4 research outputs found

    An Approach to Validation of Fuzzy Qualitative Temporal Relations

    Get PDF
    A geometrical approach to validation of fuzzy temporal relations between fuzzy time primitives, based on the possibility and necessity measures are proposed. Fuzzy temporal relations between fuzzy time points and fuzzy time point and fuzzy time interval are considered. The same approach can be used for evaluation of relation between two fuzzy intervals. An example of validation of temporal relations between a fuzzy time point and fuzzy time interval is given

    A Modified Distance Dynamics Model for Improvement of Community Detection

    Get PDF
    © 2018 IEEE. Community detection is a key technique for identifying the intrinsic community structures of complex networks. The distance dynamics model has been proven effective in finding communities with arbitrary size and shape and identifying outliers. However, to simulate distance dynamics, the model requires manual parameter specification and is sensitive to the cohesion threshold parameter, which is difficult to determine. Furthermore, it has difficulty handling rough outliers and ignores hubs (nodes that bridge communities). In this paper, we propose a robust distance dynamics model, namely, Attractor++, which uses a dynamic membership degree. In Attractor++, the dynamic membership degree is used to determine the influence of exclusive neighbors on the distance instead of setting the cohesion threshold. In addition, considering its inefficiency and low accuracy in handling outliers and identifying hubs, we design an outlier optimization model that is based on triangle adjacency. By using optimization rules, a postprocessing method further judges whether a singleton node should be merged into the same community as its triangles or regarded as a hub or an outlier. Extensive experiments on both real-world and synthetic networks demonstrate that our algorithm more accurately identifies nodes that have special roles (hubs and outliers) and more effectively identifies community structures

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented
    corecore