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ABSTRACT
In fuzzy systems, membership functions determine the groups to which a variable can belong to, and these
groups are static or only have one setting in some aspect. However, fuzzy systems typically require to
model the dynamic environment they represent. Still, this behavior does not reflect the membership groups
in a conventional way. Thus, conventional fuzzy systems are not capable of reflecting the dynamics of
the real-time context. The approach presented consists of a fuzzy system where the membership functions
can have dynamic transformations, according to contextual variables that influence them, to have a model
that adjusts in real time. The membership functions’ dynamism is achieved because the form in the sets
can be transformed; the maximum degree of membership of a set is in a range of zero to one; and, the
location of the sets in the discourse universe can vary dynamically. The results show the feasibility of a
context-based fuzzy system with dynamic membership functions built-in real time, that has been influenced
by contextual variables. Therefore, unlike other proposals, this approach allows modeling the influence of
the context on a fuzzy system, making it more adjusted to reality. To illustrate our proposed approach, a
case study is presented where a fuzzy system estimates the heat stress in a work environment that uses data
acquired from wearable devices. This system automatically generates the following indicators: (i) energy
level wasted while performing a physical activity, (ii) personalized measurement of workload level, and (iii)
measurement of Occupational Heat Stress (OHS).

INDEX TERMS Dynamic Membership Functions, Context based Fuzzy Systems, Occupational Heat
Stress.

I. INTRODUCTION

FUZZY systems require a set of input variables assigned
to a fuzzy set [1], built from a membership function, and

with a certain degree of membership (fuzzification). An in-
ference engine applies a set of knowledge-based rules (fuzzy
inference) and produces a response to a decision problem
(defuzzification). Typically, fuzzy sets are generated from the
knowledge of experts in the field or by using information
that is currently known, and they have no adjustments or
adaptations once defined; thus, they are static sets. However,
context variables (such as the elapsed time or the physical
space where events occur) influence the fuzzy system. Con-
sequently, membership functions should be dynamic in real
time to reflect their adaptation to the domain of discourse.

Some previous works have considered the need for dy-
namism in membership functions, but only to reflect a

specific situation or time influence. For example, using a
membership function scaled according to a criterion for an
input variable [2], or scaling a Gaussian-shaped group from
variations in the mean value and variance [3]. None of the
cases refer to an approach where context influences the
system variables in real time, so the question arises: how to
reflect the context influence in a fuzzy system?

Therefore, we propose a fuzzy system approach where
fuzzy sets are dynamic, based on the context that influences
them in real time, and they adjust or adapt to model reality in
a better way. We illustrate the dynamism in the membership
function with three situations: (i) a decrease in the maximum
degree of membership that a variable can have in a fuzzy set,
(ii) changes in the form of the fuzzy set, and (iii) changes in
the location of the fuzzy sets within the domain of discourse.

This proposed approach applies to a case study on the
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estimation of heat stress in a work environment, caused by
continuous physical activity in an environment with high
temperature and relative humidity values. The case study
is relevant because it concerns the area of occupational
health and safety. Specifically, the heat stress situation mainly
affects developing countries located in tropical or hot geo-
graphical regions in the world.

This paper has two contributions. The first contribution is a
new dynamic fuzzy system approach, where context imposes
dynamism that influences the fuzzy system’s variables and
leads to dynamic membership functions in their form and
location in the domain of discourse. The membership func-
tions make real-time adaptations to reflect the influence of the
context on the system. The second contribution is a new way
of estimating heat stress. Following established occupational
health and safety regulations, we applied our contextual
dynamic fuzzy system approach, where personalization of
the calculations and dynamism in the membership functions
capture context and reflect how the same physical activity
can impact different users in different ways. Therefore, when
applying our approach, the calculation of heat stress presents
heterogeneous results for the same physical activity due to
the context, the diffuse values, and personal physiological
data during the experiments’ execution.

The remaining of the paper is organized as follows. Sec-
tion II explains the background and related work. Section
III introduces the proposed method and presents a detailed
discussion about it. Sections IV and V present a description
of the case study and a report of the obtained results from the
proposed method applied to the case study, respectively. Sec-
tion VI discusses the obtained results. Finally, conclusions
and final remarks are presented in Section VII.

II. BACKGROUND AND RELATED WORK
Dynamic membership functions have their origin in the work
of [4], who sought to understand the influence of different
forms of membership functions in dynamic systems con-
trolled by fuzzy logic. For this purpose, the author proposed
an approach that employed four parameters. A membership
function could change its form between triangular and Gaus-
sian groups to reflect the control system’s dynamism. The
author of [4] showed how a slight change in the shape of the
membership functions could induce a significant change in
the system’s steady state’s qualitative behavior.

In contrast, in [5], they determined that the time variable
must be considered in the fuzzy logic domain because, as
in many domains, the fuzzy system’s sets are dependent on
time.

The following equation defines a conventional fuzzy set:

F = (x, µ(x)) (1)

Where x is the element of the universe of discourseX , and
µ(x) is the membership function of x to the fuzzy set F of
the universe X .

Virant [5] made the first considerations so that fuzzy sets
can change over time, and thus the membership functions are

dynamic [3], so the following equation governs the represen-
tation of the membership functions F for a time-dependent
fuzzy set F (t).

