern by itself through data clustering or association.

The last kind is reinforcement learning where the computer has limited result instruction to find

the optimal solution which has the highest reward. The most remarkable method in this era is

deep learning which falls into the first (backpropagation) and second (feedforward) categories.

The deep learning, or precisely deep neural network, can be explained as the complex ver-

sion of artificial neural network (ANN). ANN is a model that resembles the actual neuron in the

sense that the dendrite (input node) receives the input signal, the soma (hidden node) optimizes

or processes the input value and the axon (output node) delivers the output [23]. The artifi-

cial neuron, connected to weights and activation functions, can be stacked to form the input

layer, hidden layer and output layer like the biological neuron does. The network formed by

the connection of synapses can learn itself by variating the strength of the synaptic connection,

which can be translated to the weight in machine learning literature. The value from the linear

combination of the input and weight pass through an activation function, classifying the input

data. In 1957, Rosenblatt first used this concept to produce a single layer perceptron, the first

successful neuro-computer, which mimics a single actual neuron [24]. Rosenblatt’s single-layer

perceptron was composed of input nodes, an output node, and connecting weights. This neuro

computer can solve a few simple classification problems including the AND gate, OR gate or

NAND gate. The activation function was a step function, where it compares the input value

times weight value with bias, just like the real neuron does in the threshold stage. Due to its

linear property, however, the single-layer perceptron is limited to only the linearly classifiable

problem and cannot solve a problem such as XOR gate [25]. Minsky and Papert suggested

hidden layers to solve this problem, the first work of multilayer perceptron (MLP) [25]. The

multilayer perceptron, however, was hard to train since the number of weights increases as the
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number of the hidden layers increases. To solve the problem, based on the work of Kohonen [26]

Paul Werbos [27] and Hopfield [28], Rumelhart and Hinton introduced error backpropagation

algorithm applied multilayer perceptron which uses a sigmoid activation function and gradient

descent rather than traditional least square method or maximum likelihood to deal with the

large number of weights [29]. To briefly summarise the backpropagation, with an initial weight,

a loss function is set to minimalize the error between the prediction value and the real value.

Here, the continuous sigmoid function let the perceptron learn better as it can sense the small

change in the weight, compare to the original step function. The multilayer perceptron, how-

ever, had four main problems; the learning takes too much time as the number of hidden layers

increases; as the perceptron learn, the backpropagating error does not reach to the input node

and hence the weight does not updated, causing “vanishing gradient problem"; the perceptron

get overfitted to the training data and lacks flexibility; it needs a large number of labelled data.

The “Slow” problem was due to the gradient descent optimizer, where it calculates the error

of all the data with given weight and perform the loss function. In other words,

wn+1 = wn − γ∇E(wn) (7)

(7) represents wn+1 is updated with learning rate γ times the gradient at nth weight w. The

amount of data to calculate, however, was too large for each step. This problem was solved by

introducing stochastic gradient descent, where the data to calculate is divided to make a ‘small’

step [30]. Although it takes a lot of steps to achieve the right parameter value, each step takes

a short time, solving the slow problem. Nowadays many optimizing algorithms such as adaptive

moment estimation (Adam) [31], adaptive gradient (Adagrad) [32] or RMSprop [33] are used to

find the best step direction and step size. The details of the optimizer will be discussed in the

later part. The gradient vanishing problem, also called as the underfitting, occurs when there

are many hidden layers. With the sigmoid activation function, the small gradient at the extreme

values makes the weight smaller, resulting in no update to the original weight. This problem was

solved by introducing the Rectified Linear Unit (ReLU) activation function where the gradient

in the positive interval is one, hence backpropagating the error completely [34]. Overfitting

problem was fixed by excluding a few nodes and performing selective learning. For most of the

case, 50-80% of nodes are used and the excluded nodes do not affect the learning [35]. This

prevents the overfitting problem caused by sampling noise, therefore generalizing the solution.

This Dropout method is extended to DropConnect method where the probability of excluding

node is 50%, compared to the deterministic nature of Dropout. These developments in machine

learning algorithm, combined with the advancement of graphic card which enables a large number

of hidden layers, introduced the era of Deep Neural Network, or Deep learning. The next section

will be discussed some of the main methods in Deep Learning with its application in epidemiology
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literature.
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II Method

In the deep learning literature, DNN is the most basic model which is composed of an input

layer, more than three hidden layers and an output layer.

