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Introduction: Medical images and signals are important data sources in the

medical field, and they contain key information such as patients’ physiology,

pathology, and genetics. However, due to the complexity and diversity of medical

images and signals, resulting in di�culties in medical knowledge acquisition and

decision support.

Methods: In order to solve this problem, this paper proposes an end-to-end

framework based on BERT for NER and RE tasks in electronicmedical records. Our

framework first integrates NER and RE tasks into a unifiedmodel, adopting an end-

to-end processing manner, which removes the limitation and error propagation

of multiple independent steps in traditional methods. Second, by pre-training and

fine-tuning the BERT model on large-scale electronic medical record data, we

enable the model to obtain rich semantic representation capabilities that adapt

to the needs of medical fields and tasks. Finally, through multi-task learning,

we enable the model to make full use of the correlation and complementarity

between NER and RE tasks, and improve the generalization ability and e�ect of

the model on di�erent data sets.

Results and discussion: We conduct experimental evaluation on four electronic

medical record datasets, and the model significantly out performs other methods

on di�erent datasets in the NER task. In the RE task, the EMLBmodel also achieved

advantages on di�erent data sets, especially in the multi-task learning mode, its

performance has been significantly improved, and the ETE and MTL modules

performed well in terms of comprehensive precision and recall. Our research

provides an innovative solution for medical image and signal data.
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medical informatics, decision support system, deep artificial cognitive model, natural
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1. Introduction

Medical imaging and signal processing play an increasingly

crucial role as key data sources in the field of medicine. It contains

key information such as the patient’s physiology, pathology, and

genetics (Paredes-Orta et al., 2022). Through these data, medical

professionals can obtain patients’ physiological information,

pathological features, and genetic background, enabling more

accurate diagnoses and personalized treatment plans. However, due

to the complexity and diversity of medical images and signals,

traditional processing methods often struggle to fully unleash the

potential of the data, limiting the acquisition of medical knowledge

and decision support (Remeseiro and Bolon-Canedo, 2019).

To address this challenge, this paper aims to explore the

integration of natural and artificial cognitive systems in medical

imaging and signal processing, with a particular focus on

applications in medical imaging. Specifically, we will concentrate

on electronic medical records (EMRs), an essential form of

medical data (Chang et al., 2009). An electronic medical

record (EMR) is a digital record of a patient’s medical history,

including medical records, text, symbols, charts, images, and data,

generated during medical activities (Gallegos-Duarte et al., 2020).

It replaces traditional paper-based records, storing, managing,

transmitting, and reproducing patient medical information in

electronic form (Sanchez-Reyes et al., 2020). EMRs typically

contain various medical data, such as patient personal information,

disease diagnoses, treatment plans, medical orders, medication

prescriptions, and results of auxiliary examinations. When NER

tasks involve the medical field, they can be roughly divided

into disease and symptom recognition, drug entity recognition,

medical code and term recognition, etc. The application of these

specific NER tasks can enable doctors, researchers, and public

health officials to better understand and analyze medicine text

data (Wu et al., 2020). Additionally, EMRs serve as a primary

corpus for NER, providing crucial data support for applications

such as medical decision-making, medical information retrieval,

and medical intelligent question-answering. However, the text

format of EMRs is often semi-structured or even unstructured

(Huang et al., 2021), and it involves numerous medical terms

and specialized expressions, posing significant challenges for

traditional text processing methods in effectively handling and

mining information from EMRs. To overcome these challenges

and bring greater value to the medical field, the application of

Natural Language Processing (NLP) technology in EMRs has

gained significant research attention (Savova et al., 2019).

NER is an NLP technique used to identify entities with

specific meanings from text, such as names of people, locations,

organizations, dates, times, drugs, etc. In the field of electronic

medical records, the goal of NER is to recognize medically relevant

entities from structurally diverse EMRs and classify them into

predefined categories, such as diseases, symptoms, diagnoses,

examinations, and other medical entity types. Through NER,

healthcare professionals can efficiently extract critical information

from electronic medical records, assist clinical decision-making,

and provide more personalized medical services. In addition

to NER, when it comes to Relation Extraction (RE) tasks in

natural language processing, our objective is to identify semantic

relationships between entities in the text (Fu et al., 2019). These

entities can be specific objects represented in the text, such

as individuals, locations, organizations, drugs, diseases, etc. The

purpose of RE is to extract associations between these entities from

the text, such as “X treats Y,” “X belongs to Y,” “X is located in Y,” and

other relationships. In the medical domain, RE becomes especially

crucial to overcome the challenges posed by the complex medical

terminologies and specialized expressions commonly found in

medical texts.

In recent years, with the widespread application and digital

transformation of electronic medical records, NER in electronic

medical records has become a highly researched and focused

area. This is also attributed to the organization of evaluation

competitions, which provide scholars with a platform to exchange

and showcase their research achievements. The emergence of

these competitions has sparked in-depth research and exploration

of NER in electronic medical records by numerous scholars

from both domestic and international communities. Through

the summarization and synthesis of NER methods in electronic

medical records, researchers have compared and evaluated different

approaches and technologies, providing essential references and

guidance for the advancement of this field (Alfonso-Francia et al.,

2022). Among them, Li et al. (2019) summarized the methods

based on dictionaries, rules, and machine learning for NER,

entity attribute recognition, and entity RE in electronic medical

records. Lin et al. (2019), starting from the effectiveness and

performance of models, analyzed the current status and challenges

of clinical electronic medical record information extraction.

Meanwhile, Solares et al. (2020) approached from the perspective

of model architectures, presenting an overview and analysis of

the strengths and weaknesses of each model type. These research

findings and syntheses have not only provided scholars with

a clearer understanding of NER in electronic medical records

but also propelled the development and innovation in this field.

Through the collective efforts of scholars from both domestic and

international communities, the techniques and methods for NER

in electronic medical records have continuously improved and

advanced, providing robust support and assurance for the mining

and utilization of medical information.

However, this approach has limited coverage and relies on

manually constructed rules and dictionaries, making it challenging

to adapt to newly emerging terms and diverse expressions in

electronic medical records. Machine learning-based methods, on

the other hand, train models to learn entity features, enabling

automatic recognition of new entities and diverse expressions.

In this study, due to the excellent performance of BERT

pre-trained language model on NER tasks, we adopted an end-

to-end framework based on the BERT model, integrating NER

and RE tasks into a unified model, avoiding the limitations

and error propagation of traditional methods with multiple

independent steps.

We also consider the instability of the model training process.

Datta et al. (2023) found that DNNs have query prediction

instability when performing natural language understanding

(NLU) tasks, and proposed a data-centric approach to exploit

local stability The method of linear estimation reduces the

computational cost and improves the stability of the model.

Frontiers inNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1266771
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnins.2023.1266771

Hidey et al. (2022) found that when retraining the model, using

different random seed initializations can lead to model loss and

jitter problems, and reduce the number of users by introducing

consistency indicators and distillation between predictions in

multiple retrainings drain.