F (t) = (x, µF (t)(x)) (2)

Where x belongs to the universe of the fuzzy set F and
µF (t)(x) in the membership function of F , the t domain can
be continuous or discrete. The projection in the (µ, t) plane
for a given x is called the dynamic membership function. In
a time t1 there is a set F (t)1 and in a time t2 there is another
fuzzy set F (t2) and these sets could be different.

Virant shows how the degrees of membership of the ele-
ments of the discourse universe change over time. Therefore,
the form or location of the functions of membership change.
Cerrada [3] also investigated dynamism, which is exemplified
by Gaussian membership functions, where dynamism is seen
with changes in the mean and standard deviation of the
functions, leading to changes in the width of the Gaussian
function and shifts in the universe of discourse.

Later on, [6] considered that dynamism could be required
in input variables, rules, output variables, or all of them
simultaneously. In these works, the dynamic fuzzy system
can adapt to changes in the temporal behavior of the sys-
tem variables. The membership function of the fuzzy set
can change according to the time t; these changes can be
continuous or discrete.

Conversely, the fuzzy system proposed by [2] uses the
concept of scalable membership functions for a company
to select the most suitable supplier for its interests, based
on an evaluation of the environmental performance of the
supplier. Therefore, the authors used a scaled membership
function (with values of 0.2, 0.4, 0.6, 0.8, and 1.0) for an
input variable called environmental performance, following
the priority level given by suppliers to the input. As it can
be seen, this is a specific situation that does not require
further changes once reflected in the system. These are not
contextual variables (which can be very dynamic), so if the
priorities of the company do not change, the membership
functions will remain static.

The authors of [3] consider the adaptation of Gaussian-
shaped groups over time. The adaptations come from changes
in the mean value and variance of the group. Therefore,
it only applies to Gaussian-shaped groups and does not
consider the possible change in the group’s shape towards
trapezoidal or triangular.

In [7], the authors proposed a three-phase method to detect
the local community to which a network node belongs,
without requiring the global information of the network. In
each phase, the dynamic membership function depends on
the number of nodes from the local community, and which
neighboring nodes belong to the community is determined
by a formula.

This work [7] gives dynamism to the membership func-
tions from a spatial criterion, since depending on the location
of the node, it will belong to a local community. They do
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not consider the temporal variable. In [8], similar treatment
is made, from the distances.

In both approaches ( [7] and [8]), the dynamism of the
functions is a result of the increase in the community’s
nodes number and resolves communities’ formation explic-
itly considering the spatial aspect. These are not context-
based approaches.

Regarding the case study, few papers address the issue
of occupational heat stress using fuzzy logic. For example,
in [9], a fuzzy hierarchical analytical method is proposed
to assess the safety and early warning in hot-humid work
environments. Asghari et al. [10] used fuzzy logic to prior-
itize different criteria and evaluate different available indices
to estimate heat stress. Both approaches ( [9] and [10]) see
the problem as a multi-criteria decision making; however,
neither is for heat stress estimation in an automated way
through wearable technology, personalized estimations, and
within a fuzzy system with dynamic membership functions
to represent the dynamics imposed by context variables.

III. FUZZY SYSTEM APPROACH
The real world is always changing. The population is grow-
ing, the temperature changes throughout the day; the cur-
rencies vary their values quickly. That is to say, practically
everything changes. In this sense, intelligent systems must
also adapt to changes. A fixed system will soon require
modifications to adapt to changing parameters. A system that
adapts in real time to the changes that occur will undoubtedly
have better results.

Virant and Zimic [5] were the first to propose dynamic
fuzzy systems. Dynamism can be in one or several points of
the fuzzy system. The first point is the membership functions
built from the input variables, the second point is the infer-
ence engine’s rules, and the last point is the output functions
[6].

Dynamic fuzzy systems have been modeled based on
Equation 2, where a time-dependent function is in charge
of modulating the membership functions of fuzzy sets. This
function modulates the groups’ membership degrees of the
universe of discourse so that the membership degrees may be
varying between 0 and 1. This modulation implies changes in
the size, shape, or location of these functions in the universe
of discourse. All these changes depend only on the passage
of time.

We propose the membership functions to be dynamic not
only as an effect of time, but also against situations or events
of the context that cause the dynamism of the membership
functions, representing the context’s effects on the variables
of the fuzzy system. Some examples of situations in the
context that can cause dynamism are the health of a patient,
the environmental temperature, the physical location, the
volume of an object, etc.

For a fuzzy system to be adaptive, it is convenient that the
context situations are only used as aspects that affect the input
variables of the system, not as input variables themselves.

It implies that changes in the context would not require
adapting or modifying the design of the fuzzy system.

Contextual situations could change the membership grade
from a given x to the fuzzy set function. Likewise, the context
may require dynamism in the membership functions of the
fuzzy set, requiring the function to move along the x axis
depending on the context that affects it directly, i.e., the
function is represented by:

F = (x, µ(x± a(c))) (3)

Where a(c) is a constant whose value depends on the
criteria of change for this variable, for example, if we have
membership functions for the thermal sensation of a person,
the function will have a specific range. Still, if a person
was in the sun, the membership function will move to the
right (larger values), because the thermal sensation will be
more significant. If the person is in the shade and the air is
circulating, the function will move to the left on the x axis
because the thermal sensation will be less. Figure 2 shows
how a triangle membership function could shift a constant
value to the right.

