105 research outputs found

    Machine learning model for clinical named entity recognition

    Get PDF
    To extract important concepts (named entities) from clinical notes, most widely used NLP task is named entity recognition (NER). It is found from the literature that several researchers have extensively used machine learning models for clinical NER.The most fundamental tasks among the medical data mining tasks are medical named entity recognition and normalization. Medical named entity recognition is different from general NER in various ways. Huge number of alternate spellings and synonyms create explosion of word vocabulary sizes. This reduces the medicine dictionary efficiency. Entities often consist of long sequences of tokens, making harder to detect boundaries exactly. The notes written by clinicians written notes are less structured and are in minimal grammatical form with cryptic short hand. Because of this, it poses challenges in named entity recognition. Generally, NER systems are either rule based or pattern based. The rules and patterns are not generalizable because of the diverse writing style of clinicians. The systems that use machine learning based approach to resolve these issues focus on choosing effective features for classifier building. In this work, machine learning based approach has been used to extract the clinical data in a required manne

    Integration of natural and deep artificial cognitive models in medical images: BERT-based NER and relation extraction for electronic medical records

    Get PDF
    IntroductionMedical images and signals are important data sources in the medical field, and they contain key information such as patients' physiology, pathology, and genetics. However, due to the complexity and diversity of medical images and signals, resulting in difficulties in medical knowledge acquisition and decision support.MethodsIn order to solve this problem, this paper proposes an end-to-end framework based on BERT for NER and RE tasks in electronic medical records. Our framework first integrates NER and RE tasks into a unified model, adopting an end-to-end processing manner, which removes the limitation and error propagation of multiple independent steps in traditional methods. Second, by pre-training and fine-tuning the BERT model on large-scale electronic medical record data, we enable the model to obtain rich semantic representation capabilities that adapt to the needs of medical fields and tasks. Finally, through multi-task learning, we enable the model to make full use of the correlation and complementarity between NER and RE tasks, and improve the generalization ability and effect of the model on different data sets.Results and discussionWe conduct experimental evaluation on four electronic medical record datasets, and the model significantly out performs other methods on different datasets in the NER task. In the RE task, the EMLB model also achieved advantages on different data sets, especially in the multi-task learning mode, its performance has been significantly improved, and the ETE and MTL modules performed well in terms of comprehensive precision and recall. Our research provides an innovative solution for medical image and signal data

    A Knowledge-enhanced Two-stage Generative Framework for Medical Dialogue Information Extraction

    Full text link
    This paper focuses on term-status pair extraction from medical dialogues (MD-TSPE), which is essential in diagnosis dialogue systems and the automatic scribe of electronic medical records (EMRs). In the past few years, works on MD-TSPE have attracted increasing research attention, especially after the remarkable progress made by generative methods. However, these generative methods output a whole sequence consisting of term-status pairs in one stage and ignore integrating prior knowledge, which demands a deeper understanding to model the relationship between terms and infer the status of each term. This paper presents a knowledge-enhanced two-stage generative framework (KTGF) to address the above challenges. Using task-specific prompts, we employ a single model to complete the MD-TSPE through two phases in a unified generative form: we generate all terms the first and then generate the status of each generated term. In this way, the relationship between terms can be learned more effectively from the sequence containing only terms in the first phase, and our designed knowledge-enhanced prompt in the second phase can leverage the category and status candidates of the generated term for status generation. Furthermore, our proposed special status "not mentioned" makes more terms available and enriches the training data in the second phase, which is critical in the low-resource setting. The experiments on the Chunyu and CMDD datasets show that the proposed method achieves superior results compared to the state-of-the-art models in the full training and low-resource settings.Comment: Published in Machine Intelligence Researc

    Using machine learning for automated de-identification and clinical coding of free text data in electronic medical records

    Full text link
    The widespread adoption of Electronic Medical Records (EMRs) in hospitals continues to increase the amount of patient data that are digitally stored. Although the primary use of the EMR is to support patient care by making all relevant information accessible, governments and health organisations are looking for ways to unleash the potential of these data for secondary purposes, including clinical research, disease surveillance and automation of healthcare processes and workflows. EMRs include large quantities of free text documents that contain valuable information. The greatest challenges in using the free text data in EMRs include the removal of personally identifiable information and the extraction of relevant information for specific tasks such as clinical coding. Machine learning-based automated approaches can potentially address these challenges. This thesis aims to explore and improve the performance of machine learning models for automated de-identification and clinical coding of free text data in EMRs, as captured in hospital discharge summaries, and facilitate the applications of these approaches in real-world use cases. It does so by 1) implementing an end-to-end de-identification framework using an ensemble of deep learning models; 2) developing a web-based system for de-identification of free text (DEFT) with an interactive learning loop; 3) proposing and implementing a hierarchical label-wise attention transformer model (HiLAT) for explainable International Classification of Diseases (ICD) coding; and 4) investigating the use of extreme multi-label long text transformer-based models for automated ICD coding. The key findings include: 1) An end-to-end framework using an ensemble of deep learning base-models achieved excellent performance on the de-identification task. 2) A new web-based de-identification software system (DEFT) can be readily and easily adopted by data custodians and researchers to perform de-identification of free text in EMRs. 3) A novel domain-specific transformer-based model (HiLAT) achieved state-of-the-art (SOTA) results for predicting ICD codes on a Medical Information Mart for Intensive Care (MIMIC-III) dataset comprising the discharge summaries (n=12,808) that are coded with at least one of the most 50 frequent diagnosis and procedure codes. In addition, the label-wise attention scores for the tokens in the discharge summary presented a potential explainability tool for checking the face validity of ICD code predictions. 4) An optimised transformer-based model, PLM-ICD, achieved the latest SOTA results for ICD coding on all the discharge summaries of the MIMIC-III dataset (n=59,652). The segmentation method, which split the long text consecutively into multiple small chunks, addressed the problem of applying transformer-based models to long text datasets. However, using transformer-based models on extremely large label sets needs further research. These findings demonstrate that the de-identification and clinical coding tasks can benefit from the application of machine learning approaches, present practical tools for implementing these approaches, and highlight priorities for further research