Figure 1: Feed forward network

Each neuron is fully connected and feed forward, i.e. there is no cycle within the network

[36]. Every neuron is connected to the neuron in the next layer with weights, and through the

activation function, the output is generated as in Fig 1. Here, the difference between the output

and the real value is defined as the loss function or cost function, and this function is updated

to the input through partial differentiation which is the backpropagation. For nth input, the

output value is calculated to be f(
∑n

i=1 xiwi + b) where x is the input, w is the weight, and b is

the bias. Here, f is the corresponding activation function, which is normally ReLU or Sigmoid

function, i.e.

f(x) =

0, for x < 0

x, for x ≥ 0
(ReLU)

f(x) =
1

1 + e−x
(Sigmoid)

The difference between the output and the target value is defined to be loss function or

cost function E = 1
2

∑n
i=1(ti − oi)

2 where n is the number of output nodes, o is the output
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and t is the target value. The error is updated to the initial weight to optimize the parameter

with appropriate learning rate. The most basic optimizing algorithm is gradient descent i.e.

w = w − γ ∂E
∂w . Here, the partial derivative is calculated using chain rule.

∂E

∂wji
=
∂E

∂oj

∂oj
∂yj

∂yj
∂wji

(8)

where yi refers to the output value before the activation function and wji refers to the

weight connecting the node from the previous layer to the node in the current node. Each

partial derivative term is calculated to be

∂E

∂oj
=
∂ 1
2(tj − oj)2

∂oj
= −(tj − oj) (9)

∂oj
∂yj

=
∂(1 + e−yj )

−1

∂yj
=

e−yj

1 + e−yj
= oi(1− oi) (10)

∂yj
∂wji

=
∂wjioj
∂wji

= oi (11)

∂E

∂wji
= −(tj − oj)oj(1− oj)oj (12)

This updating process starts from the output node to the input node, which is the reverse

direction of the feed forward process. Due to this reverse property, the process is called back-

propagation. In this paper, other methods were used because despite the intuitive structure of

gradient descent, it takes too much time to optimize the parameters. The other optimizers used

for the research include Adagrad, Adadelta and Adam.

Gn+1 = Gn + (∇wE(wn))2

wn+1 = wn −
γ√

Gn+1 + ε
· ∇wE(wn)

(Adagrad)

wn+1 = wn −∆w

∆w =

√
s+ ε√
G+ ε

· ∇wE(wn)

sn+1 = ηsn + (1− η)∆w

Gn+1 = ηGn + (1− η)(∇wE(wn))2

(Adadelta)

vn = ηvn−1 − γ∇wE(wn)

wn+1 = wn − vn
(momentum)
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mn = β1mn−1 + (1− β1)∇wE(wn)

vn = β2vn−1 + (1− β2)(∇wE(wn))2

m̂n =
mn

1− β1t

v̂n =
vn

1− β2t

wn+1 = wn −
γ√
v̂n + ε

m̂n

(Adam)

The Adagrad, which is shorten for adaptive gradient, has changing learning rate from the

value Gn. Specifically, the term γ stands for the learning rate and unlike gradient descent, the

learning rate change according to Gn. Assume there is k number of parameter in wn, Gn is a

vector which has k length. From the dot product, corresponding value in Gn vector is multipied

on the gradient of the error function ∇E(wn). Hence, different learning rate can be applied to

the error function whereas same learning rate were applied in the simple gradient descent. Here,

ε exists so the learning rate not divided by Gn = 0. As stated in the learning step form, the

Gn value is in the denominator and this make adaptive gradient. For element that has been

changed a lot, small learning rate is applied and vice versa. Due to this property, the Adagrad

can make more careful optimization. However, the learning rate in Adagrad can be too small so

no learning can be proceeded. As the gradient of error function get accumulated, Gn get high and

there would be no learning. To prevent this, some decaying constant η is introduced to restrict

the very high Gn. The η is between 0 and 1 and this makes the Gn not too high. In the updating

process, instead of using Gn, the change of w is applied so the hypothetical unit for the updating

equation be the same. Here, the term s was introduced for the unit change. Both the Adagrad

and Adadelta developed for applying different learning rate to parameter. The Adam optimizer

incorporate the advantage of momentum optimizer. In momentum, η is the momentum term to

restrict the step size [37]. Specifically, vt has previous moving information and can be written

as vn = γ∇wE(wn) + ηγ∇wE(wn−1) + η2γ∇wE(wn−2) + · · · . In Adam, mt has similar form

and has the property of momentum, and vt has similar form to Adadelta and can do adaptive

learning. Here, the hat terms normalize the mt and vt. In practise, β1 is around 0.9 and β2 is

around 0.9999. Hence for the first step where there is no mt−1 or vt−1 value, the value of mt will

be too much compare to vt. To normalize this, hat form is used so the mt first step is not too

much influential [31].

