422 research outputs found

    A Comparison of Snow Depth on Sea Ice Retrievals Using Airborne Altimeters and an AMSR-E Simulator

    Get PDF
    A comparison of snow depths on sea ice was made using airborne altimeters and an Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) simulator. The data were collected during the March 2006 National Aeronautics and Space Administration (NASA) Arctic field campaign utilizing the NASA P-3B aircraft. The campaign consisted of an initial series of coordinated surface and aircraft measurements over Elson Lagoon, Alaska and adjacent seas followed by a series of large-scale (100 km ? 50 km) coordinated aircraft and AMSR-E snow depth measurements over portions of the Chukchi and Beaufort seas. This paper focuses on the latter part of the campaign. The P-3B aircraft carried the University of Colorado Polarimetric Scanning Radiometer (PSR-A), the NASA Wallops Airborne Topographic Mapper (ATM) lidar altimeter, and the University of Kansas Delay-Doppler (D2P) radar altimeter. The PSR-A was used as an AMSR-E simulator, whereas the ATM and D2P altimeters were used in combination to provide an independent estimate of snow depth. Results of a comparison between the altimeter-derived snow depths and the equivalent AMSR-E snow depths using PSR-A brightness temperatures calibrated relative to AMSR-E are presented. Data collected over a frozen coastal polynya were used to intercalibrate the ATM and D2P altimeters before estimating an altimeter snow depth. Results show that the mean difference between the PSR and altimeter snow depths is -2.4 cm (PSR minus altimeter) with a standard deviation of 7.7 cm. The RMS difference is 8.0 cm. The overall correlation between the two snow depth data sets is 0.59

    Consistency in the AMSR-E snow products: groundwork for a coupled snowfall and SWE algorithm

    Get PDF
    2019 Fall.Includes bibliographical references.Snow is an important wintertime property because it is a source of freshwater, regulates land-atmosphere exchanges, and increases the surface albedo of snow-covered regions. Unfortunately, in-situ observations of both snowfall and snow water equivalent (SWE) are globally sparse and point measurements are not representative of the surrounding area, especially in mountainous regions. The total amount of land covered by snow, which is climatologically important, is fairly straightforward to measure using satellite remote sensing. The total SWE is hydrologically more useful, but significantly more difficult to measure. Accurately measuring snowfall and SWE is an important first step toward a better understanding of the impacts snow has for hydrological and climatological purposes. Satellite passive microwave retrievals of snow offer potential due to consistent overpasses and the capability to make measurements during the day, night, and cloudy conditions. However, passive microwave snow retrievals are less mature than precipitation retrievals and have been an ongoing area of research. Exacerbating the problem, communities that remotely sense snowfall and SWE from passive microwave sensors have historically operated independently while the accuracy of the products has suffered because of the physical and radiometric dependency between the two. In this study, we assessed the relationship between the Northern Hemisphere snowfall and SWE products from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E). This assessment provides insight into regimes that can be used as a starting point for future improvements using coupled snowfall and SWE algorithm. SnowModel, a physically-based snow evolution modeling system driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis, was employed to consistently compare snowfall and SWE by accounting for snow evolution. SnowModel has the ability to assimilate observed SWE values to scale the amount of snow that must have fallen to match the observed SWE. Assimilation was performed using AMSR-E, Canadian Meteorological Centre (CMC) Snow Analysis, and Snow Data Assimilation System (SNODAS) SWE to infer the required snowfall for each dataset. Observed AMSR-E snowfall and SWE were then compared to the MERRA-2 snowfall and SnowModel-produced SWE as well as SNODAS and CMC inferred snowfall and observed SWE. Results from the study showed significantly different snowfall and SWE bias patterns observed by AMSR-E. Specifically, snowfall was underestimated nearly globally and SWE had pronounced regions of over and underestimation. Snowfall and SWE biases were found to differ as a function of surface temperature, snow class, and elevation

    Exploring the use of MODIS forest transmissivity for correcting passive microwave observation of snow-covered terrain/landscape

