1,212 research outputs found

    A mobile agent strategy for grid interoperable virtual organisations

    Get PDF
    During the last few years much effort has been put into developing grid computing and proposing an open and interoperable framework for grid resources capable of defining a decentralized control setting. Such environments may define new rules and actions relating to internal Virtual Organisation (VO) members and therefore posing new challenges towards to an extended cooperation model of grids. More specifically, VO policies from the viewpoint of internal knowledge and capabilities may be expressed in the form of intelligent agents thus providing a more autonomous solution of inter-communicating members. In this paper we propose an interoperable mobility agent model that performs migration to any interacting VO member and by traveling within each domain allows the discovery of resources dynamically. The originality of our approach is the mobility mechanism based on traveling and migration which stores useful information during the route to each visited individual. The method is considered under the Foundation for Intelligent Physical Agents (FIPA) standard which provides an on demand resource provisioning model for autonomous mobile agents. Finally the decentralization of the proposed model is achieved by providing each member with a public profile of personal information which is available upon request from any interconnected member during the resource discovery process

    Network Security Using Self Organized Multi-Agent Swarms

    Get PDF
    Computer network cyber-security is a very serious concern in many commercial, industrial, and military environments. This paper proposes a new computer network security approach defined by self organized agent swarms (SOMAS) which provides a novel computer network security management framework based upon desired overall system behaviors. The SOMAS structure evolves based upon the partially observable Markov decision process (POMDP) formal model and the more complex interactive-POMDP and decentralized-POMDP models. Example swarm specific and network based behaviors are formalized and simulated. This paper illustrates through various statistical testing techniques, the significance of this proposed SOMAS architecture

    Security in mobile agent systems: an approach to protect mobile agents from malicious host attacks

    Get PDF
    Mobile agents are autonomous programs that roam the Internet from machine to machine under their own control on behalf of their users to perform specific pre-defined tasks. In addition to that, a mobile agent can suspend its execution at any point; transfer itself to another machine then resume execution at the new machine without any loss of state. Such a mobile model can perform many possible types of operations, and might carry critical data that has to be protected from possible attacks. The issue of agent security and specially agent protection from host attacks has been a hot topic and no fully comprehensive solution has been found so far. In this thesis, we examine the possible security attacks that hosts and agents suffer from. These attacks can take one of four possible forms: Attacks from host to host, from agents to hosts, from agents to agents (peer to peer) and finally from hosts to agents. Our main concern in this thesis is these attacks from a malicious host on an agent. These attacks can take many forms including rerouting, spying out code, spying out data, spying out control flow, manipulation of code, manipulation of data, manipulation of control flow, incorrect execution of code, masquerading and denial of execution. In an attempt to solve the problem of malicious host attacks on agents, many partial solutions were proposed. These solutions ranged across simple legal protection, hardware solutions, partitioning, replication and voting, components, self-authentication, and migration history. Other solutions also included using audit logs, read-only state, append only logs, encrypted algorithms, digital signatures, partial result authentication codes, and code mess-up, limited life time of code and data as well as time limited black box security. In this thesis, we present a three-tier solution. This solution is a combination of code mess up, encryption and time out. Choosing code mess-up as part of the solution was due to the several strengths of this method that is based on obfuscating the features of the code so that any attacker will find it very difficult to understand the original code. A new algorithm iii was developed in this thesis to implement code mess-up that uses the concept of variable disguising by altering the values of strings and numerical values. Several encryption algorithms were studied to choose the best algorithm to use in the development of the proposed solution. The algorithms studied included DES, LUCIFER, MADRYGA, NEWDES, FEAL, REDOC, LOKI, KHUFU & KHAFRE, IDEA and finally MMB. The algorithm used was the DES algorithm due to several important factors including its key length. Not any language can be used to implement mobile agents. Candidate languages should possess the portability characteristic and should be safe and secure enough to guarantee a protection for the mobile agent. In addition to that the language should be efficient in order to minimize the implementation overhead and the overhead of providing safety and security. Languages used to implement mobile agents include Java, Limbo, Telescript, and Safe TCL. The Java language was chosen as the programming language for this thesis due to its high security, platform independence, and multithreading. This is in addition to several powerful features that characterize the Java language as will be mentioned later on. Implementing a mobile agent requires the assistance of a mobile agent system that helps in launching the agent from one host to another. There are many existing agent launching systems like Telescript, Aglets, Tacoma, Agent TCL and Concordia. Concordia was chosen to be the implementation tool used to launch our mobile agent. It is a software framework for developing, running and administering mobile agents, and it proved to be very efficient, and effective. The results of our proposed solutions showed the strength of the proposed model in terms of fully protecting the mobile agent from possible malicious host attacks. The model could have several points of enhancements. These enhancements include changing the code mess-up algorithm to a more powerful one, using a different encryption technique, and implementing an agent re-charge mechanism to recharge the agent after it is timeout