In literature, deep learning is widely used in the classification purpose where identifying the

natural language data is essential. Serban et al. used deep learning to detect influenza-like-illness

(ILI) outbreak from Twitter data, and Khatua et al. used Word2Vec for classifying unstructured

text data to specify Zika and Ebola outbreak [38] [39]. The first attempt to predict epidemic using

deep learning was made in 2005, where the number of SARS(severe acute respiratory syndrome)
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patients in Shanxi was predicted with simple backpropagation neural network (BPNN) [40].

Yomwan et al. used BPNN and simple multilayer perceptron to predict the outbreak of water-

borne disease (diarrhoea) in Ayutthaya province using dissolved oxygen and population density

data during flood duration [41]. Xu et al. predicted the number of ILI outpatients in Hong Kong

clinic using Google search data and feedforward neural network (FNN) [42]. Xue et al. merged

Google Flu Trend data and Center for Disease Control (CDC) data for BPNN based epidemic

prediction where the weight and threshold of BPNN are estimated using Genetic algorithm [43].

Hu et al. applied artificial tree algorithm on BPNN to develop Improved Artifical Tree BPNN

(IAT BPNN) which optimizes the initial parameter of the BPNN, and compared the perfor-

mance with other methods such as ANN or BPNN [44]. This methodology is also applied to

animal disease: Dharmawardana et al. used basic ANN for prediction of dengue fever and Kim

et al. used DNN to predict H5N1 prediction [45] [46]. The combination of traditional statistical

method and deep learning is also researched by many scientists. Chakraborty et al. proposed the

combination of ARIMA and neural network autoregressive (NNAR) model, which can capture

both linearity and nonlinearity in the data set, for prediction of dengue cases in dengue endemic

regions [47]. Soliman et al. used a Bayesian model averaging to combine FNN with ARIMA,

beta regression or least absolute shrinkage and selection operators (LASSO) [48]. Some papers

compared the dengue prediction performance of DNN and Recurrent Neural Network (RNN):

Sathler used MLP, Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) to

predict the dengue fever using climate features dengue data [49] and Baquero et al. compared

the performance of ARIMA, ANN, LSTM and naive model in prediction of dengue [50]. Chae

et al. used search query data and the Korea Center for Disease Control (KCDC) data to predict

chickenpox, scarlet fever and malaria cases by using DNN and LSTM [51]. The details of RNN

will be discussed in the following subsection.

2.1 Recurrent Neural Network (RNN)

The main difference between RNN and DNN is the recurrent structure as the name states.

In contrast to the DNN in which each data is treated independently, the RNN employs the

combination of current input, and previous data and the corresponding output proceeds to the

next input. Since the spread of the disease is also affected by the cumulative cases, the RNN is

widely employed in epidemiology literature.

Figure 2 represents the basic structure of RNN of folded (left) and time-respected unfolded

(right) diagram where xt represents the input at time t, st the hidden state at time t, ot the

output at time t, and the matrices U, V,W the same parameters used in each time step. Unlike

feed forwarded DNN, the RNN has two input and output: the time t value input and t hidden

state input, and the corresponding outputs. Here, the same valued parameters reduce the number

of parameters to be learnt. In conventional vanilla RNN, the hidden state and output can be

represented as
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Figure 2: RNN

st = f(Uxt +Wst−1 + bf )

ot = σ(V st + bo)
(13)

where σ and f represent the activation function and bf and bo represent the bias. Palao et al.

used RNN to predict endemic in all over the Mumbai region and made surveillance system [52].

The conventional RNN, however, has a problem for long term calculation as the bias get accu-

mulated, making the computation inaccurate as the new input is shaded by previously stacked

information. These standard RNN can learn the short term dependency but not the long term

dependency due to gradient vanishing during backpropagation through time. To compensate

for the problem, variants of RNN depending on the cell types are introduced: LSTM [53] and

GRU [54].

Long Short Term Memory (LSTM)

When there is a large time gap between the previous input data and provided input, there

occurs the vanishing gradient problem. The LSTM solve this problem by introducing gates which

can selectively value the input information. Unlike the vanilla RNN, the LSTM has two kinds

of states; the hidden state learns the short term information and cell state learn the long term

information. This information is controlled by the gates; the input gate decide how much to

consider from cell state Ct; the forget gate how much to forget from cell state Ct−1; the output

gate judge how much information to send to the next hidden unit.