After comprehensive consideration, we used the BERT model

as the basis for pre-training and pre-trained it on large-

scale electronic medical record data to obtain rich semantic

representations. Subsequently, we fine-tuned the BERT model to

improve the stability of the model, and further trained it on

specific NER and RE tasks to adapt to the specific requirements

and tasks in the field of electronic medical records. In this

process, we employed multitask learning, sharing the underlying

representations of the BERT model, enabling the model to

leverage the correlations and shared knowledge between different

tasks, thereby improving the model’s generalization ability and

effectiveness. The experimental results demonstrate that our

proposed EMLB (End-to-End Multitask Learning BERT) model

achieved significant and consistent improvements compared to

other baseline models.

Our research work holds significant practical implications for

the automation of electronic medical record (EMR) processing

(Chelladurai and Pandian, 2022). It can assist medical personnel

in rapidly extracting critical information from EMRs, aiding

in clinical decision-making and providing more personalized

and high-quality medical services. Additionally, it can enhance

convenience and safety for patients during medical examinations

and treatments. Moreover, our approach provides robust support

for the field of medical imaging and signal processing by extracting

connections between patients and diseases or treatments from

EMRs, offering vital references for the analysis and utilization

of medical image and signal data. The integration of natural

and artificial cognitive systems in medical imaging and signal

processing holds great importance for the acquisition of medical

knowledge and decision support. Particularly, in the context of

EMR processing and mining, the application of NLP technology

provides essential data support for medical intelligent question-

answering, information retrieval, and other applications. Through

this research, we hope to drive advancements in medical

informatics (Tian et al., 2019) and make positive contributions to

the development of the medical field.

The contributions of this paper can be summarized in the

following three aspects:

1. This paper uses the BERTmodel as the main word embedding

representation method, and applies the MC-BERT (Medical

Transformer-based bidirectional encoding representation)

pre-training model in the electronic medical record text.

By using the BERT model, it is possible to obtain rich

semantic representation capabilities and improve the

recognition accuracy of named entities in electronic medical

record texts.

2. This paper proposes an end-to-end framework to integrate

the electronic medical record NER and RE tasks into

a unified model. Traditional methods often employ

multiple independent steps, limiting the performance

and effectiveness of the model. Adopting an end-to-

end framework can avoid these limitations and error

propagation, and improve the performance of the

overall system.

3. This paper adopts the idea of multi-task learning, by

sharing the underlying representation of the BERT model,

and fine-tuning on specific NER and relationship extraction

tasks at the same time. This method can make full use

of the correlation and shared knowledge between different

tasks, and improve the generalization ability and effect of

the model.

The logical structure of this paper is as follows: In Section 2,

the related work is reviewed, focusing on the research progress in

information extraction from electronic medical records. In Section

3, our methods are presented in detail, including the introduction

of the BERT model, the end-to-end framework, and the concept

of multi-task learning, along with its specific implementation.

The experimental section, Section 4, provides a comprehensive

overview of the experimental settings, encompassing the datasets,

evaluation metrics, and comparative methods used. Additionally,

it compares the experimental results obtained from different

approaches. In Section 5, the discussion section, we analyze the

advantages of our model, while also pointing out limitations and

proposing future improvements. Lastly, Section 6, the conclusion,

summarizes the contributions and significance of the paper, and

also outlines potential directions for future research and related

work.

2. Related work

With the advancement of medical information technology, a

vast amount of medical images and their corresponding electronic

medical record (EMR) texts are being generated. Extracting

valuable clinical information from this multimodal medical data

has become a crucial focus inmedical artificial intelligence research.

In this section, we will review related works and explore the

latest progress in the integration of natural and artificial cognitive

systems in medical image and signal processing.

In previous research, methods based on rules, statistical

machine learning, and deep learning have achieved certain

accomplishments. However, when faced with unstructured EMR

texts, these methods still encounter challenges, such as word

sense disambiguation, entity boundary recognition, and entity

relationship extraction. In a medical research article written

by Dr. Xue, there is such a sentence “Our’s study revealed a

strong link between diabetes and cardiovascular complications.”

Extracting the relationship between “diabetes” and “cardiovascular

complications” is an entity relationship extraction task. These

relationships are often complex and require understanding the

context and semantics of the text (Xue et al., 2019). Zhang’s article

mentions that in the patient’s EMR, the sentence “patient heart

attack” needs to be parsed to extract the medical condition “heart

attack” and the context of the patient. Processing unstructured

EMR text requires models to understand medical terminology,

context, and relationships, which can be complex due to variations

in wording and grammar (Zhang et al., 2019).

Among the various techniques for NER, four main approaches

are prominent: (1) rule-based methods, (2) dictionary-based
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methods, (3) machine learning-based methods, and (4) deep

learning-based methods. In the study of RE, “relation” refers to the

semantic association between two entities present in the text. The

goal of RE is to extract and classify the relationships between these

entities, providing more comprehensive information for medical

information processing and aiding healthcare professionals

in better understanding the connections and interactions

between entities.

In recent years, deep learning based methods have achieved

remarkable results in RE. Especially methods based on pre-trained

models, such as BERT, have made important breakthroughs in RE

tasks in the medical field by learning rich semantic information.

Researchers can use pre-trained models such as BERT to extract

the relationship features between entities, so as to achieve more

accurate and efficient relationship extraction.

The standard BERT model, fundamentally built upon the

Transformer architecture, leverages bidirectional contextual

information during its training to encapsulate a broader

context. Its primary pre-training objective involves learning

the representation of each position in a sentence via masked

language modeling (MLM) (Wang and Cho, 2019). This approach

facilitates the model’s comprehension of word interrelationships.

While architectures akin to standard BERT predominantly assign

weights based on the significance of each position in the input

sequence, introducing context during sequence processing,

their purposes vary. Although both the standard attention

module and BERT incorporate attention mechanisms, they serve

different ends. The former focuses on sequence processing tasks,

whereas BERT seeks to master universal language representations

through pre-training, which can later be fine-tuned for diverse

downstream tasks.

Feature engineering plays a crucial role in both electronic

medical record NER and RE, as extracting rich and effective

features can significantly enhance model performance. Due to

the specific nature of electronic medical records, the design of

feature engineering often relies on the characteristics inherent

to these records. Additionally, RE tasks require attention to the

contextual information between entities to better understand their

associations. Electronic medical records, being vital textual data in

the medical field, exhibit several prominent characteristics. Firstly,

they contain abundant medical terminologies and specialized

vocabulary, such as diseases, symptoms, and medications. These

terms and vocabulary are crucial for entity recognition. Secondly,

the textual structure of electronic medical records typically

includes sections like medical record titles, summaries, diagnoses,

treatments, etc., which can be utilized to assist entity recognition

tasks. Furthermore, electronic medical records often include entity

information such as time, location, and names, which also need

to be accurately recognized and classified. One common method

of feature engineering is rule-based, as seen in Cui et al. (2019),

where a large-scale regular expression is constructed to establish

medical rules for identifying named entities like drugs and dosages

in clinical records. Another frequently used approach is based

on dictionaries. Researchers build medical dictionaries and term

lists to match predefined entity terms with the electronic medical

record text. Through this matching process, known entities can

be effectively identified, thus improving recognition accuracy. For

instance, Ji et al. (2019) proposed a dictionary-based NER method

for electronic health records.