We propose a functional reference architecture represent-
ing a context-based fuzzy system where the membership
functions are dynamic enough in form and location in the
universe of discourse to reflect the system’s environment in
real time. Figure 1 shows the architecture.

FIGURE 1. Context based Fuzzy System with Dynamic Membership
Functions.

In general, a fuzzy set offers the variables a maximum
degree of membership equal to 1. We propose that there can
be a decrease in the maximum degree of membership to a
fuzzy set; therefore, a particular variable could reach, for
example, a maximum degree of 0.7. It means the maximum
degree is not necessarily 1 but can be in a range from 0
to 1. For example, a variable called temperature’s impact
can have a maximum degree of membership of 1 or 0.5
because a worker perceives a workload differently if it is a
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scenario with high temperatures due to the sun’s intensity or
an environment with pleasant temperatures (see Figure 2).

FIGURE 2. Dynamic function with variable maximum membership.

In fuzzy systems, the groups’ common forms are triangu-
lar, trapezoidal, and Gaussian, and they remain static once
the system is built. However, many of the situations modeled
with fuzzy systems are dynamic and require adaptations
to reflect the context’s impact during their life cycle. For
example, if a group of values reaches the maximum mem-
bership degree to a set, then the shape of the set should be
trapezoidal. Nevertheless, context-based variables can cause
a group reduction, and just a single value meets the maximum
membership degree, so it is necessary that the shape of the set
changes to triangular (see Figure 3).

FIGURE 3. Changes in the form of the membership function.

FIGURE 4. Membership function with changes in its position in the universe of
discourse

Usually, fuzzy sets occupy a fixed location in the universe
of discourse; that is, the membership function exists for
a range of values within the discourse universe, where it
remains conserving its form and its maximum membership
degree. However, the context may influence and it would be
necessary to vary the discourse universe range. For example,
a membership function ranging between 10 and 20 in the
universe of discourse exists, but the context influences it. It
can change its range to be between 15 and 25 to reflect the
context (see Figure 4).

IV. CASE STUDY
Heat stress occurs when workers perform physical activities,
from light to very demanding, in an environment with high
temperature and relative humidity; consequently, people’s
thermal sensation becomes high. Thermal sensation causes
reactions in workers that range from discomfort to possible
severe health damage, leading to death in extreme cases. Due
to the above, the ISO 7243 [11] standard of the occupational
health and safety area determines within one working hour
the percentage of time in which workers should carry out
their activity and the percentage of time in which they should
rest. The decisions on the percentage of physical activity
and rest are taken based on evaluating the physical activity
intensity (from light to very heavy). Consequently, the burden
it represents for the worker and the environmental conditions
prevailing in the workplace, which are mainly temperature
and relative humidity. Generally, a labor supervisor monitors
and controls heat stress levels.

The process of estimating occupational heat stress is
amenable to being treated as a context-based dynamic fuzzy
system for two main reasons. The first reason is that con-
ventionally, the workload is determined by assigning a static
value in METs to the physical activity performed, based on
generic tables. This makes the estimation imprecise and not
personalized. Therefore, if we use a fuzzy system with a
method based on heart rate for the estimation of workload
that uses fuzzy ranges, together with other variables such as
the measurement of the energy involved and whether there
is habituation to the activity, we can have an estimate of
workload that is more adjusted to reality and personalized.

The second reason is that the level of heat stress is cal-
culated considering the workload and aspects of the context
such as temperature and relative humidity present in the
scenario, which may vary throughout the workday. As well
as the possible effect of solar radiation, in the case of outdoor
activities. The worker’s acclimatization to the workplace
climate also plays a role. Conventionally, the implications
of all the above factors are obtained from generic tables.
We propose a dynamic fuzzy system that can handle the
inaccuracies of static ranges and therefore fuzzy ranges are
used.

To our knowledge, there are no fully automated technolog-
ical proposals for the evaluation and control of heat stress.
The case study mentioned above represents an opportunity
to implement the proposed approach of a fuzzy system with
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dynamic membership functions based on the context and
through classification, to identify the level of stress presented
to a worker in a specific place and time. Thus, to offer an
automated technological solution using wearable devices and
fuzzy logic.

As part of this research work, we included informed con-
sent and a personal data protection policy. Before completing
the experiments, we provided participants information about
the research, including a brief explanation of its purpose. We
assured them that their data would be kept confidential.

Our experiments consisted of three activities performed by
the workers: (i) sweeping the floor using a broom, (ii) clean-
ing glass using a cloth and cleaning fluid, and (iii) stacking
metal chairs in a classroom. The selected activities are those
usually performed by university janitors. Volunteers carried
out the activities freely; that is, they were not conditioned
on the manner or intensity of acting. This free and uncon-
trolled manner is unlike other works found in the literature (
[12] [13]), in which fully differentiated activities (walking,
running, jumping, climbing stairs, etc.) were selected; in
other words, participants had some form of control over the
performance (for example, walking on an electric treadmill at
a predefined intensity or controlled speed). Carrying out the
uncontrolled activity reflects the personality of the user in
the execution of the activity, and this supports our approach,
which aims to have a personalized recognition.