11



Figure 3: LSTM

The ht represents the hidden state; the Ct the cell state; the C̃t the candidate of cell state;

the it the input gate; the ft the forget gate; the ot the output gate; the xt the input; the σ

the sigmoid activation function. In forget gate, sigmoid activation is performed with input ht−1
and xt, remaining the value for output 1 and discarding the value for output 0. Next is to

decide whether to save the new data into cell state. Firstly, the input gate compute it value by

computing sigmoid of ht−1 and xt. Secondly, tanh computes the C̃t with ht−1 and xt inputs. The

next step is to renew the previous Ct−1 state with Ct. After deciding how much C − t should
be left with forget gate, the computation of input gate and C̃t is added to make new Ct. Lastly,

the ht−1 and xt are computed with sigmoid and tanh activation function consequently to make

output ht.

it = σ(Wiht−1 +Wixt)

ft = σ(Wfht−1 +Wfxt)

ot = σ(Woht−1 +Woxt)

C̃t = tanh(Wcht−1 +Wcxt)

Ct = ftCt−1 + itC̃t

ht = ottanh(Ct)

(14)

The performance of the LSTM supersedes that of the RNN in terms of their prediction power.

Fu et al. compared the prediction quality of the RNN and LSTM for influenza prediction [55]
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and Wang et al. applied both techniques on HIV prediction in Guangxi, resulting in the best

performance on LSTM when compared to RNN or ARIMA [56]. Volkova et al., to our best

knowledge, firstly employed the LSTM to predict ILI dynamics using the various linguistic

signals extracted from social media, suggesting that the communication behaviour is powerful

in prediction and can be used for neural network model learning where ILI historical data is

unavailable [57]. The LSTM shows good predictive performance in various diseases such as

typhoid fever, hemorrhagic fever, mumps, conjunctivitis [58] and hand-foot-mouth disease [59],

and shows improved performance when combined with a genetic algorithm to generate the initial

parameter [60]. Venna et al. performed the LSTM for influenza, considering the climate factor

using the time-delayed association analysis between the time series of weather and flu count,

and geographical proximity by computing the spatio-temporal adjustment factor from averaging

the flu variation at nearby data nodes [61]. To overcome the data sparsity problem, Wang et al.

used a multi-agent system on a coarse ILI data to synthesize epidemic data and performed the

LSTM to achieve accuracy in high-resolution forecasting [62].

Gated Recurrent Unit (GRU)

The GRU is developed to reduced the parameter and computation time of the LSTM. The

main difference is that the GRU combines forget gate and input gate into a single update gate,

hence achieving a simpler structure.

Figure 4: GRU

The update gate zt decides the proportion of previous memory and current input by con-
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trolling the portion of previously hidden state output. The reset gate rt readjust the previous

memory to forge a new memory. Thus, the memory candidate h̃t consists of current input and

previous memory, where the memory is reset when rt = 0 and used when rt = 1. The GRU is

capable of capturing long term sequence data and has lower memory capacity.

zt = σ(Wzht−1 +Wzxt)

rt = σ(Wrht−1 +Wrxt)

h̃t = tanh(Wrtht−1 +Wxt)

ht = (1− zt)ht−1 + zth̃t

(15)

The GRU method, however, is little in its application on the epidemiology. Livelo et al. used

the GRU for classifying dengue tweet [63] and Sathler et al. compared the GRU with other

neural networks such as MLP and LSTM in their dengue prediction power, resulting in best

performance for GRU [49].

2.2 Convolutional Neural Network (CNN)

The CNN is an algorithm mainly used to capture the image or spatial information. Unlike

the DNN or RNN, the CNN uses three-dimensional data as input value and results in three-

dimensional information as an output. This aspect enables the algorithm to maintain the spatial

features. Here, the term convolution refers to the integral of the multiplication of two functions

where one is reflected. Whereas the MLP connects all weights on a single node, the weights

are connected only to the neighbouring nodes. This local connection of the same filter reduces

the number of parameters and computational speed. Furthermore, since the CNN processes one

image into multiple pieces of small neighbouring image segments, the distortion or translation of

the image can be captured. Most of the CNNs used for today’s research have their base on the

model proposed by Yann Lecun, where he used backpropagation to learn the filter coefficient

from the handwritten number [64]. His model mainly consists of three-layer: convolutional layer

conducts convolution computation to extracts the meaningful feature map; pooling layer reduces

the number of feature by sub-sampling; fully connected layer connects all nodes and acts like

normal ANN.

In convolutional layer, a kernel of smaller size and same depth is applied to the entire image.

The kernel, also known as the window, strides the image and calculates the inner product,

learning the pattern and local information by amplifying the feature signal and suppressing

the noise. The result after applying the same window and bias is called feature map, and the

set of feature maps is the convolutional layer. Depend on the stride size, the boundary part of
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Figure 5: CNN

the input data can be removed. Padding is applied to prevent the lose and to ensure the same

dimensionality of output and input. The size of the output follows equation (16).