    Get PDF
    Snow is one of the most important parts in Earth’s hydrologic cycle especially at high latitude. Observation of snow accumulation by passive microwave measurements is an effective way for estimating snow mass at the regional to hemispheric scales because microwaves have the capability of interacting with the snow and the amount of interaction is controlled by the bulk properties of a snowpack such as snow water equivalent (SWE) or snow depth (SD). Compared with optical approaches, microwave observations can be made under nearly all weather and lighting conditions. Forest coverage is one of the challenges in the estimation of snow accumulation by passive microwave observations. Canopy can decrease the accuracy of SWE retrieval by attenuating microwave emission from ground and by producing additional emission. Because forest is one of the major land cover types, retrieval SWE in forested domains is the key challenge in the estimation of snow properties with passive microwave. Transmissivity of radiation is an important variable that describes how a tree canopy attenuates microwave emission from ground. If this variable is known, inverse microwave emission retrieval schemes can provide reasonable estimates for SWE in forest area. Although transmissivity can be measured in the field or retrieved by model which based on field data, field data is not always available especially at regional to global scales. Therefore, following the work of Metsamaki et al. (2005) a transmissivity model driven reflectance data from the Moderate Resolution Imaging Spectroradiometer (MODIS) been applied for retrieval transmissivity in this study. Because SCAmod need reflectance from snow covered condition to drive, it only can be applied in high the latitude area. MOD44B data were used to extend this transmissivity data to lower latitude area because MOD44B data and transmissivity data are highly correlated. The vegetation's influence on PM brightness temperature were explored by compare the PM brightness temperature at open area with forest covered area. In general, the brightness temperature contributed by the vegetation increases with the increase of forest vegetation density. In the higher frequency bands, vegetation tends to contribute more brightness temperature than lower frequency bands. This finding can be used to solve SWE or SD underestimate in the forest region

    Hydrologic Remote Sensing and Land Surface Data Assimilation

    Get PDF
    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface?atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation

    Harmonization of remote sensing land surface products : correction of clear-sky bias and characterization of directional effects

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Deteção Remota), Universidade de Lisboa, Faculdade de Ciências, 2018Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean energy balance at the surface. LST is an important climatological variable and a diagnostic parameter of land surface conditions, since it is the primary variable determining the upward thermal radiation and one of the main controllers of sensible and latent heat fluxes between the surface and the atmosphere. The reliable and long-term estimation of LST is therefore highly relevant for a wide range of applications, including, amongst others: (i) land surface model validation and monitoring; (ii) data assimilation; (iii) hydrological applications; and (iv) climate monitoring. Remote sensing constitutes the most effective method to observe LST over large areas and on a regular basis. Satellite LST products generally rely on measurements in the thermal infrared (IR) atmospheric window, i.e., within the 8-13 micrometer range. Beside the relatively weak atmospheric attenuation under clear sky conditions, this band includes the peak of the Earth’s spectral radiance, considering surface temperature of the order of 300K (leading to maximum emission at approximately 9.6 micrometer, according to Wien’s Displacement Law). The estimation of LST from remote sensing instruments operating in the IR is being routinely performed for nearly 3 decades. Nevertheless, there is still a long list of open issues, some of them to be addressed in this PhD thesis. First, the viewing position of the different remote sensing platforms may lead to variability of the retrieved surface temperature that depends on the surface heterogeneity of the pixel – dominant land cover, orography. This effect introduces significant discrepancies among LST estimations from different sensors, overlapping in space and time, that are not related to uncertainties in the methodologies or input data used. Furthermore, these directional effects deviate LST products from an ideally defined LST, which should correspond to the ensemble directional radiometric temperature of all surface elements within the FOV. In this thesis, a geometric model is presented that allows the upscaling of in situ measurements to the any viewing configuration. This model allowed generating a synthetic database of directional LST that was used consistently to evaluate different parametric models of directional LST. Ultimately, a methodology is proposed that allows the operational use of such parametric models to correct angular effects on the retrieved LST. Second, the use of infrared data limits the retrieval of LST to clear sky conditions, since clouds “close” the atmospheric window. This effect introduces a clear-sky bias in IR LST datasets that is difficult to quantify since it varies in space and time. In addition, the cloud clearing requirement severely limits the space-time sampling of IR measurements. Passive microwave (MW) measurements are much less affected by clouds than IR observations. LST estimates can in principle be derived from MW measurements, regardless of the cloud conditions. However, retrieving LST from MW and matching those estimations with IR-derived values is challenging and there have been only a few attempts so far. In this thesis, a methodology is presented to retrieve LST from passive MW observations. The MW LST dataset is examined comprehensively against in situ measurements and multiple IR LST products. Finally, the MW LST data is used to assess the spatial-temporal patterns of the clear-sky bias at global scale.Fundação para a Ciência e a Tecnologia, SFRH/BD/9646

