1,945 research outputs found

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Performance analysis and optimization of asynchronous circuits

    Get PDF
    Journal ArticleAsynchronous/Self-timed circuits are beginning to attract renewed attention as promising means of dealing with the complexity of modern VLSI designs. However, there are very few analysis techniques or tools available for estimating the performance of asynchronous circuits. In this paper we adapt the theory of Generalized Timed Petri-nets (GTPN) for analyzing and comparing a wide variety of asynchronous circuits, ranging from purely control-oriented circuits such as cross-bar arbiters to large asynchronous systems with data dependent control such as asynchronous processors. Experiments with the GTPN analyzer are found to track the observed performance of actual asynchronous circuits, thereby offering empirical evidence towards the soundness of the modeling approach. Our main contribution is in demonstrating how a quantitative design methodology for asynchronous circuits can be developed based on Timed Petri-nets

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    Petri Nets.

    Get PDF

    Practical advances in asynchronous design and in asynchronous/synchronous interfaces

    Get PDF
    Journal ArticleAsynchronous systems are being viewed as an increasingly viable alternative to purely synchronous systems. This paper gives an overview of the current state of the art in practical asynchronous circuit and system design in four areas: controllers, datapaths, processors, and the design of asynchronous/synchronous interfaces
    • …
    corecore