271 research outputs found

    Asynchronous Channel Training in Multi-Cell Massive MIMO

    Full text link
    Pilot contamination has been regarded as the main bottleneck in time division duplexing (TDD) multi-cell massive multiple-input multiple-output (MIMO) systems. The pilot contamination problem cannot be addressed with large-scale antenna arrays. We provide a novel asynchronous channel training scheme to obtain precise channel matrices without the cooperation of base stations. The scheme takes advantage of sampling diversity by inducing intentional timing mismatch. Then, the linear minimum mean square error (LMMSE) estimator and the zero-forcing (ZF) estimator are designed. Moreover, we derive the minimum square error (MSE) upper bound of the ZF estimator. In addition, we propose the equally-divided delay scheme which under certain conditions is the optimal solution to minimize the MSE of the ZF estimator employing the identity matrix as pilot matrix. We calculate the uplink achievable rate using maximum ratio combining (MRC) to compare asynchronous and synchronous channel training schemes. Finally, simulation results demonstrate that the asynchronous channel estimation scheme can greatly reduce the harmful effect of pilot contamination

    Network efficiency enhancement by reactive channel state based allocation scheme

    Get PDF
    Now a day the large MIMO has considered as the efficient approach to improve the spectral and energy efficiency at WMN. However, the PC is a big issue that caused by reusing similar pilot sequence at cells, which also restrict the performance of massive MIMO network. Here, we give the alternative answer, where each of UEs required allotting a channel sequences before passing the payload data, so as to avoid the channel collision of inter-cell. Our proposed protocol will ready to determine the channel collisions in distributed and scalable process, however giving unique properties of the large MIMO channels. Here we have proposed a RCSA (Reactive channel state based allocation) scheme, which will very productively work with the RAP blockers at large network of MIMO. The position of time-frequency of RAP blocks is modified in the middle of the adjacent cells, because of this design decision the RAP defend from the hardest types of interference at inter-cell. Further, to validate the performance of our proposed scheme it will be compared with other existing technique

    Enhancing Coexistence in the Unlicensed Band with Massive MIMO

    Full text link
    We consider cellular base stations (BSs) equipped with a large number of antennas and operating in the unlicensed band. We denote such system as massive MIMO unlicensed (mMIMO-U). We design the key procedures required to guarantee coexistence between a cellular BS and nearby Wi-Fi devices. These include: neighboring Wi-Fi channel covariance estimation, allocation of spatial degrees of freedom for interference suppression, and enhanced channel sensing and data transmission phases. We evaluate the performance of the so-designed mMIMO-U, showing that it allows simultaneous cellular and Wi-Fi transmissions by keeping their mutual interference below the regulatory threshold. The same is not true for conventional listen-before-talk (LBT) operations. As a result, mMIMO-U boosts the aggregate cellular-plus-Wi-Fi data rate in the unlicensed band with respect to conventional LBT, exhibiting increasing gains as the number of BS antennas grows.Comment: To appear in Proc. IEEE ICC 201

    Massive MIMO for Internet of Things (IoT) Connectivity

    Full text link
    Massive MIMO is considered to be one of the key technologies in the emerging 5G systems, but also a concept applicable to other wireless systems. Exploiting the large number of degrees of freedom (DoFs) of massive MIMO essential for achieving high spectral efficiency, high data rates and extreme spatial multiplexing of densely distributed users. On the one hand, the benefits of applying massive MIMO for broadband communication are well known and there has been a large body of research on designing communication schemes to support high rates. On the other hand, using massive MIMO for Internet-of-Things (IoT) is still a developing topic, as IoT connectivity has requirements and constraints that are significantly different from the broadband connections. In this paper we investigate the applicability of massive MIMO to IoT connectivity. Specifically, we treat the two generic types of IoT connections envisioned in 5G: massive machine-type communication (mMTC) and ultra-reliable low-latency communication (URLLC). This paper fills this important gap by identifying the opportunities and challenges in exploiting massive MIMO for IoT connectivity. We provide insights into the trade-offs that emerge when massive MIMO is applied to mMTC or URLLC and present a number of suitable communication schemes. The discussion continues to the questions of network slicing of the wireless resources and the use of massive MIMO to simultaneously support IoT connections with very heterogeneous requirements. The main conclusion is that massive MIMO can bring benefits to the scenarios with IoT connectivity, but it requires tight integration of the physical-layer techniques with the protocol design.Comment: Submitted for publicatio

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces
    corecore