The users that participated in the experiments were 20
workers: (i) 11 male with a mean age of 28.4 ±8.5 years and
BMI 26.26 ± 3.77, and (ii) 9 female with a mean age of 28.7
± 5.97 years and BMI of 25.04 ± 4.45.

For this case study, the fuzzy system consists of three
stages, where the output value of the first stage will be one
of the input values for the second stage, and the output of
the second stage will be an input value for the third stage.
In the first stage, we automatically recognize the energy level
used in physical activity; later, we estimate the second stage’s
personalized workload. Finally, we estimate the heat stress
level in the third stage.

A. AUTOMATED RECOGNITION OF THE ENERGY
LEVEL FOR PHYSICAL ACTIVITY
The first stage of the fuzzy system consists of automated
recognition of the energy level involved in the physical ac-
tivity of the worker, which was measured using non-invasive
wearable devices worn by the workers. The input values of
the fuzzy system are movement values obtained from a tri-
axial acceleration sensor placed and attached to the hip (near
the body’s center of mass) and another triaxial acceleration
sensor placed on the wrist of the dominant hand.

Initially, we performed several tests with the participants,
and we collected sensor data for each of the activities in
the experiment. We used the collected sensor data above to
identify and select the most relevant features to obtain the
energy level from the sensors’ x, y, and z values.

Regarding the fuzzy system to classify energy levels,
statistical methods are an alternative for constructing the

sets. The Gaussian Distribution is pertinent to represent the
behavior of acceleration patterns [14].

The features obtained from the raw acceleration data from
the sensor placed in the hip were: Root Mean Square (RMS),
energy from vector sum, mean, standard deviation, maximum
peak, minimum peak, correlation of the x-axis with the y-
axis, and energy for each axis. The features obtained from
the raw acceleration data from the sensor placed at the
dominant hand’s wrist were: RMS, mean, standard deviation,
and energy. These features have been commonly used to
recognize physical activities [15], [16]. RMS and energy have
been used to calculate the energy level, and its calculation
corresponds to the following formulas [14]:

RMS =

√√√√ 1

n

n∑
i=1

x2i (4)

E =
1

n

n∑
i=1

|FFTi|2 (5)

Various features were obtained from the raw data of the
acceleration sensors. In the time domain, the features for each
axis were the RMS, the mean, the standard deviation, the
maximum peak, minimum peak and the correlations between
the axes; and in the frequency domain, the feature was the
energy. The features for the sensor placed in the dominant
hand, in the time domain, and from the vector sum were:
RMS, mean, standard deviation and maximum peak. The
feature in the frequency domain was the energy.

Table 1 shows the mean and standard deviation for each
selected feature to obtain the energy level.

TABLE 1. Features’ media and standard deviation for each activity

Feature Activity µ σ

RMS
Cleaning windows 1.683 0.727
Sweeping floors 1.466 0.492
Stacking chairs 2.795 0.620

Hip Energy
Cleaning windows 15.288 5.487
Sweeping floors 22.53 9.310
Stacking chairs 129.535 43.295

Wrist Energy
Cleaning windows 1508.009 866.009
Sweeping floors 1262.281 700.711
Stacking chairs 233.974 132.244

Figure 5 presents the proposed fuzzy system that estimates
the energy level used in each physical activity.

B. PERSONALIZED WORKLOAD ASSESSMENT
The second stage consists of estimating the workload that
the physical activity represents for the worker. This individ-
ualized and personalized process gives added value to the
calculation. Figure 6 represents the proposed fuzzy system
for a personalized workload estimation.

We used the method proposed in [17], where an ergonomic
method based on the heart rate of the individual is used, but
with a personalized approach to make it more precise. The
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FIGURE 5. Recognition of the energy level.

FIGURE 6. Personalized Workload Estimation.

result represents the particular effort that an activity imposes
on each worker.

One of the input variables of the fuzzy system is the
estimated energy level for physical activity. This value results
from the previous stage and constitutes an input variable for
evaluating the personalized workload.

Another input variable is the individualized Relative Car-
diac Cost (RCC), which is the result of the calculation of the
personalized Chamoux defined in [17]. The RCC variable
contributes to the personalization of the calculation since
assigning a generic caloric consumption value to physical
activity is not precise nor personalized [18]. Table 2 shows
RCC values for participants when performing activities.

Based on its value, the RCC is stratified to assign a label
that identifies the physical effort level during a work activity.
Table 3 presents the correspondence between the RCC value
and physical effort.

Habituation represents a temporal variable for this fuzzy
system. Depending on the habituation time, the membership
function is different for a habituated person with respect to
a non-habituated person. There will be a transition of the
membership function between non-habituated and habitu-
ated. Non-habituation may be due to the lack of experience of
a worker in physical activity or the loss of physical condition

TABLE 2. RCC for each worker during activities.

Subject BMI Habituation Sweeping
floors

Cleaning
windows

Stacking
chairs

W1 29.62 Habituated 13 12 25
W2 21.98 Habituated 16 26 41
W3 20.95 Habituated 19 9 27
W4 24.72 Habituated 10 8 18
W5 28.27 Habituated 16 6 12
W6 20.03 Not Habituated 9 16 18
W7 19.27 Not Habituated 14 10 30
W8 31.24 Habituated 18 9 16
W9 21.68 Habituated 2 8 26

W10 28.44 Habituated 29 6 14
W11 28.33 Habituated 6 16 31
W12 24.38 Habituated 8 9 13
W13 33.64 Not Habituated 7 14 27
W14 29.36 Not Habituated 12 11 19
W15 23.63 Not Habituated 2 17 31
W16 24.35 Not Habituated 29 25 43
W17 24.68 Habituated 9 9 16
W18 26.29 Not Habituated 4 8 21
W19 30.44 Not Habituated 7 11 37
W20 23.12 Habituated 8 11 21

TABLE 3. Physical effort according to the RCC [19].