(Oh, Ow) = (
h+ 2P − Fh

S
+ 1,

w + 2P − Fw

S
+ 1) (16)

where Oh refers the height of output, Ow width of output,Fh height of filter,Fw width of

filter, h height of input, w width of input, P size of padding, S size of stride. Mostly, the

sizes of convolutional layer and input data are controlled to have the same dimension and the

dimensionality reduction occurs in the following pooling layer.

Pooling is the process of attaining a single value from the selected size window. Depend

on types of the data, different types of pooling are used. For example, average pooling is used

for the smoothing of the image, and max pooling is used for sharping the image, which fits for

MNIST data where the contrast of background and the handwriting is important. This reduction

of parameters is also helpful for the prevention of overfitting. After alternatively applying the

convolutional and pooling layer, the extracted features are connected to a fully connected layer,

controlling the number of feature.

As well as for the visual image, the CNN is also used for processing the sequence data due

to its ability that captures the entire sequence and speed. Zhong et al. first used the CNN to

predict the influenza dynamics by capturing the disease flow in location network and see how the

attributes of locations affect the prediction accuracy [65]. Andersson et al. used Google Street

View data to extract useful feature for prediction of the dengue fever and Rehman et al. used

satellite data to extract landscape features and incorporated them into the SIR model [66] [67].
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Some researchers used the CNN to extract sequence data, where Molaei et al. used the CNN

to extract Twitter data to predict ILI and Bu et al. used Python web crawler to extract web

search data and predicted flu [68] [69]. As well as extracting the sequence data, Gencoglu et

al. used the CNN to capture illness-related picture such as drug photo from Instagram and

predicted flu [70]. Among several CNN model, residual network (ResNet) model is used in

accordance with RNN to capture the spatial feature of the epidemics. ResNet enables the CNN

to have more convolutional layers by applying bottleneck structure to prevent gradient vanishing

problem causing from many hidden layers. This bottleneck makes skip connection between input

and output whereby accelerates the learning speed by providing learning object and mitigates

the overfitting problem, yielding more accurate prediction. Xi et al. used ResNet to predict

the influenza trend and compared the root mean square error (RMSE) with several methods

including the ANN or LSTM, attaining the best result for ResNet [71]. Wu et al. combined

GRU and ResNet to capture both the temporal and spatial features of the ILI in Japan and the

United States, giving out best when compared to Gaussian Process or vector autoregression [2].

Graph Convolutional Network (GCN)

Some data such as social, information or road can be represented as a graph using network

science. With graph representation, the meaningful connection can be made easier than the

image which merely reflects the Euclidean distances. Although spatial CNN performs well under

the conditions including grid structure and translational invariance, it is hard to perform learning

for non-Euclidean data. The Graph Convolutional Network (GCN) constructs network within

the data set and use as input, hence changing the spatial domain data into spectral domain [72].

The graph can be represented as G = (V,E) where V represents the set of vertices or nodes and

E the set of edges or relationships. The vertices may imply the constituent of the system such as

individual or region, and the edges may imply the relationship or interaction of the nodes such

as connection or linkage. Among the many types of graph, this paper focuses on the simplest

form, unweighted and undirectional graph.

Figure 6: Graph, adjacency and feature matrix
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Fig. 6 shows an example of a graph and its relevant matrix where the adjacency matrix is

AN×N and feature matrix is XN×F . Here, N represents the number of nodes where in this case

is 5 and F represents the number of features where in this case is 5. The adjacency matrix is

symmetric pairwise distance matrix with element values are either 1 or 0, where 1 represents a

connection and 0 no connection. To update the node history, the identity matrix is summed to

the adjacency matrix to change the diagonal values to 1. For the case of a weighted graph, a

similarity matrix of an element between 0 and 1 is used instead of the adjacency matrix.

As the name stated, the GCN conducts convolutional computation and update the values of

the features of the nodes while the shape of the graph remains unchanged. A single hidden layer

of graph receives first order neighbourhood information by multiplying the adjacency matrix

and feature matrix, and as the layer stacks up, the node can receive information from multiple

order of neighbouring nodes. By controlling the number of layers, the information travel distance

can be regulated. In Graph Neural Network (GNN), the original model of GCN, the embedding

of the new node is made by the sum of aggregated neighbouring nodes and concatenated the

original node itself. Unlike the GNN which use different aggregate and concatenate function and

weight, the GCN use the same weight for the node and the neighbouring nodes. To even the

effect of each node, Laplacian normalization is applied to the propagation.