    Neural Representations of Concepts and Texts for Biomedical Information Retrieval

    Get PDF
    Information retrieval (IR) methods are an indispensable tool in the current landscape of exponentially increasing textual data, especially on the Web. A typical IR task involves fetching and ranking a set of documents (from a large corpus) in terms of relevance to a user\u27s query, which is often expressed as a short phrase. IR methods are the backbone of modern search engines where additional system-level aspects including fault tolerance, scale, user interfaces, and session maintenance are also addressed. In addition to fetching documents, modern search systems may also identify snippets within the documents that are potentially most relevant to the input query. Furthermore, current systems may also maintain preprocessed structured knowledge derived from textual data as so called knowledge graphs, so certain types of queries that are posed as questions can be parsed as such; a response can be an output of one or more named entities instead of a ranked list of documents (e.g., what diseases are associated with EGFR mutations? ). This refined setup is often termed as question answering (QA) in the IR and natural language processing (NLP) communities. In biomedicine and healthcare, specialized corpora are often at play including research articles by scientists, clinical notes generated by healthcare professionals, consumer forums for specific conditions (e.g., cancer survivors network), and clinical trial protocols (e.g., www.clinicaltrials.gov). Biomedical IR is specialized given the types of queries and the variations in the texts are different from that of general Web documents. For example, scientific articles are more formal with longer sentences but clinical notes tend to have less grammatical conformity and are rife with abbreviations. There is also a mismatch between the vocabulary of consumers and the lingo of domain experts and professionals. Queries are also different and can range from simple phrases (e.g., COVID-19 symptoms ) to more complex implicitly fielded queries (e.g., chemotherapy regimens for stage IV lung cancer patients with ALK mutations ). Hence, developing methods for different configurations (corpus, query type, user type) needs more deliberate attention in biomedical IR. Representations of documents and queries are at the core of IR methods and retrieval methodology involves coming up with these representations and matching queries with documents based on them. Traditional IR systems follow the approach of keyword based indexing of documents (the so called inverted index) and matching query phrases against the document index. It is not difficult to see that this keyword based matching ignores the semantics of texts (synonymy at the lexeme level and entailment at phrase/clause/sentence levels) and this has lead to dimensionality reduction methods such as latent semantic indexing that generally have scale-related concerns; such methods also do not address similarity at the sentence level. Since the resurgence of neural network methods in NLP, the IR field has also moved to incorporate advances in neural networks into current IR methods. This dissertation presents four specific methodological efforts toward improving biomedical IR. Neural methods always begin with dense embeddings for words and concepts to overcome the limitations of one-hot encoding in traditional NLP/IR. In the first effort, we present a new neural pre-training approach to jointly learn word and concept embeddings for downstream use in applications. In the second study, we present a joint neural model for two essential subtasks of information extraction (IE): named entity recognition (NER) and entity normalization (EN). Our method detects biomedical concept phrases in texts and links them to the corresponding semantic types and entity codes. These first two studies provide essential tools to model textual representations as compositions of both surface forms (lexical units) and high level concepts with potential downstream use in QA. In the third effort, we present a document reranking model that can help surface documents that are likely to contain answers (e.g, factoids, lists) to a question in a QA task. The model is essentially a sentence matching neural network that learns the relevance of a candidate answer sentence to the given question parametrized with a bilinear map. In the fourth effort, we present another document reranking approach that is tailored for precision medicine use-cases. It combines neural query-document matching and faceted text summarization. The main distinction of this effort from previous efforts is to pivot from a query manipulation setup to transforming candidate documents into pseudo-queries via neural text summarization. Overall, our contributions constitute nontrivial advances in biomedical IR using neural representations of concepts and texts

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Machine Learning for Biomedical Application

    Get PDF
    Biomedicine is a multidisciplinary branch of medical science that consists of many scientific disciplines, e.g., biology, biotechnology, bioinformatics, and genetics; moreover, it covers various medical specialties. In recent years, this field of science has developed rapidly. This means that a large amount of data has been generated, due to (among other reasons) the processing, analysis, and recognition of a wide range of biomedical signals and images obtained through increasingly advanced medical imaging devices. The analysis of these data requires the use of advanced IT methods, which include those related to the use of artificial intelligence, and in particular machine learning. It is a summary of the Special Issue “Machine Learning for Biomedical Application”, briefly outlining selected applications of machine learning in the processing, analysis, and recognition of biomedical data, mostly regarding biosignals and medical images
    corecore