In the early research of electronic medical record NER,

traditional machine learning methods were relied upon, and some

notable research achievements were obtained. For example, Souza

et al. (2019) combined conditional random field (CRF) models

with part-of-speech tagging and other handcrafted features to

achieve good performance in disease NER. This work demonstrated

that the CRF model can effectively integrate textual feature

information, significantly improving the performance of medical

text entity recognition based on traditional machine learning

methods. However, this CRF method that heavily relies on manual

feature engineering also faces the limitation of requiring a large

amount of annotated training data. With the rise of deep learning,

feature engineering methods based on deep learning have also

received widespread attention. Among them, methods based on

pre-trained models have become a research hotspot. BERT, as a

commonly used pre-trained model, has achieved significant results

in electronic medical record NER. Researchers can utilize the BERT

model to extract features at the character, word, and sentence

levels, capturing rich semantic information. For instance, Roy and

Pan (2021) described in the article that the BERT model was

used to implement medical entity RE and achieved state-of-the-

art results on medical relation datasets. This shows that utilizing

BERT pre-training can produce better results than traditional

feature engineering methods. Ji et al. (2020) pointed out that

the combination of LSTM-CRF network with symptom-based

character-level features improves the recognition performance of

medical terms. Additionally, Lee et al. (2019) pointed out that the

BERT + Bi-LSTM +Attention fusion model was proposed, utilizing

BERT-transformed medical text as feature representations and

employing Bi-LSTM and attention layers to accomplish medical

record text extraction and classification tasks.

In medical NER research, model fusion methods remain

mainstream and are often combined with manual rules. Common

model fusion strategies include:

(1) Stacking: Abstracting the medical NER task into several

consecutive sub-steps and employing different model

methods for each sub-step to improve overall recognition

accuracy. For instance, in Dai et al. (2019), CRF was replaced

with BiLSTM at the end of the SoftMax layer, and the

two were combined to fully learn the information between

annotations, resulting in improved model performance.

(2) Voting: Voting on the prediction results of different models

and filtering high-confidence results by setting thresholds.

This method can effectively filter false-positive results

and enhance the confidence of prediction outcomes. For

example, in Gao et al. (2021), a dual-threshold voting

approach was utilized, where a high threshold was set to

obtain high-confidence results, and the resulting vocabulary

guided the low-threshold voting process to improve model

performance.

(3) Hybrid: Hybrid fusion includes method fusion and model

fusion. Method fusion combines machine learning methods

with rule-based methods to correct model prediction results

and practical biases. Model fusion, on the other hand,
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improves accuracy by combining the prediction results

of multiple models. For example, in Almeida and Xexéo

(2019), a fusion of models based on character features and

word features was employed, leading to enhanced model

performance. In Nagrani et al. (2021), three fusion models

were quadratically combined, and rules and dictionaries

were integrated into the model, significantly improving the

final recognition of medical named entities.

Combining the integration of natural and deep artificial

cognitive models in medical image and signal processing, especially

the BERT-based method for NER and relationship extraction in

electronic medical records, the extracted text entities will be used

as prior knowledge of medical images to guide visual models

such as image segmentation and classification to better process

medical images. The ultimate goal is to realize the integration

of natural language processing and computer vision technology,

build a medical artificial intelligence system that imitates the

human cognitive process, and improve the ability of comprehensive

analysis and understanding of medical record images. By making

full use of the advantages of natural and artificial cognitive systems,

we are expected to achievemore accurate, efficient and personalized

medical data processing and decision support, and make positive

contributions to the improvement of patients’ health and medical

system.

3. Methodology

Our approach is based on the BERT model for NER and

RE tasks in electronic medical records. First, we employ an end-

to-end framework, directly starting from raw input data. The

BERT model combines components such as self-attention, feed-

forward neural networks, and layer normalization to achieve

deep representation learning from input data. Then, a multi-

task learning strategy is adopted to combine NER and RE

tasks to share model representation capabilities and improve

comprehensive performance. Next, task-specific layers are added

for the two tasks, predicting entity and relation categories

through linear transformation and non-linear activation. During

training, we simultaneously optimize the loss functions for both

tasks to minimize error. With this approach, we are able to

simultaneously achieve efficient and accurate NER and RE in

electronic medical records.

3.1. BERT model

The BERT model is a two-way autoencoder model based on

the Transformer encoder structure (Acheampong et al., 2021).

It is stacked by L-layer Transformer encoders. Each layer of

Transformer encoders consists of a multi-head self-attention

(sublayer and a feedforward neural network sublayer composition,

there are residual connections and layer normalization between the

two sub-layers). The input of the BERT model is a matrix of shape

(n, d) where n is the length of the input sequence and d is the

embedding dimension. The BERT model The output is a matrix of

shape (n, h), where h is the size of the hidden layer. The parameter

amount of the BERT model is O(Lnh2 + Lnhd), where L is the

number of layers, n is the sequence length, and h is the size of the

hidden layer. d is the embedding dimension. As shown in Figure 1.

We take the l-th layer Transformer encoder as an example,

given the input matrix X(l) ∈ Rn×h, where n is the sequence length,

h is the size of the hidden layer, the output matrix Y(l) ∈ of the l-th

layer Transformer encoder Rn×h can be expressed as:

Y l = FFN(LN(Xl +MHA(Xl
1, ...,X

l
N))) (1)

Among them, FFN represents the feed-forward neural network

sublayer, LN represents the layer normalization operation, and

MHA represents the multi-head self-attention sublayer. Below we

introduce the specific formulas of these three operations.

• Feedforward neural network sublayer: The feedforward

neural network sublayer is a two-layer fully connected network that

performs a non-linear transformation on each row in the input

matrix (Vucetic et al., 2022). Given an input matrix Z ∈ Rn×h,

the output matrix W ∈ Rn×h of the feedforward neural network

sublayer can be expressed as:

W = ReLU(Z ∈ Rn×h)W1 + b1 (2)

where ReLU represents the linear rectification unit activation

function, W1 ∈ Rh×d is a learnable weight matrice, b1 ∈ Rd

is a learnable bias vector, d is the size of the middle layer of the

feedforward neural network sublayer.

• Layer normalization operation: Layer normalization

operation is a method of normalizing each row in the input matrix,

which can improve the convergence speed and generalization

ability of the model (Shi et al., 2022). Given an input matrix

Z ∈ Rn×h, the output matrix U ∈ Rn×h of the layer normalization

operation can be expressed as:

U = G⊙
Z −mean(Z)
√
var(Z)+ ǫ

+ B (3)

where ⊙ represents the Hadamard product (element-wise

multiplication), mean(Z) ∈ Rh and var(Z) ∈ Rh represent the

mean and variance of each column of the input matrix, respectively,

and ∈ is a small positive number used to prevent division With

zero error, G ∈ Rh and B ∈ Rh are two learnable scaling and

translation vectors.