Hi
(l+1) = σ(

∑
j∈N(i)

Hj
(l)W (l) + b(l)) (17)

H(l+1) = σ(AH(l)W (l) + b(l)) (18)

H(l+1) = σ(D−
1
2 ÂD−

1
2H(l)W (l) + b(l)) (19)

Equation (17) represents the recursive computation of how the lth neighborhood nodes are

updated to l + 1th layer where Hi
(l+1) represents the hidden state in l + 1 layer and ith node,

W (l) the weight matrix, b(l) the bias vector and σ the activation function. Instead of using for

loop, the adjacency matrix is used for simplification in equation (18). Since the adjacency matrix

A is not normalized, it can change the scale of the feature vector. By adding degree matrix D

which refers to the number of connection attached to each node, and by adding identity matrix

to adjacency matrix, A+ I = Â, equation (19) is obtained. This GCN model can both capture

the computational efficiency through weight sharing and graph local feature [73]. With all the

advantage of the GCN which can capture meaningful information for non-Euclidean distance, it

has not been explored in epidemiology literature to the best knowledge.
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2.3 Graph Convolutional Network Gated Recurrent Unit (GCNGRU)

A combination of the GCN and GRU, both of which are unexplored in epidemiology literature,

is used for the research. Compare to the other RNN mechanism such as LSTM, GRU requires

less parameter and hence reducing the computation time and overfitting risk. Hence, the GRU

was chosen for the temporal investigation of this research. Also, the GCN was chosen for the

research since the CNN was initially developed to learn images or grid data, which is not useful

for non-Euclidean distance such as the United States traffic network which directly affects the

spread of disease. Furthermore, the GCN can be more suitable for capturing the disease spread

since the disease can only be transmitted to the isolated area such as island by aeroplane or

shipment. For this case, the epidemic relationship between the island and major city will be

stronger than the island and its neighbouring region. Also, the GCN can be further accurate by

introducing Attention GCN which has different weight depending on the connection importance.

In this aspect, this paper chooses the combination model GCNGRU to forecast the epidemics.

zt = σ(Wz[H
l, ht−1] + bz)

rt = σ(Wr[H
l, ht−1] + br)

h̃t = tanh(Wht [H
l, rtht−1] + bht)

ht = (1− zt)ht−1 + zth̃t

(20)

Equation (20) shows the GCNGRU model which is used for the research. The data from the

GCN cell goes to GRU cell and performs prediction. The model will be evaluated via multiple

metric and compared with previous research which employed ResNet + GRU.

Similar method was used on research out of epidemiology literature. Cui et al. combined

GCN and LSTM to make traffic graph convolutional long short term memory neural network

(TGC-LSTM) to track the traffic on the road [74]. Zhao et al. proposed T-GCN model, which is

composed of GCN and GRU, and used traffic speed data in Shenzan and Los Angeles to predict

the traffic under different time horizon [75]. As the investigation of time varying influenza rate

in each region resembles the time varying traffic in each road segment, the experiment was done

with the United States influenza rate time series data for multiple U.S. regions.
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III Experiment

3.1 Data Description

For the empirical evaluation of the model, a real world ILI activity level data in the United States

were chosen. The data were collected by the U.S. Outpatient Influenza-like Illness Surveillance

Network (ILINet) which is consists of around 30 million patient visit data gained from more than

2900 healthcare providers in the 50 states, District of Columbia and New York city. Here, the

standard for ILI is defined as fever of higher than 37.8◦C and a cough or sore throat. The activity

levels represents the comparison of the percent of outpatients reported in a jurisdiction due to

ILI and the percent of outpatients when there is no report of influenza virus circulation for two

or more consecutive weeks. To take into account the geographical and temporal difference, the

baselines for each states and each time period were set differently. The ILI activity level map is

shown below.

Figure 7: ILI Activity map [1]

The activity is divided into 10 levels which correspond to the positive and negative standard

deviation to baseline. As in the map, the activity level is represented by colour where the green

represents activity level 1 which is below the mean, and the red represents 10 which corresponds

to 8 or more standard deviation. The data does not contain information about the extent of

spread of ILI within a state and may poorly represents certain populations within a state [76].

After removing the states that have insufficient data, for example the District of Columbia

in Figure 7, 2009 to 2016 weekly ILI activity level data of 29 states data out of 52 region
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were selected for the empirical evaluation. In practise, the table from ILI activity map and the

adjacency matrix which contain neighbouring information was used.

(a) ILI activity level weekly table (b) Neighbouring adjacency matrix

Figure 8: Data used for the evaluation [2]

Figure 8 (a) is the ILI activity level weekly data where the horizontal axis is the week and

vertical axis is each states. Figure 8 (b) is the adjacency matrix using neighbouring information

where 0 denotes no connection and 1 denoted neighbouring relation.