RCC Physical Effort Level
0-9 Very Light

10-19 Light
20-29 Slightly moderate
30-39 Moderate
40-49 Slightly heavy
50-59 Heavy
60-69 Intense

when the worker stops the daily execution of the activity.
The membership function of the RCC variable is dynamic

to reflect the impact of habituation on the workload. The
maximum membership degree of the fuzzy set represents
that the RCC variable must be adjusted dynamically in the
range of 0 to 1, depending on the habituation level of the
worker. Thus, the value of the workload obtained represents
the particular condition of the worker. Figure 7 illustrates this
dynamism.

FIGURE 7. Dynamic RCC.

The Body Mass Index (BMI) is also an input variable for
the system; the BMI directly impacts the workload that a
person perceives. For a given physical activity, the higher the
BMI, the greater the impact on the workload.

6 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The result of the system derives from the rules applied to
the interaction between the activity’s energy level, habitua-
tion, BMI, and RCC.

C. OCCUPATIONAL HEAT STRESS ESTIMATION
Heat stress occurs when a person executes a physical activity
in an environment where the body produces or receives heat
in excess, and it causes physiological impairment [20].

Heat stress estimation determines how physical activity,
precisely the workload level, and environmental conditions
(mainly temperature and relative humidity) impact the ther-
mal sensation of the worker. Estimating the level of heat
stress helps to define actions that protect the integrity of the
worker, according to current worldwide regulations of occu-
pational safety and health. Figure 8 represents the proposed
fuzzy system to estimate Occupational Heat Stress (OHS).

FIGURE 8. Personalized OHS Estimation.

In ergonomics, the Wet Bulb Globe Thermometer
(WBGT) proposed by ISO is a specialized device used to
measure the effect of environmental temperature and relative
humidity on workers performing physical activities. How-
ever, we can obtain the functionality of the WBGT using
the temperature and humidity sensors of a smartphone and
then apply the method proposed by [21]. A conventional
thermometer is required to approximate the values obtained
with a WBGT, which means a simple and automated solution
that does not require specialized equipment. The Australian
Bureau of Meteorology proposes this approach identified as
WBGTA. In [22], the authors demonstrated a high correlation
between the results of the WBGTA and WBGT approaches.

In this third stage, the fuzzy system has two input vari-
ables: (i) the workload determined in stage two, and (ii) the
estimation of the WBGTA from the temperature and relative
humidity values prevailing when the worker performs the
physical activity. However, the WBGTA is a variable influ-
enced by a spatial context: the physical place where workers
perform the activity. We classified the physical areas into two
types: (i) indoors, and (ii) outdoors (with solar radiation).

The spatial context causes that the membership functions
of the variable WBGTA must be dynamic to reflect the
influence of the context on WBGTA (see Figure 9). The
WBGTA membership functions will have a dynamic shift
on the x-axis to reflect this dynamism; that is, we obtain the
mean value of each membership function, and its value will

be subjected to the type of physical area where the worker is
performing the physical activity.

FIGURE 9. Dynamic WBGTA.

V. RESULTS
A. ENERGY LEVEL ASSESSMENT RESULTS
Tables 4, 5 and 6 show the results of the estimated energy
levels for each of the participants during the performance
of the activities. The tables show how a fuzzy system that
classifies based on the acceleration values’ features results in
specific energy levels for different workers.

TABLE 4. Energy level for cleaning windows

Subject RMS Hip
energy

Wrist
energy Energy level

W1 1.67 16.52 2746.39 Moderate
W2 0.97 15.57 417.83 Light
W3 1.77 21.24 2792.42 Moderate
W4 1.44 13.68 784.22 Slightly moderate
W5 3.32 17.35 1008.28 Moderate
W6 0.81 11.46 608.43 Light
W7 2.16 11.79 483.63 Slightly moderate
W8 1.43 9.08 1537.85 Slightly moderate
W9 1.11 11.97 2419.69 Slightly moderate
W10 1.37 11.46 2516.29 Slightly moderate
W11 0.92 13.47 1024.66 Slightly moderate
W12 3.23 8.49 2052.96 Moderate
W13 2.47 25.14 1691.43 Moderate
W14 2.07 16.62 347.61 Light
W15 1.50 8.55 1613.49 Slightly moderate
W16 0.91 13.07 1048.32 Slightly moderate
W17 1.66 22.60 2122.87 Moderate
W18 0.94 16.39 706.10 Light
W19 2.31 27.74 2729.71 Moderate
W20 1.64 14.86 1131.77 Slightly moderate

B. WORKLOAD ASSESSMENT RESULTS
A conventional, non-customized way to estimate the work-
load is to use its correspondence in METs (Metabolic Equiv-
alent Task). In [23], the averages of caloric consumption
for a wide variety of physical activities are listed: (i) the
sweeping activity (code 05010) corresponds to 3.3 METs
(equivalent to a slightly moderate workload), (ii) the window
cleaning activity (code 05022) has an estimated consumption
of 3.2 METs (equivalent to a slightly moderate workload),
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TABLE 5. Energy level for sweeping floors