• Multi-head self-attention sublayer: The multi-head self-

attention sublayer is a method that uses the self-attention

mechanism to capture the dependencies between different

positions in the input sequence, which can simultaneously consider

the bidirectional contextual information (Wu et al., 2019). As

shown in Figure 2.

Given an input matrix Z ∈ Rn×h, the output matrix V ∈ Rn×h

of the multi-head self-attention sublayer can be expressed as:

V = Concat(head1, head2, . . . , headm)W0 (4)

where Concat represents the concatenation operation, m is the

number of heads in the multi-head self-attention sublayer, headi
represents the output matrix of the i-th self-attention head, and
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FIGURE 1

BERT model framework. (A) Pre-training: features encoding. (B) Re-training: prediction. (C) Attention weights analysis.

W0 ∈ Rh×h is a learnable weight matrix. The output matrix headi
of each self-attention head can be expressed as:

headi = Attention(ZW
(i)
Q , ZW

(i)
K , ZW

(i)
V ) (5)

Where Attention represents the scaled dot-product attention

function,W
(i)
Q ∈ Rh×dk ,W

(i)
K ∈ Rh×dk and W

(i)
V ∈ Rh×dk is Three

learnable weight matrices, dk and dv are the dimensions of the key

and value of each self-attention head, respectively. The scaled dot

product attention function can be expressed as:

Attention(Q,K,V) = Softmax(
QKT

√

dk
)V (6)

Among them, Softmax represents the softmax function, which

can normalize each row of the input matrix into a probability

distribution,Q ∈ Rn×dk , K ∈ Rn×dk and V ∈ Rn×dv respectively,

represent query, key and the value matrix, dk and dv represent

the dimensions of the key and value, respectively. The role of the

zoom dot product attention function is to calculate the weighted

sum of the value according to the similarity between the query and

the key, where the scaling factor 1√
dk

is to prevent the gradient of

the softmax function from disappearing due to the excessive dot

product result.

3.2. End-to-end framework

In BERT-based NER and RE for electronic medical records, an

end-to-end framework is adopted, which can directly process from

raw input to final output without explicit feature engineering or

human-designed rules. As shown in Figure 3.

It consists of two main parts: entity labeling part and relation

classification part (Feng et al., 2019).

• Entity labeling part: The entity labeling part is responsible

for identifying different types of entities, such as diseases, drugs,

and inspections, from electronic medical record texts. We employ

a CRF based sequence annotation method that can leverage
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FIGURE 2

Multi-head attention framework.

contextual information and constraints between labels to improve

entity recognition accuracy. Given the output matrix Y(L) ∈ Rn×c

of the pre-training layer, the output of the entity labeling part is a

matrix P ∈ Rn×c of shape (n, c), where c is the number of entity

categories. The output matrix P of the entity labeling part can be

expressed as:

P = CRF(Y(L)WE + bE) (7)

Where CRF represents the conditional random field layer,

WE ∈ Rh×c and bE ∈ Rc are two learnable weight matrices

and bias vectors. The function of the conditional random field

layer is to calculate the probability of each category at each

position according to the input sequence and the transition

matrix, and find the optimal label sequence through the

Viterbi Algorithm.

• Relation classification part: The relation classification part

is responsible for extracting different types of relations from

electronic medical record texts, such as drug-dose, examination-

result, etc. We employ a bilinear attention-based approach for

relation classification, which can leverage both semantic similarity

and syntactic dependencies between entity pairs to improve the

accuracy of RE. Given the output matrix Y(L) ∈ Rn×h of the

pre-training layer and the output matrix P ∈ Rn×c of the entity

labeling part, the output of the relation classification part is a

matrix Q ∈ R
m×r of shape (m, r), where m is the number

of entity pairs and r is the number of relationship categories.

The output matrix Q of the relation classification part can be
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FIGURE 3

End-to-end framework.

expressed as:

Q = BA(Gather(Y(L), P))WR + bR (8)

Among them, BAmeans bilinear attention layer, Gather means

to collect the vector corresponding to the position of the entity in

the output of the pre-training layer according to the entity label,

WR ∈ R2h×r and bR ∈ Rr are two learnable weight matrices and

bias vectors. The role of the bilinear attention layer is to calculate

the probability of each category on each entity pair according to

the bilinear similarity between entity pairs, and find the optimal

relationship category through a threshold or greedy algorithm.

3.3. The idea of multi-task learning

In the BERT-based NER and relationship extraction tasks

of electronic medical records, the idea of multi-task learning is

adopted. This idea can train multiple related tasks at the same

time and share the representation ability of the model, thereby

improving the performance and generalization ability of the model.

As shown in Figure 4.

Multi-task learning can process multiple tasks simultaneously

in the same model, bundle different tasks together for training, and

share the underlying feature extraction process (Du et al., 2020).

This sharing can enable the model to transfer the knowledge and

features learned from one task to other tasks, thereby improving

the overall performance.

In multi-task learning, we use the shared BERT model as the

base model, and then add two separate task-specific layers on top

of the model for NER and RE, respectively.

• NER layer: For the NER task, we add a NER layer on

top of the BERT model, which consists of a fully connected

layer and a softmax classifier. The fully connected layer performs

linear transformation on the output of BERT, and performs non-

linear mapping through the activation function, and then uses the

softmax classifier to predict the entity category.

NER(Q) = softmax(Wner · Q+ bner) (9)

Among them, NER(Q) represents the prediction result of NER,

hQ is the output vector of the BERT model, Wner and bner are the

parameters of the NER layer.

• RE Layer: For the RE task, we add a RE layer on top of the

BERT model, which also consists of a fully connected layer and

a softmax classifier. The fully connected layer linearly transforms

the output of BERT, and performs non-linear mapping through the

activation function, and then uses the softmax classifier to predict

the relationship category.

RE(P) = softmax(Wre · hP + bre) (10)

Among them, RE(P) represents the prediction result of, hP is

the output vector of BERT model, Wre and bre are the parameters

of layer. During training, we can jointly train the model by

minimizing the loss function for both tasks:

Loss = Lossner+ Lossre (11)

Among them, Lossnerrepresents the loss function of the NER

task, and Lossre represents the loss function of the task. By
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FIGURE 4

Multi-task learning framework.

optimizing this multi-task loss function, we can train two tasks

simultaneously and enable the model to achieve good performance

on NER and tasks.

In order to show the implementation process of the algorithm

in this paper more clearly, we provide the pseudocode Algorithm 1,

which includes the input parameters of the algorithm, variable

definitions, flow control statements, and output results.

4. Experiment

The experimental process of this paper is shown in Figure 5.

4.1. Experimental environment

• Hardware environment

Our experiments are done on a GPU server with Intel

Xeon E5-2690 v4 @ 2.60 GHz CPU, equipped with 512 GB

RAM and 8 Nvidia Tesla P100 16 GB GPUs.