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    Wildlife in an anthropogenically-driven world: how humans have shaped the distribution, genetic composition, and gene expression of North American forest hawks (Genus: Accipiter)

    Get PDF
    Humans are causing drastic environmental change on a global scale and this trend strongly influences the evolution of species. It is also becoming clear that tolerances to anthropogenic disturbance varies widely among organisms. Therefore, understanding the mechanisms by which wildlife cope with humans is a pressing question in modern ecology. North America\u27s forest raptors (Genus: Accipiter) are a useful model for investigating the effects of humans on wildlife species. All three Accipiter species experienced historic demographic declines as a result of anthropogenic activities, yet each species has rebounded differently since these declines. One species in particular is now exploiting urban areas, despite the fact that all of these species were traditionally considered highly dependent on large contiguous forests for survival. This dissertation consists of one introductory chapter, three chapters involving research to improve our current understanding of the impacts of anthropogenic activities on the raptors, and two chapters focused on the development of tools for improving future avian research. The first chapter provides background information on the history of Accipiter hawks in the eastern United States. There are also basic descriptions of some of the novel genetic tools that are becoming increasingly valuable in this and other wildlife studies. In addition, this chapter provides justification for the research and an outline of the project goals. For the second chapter, I developed a spatial habitat model using Maximum Entropy to locate nesting habitat for northern goshawks (Accipiter gentilis) in New York State, a potential stronghold for this species in the east. This species is the most secretive of the Accipiters, considered highly sensitive to human disturbance, and a species of concern in many eastern states. The model predicted nesting habitat with high success (AUC = 0.87), and ground-truthing efforts identified two previously unknown nest territories. In addition, my model provides some evidence of a shift in forest cover preference by goshawks nesting in New York, as coniferous land cover was the most important predictor in the model (67%). Future modeling efforts should include additional and more detailed environmental input layers. In the third chapter, I developed a new mechanical lure owl for trapping nesting raptors that exhibited both realistic head and wing movements. The mechanical owl was tested on six species of raptors and capture rates were similar or better than previously reported with a live lure owl for five of the six species. In addition, average time to capture was eight minutes faster with the mechanical owl as compared to a live owl when trapping northern goshawks (p \u3c 0.01). A mechanical owl costs less and is ethically more appropriate to live lure owls and thus, the use of this type of owl may be warranted in future raptor research. For the fourth chapter, I investigated the genetic consequences of demographic declines in Accipiter hawks. I used microsatellite markers to test for evidence of significant genetic bottlenecks in northern goshawks and Cooper\u27s hawks (A. cooperii) in the northeastern United States. There was some evidence to suggest a bottleneck in goshawks using the heterozygosity excess method, while the M ratio method suggested a bottleneck in Cooper\u27s hawks. However, similar to previous studies, I found that the results of bottleneck testing are strongly dependent on mutation model parameters, which are not available for Accipiter hawks and numerous other non-model organisms. Still, by using the results from tests on both species, I was able to ascertain useful information about the relative impact of historic declines. The Cooper\u27s hawk likely experienced more drastic declines than goshawks, while the goshawk population has likely been small for a relatively long time. Finally, useful baseline information about the contemporary genetic structure of both species was gained from this research. There is no evidence of inbreeding in either population and both species have high levels of gene flow in the northeastern United States. In the fifth chapter, I compared two commercially available buffers for stabilization of RNA from avian blood for downstream RNA processing. Avian blood presents a particular challenge because it contains nucleated red blood cells and most buffers have been developed for blood with non-nucleated red blood cells (e.g. mammalian blood). Each buffer was subjected to a variety of room temperature incubation periods and freeze treatments, to simulate different field sampling scenarios. RNAlater outperformed RNAProtect; RNAlater reliably stabilized RNA regardless of treatment. However, RNA integrity numbers (RIN) varied widely between samples (1.7 -- 7.5). RNA from Cooper\u27s hawk blood stored in RNAlater was sequenced and mapped to the golden eagle (Aquila chrysaetos) genome. Quality assessment suggested that reads were of high quality regardless of RIN value. However, reads that aligned to the reference genome had relatively low sensitivity (\u3c14%) and a wide range of precision (10-61%). These results suggest that RNAlater can be used to obtain usable RNA for avian blood, but future research may be useful for improving stabilization buffers for species with nucleated red blood cells. The sixth and final chapter focuses on the Cooper\u27s hawk in urban environments. This species has recently been found nesting in high densities in urban centers and an extensive body of research has demonstrated differences between urban and exurban individuals. When colonizing urban areas, organisms can either adapt through heritable genetic mechanisms or acclimate through plastic mechanisms such as gene expression. Previous research suggested that highly mobile species may be more likely to acclimate since they are capable of moving away from potential stressors. Therefore, I used RNA-sequencing to compare gene expression patterns in the blood of urban and exurban adult and fledgling Cooper\u27s hawks in the Albuquerque, NM area. I also tested all individuals for the presence of an urban-associated parasite (Trichomonas gallinae). I found one and thirteen differentially expressed (DE) transcripts between urban and exurban adults and fledglings, respectively (q \u3c 0.05). For fledglings, more abundant transcripts in the urban environment were mostly associated with nucleotide processing, while those in exurban environments were mostly associated with immune response. The single transcript identified as DE in the adults was more abundant in urban environments and is associated with nucleotide processing, metal ion binding, and platelet production in humans. The greater number of DE transcripts in the fledglings may suggest that changes in gene expression may be especially important for the sedentary offspring of a highly mobile avian urban exploiter. In addition, six fledglings tested positive for Trichomonas spp.; three in each environment. Yet, immune related transcripts were expressed in much higher levels in all exurban individuals, regardless of parasite presence. Future research is warranted to determine if toxin loading in urban environments may lead to immunosuppression of offspring and potentially explain previously described mortality in urban nestlings from trichomoniasis infection