Subject RMS Hip
energy

Wrist
energy Energy level

W1 1.17 21.76 778.61 Slightly moderate
W2 1.39 14.95 514.17 Light
W3 1.52 56.08 1936.10 Heavy
W4 2.04 24.36 1567.42 Moderate
W5 0.58 15.11 2357.07 Slightly moderate
W6 0.82 14.66 125.52 Light
W7 1.73 15.72 208.02 Light
W8 1.59 16.96 1342.00 Slightly moderate
W9 1.20 24.55 1070.79 Slightly moderate

W10 1.29 19.91 1660.09 Slightly moderate
W11 1.09 19.87 1419.41 Slightly moderate
W12 2.47 15.21 653.24 Slightly moderate
W13 1.79 27.18 895.32 Slightly moderate
W14 1.42 17.05 1285.19 Slightly moderate
W15 1.27 16.34 1778.27 Moderate
W16 1.19 24.76 1571.85 Slightly moderate
W17 1.60 27.51 1366.34 Slightly moderate
W18 1.18 22.41 641.12 Light
W19 2.61 26.42 2812.80 Moderate
W20 1.35 24.49 2231.19 Moderate

TABLE 6. Energy level for stacking chairs

Subject RMS Hip
energy

Wrist
energy Energy level

W1 2.91 93.04 212.23 Heavy
W2 2.17 161.52 237.78 Slightly heavy
W3 3.23 174.19 458.92 Heavy
W4 3.73 112.71 120.39 Heavy
W5 2.78 184.72 215.40 Heavy
W6 1.71 57.27 97.69 Slightly heavy
W7 3.13 71.11 88.19 Heavy
W8 2.46 164.57 0.41 Heavy
W9 2.95 163.30 333.95 Heavy

W10 3.17 192.41 393.21 Heavy
W11 2.04 135.50 193.20 Slightly heavy
W12 3.36 54.16 82.32 Heavy
W13 3.44 111.34 204.90 Heavy
W14 3.60 148.03 245.44 Heavy
W15 2.10 97.57 211.25 Slightly heavy
W16 1.85 117.08 174.19 Slightly heavy
W17 3.30 182.81 489.26 Heavy
W18 2.28 146.79 374.12 Heavy
W19 3.30 137.61 312.66 Heavy
W20 2.37 103.45 163.29 Slightly heavy

and (iii) the chair stacking activity (code 05121) 5.0 METs
(equivalent to a slightly heavy workload).

However, generic solutions based on standard values (a
typical person, e.g., male, normal BMI, 180cm height, etc.)
do not allow the heterogeneity of the impact of variables
on people to be reflected. Figures 10, 11, and 12 show a
comparison of the generic estimation of the workload against
a personalized assessment and a customized analysis consid-
ering the context (time of habituation to the activity).

Additionally, as seen in Figures 10, 11, and 12, the
fuzzy system slightly increases the workload level for non-
habituated participants to physical activity (W*-NH). This is
the result of adapting the maximum membership degree in
the RCC variable to reveal the lack of habituation. A non-
habituated person increases their heart rate when performing

demanding activities with respect to a habituated person.

FIGURE 10. Workload for sweeping floors.

Figure 10 shows how a conventional workload calculation
method assigns a Slightly moderate workload to all workers
sweeping (black line). However, if we use the customized
fuzzy system approach (blue line), we obtain differentiated
and individual workloads. This differentiation is because the
energy level assessment applied to the activity (obtained with
the acceleration and heart rate values) is an input variable.
However, suppose we apply the contextual dynamic fuzzy
system approach to calculate workload for considering the
worker’s habituation to the activity (orange line). In that
case, a worker not habituated to the sweeping activity (for
example, W6-NH) has an increase in the workload level,
which even causes the workload level to rise from Very Light
to Light. We can see another example with the non-habituated
worker W13-NH. All of the above means that the contextual
approach considers elements of the context that can influence
the result.

FIGURE 11. Workload for cleaning windows.

FIGURE 12. Workload for stacking chairs.
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Figures 11 and 12 show how the dynamic approach based
on the fuzzy system’s context produces results that reflect the
fuzzy nature of the workload ranges and the context effect.
That is the impact of activity’s habituation on the worker’s
cardiac frequency, causing those who are not habituated to
have a higher workload.

The proposal is adaptive since new factors that influence
the system can be added, such as the worker’s fatigue level.
It is not the same to perform an activity in the early hours of
the working day to perform it after several hours of physical
activity. That is why the membership functions should be
dynamic to reflect contextual situations or events.

C. HEAT STRESS ASSESSMENT RESULTS
Tables 8, 9 and 10 show the final results of the heat stress
estimation. The resulting values can be three: (i) comfort, (ii)
discomfort, and (iii) occupational heat stress.

As mentioned in the method, the final value of comfort
results mainly from the valuation of the workload and envi-
ronmental conditions. One aspect to consider is the acclimati-
zation level to the geographical area where a person performs
their physical activity. In our case study, all participants
were acclimatized. According to the workload, the maximum
values of environmental temperature and humidity to avoid
OHS are shown in the second column of Table 7.