• Software environment

In this study, we used Python and PyTorch to implement

BERT-based NER and relationship extraction in electronic

medical records under an end-to-end framework. We used

the PyTorch-Transformers library, pre-trainedmodel weights,

using scripts and transformation tools. We use the BERT

model in this library as the basis for pre-training, and obtain

rich semantic representation capabilities by pre-training large-

scale electronic medical record data.

4.2. Experimental data

• n2c2 2018 dataset

This data set is a data set of a clinical natural language

processing challenge organized by the n2c2 project of Harvard

Medical School. It contains 296 electronic medical records

from the Mayo Clinic in the United States, covering entity

types such as drugs, doses, indications, and adverse reactions,

as well as relationship types such as drug-dose, drug-

indication, and drug-adverse reactions. This dataset is divided

into two subtasks: subtask 1 is to extract patient cohorts

meeting the inclusion and exclusion criteria of clinical trials

from electronic medical records; subtask 2 is to extract drug-

related entities and relationships from electronic medical

records. This dataset can be used to evaluate the performance

of clinical text mining systems in entity recognition and, as

well as its application value in clinical trial cohort selection.

• MIMIC-III dataset

This dataset is a large-scale, diverse, and public critical care

database jointly developed by MIT and Beth Israel Deaconess

Medical Center. It contains more than 60,000 medical records
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Input : Datasets: “n2c2 2018”, “MIMIC-III”,

“Clinical tempeval”, “ShARe/CLEF”

Output: Trained MTL-BERT model

Initialize MTL-BERT model;

Initialize optimizer and learning rate;

Initialize loss functions: MTL loss, Attention

loss, Cross-attention loss;

Initialize evaluation metrics: Recall, mDice,

Precision;

while not converged do

for each dataset do

Load data from dataset;

Preprocess input data;

for each batch do

Forward pass through MTL-BERT model;

Calculate MTL loss using predicted and

target labels;

Calculate attention loss using attention

maps;

Calculate cross-attention loss using

cross-attention maps;

Calculate total loss as weighted sum of

MTL, attention, and cross-attention

losses;

Backpropagate gradients and update model

parameters;

end

Calculate evaluation metrics: Recall,

mDice, Precision;

end

Update learning rate;

end

Algorithm 1. MTL-BERT training.

from more than 40,000 patients, covering information such as

vital signs, medication, laboratory tests, doctor’s observations

and records, fluid balance, surgical codes, diagnostic codes,

imaging reports, length of hospital stay, and survival data. This

dataset can be used to support various clinical text mining

applications such as academic and industrial research, quality

improvement programs, higher education courses, etc.

• Clinical tempeval dataset

This dataset is a dataset of clinical NLP tasks organized by

SemEval. It contains 300 de-identified clinical notes selected

from the MIMIC-II database, covering clinical events (such

as symptoms, diagnosis, treatment, etc.), temporal expressions

(such as date, duration, etc.), and the relationship between

events and time (such as inclusion, overlap, etc.). This dataset

can be used to evaluate the performance of clinical text

mining systems in temporal information processing and its

application value in constructing clinical timelines.

• ShARe/CLEF dataset

This dataset is used by the CLEF eHealth information

extraction sharing task. It contains 299 de-identified clinical

notes selected from the MIMIC-II database, covering death

certificate medical concepts (such as anatomical sites, diseases

and injuries, etc.) and other annotations. This dataset can

be used to evaluate the performance of clinical text mining

systems in medical concept recognition and its application

value in cause of death analysis.

4.3. Evaluation index

In order to evaluate the performance of the NER system, we

usually use the following three indicators: precision rate, recall rate

and F1 value (Kim et al., 2019). Below are the definitions and

formulas for these three metrics, as well as what they mean and

what they do.

• Precision: The precision is the ratio of the number of entities

correctly recognized as a certain entity category to the total

number of recognized entities of that category from the

recognition results. It reflects the ability of the model to

correctly predict positive samples (i.e., real entities). The

higher the accuracy rate, the less likely the model is to

generate false positives (i.e., identify non-entities as entities).

The formula for accuracy is:

Precision =
TP

TP + FP
(12)

Among them, TP stands for True Positive (True Positive),

that is, the number of correctly identified entities; FP stands

for False Positive (False Positive), that is, the number of

non-entities incorrectly recognized.

• Recall rate (Recall): The recall rate is the ratio of the number

of entities of a certain category correctly identified by the

model to the total number of entities of the category (including

missed labels). It reflects the ability of the model to find all

positive samples. The higher the recall rate, the less likely it is

for the model to miss real entities. The formula for the recall

rate is:

Recall =
TP

TP + FN
(13)

Among them, FN represents False Negative (False

Negative), that is, the number of real entities that are missed.

• F1 value (F1-score): F1 value is the harmonic mean

of precision and recall. It comprehensively reflects the

performance of the model in terms of precision and recall. The

higher the F1 value, the better the model can balance precision

and recall, avoiding biasing toward one aspect at the expense

of the other. The formula for the F1 value is:

F1 =
2× Precision× Recall

Precision+ Recall
(14)

Together, these three metrics evaluate the classification

accuracy and completeness of the model. A high accuracy rate

indicates that the model has a low misjudgment rate for samples

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1266771
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnins.2023.1266771

FIGURE 5

Experiment flow chart.

predicted as positive examples, and a high recall rate indicates that

the model can capture more positive examples. F1-Score combines

these two indicators to provide a balanced evaluation index for

comprehensively evaluating the performance of the model.

4.4. Experimental comparison and analysis

In order to comprehensively evaluate the effectiveness of the

proposedmethod, we conducted evaluations on two tasks: NER and

RE. TheNER task aims to identify entity categories in the text, while

the RE task involves extracting relationships between entities. Both

of these tasks are of great significance for deep parsing of Electronic

Medical Records (EMRs).

For the experiments, we used publicly available EMR

datasets, namely n2c2 2018, MIMIC-III, Clinical tempeval, and

ShARe/CLEF. We divide the dataset into 80% training set and 20%

test set according to the 80-20 division rule. These datasets were

professionally annotated with entity labels and entity relations. We

constructed end-to-end NER and RE tasks based on these datasets

and trained and tested our proposed EMLB model.

Specifically, the NER task involves classifying entities in the

text, for example, labeling “heart disease” as a “disease” type. The

RE task, on the other hand, requires determining the relationship

between two entities, for example, “amoxicillin—causes—rash”

represents a “drug-side effect” relationship.

Under the same experimental settings, we compared the

performance of our EMLB model with the methods proposed by

Nasar et al. (2021), Fabregat et al. (2023), Govindarajan et al.

(2023), Ke et al. (2023), Laursen et al. (2023), Tang et al. (2023).

After conducting multiple independent experiments, we used the

average F1 score as the evaluation metric. F1 score combines

precision and recall, so it can more comprehensively measure the

performance of the model. The experimental results demonstrate

that our EMLB method outperforms other comparison methods

in both tasks, achieving the best performance. Below, we provide

a detailed description of the experimental results for both the NER

and tasks.