    Transforming state-citizen relations in food security schemes : the computerized ration card management system in Kerala

    Get PDF
    In this paper we look at the application of ICTs to the improvement of state-citizen relations in a developing country context. Our argument is that, to maximise responsiveness of the government, ICTs need to target the structural problems in state-citizen relations, from which unresponsiveness of the state to citizens is generated. Failure, as portrayed here, arises from the fact that ICTs, rather than being used for tackling the causes of issues in government responsiveness, tend to be conceived and utilised primarily as a means for acquiring political consensus. This argument is illustrated through a case study of computerisation of the ration card procedure in the southern Indian state of Kerala, where a typical problem of state unresponsiveness – mirrored by a burgeoning amount of unattended ration card applications – is matched by a typical e-government solution, i.e. digitalisation of the process of document release. Our case study reveals that, while the structural problems of the process of ration card delivery in Kerala lie within two crucial nodes, namely poverty status determination and verification of applications, the digital solution devised by the government addresses predominantly the front-end, politically appealing node constituted by citizen application for a ration card. This strategy, which leaves untouched the crucial nodes of state unresponsiveness, turns out in citizen dissatisfaction on the long run. Implications are both theoretical, as a cause for failure is identified and deconstructed in the domain of ICT4D, and practical, as an orientation to structural problems is recommended for policymakers that engage in ICT-based government reform. Keywords: e-governance; food security; public distribution system; ration card; computerization; Kerala JEl Classification: O20, O33; O3
    corecore