TABLE 7. WBGTA limit related to workload [11]

Workload Acclimatized
Workers

Unacclimatized
Workers

Light 30.0 29.0
Slightly moderate 29.0 27.5

Moderate 28.0 26.0
Slightly heavy 27.0 24.5

Heavy 26.0 23.0

For this case study, high environmental values of temper-
ature and relative humidity caused most participants to be
under stress, even though physical activity was light.

Figures 13, 14, and 15 show clearly the value of comfort,
discomfort or OHS for each participant. These figures are
useful to appreciate that although several participants may
have OHS as a final linguistic label, the level may be slightly
different. This also applies to the final discomfort status.

Solar radiation significantly increases the thermal sensa-
tion of people [24], so a physical space with high solar radi-
ation is part of the context to be considered when estimating
heat stress. The blue lines show the results with a common
fuzzy system and the orange lines show what is obtained
when our proposed approach is applied. As we can see in
the graphs, the workers (W*-O) who performed the activities
in sunny exteriors (Outdoor) presented an increase in heat
stress, in most of the cases. To obtain the above, the proposed
system performed a shift in the universe of discourse for
the WBGTA variable, indicating that the risk increases when
activities are performed outdoors and with solar radiation.

TABLE 8. Heat Stress for Sweeping floors

Subject WBGTA Workload Scenario Comfort
status

W1 28.01 Slightly moderate Indoor Discomfort
W2 26.90 Light Indoor Discomfort
W3 28.23 Heavy Indoor Discomfort
W4 31.08 Moderate Indoor OHS
W5 35.29 Slightly moderate Outdoor OHS
W6 38.09 Light Indoor OHS
W7 36.26 Light Indoor OHS
W8 35.68 Slightly moderate Indoor OHS
W9 31.52 Slightly moderate Indoor OHS
W10 35.06 Slightly moderate Outdoor OHS
W11 36.95 Slightly moderate Outdoor OHS
W12 26.49 Slightly moderate Indoor Discomfort
W13 33.13 Slightly moderate Indoor OHS
W14 30.73 Slightly moderate Indoor OHS
W15 32.54 Moderate Indoor OHS
W16 30.56 Slightly moderate Indoor OHS
W17 32.37 Slightly moderate Indoor OHS
W18 30.79 Light Indoor OHS
W19 31.87 Moderate Indoor OHS
W20 33.75 Moderate Outdoor OHS

TABLE 9. Heat Stress for Cleaning Windows

Subject WBGTA Workload Scenario Comfort
Status

W1 26.84 Moderate Indoor Discomfort
W2 27.22 Light Indoor Discomfort
W3 28.34 Moderate Indoor Discomfort
W4 32.24 Slightly moderate Indoor OHS
W5 36.13 Moderate Outdoor OHS
W6 36.47 Light Indoor OHS
W7 35.5 Slightly moderate Indoor OHS
W8 35.68 Slightly moderate Indoor OHS
W9 34.32 Slightly moderate Indoor OHS
W10 36.44 Slightly moderate Outdoor OHS
W11 35.07 Slightly moderate Outdoor OHS
W12 28.76 Moderate Indoor Discomfort
W13 33.84 Moderate Indoor OHS
W14 30.34 Light Indoor OHS
W15 33.5 Slightly moderate Indoor OHS
W16 31.32 Slightly moderate Indoor OHS
W17 32.96 Moderate Indoor OHS
W18 30.3 Light Indoor OHS
W19 31.92 Moderate Indoor OHS
W20 34.95 Slightly moderate Outdoor OHS

VI. DISCUSSION
The findings of the approach presented demonstrate that
a fuzzy system using dynamic membership functions can
produce results that are expressed in a realistic way. It is
an approach in which capturing the context, in real-time,
modeled by adaptive membership functions allows to reflect
the dynamic and fuzzy nature of real environments.

Other authors in the literature have studied the need to
build fuzzy dynamic systems. However, the other approaches
have partially addressed the aspect of the context in fuzzy
system dynamics (dynamism of the degree of belonging,
group’s shape amplitude, displacement of functions in the X-
axis, or the change of shape of belonging between triangular
and trapezoidal; all this as a function of time).

None of the authors has proposed an approach to integrate
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TABLE 10. Heat Stress for Stacking Chairs

Subject WBGTA Workload Scenario Comfort
Status

W1 25.81 Heavy Indoor OHS
W2 27.76 Slightly heavy Indoor OHS
W3 28.07 Heavy Indoor Discomfort
W4 31.72 Heavy Indoor OHS
W5 34.86 Heavy Outdoor OHS
W6 37.55 Slightly heavy Indoor OHS
W7 36.33 Heavy Indoor OHS
W8 35.77 Heavy Indoor OHS
W9 35.30 Heavy Indoor OHS

W10 35.45 Heavy Outdoor OHS
W11 35.65 Slightly heavy Outdoor OHS
W12 27.29 Heavy Indoor Discomfort
W13 34.75 Heavy Indoor OHS
W14 30.41 Heavy Indoor OHS
W15 33.56 Slightly heavy Indoor OHS
W16 31.51 Slightly heavy Indoor OHS
W17 33.63 Heavy Indoor OHS
W18 29.43 Heavy Indoor OHS
W19 31.94 Heavy Indoor OHS
W20 33.39 Slightly heavy Outdoor OHS

FIGURE 13. Comfort, discomfort or OHS status during sweeping floors.