From the results in Table 1, it is evident that our proposed

EMLB model outperforms other baseline models in terms of

precision, recall, and F1 score for the NER task on the n2c2 2018

and MIMIC_III datasets. Specifically, in the tests on the n2c2 2018

dataset, the EMLB model achieved a precision of 94.33%, a recall

of 93.57%, and an F1 score of 93.95%. These metrics surpassed the

performance of other models and experiments by Fabregat et al.,

Nasar et al., and others. The EMLB model’s F1 score improved by

2.62 percentage points compared to Fabregat et al.’s experimental

method and 15 percentage points compared to Nasar et al.’s

experimental results. On the MIMIC-III dataset, the EMLB model

achieved precision, recall, and F1 score of 91.61, 91.07, and 91.34%,

respectively, which also outperformed the comparison models,

demonstrating better identification performance and validating the

effectiveness of EMLB in the domain of medical NER.
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TABLE 1 Comprehensive evaluation based on precision, recall, and F1 score: di�erent approaches on the n2c2 2018 and MIMIC-III datasets for NER

tasks.

Method

Dataset (for NER tasks)

n2c2 2018 (Henry et al., 2020) MIMIC-III (Wang et al., 2020)

Precision/% Recall/% F1-score/% Precision/% Recall/% F1-score/%

Fabregat et al. (2023) 88.32 90.17 91.33 83.98 84.81 84.39

Nasar et al. (2021) 79.78 78.13 78.95 89.82 87.22 88.50

Laursen et al. (2023) 85.86 86.69 86.27 75.47 77.34 76.39

Govindarajan et al. (2023) 82.69 81.97 82.24 87.18 87.81 87.49

Tang et al. (2023) 89.88 89.41 89.64 80.12 81.38 80.75

Ke et al. (2023) 91.16 90.08 90.62 85.36 87.59 86.46

Ours 94.33 93.57 93.95 91.61 91.07 91.34

TABLE 2 Comprehensive evaluation based on precision, recall, and F1 score: di�erent approaches on the n2c2 2018 and MIMIC-III datasets for RE tasks.

Method

Dataset (for RE tasks)

n2c2 2018 (Henry et al., 2020) MIMIC-III (Wang et al., 2020)

Precision/% Recall/% F1-score/% Precision/% Recall/% F1-score/%

Fabregat et al. (2023) 84.23 85.54 84.88 91.32 88.95 90.12

Nasar et al. (2021) 81.88 82.46 82.17 93.09 91.07 92.07

Laursen et al. (2023) 90.59 86.67 88.59 87.77 87.61 87.69

Govindarajan et al. (2023) 79.36 81.35 80.34 82.82 80.52 81.65

Tang et al. (2023) 76.03 77.15 76.59 84.55 86.18 85.36

Ke et al. (2023) 92.77 90.39 91.56 88.68 86.35 87.50

Ours 94.16 93.79 93.97 94.84 92.95 93.89

FIGURE 6

Comparative visualization of NER tasks for n2c2 2018 and MIMIC-III datasets.

To visually compare the results in Table 1, we have presented

them in Figure 6.

In Table 2, we show the performance of the model on the

n2c2 2018 dataset and the MIMIC-III dataset in terms of the RE

task, where the test set is a sample extracted from 20% of the

dataset. It can be observed that the EMLBmethod also outperforms

all other comparison methods in the RE task. Specifically, on

the n2c2 2018 dataset, the EMLB model achieved an F1 score

of 93.97%, which is 2.41% higher than the experimental method

proposed by Tang et al. Additionally, the precision and recall of
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EMLB improved by 1.39 and 3.4%, respectively, compared to Tang

et al.’s method. On the MIMIC-III dataset, the EMLB method

achieved an F1 score of 93.89%, which is 6.39% higher than the

experimental method proposed by Govindarajan et al. The EMLB

model demonstrates superior experimental results in the task,

indicating the powerful capabilities of pre-trained languagemodels.

Through the integration of end-to-end learning and multi-task

learning, the EMLB model effectively shared BERT representations

for both tasks, leading to the best results in.

Overall, from the quantitative results, it is evident that the

EMLB model achieved significant improvements in the task

through semantic representation learning and multi-task sharing.

This validates the effectiveness of the proposed method. We have

visually compared the results in Table 2, Figure 7.

From the experimental results in Table 3, we compared the

performance of various models on the Clinical tempeval dataset

and ShARe/CLEF dataset for the NER task. According to the data,

we observed that the proposed EMLB model outperformed other

models significantly on both datasets.

First, let’s focus on the experimental results on the Clinical

tempeval dataset. Our EMLB model achieved high precision

(94.22%), recall (95.05%), and F1-Score (94.63%), indicating

excellent overall performance in the NER task. Compared to

other models, the EMLB model demonstrated a clear advantage

in accuracy and recall. Next, we turn to the experimental results

on the ShARe/CLEF dataset. Similarly, our EMLB model achieved

remarkable performance on this dataset, with the highest precision,

recall, and F1 value. This further validates the superior performance

of the EMLB model in the NER task on the ShARe/CLEF dataset.

Once again, the performance of our model outperforms other

models on this dataset.

Overall, the experimental data clearly indicates that our

proposed EMLB model achieves the best performance in the NER

task on both the Clinical tempeval and ShARe/CLEF datasets. This

fully demonstrates the effectiveness and excellence of the EMLB

model in the NER task, providing an innovative solution for NER

and in electronic medical records. We have visually compared the

results in Table 3, Figure 8.

The experimental results on the Clinical tempeval dataset

and ShARe/CLEF dataset for the RE task demonstrate that our

proposed EMLB model has an advantage in this task. On the

Clinical tempeval dataset, our model achieved 93.98% precision,

94.55% recall, and 94.26% F1-Score, significantly outperforming

other models. This indicates that our model exhibits outstanding

overall performance in the task. Similarly, on the ShARe/CLEF

dataset, our model outperformed other models in precision,

recall, and F1-Score, confirming its superiority in the task. These

results illustrate that our proposed model performs well in NER

and tasks in electronic medical records, contributing to further

improvements in medical information extraction techniques and

demonstrating the feasibility of our model in this field.

Following the performance comparison of the NER and RE

tasks, we conducted further ablation experiments on the model

to explore the influence of different factors on the performance

of NER and RE. In the previous tables, we already compared the

NER task performance of various models on different datasets in

detail. By analyzing the results of the comparative experiments in

Tables 5, 6, we can understand the performance of different models

in NER and RE tasks and explore the impact of different factors

on their performance. This will help us gain a comprehensive

understanding of the strengths and limitations of the models and

provide valuable guidance and references for future model design

and applications. We have visually compared the results in Table 4,

Figure 9.

Next, we will introduce the experimental results in Tables 5, 6

and their analysis in detail to gain a deeper understanding of the

performance and performance differences of different modules.