    The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    Get PDF
    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the inconsistency between thermal IR skin temperatures and passive microwave brightness temperatures which can originate from below the surface. The mismatch between day and night AMSR-E emissivities is greater than ascending and descending differences of SSM/I emissivity. This is because of unique orbit time of AMSR-E (01:30 a.m./p.m. LT) while other microwave sensors have orbit time of 06:00 to 09:00 (a.m./p.m.). This highlights the importance of considering the penetration depth of the microwave signal and diurnal variability of the temperature in emissivity retrieval. The effect of these factors is greater for AMSR-E observations than SSM/I observations, as AMSR-E observations exhibit a greater difference between day and night measures. This issue must be addressed in future studies to improve the accuracy of the emissivity estimates especially at AMSR-E lower frequencies

    Rain-on-snow events in Alaska, their frequency and distribution from satellite observations

    Get PDF
    Wet snow and the icing events that frequently follow wintertime rain-on-snow (ROS) affect high latitude ecosystems at multiple spatial and temporal scales, including hydrology, carbon cycle, wildlife, and human development. However, the distribution of ROS events and their response to climatic changes are uncertain. In this study, we quantified ROS spatiotemporal variability across Alaska during the cold season (November to March) and clarified the influence of precipitation and temperature variations on these patterns. A satellite-based daily ROS geospatial classification was derived for the region by combining remote sensing information from overlapping MODIS and AMSR sensor records. The ROS record extended over the recent satellite record (water years 2003–2011 and 2013–2016) and was derived at a daily time step and 6 km grid, benefiting from finer (500 m) resolution MODIS snow cover observations and coarser (12.5 km) AMSR microwave brightness temperature-based freeze–thaw retrievals. The classification showed favorable ROS detection accuracy (75%–100%) against in situ climate observations across Alaska. Pixel-wise correlation analysis was used to clarify relationships between the ROS patterns and underlying physiography and climatic influences. Our findings indicate that cold season ROS events are most common during autumn and spring months along the maritime Bering Sea coast and boreal interior regions, but are infrequent on the colder arctic North Slope. The frequency and extent of ROS events coincided with warm temperature anomalies (p \u3c 0.1), but showed a generally weaker relationship with precipitation. The weaker precipitation relationship was attributed to several factors, including large uncertainty in cold season precipitation measurements, and the important contribution of humidity and turbulent energy transfer in driving snowmelt and icing events independent of rainfall. Our results suggest that as high latitude temperatures increase, wet snow and ROS events will also increase in frequency and extent, particularly in the southwestern and interior regions of Alaska

    Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015

    Get PDF
    A new automated method enabling consistent satellite assessment of seasonal lake ice phenology at 5 km resolution was developed for all lake pixels (water coverage  ≥  90 %) in the Northern Hemisphere using 36.5 GHz H-polarized brightness temperature (Tb) observations from the Advanced Microwave Scanning Radiometer for EOS and Advanced Microwave Scanning Radiometer 2 (AMSR-E/2) sensors. The lake phenology metrics include seasonal timing and duration of annual ice cover. A moving t test (MTT) algorithm allows for automated lake ice retrievals with daily temporal fidelity and 5 km resolution gridding. The resulting ice phenology record shows strong agreement with available ground-based observations from the Global Lake and River Ice Phenology Database (95.4 % temporal agreement) and favorable correlations (R) with alternative ice phenology records from the Interactive Multisensor Snow and Ice Mapping System (R = 0.84 for water clear of ice (WCI) dates; R = 0.41 for complete freeze over (CFO) dates) and Canadian Ice Service (R = 0.86 for WCI dates; R = 0.69 for CFO dates). Analysis of the resulting 12-year (2002–2015) AMSR-E/2 ice record indicates increasingly shorter ice cover duration for 43 out of 71 (60.6 %) Northern Hemisphere lakes examined, with significant (p  \u3c  0.05) regional trends toward earlier ice melting for only five lakes. Higher-latitude lakes reveal more widespread and larger trends toward shorter ice cover duration than lower-latitude lakes, consistent with enhanced polar warming. This study documents a new satellite-based approach for rapid assessment and regional monitoring of seasonal ice cover changes over large lakes, with resulting accuracy suitable for global change studies
    • …
    corecore