FIGURE 14. Comfort, discomfort or OHS status during cleaning windows.

the context in a fuzzy system, and therefore, to consider
variables such as time, space, climatic conditions, groups’
variability, etc. It means a system that presents dynamism and
adaptability from the passage of time, physical location, time

FIGURE 15. Comfort, discomfort or OHS status during stacking chairs.

of day, type of scenario, people involved, etc.
As it can be seen, concerning dynamism, other authors

have only considered those variables of a temporary nature,
which are included as fuzzy system variables. Our approach
considers the context impacting fuzzy system variables,
which to our best knowledge has not yet been considered in
other approaches in the literature.

Previous research works do not allow any combination of
forms change among pyramidal, trapezoidal and Gaussian in
membership functions. Our approach represents an advance
in fuzzy systems concerning the current state of knowledge. It
brings dynamism to the system through multiple adaptations
in real time of the membership functions, based on changes
in the context.

Although dynamic membership functions reflecting the
context impact are significant, some limitations still need
to be addressed. For example, the shape of membership
functions may need to be even more diverse, including non-
convex and even amorphous groups that could have a real-
time evolution within a dynamic system.

We can appreciate the efficiency of the approach in the
case study since heat stress estimation considers personaliza-
tion and the dynamism imposed by real-time spatiotemporal
variables. Therefore, heat stress estimation results are very
heterogeneous and reflect that the same work and environ-
mental conditions affect people differently.

In this sense, since our approach offers personalized re-
sults, the number of users who participated in the experi-
ments is sufficient to exemplify the variations that can occur
in the results when performing the same physical activity.
We are not trying to reach generalized average values as
proposed in the standards, rather an approach where the
resulting values are for a specific person working in normal
climate conditions.

This approach personalizes the results because it captures
the physiological values of the workers in real time (move-
ments and heart rate) and considers context variables such
as time of habituation or changing physical space conditions
where the workers perform their physical activities (indoors-
shade, outdoors-sun). Consequently, these results are closer
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to real conditions than other proposals that do not include it.
Many authors have used fuzzy logic to estimate the risk de-

rived from heat stress. Their solutions are static systems that
do not have personalized estimations; they do not consider
the dynamism imposed by contextual conditions (space-time)
that occur in real time. The subject has only been addressed
as a problem of multi-criteria decision making that presents
ambiguous or imprecise situations, and therefore, fuzzy logic
is used [25]. These are approaches based on past statistical
data (not in real time) [26].

In the case study, no other approach considers the dy-
namism and personalization to be automated and as a real-
time solution, which identifies the physical activity per-
formed, the estimation of the personalized workload, and
the calculation of the level of heat stress influence in real
time of contextual variables. That makes it necessary for the
membership functions of the fuzzy system to be dynamic and
adaptable.

The main finding is that it was essential to personalize
the estimations because although participants performed their
tasks under the same instruction, they performed it in their
own way. Consequently, there are different physiological
responses to work activities. It means differences in work
techniques influence how people use their muscles and the
amount of strength when performing physical exercises.
Also, the work tasks were performed at different intensity
levels, as some workers were habituated, and others not.
Specifically, when estimating physical stresses in real scenar-
ios it must be considered that there are environmental aspects
that have an influence, such as heat [27].

As these are personalized estimates, the approach applied
to the use case allows identifying the work style of a per-
son since the results reflect similar behavior in the various
activities. For example, participant W12 carried out each
experiment with low energy, as a characteristic of personality
in physical work.

The limitations of the case study are that some factors re-
lated to people are not considered, for example, sick people,
special feeding conditions, or tiredness derived from inade-
quate sleep, which could affect the worker’s performance. As
for the context, we do not consider scenarios such as cloudy
or windy days. The above exemplifies that the context could
consider an enormous amount of variables.

Performing experiments within an environment with lower
ambient temperature values would result in a greater diversity
of final status.

VII. CONCLUSIONS AND FUTURE WORK
A fuzzy system with dynamic membership functions is
adaptive because it can reflect the context without being
redesigned. The different forms of dynamism considered
for the membership functions make the system evolutionary,
unlike conventional fuzzy systems that are static. Therefore,
it is necessary to include various types of dynamism so that
the fuzzy system is context-aware.

Related to the case study, we can appreciate the bene-
fits of an automated, personalized and dynamic heat stress
evaluation, which reflects the diversity of the impact of the
same physical activity on different people at any one time.
Most workers were under occupational heat stress during
the experiments. This was mainly due to the environmental
conditions of the geographical location where the physical
activities were performed. The selected scenario is useful be-
cause it allows evidencing the negative conditions to perform
physical works in tropical climates (hot-humid), according
to the international regulations of occupational health and
safety.

This work impacts the field of fuzzy systems by making
them adaptive to the context; that is, the approach considers
that the membership functions are dynamic from contextual
situations or events. The system design does not have to be
modified to represent a change in the context.

Future work will consider the dynamism and adaptability
of membership functions to have groups that better reflect
the context, that is, the creation of forms different from the
conventional ones (triangular, trapezoidal, and Gaussian), for
example, non-convex or amorphous groups.

.
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