In Table 5, we conducted a detailed analysis of the performance

of the NER task on different datasets (n2c2 2018, MIMIC-III,

Clinical tempeval, and ShARe/CLEF). Firstly, we focused on the

experimental results on the n2c2 2018 dataset. The baseline

module showed moderate performance with a Precision of 76.67%

and Recall of 75.82%. However, with the introduction of the

ETE module, the performance significantly improved, achieving

a Precision of 83.84% and Recall of 83.02%. Further application

of the Multi-Task Learning (MTL) module resulted in further

improvements, with Precision reaching 86.01% and Recall at

83.47%. These findings demonstrate the significant performance

enhancement of the ETE and MTL modules on the NER task in

the n2c2 2018 dataset.

Moving on to the experimental results on the MIMIC-III

dataset, similar to the n2c2 2018 dataset, the baseline module

exhibited moderate performance with a Precision of 73.47% and

Recall of 76.31%. The ETE module improved the Precision to

86.31% and Recall to 83.45%. With the MTL module, the Precision

further improved to 87.79%, while the Recall reached 84.33%. Once

again, these results confirm the effectiveness of the ETE and MTL

modules, showing significant performance improvements on the

NER task in the MIMIC-III dataset.

For the Clinical tempeval dataset, the baseline module showed

relatively lower performance, with a Precision of 71.08% and Recall

of 71.63%. However, under the guidance of the ETE module, the

Precision and Recall increased to 80.62 and 83.92%, respectively.

The MTL module further enhanced the performance, achieving

a Precision of 88.46% and Recall of 88.93%. These results again

demonstrate the effectiveness of the ETE and MTL modules in

improving performance on the NER task in different datasets.

Lastly, we focused on the experimental results on the

ShARe/CLEF dataset. The baseline module exhibited a Precision

of 75.75% and Recall of 74.13%, showing moderate performance.

With the ETE module, the Precision and Recall increased to 79.81

and 80.48%, respectively. The MTL module further improved the

Precision to 87.92% and Recall to 89.93%. These results again

confirm the superiority of the ETE and MTL modules on the

NER task.

The ETE and MTL modules demonstrated significant

performance improvements on the NER task across different

datasets. Especially in the ETE MTL module, the simultaneous

use of ETE and MTL achieved the best performance, with very

high Precision and Recall. Thus, our experimental results indicate

that the introduction of Multi-Task Learning is crucial for NER in

electronic health record texts and provides an effective solution

for the NER task. We have visualized the results in Table 5 for

comparison in Figure 10.
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FIGURE 7

Comparative visualization of RE tasks for n2c2 2018 and MIMIC-III datasets.

FIGURE 8

Comparative visualization of NER tasks for clinical tempeval and ShARe/CLEF datasets.

TABLE 3 Comprehensive evaluation based on precision, recall, and F1 score: di�erent approaches for NER tasks on clinical tempeval and ShARe/CLEF

datasets.

Method

Dataset (for NER tasks)

Clinical tempeval (Bethard et al., 2016) ShARe/CLEF (Névéol et al., 2018)

Precision/% Recall/% F1-score/% Precision/% Recall/% F1-score/%

Fabregat et al. (2023) 79.48 81.17 80.32 83.34 81.34 82.33

Nasar et al. (2021) 86.75 89.95 88.32 84.55 83.17 83.85

Laursen et al. (2023) 85.22 85.26 85.24 83.15 82.46 82.80

Govindarajan et al. (2023) 83.04 86.53 84.75 84.74 80.78 82.73

Tang et al. (2023) 78.38 76.14 77.24 90.44 88.21 89.31

Ke et al. (2023) 91.57 91.32 91.44 92.87 90.66 91.75

Ours 94.22 95.05 94.63 95.39 94.34 94.86

In Table 6, we present a performance comparison and analysis

of the RE task on different datasets (n2c2 2018, MIMIC-III, Clinical

tempeval, and ShARe/CLEF). Firstly, we focus on the experimental

results on the n2c2 2018 dataset. The baseline module showed

good performance on the task, achieving a Precision of 83.71%

and Recall of 80.15%. However, with the introduction of the ETE
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TABLE 4 Comprehensive evaluation based on precision, recall, and F1 score: di�erent approaches for RE tasks on clinical tempeval and ShARe/CLEF

datasets.

Method

Dataset (for RE tasks)

Clinical tempeval (Bethard et al., 2016) ShARe/CLEF (Névéol et al., 2018)

Precision/% Recall/% F1-score/% Precision/% Recall/% F1-score/%

Fabregat et al. (2023) 88.21 86.87 87.53 74.31 76.69 75.48

Nasar et al. (2021) 85.12 88.89 86.96 82.75 80.36 81.54

Laursen et al. (2023) 76.11 80.72 78.35 77.62 75.51 76.55

Govindarajan et al. (2023) 86.08 88.95 87.49 90.18 90.42 90.30

Tang et al. (2023) 81.38 77.93 79.33 79.18 75.15 77.11

Ke et al. (2023) 90.63 89.26 89.94 86.74 90.23 88.45

Ours 93.98 94.55 94.26 94.73 95.12 94.92

TABLE 5 Comprehensive evaluation based on precision, recall, and F1 score: di�erent modules for NER tasks on n2c2 2018, MIMIC-III, clinical tempeval,

and ShARe/CLEF datasets.

Module

Datasets (for NER tasks)

n2c2 2018 (Henry et al.,
2020)

MIMIC-III (Wang
et al., 2020)

Clinical tempeval
(Bethard et al., 2016)

ShARe/CLEF (Névéol
et al., 2018)

Precision/% Recall/% Precision/% Recall/% Precision/% Recall/% Precision/% Recall/%

Baseline 76.67 75.82 73.47 76.31 71.08 71.63 75.75 74.13

ete 83.84 83.02 86.31 83.45 80.62 83.92 79.81 80.48

MTL 86.01 83.47 87.79 84.33 88.46 88.93 87.92 89.93

ete MTL 93.33 92.39 94.51 93.93 93.28 94.64 94.38 95.76

Among them, ete means end-to-end module, MTL means multi-task learning module.

FIGURE 9

Comparative visualization of RE tasks for clinical tempeval and ShARe/CLEF datasets.

module, there was a slight decrease in Precision to 82.25% and

an increase in Recall to 84.56%. Under the guidance of the MTL

module, the performance improved again, reaching a Precision of

85.46% and Recall of 87.24%. Remarkably, the ETE MTL module,

combining ETE and MTL modules, achieved the best performance

with a Precision of 94.62% and Recall of 93.81%, far surpassing

other modules on the n2c2 2018 dataset.

Next, we turn to the experimental results on the MIMIC-III

dataset. The baseline module demonstrated good performance with

a Precision of 78.61% and Recall of 81.24%. After incorporating

the ETE module, Precision and Recall increased to 85.14 and

83.49%, respectively. With the MTL module, Precision further

improved to 86.37%, and Recall to 87.46%. In the ETE MTL

module, Precisionwas 92.68%, and Recall was 93.99%. These results

once again validate the performance improvement of the ETE and

MTL modules on the task in different datasets.