3.2 Evaluation metrics

This paper adopted two evaluation metrics: root mean square error (RMSE) was used to measure

the prediction error where the smaller value represents more accurate prediction: Pearson’s corre-

lation coefficient (CORR) to measure the linear correlation between the ture and the prediction.

When the prediction is denoted to be ŷi and and the true yi, the metrics are

RMSE =

√
1

n

∑
i

(ŷi − yi)2

CORR =

∑
i(ŷi −mean(ŷ))(yi −mean(y))√∑

i(ŷi −mean(ŷ))2
√∑

i(yi −mean(y))2
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IV Result

The aim of this evaluation is to check the performance of the GCNGRU model by comparing

to the existing model, CNNRNN-res, which is suggested by Wu et al. [2]. As introduced in the

last of 2.2 CNN section, the CNNRNN-res is a combination of the ResNet (CNN) and GRU

(RNN). Among many deep learning applied epidemic model, this particular model was chosen for

two reasons. First, to the best knowledge, the CNNRNN-res is the first and only model which

captures both the spatial and temporal features of the data by deep learning methodologies.

Next, the model shows dominating performance when compared to the other statistical model

including global autoregression (GAR), autoregression (AR), vector autoregression (VAR), and

gaussian process (GP). For the comparison, exactly same data and the same number of epoch

have been applied to the GCNGRU. To achieve the optimal value, multiple parameters have

been applied as well.

Number of GRU unit 50 40

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1631 1.3081 1.5336 1.8515 1.1749 1.2982 1.5362 1.8613

CORR 0.8742 0.8397 0.7778 0.6424 0.8721 0.8424 0.7781 0.6376

Number of GRU unit 30 20

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1705 1.2947 1.5232 1.8696 1.1579 1.2878 1.5305 1.8500

CORR 0.8736 0.8465 0.7808 0.6332 0.8766 0.8472 0.7769 0.6478

Number of GRU unit 10 5

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1726 1.3231 1.5476 1.8719 1.2257 1.3294 1.5452 1.8792

CORR 0.8741 0.8357 0.7747 0.6375 0.8601 0.8372 0.7781 0.6397

Table 1: RMSE and CORR for the various number of RNN units

Table 1 was reproduced with controlled parameters: the Adam optimizer, 2000 number of

epochs which is the same number to the result from CNNRNN-res, the batch size of 32, and

the learning rate of 0.001. For all experiments conducted for this paper, the epoch refers to

the number of iterative computation for the entire set of data. For example, one epoch is when

the entire data is passed forward and backward through the model only once. In the table, the

horizon represents the time step of prediction. For example, the 1 value of horizon represents

the prediction horizons of 1 week which is the time step of the original data. Here, the varied
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parameter ’Number of GRU unit’ refers to the dimensionality or length of the hidden state of

the GRU cell. The evaluation resulted in consistent fair performance for every experiment, where

the best output gained from 20 number of GRU units. This value judges the capability of the

GRU cell capturing the structural and semantic features of the input data. Normally, a large

number of RNN unit make better output but if the number of units exceeds a certain number,

the model gets over complexed and the computational difficulty makes bad performance.

Batch Size 8 32

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1710 1.3044 1.5478 1.8426 1.1579 1.2887 1.5464 1.8500

CORR 0.8724 0.8395 0.7675 0.6486 0.8766 0.8472 0.7719 0.6478

Batch Size 64 128

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1824 1.3136 1.5457 1.8722 1.2569 1.3358 1.5933 1.9325

CORR 0.8703 0.8387 0.7737 0.6376 0.8545 0.8328 0.7593 0.6017

Table 2: RMSE and CORR for various number of batch size

With 20 number of GRU units and other controlled parameters, the batch size has been

varied. The result in table 2 shows that the batch size of 32 yields the best result. The batch size

refers to the total number of training samples in a single batch. For the mini-batch optimization,

the batch size is between 1 and the size of the training set. For example, training data with

320 sample has 10 batches for 32 sized batch. Since the epoch is 2000, there will be total

10× 2000 = 20000 steps of update(learning). When the batch size is large, the model will learn

many data at once and the training process will be faster. The computer memory capacity,

however, is limited, too large batch size may lead to poor learning performance.

Introduced in equation (7), the learning rate is the step size of learning between 0 and 1,

where 0 is no learning over the iteration and 1 is the perfect learning where the parameter should

be updated to the optimal from just single iteration. Normally, a large value of learning rate

leads to overshooting, which means the step is too big to find the detailed optimal. When the

learning rate is too small, it will take too much computation time to find the optimal and the

learning may fall into local minima. For this experiment, 0.001 value of the learning rate was

found to be the optimal hyperparameter.
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Learning Rate 1 0.1

Horizon 1 2 4 8 1 2 4 8

RMSE 1.3228 1.9403 2.0681 2.3946 1.1769 1.2908 1.5437 1.8309

CORR 0.8396 0.6879 0.5136 0.3835 0.8709 0.8427 0.7719 0.6541

Learning Rate 0.01 0.001

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1728 1.2948 1.5377 1.8518 1.1579 1.2878 1.5464 1.8500

CORR 0.8718 0.8435 0.7728 0.6449 0.8766 0.8472 0.7719 0.6478

Learning Rate 0.0001

Horizon 1 2 4 8

RMSE 1.2447 1.3281 1.6076 1.9494

CORR 0.8566 0.8364 0.7519 0.5970

Table 3: RMSE and CORR for various learning rate

As mentioned at the beginning of the model section, this paper used other kinds of optimizer

other than gradient descent as the gradient descent need to calculate loss function for each step,

leading to a huge amount of computational cost. Specifically, Adagrad, Adadelta and Adam were

used to evaluate the model. The Adagrad optimizer applies different learning rate to parameters

and Adadelta is the extension of Adagrad which corrected the vanishing step size problem. The

Adam is an incorporation of Adadelta and momentum, earning the advantage of both methods.

As many literatures reported, Adam has the best value followed by Adagrad, whereas Adadelta

shows poor performance. This may stem from local minima since the Adadelta optimizer cannot

escape the local minima.

The optimal output was then compared with the output from the CNNRNN-res model, as

shown in Table 5.

The optimal result from the experiment was compared with the result from another CN-

NRNN model which used the same data [2]. The CNNRNN-res is the only model that captured

both the spatial and temporal feature using Deep Learning in epidemiology. The CNNRNN-res

model was compared with various other statistical methods such as vector autoregression or

Gaussian process, and earned the best result. From the comparison, it is shown in the table

that the suggested GCNGRU model achieved better metric value for all range of horizon. Com-

paring the two models, GCNGRU showed 1.6%, 3.9%, 6.1%, 5.0% improvement in 1, 2, 4 and

8 predictions of horizon respectively for RMSE when considering the ILI activity level scale,

and showed 3.7%, 7.7%, 10.8%, 10.9% improvement for CORR respectively. Especially for long
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Optimizer Adam Adagrad

Horizon 1 2 4 8 1 2 4 8

RMSE 1.1579 1.2878 1.5464 1.8500 1.2815 1.5733 1.9036 2.1857

CORR 0.8766 0.8472 0.7719 0.6478 0.8487 0.7636 0.6217 0.4414

Optimizer Adadelta

Horizon 1 2 4 8

RMSE 6.2471 3.8066 4.2754 4.6189

CORR -0.3057 -0.2939 -0.7905 -0.6718

Table 4: RMSE and CORR for a various optimizer

US Region Horizon

Method Metiric 1 2 4 8

CNNRNN-res RMSE 1.3147 1.6783 2.1613 2.3465

CORR 0.8033 0.6942 0.5564 0.4298

GCNGRU RMSE 1.1579 1.2878 1.5464 1.8500

CORR 0.8766 0.8472 0.7719 0.6478

Table 5: CNNRNN-res vs GCNGRU

term prediction, the GCNGRU showed better performance overall. Figure 8 and 9 shows the

training graph in terms of RMSE and CORR change. Without a spike, the learning processed

well. Figure 10 depicts the visualisation of the prediction for the sample four states. For all 4

graphs, the prediction (red line) shows good accordance to the true (blue line)
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Figure 9: RMSE change for train and test

Figure 10: CORR change
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(a)

(b)

(c)

(d)

Figure 11: Prediction of 80 weeks for 4 example nodes.
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V Conclusion

In this paper, Deep Learning method for forecasting the epidemics has introduced. Though it is

a relatively new method, Deep Learning showed fair performance in epidemiological prediction

and developed by many researchers. As a challenging problem, a combination of GCN and

GRU model was applied to ILI activity level data. The evaluation showed consistent and good

performance throughout the experiment and better performance when compared to the existing

model. Many aspects of Deep Learning, however, is unknown and it is hard to certain that the

proposed model will show good performance on other epidemic data. For future research, the

same model should be applied to other kinds of disease and should be checked whether the model

shows consistently good result. Furthermore, this model can be developed by applying traffic

adjacency matrix rather than a neighbouring matrix. As the spread of disease is mainly due to

the contact, it is probable that traffic matrix can predict the spread of epidemics better than

the neighbouring matrix. Also, the model can be further developed by introducing directionality

to the graph. For example, the conveyance of livestock can be directional. Adjustment in the

hyperparameter also may improve the model.
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