For the Clinical tempeval dataset, the baseline module showed

relatively higher performance with a Precision of 81.53% and Recall
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TABLE 6 Comprehensive evaluation based on precision, recall, and F1 score: di�erent modules for RE tasks on n2c2 2018, MIMIC-III, clinical tempeval,

and ShARe/CLEF datasets.

Module

Datasets (for RE tasks)

n2c2 2018 (Henry et al.,
2020)

MIMIC-III (Wang
et al., 2020)

Clinical tempeval
(Bethard et al., 2016)

ShARe/CLEF (Névéol
et al., 2018)

Precision/% Recall/% Precision/% Recall/% Precision/% Recall/% Precision/% Recall/%

Baseline 83.71 80.15 78.61 81.24 81.53 81.72 80.03 82.34

ete 82.25 84.56 85.14 83.49 83.72 85.89 83.56 84.13

MTL 85.46 87.24 86.37 87.46 89.39 88.16 88.03 90.98

ete MTL 94.62 93.81 92.68 93.99 93.18 92.38 94.42 94.39

Among them, ete means end-to-end module, MTL means multi-task learning module.

FIGURE 10

Visualization of NER task performance comparison based on di�erent modules.

of 81.72%. With the ETE module, Precision and Recall increased to

83.72 and 85.89%, respectively. Under the MTL module, Precision

further improved to 89.39%, and Recall was 88.16%. In the ETE

MTL module, Precision reached 93.18%, and Recall was 92.38%.

These results again confirm the superiority of the ETE and MTL

modules on the task in different datasets.

Finally, we focus on the experimental results on the

ShARe/CLEF dataset. The baselinemodule demonstratedmoderate

performance with a Precision of 80.03% and Recall of 82.34%. After

applying the ETE module, Precision and Recall increased to 83.56

and 84.13%, respectively. Under theMTLmodule, Precision further

improved to 88.03%, and Recall was 90.98%. In the ETE MTL

module, Precision reached 94.42%, and Recall was 94.39%. These

results indicate significant performance improvements of the ETE

and MTL modules on the task in the ShARe/CLEF dataset.

Overall, the ETE and MTL modules exhibited significant

performance improvements on the task across different datasets.

Especially in the ETE MTL module, the simultaneous use of ETE

and MTL achieved the best performance with very high Precision

and Recall. Thus, our experimental results show that Multi-Task

Learning and the combination of ETE and MTL modules are

of great significance for electronic health record, providing an

effective solution for the RE task. These results further validate

the excellent performance of our proposed method in NER and
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FIGURE 11

Visualization of RE task performance comparison based on di�erent modules.

tasks on electronic health records, providing valuable insights for

information extraction technology in the medical domain.We have

visualized the results in Table 6 for comparison in Figure 11.

5. Discussion

Our research aims to explore the integration of natural and

deep artificial cognitive models in medical image processing,

focusing on the NER and RE tasks in EMR texts using BERT-based

methods. In this section, we will discuss the results of our study,

with a specific emphasis on the impact of integrating natural and

artificial cognitive systems in medical image processing and the

performance of the BERT-based approach in analyzing EMR texts.

Regarding the processing of EMR texts, our research employs

BERT-based methods for NER and. The experimental results

demonstrate that the BERT model performs exceptionally well

in the NER and RE tasks of EMR. Its pre-training ability

and bidirectional encoder representations enable the model to

better comprehend the semantic and contextual information of

medical texts, leading to more accurate and comprehensive entity

recognition and. This provides robust support for the intelligent

processing of EMR and medical information mining. Firstly, our

model combines BERT’s pre-training capability, allowing it to learn

rich semantic representations from vast amounts of EMR data.

This enhanced understanding of medical terms and specialized

vocabulary improves the accurate identification and extraction of

domain-specific entities, empowering healthcare professionals to

swiftly and accurately locate crucial information in EMR texts,

saving time in data retrieval and organization, and enhancing work

efficiency. Secondly, our model adopts an end-to-end architecture

that fully leverages BERT’s underlying representations and utilizes

multi-task learning to facilitate knowledge sharing between

NER and RE tasks, reducing the limitations of independent

steps and risks of error propagation in traditional approaches.

This contributes to more comprehensive and precise entity

relationship extraction in the medical domain, helping healthcare

professionals better understand the connections and interactions

between different entities. For instance, by accurately extracting

the relationship between medications and diseases, doctors can
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gain a better understanding of treatment effectiveness, optimize

medication plans, and provide more personalized and effective care

for patients.

However, despite the many advantages demonstrated by

the integration of natural and artificial cognitive systems in

medical image processing and EMR handling, some challenges

remain. For instance, different types of medical images and

diverse EMR texts pose specific requirements for data input and

processing in integrated systems. Additionally, the interpretability

and explainability of the models are crucial, especially in medical

decision-making scenarios where understanding the model’s

decision process is essential. Looking ahead, further research and

improvements in the integration of natural and deep artificial

cognitive models, especially when dealing with more complex,

multimodal data, and diversified tasks, are needed. Additionally,

for BERT-based methods, exploring larger and more diverse pre-

training corpora can enhance the model’s generalization and

adaptability. Furthermore, combining the integration of natural

and artificial cognitive systems will bring forth more application

scenarios and innovations in medical image processing and EMR

handling, providing comprehensive support for the intelligent

development of the medical field and better healthcare services

for patients.

6. Conclusion

The aim of this research is to explore the integration

of natural and deep artificial cognitive models in medical

image processing, focusing on the NER and RE tasks in

EMR using BERT-based methods. We propose an integrated

framework that combines natural language processing with deep

learning for medical image analysis. This framework utilizes

the BERT model for NER and RE tasks on EMR as prior

knowledge for subsequent medical image analysis. The BERT-

based end-to-end framework, which integrates NER and RE

tasks into a unified model and applies the concept of multi-task

learning, achieves significant performance improvements. Through

comprehensive experiments on different datasets, we validate the

effectiveness and superiority of the proposed model. The research

results demonstrate that incorporating semantic information can

significantly enhance the understanding and analysis of medical

images compared to using solely computer vision methods,

providing valuable insights for medical intelligence research and

applications.

However, the NER and RE tasks in EMR still pose challenges

and remain open issues. With the continuous growth of medical

information, EMR text data becomes more extensive and complex,

demanding higher model performance and efficiency. In future

research, we will continue to explore more efficient and accurate

model designs to cope with the increasing volume of medical

data. Especially for extracting specific medical entities and relations

in certain domains, we can investigate more specialized and

customized model designs to improve the model’s understanding

and application of domain-specific terminologies and knowledge.

Additionally, for cross-lingual and cross-domain information

extraction problems, we can further study techniques such as

transfer learning and domain adaptation to expand the model’s

applicability in different domains and languages. The research

outcomes of this paper make significant contributions to the field

of NER and in electronic medical records. In future research,

we will continue to advance medical information extraction

technology, providing more efficient and accurate solutions for

medical intelligent applications, thereby making even greater

contributions to the development and improvement of the

medical field.
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