10,763 research outputs found

    Multiband CSMA/CA with RTS-CTS strategy

    Get PDF
    We present in this paper a new medium access control (MAC) scheme devoted to orthogonal frequency division multiple access (OFDMA) systems which aims at reducing collision probabilities during the channel request period. The proposed MAC relies on the classical carrier sense multiple access/collision avoidance (CSMA/CA) protocol with RTS / CTS ("Request To Send" / "Clear To Send") mechanism. The proposed method focus on the collision probability of RTS messages exploiting a multi-channel configuration for these messages while using the whole band for data transmissions. The protocol may be interpreted as an asynchronous frequency multiplexing of RTS messages. This method achieves strong performance gains in terms of throughput and latency especially in crowded networks. Index Terms-Carrier sense multiple access/collision avoidance (CSMA/CA), multiband, throughput, MAC protocol

    Dynamic-Threshold-Limited Timed-Token (DTLTT) Protocol

    Get PDF
    An improved version of the Static-Threshold-Limited On-Demand Guaranteed Service Timed-Token (STOGSTT) Media Access Control (MAC) protocol for channel capacity allocation to the asynchronous trac in Multiservice Local Area Network (MLANs) was developed and analyzed. TLODGSTT protocol uses static value of threshold bandwidth to allocate available bandwidth to the asynchronous trac, as such, the throughput of STLODGSTT protocol drops signi cantly under non-uniform heavy load of asynchronous trac. The DTLTT protocol dynamically adjusts the threshold bandwidth in response to the variations in the load distribution of the asynchronous trac. In view of this dynamic mechanism, under various load distributions of the asynchronous trac, the DTLTT protocol maintains higher throughput than the STLODGSTT protocol. The improvement is demonstrated through analytical computations and simulation results.Keywords: multi-access, multiservice, network, synchronous, asynchronous, trac, timed-toke

    A New Exposed-terminal-free MAC Protocol for Multi-hop Wireless Networks

    Get PDF
    AbstractThis article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another common channel thus completely eliminating the exposed-terminal effects. Any adjacent communication pair can take full advantage of multiple traffic channels without collision and the spatial reuse of the same channel is extended to other communication pairs which are even within 2 hops from them. In addition, the hidden-terminal effect is also considerably reduced because most of possible packet collisions on a single channel are avoided due to traffic load balance on multichannels. Finally, a performance comparison is made between the proposed protocol and other typical MAC protocols. Simulation results evidence its obvious superiority to the MAC protocols associated with other channel selection schemes and traditional ACK transmission scheme as well as cooperative asynchronous multichannel MAC (CAM-MAC) protocol in terms of four performance indices: total channel utilization, average channel utilization, average packet delay, and packet dropping rate

    Design and Analysis of Opportunistic MAC Protocols for Cognitive Radio Wireless Networks

    Get PDF
    As more and more wireless applications/services emerge in the market, the already heavily crowded radio spectrum becomes much scarcer. Meanwhile, however,as it is reported in the recent literature, there is a large amount of radio spectrum that is under-utilized. This motivates the concept of cognitive radio wireless networks that allow the unlicensed secondary-users (SUs) to dynamically use the vacant radio spectrum which is not being used by the licensed primary-users (PUs). In this dissertation, we investigate protocol design for both the synchronous and asynchronous cognitive radio networks with emphasis on the medium access control (MAC) layer. We propose various spectrum sharing schemes, opportunistic packet scheduling schemes, and spectrum sensing schemes in the MAC and physical (PHY) layers for different types of cognitive radio networks, allowing the SUs to opportunistically utilize the licensed spectrum while confining the level of interference to the range the PUs can tolerate. First, we propose the cross-layer based multi-channel MAC protocol, which integrates the cooperative spectrum sensing at PHY layer and the interweave-based spectrum access at MAC layer, for the synchronous cognitive radio networks. Second, we propose the channel-hopping based single-transceiver MAC protocol for the hardware-constrained synchronous cognitive radio networks, under which the SUs can identify and exploit the vacant channels by dynamically switching across the licensed channels with their distinct channel-hopping sequences. Third, we propose the opportunistic multi-channel MAC protocol with the two-threshold sequential spectrum sensing algorithm for asynchronous cognitive radio networks. Fourth, by combining the interweave and underlay spectrum sharing modes, we propose the adaptive spectrum sharing scheme for code division multiple access (CDMA) based cognitive MAC in the uplink communications over the asynchronous cognitive radio networks, where the PUs may have different types of channel usage patterns. Finally, we develop a packet scheduling scheme for the PU MAC protocol in the context of time division multiple access (TDMA)-based cognitive radio wireless networks, which is designed to operate friendly towards the SUs in terms of the vacant-channel probability. We also develop various analytical models, including the Markov chain models, M=GY =1 queuing models, cross-layer optimization models, etc., to rigorously analyze the performance of our proposed MAC protocols in terms of aggregate throughput, access delay, and packet drop rate for both the saturation network case and non-saturation network case. In addition, we conducted extensive simulations to validate our analytical models and evaluate our proposed MAC protocols/schemes. Both the numerical and simulation results show that our proposed MAC protocols/schemes can significantly improve the spectrum utilization efficiency of wireless networks

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    Enabling limited traffic scheduling in asynchronous ad hoc networks

    Get PDF
    We present work-in-progress developing a communication framework that addresses the communication challenges of the decentralized multihop wireless environment. The main contribution is the combination of a fully distributed, asynchronous power save mechanism with adaptation of the timing patterns defined by the power save mechanism to improve the energy and bandwidth efficiency of communication in multihop wireless networks. The possibility of leveraging this strategy to provide more complex forms of traffic management is explored

    The revenge of asynchronous protocols: Wake-up Radio-based Multi-hop Multi-channel MAC protocol for WSN

    Get PDF
    International audienceSynchronized MAC protocols are now considered as the ultimate solution to access the medium in wireless sensor networks. They guarantee both high throughout and constant latency and achieve reasonable energy consumption performance. However, synchronization is achieved at the cost of a complex framework with low flexibility on its parameters that is not suitable for some network topologies or application requirements. By contrast, asynchronous MAC protocols are versatile by nature but suffer from the tradeoff between energy consumption and latency. However, the addition of Wake-up Radio (WuR) can reduce the energy consumption of such protocols while maintaining very low latency thanks to its always-on feature and ultra-low power consumption. In this article, we present WuR- based Multi-hop Multi-channel (W2M), an asynchronous MAC protocol for wireless sensor networks. We also provide a fair comparison with Time Synchronized Channel Hopping (TSCH) through an extensive simulation campaign based on Contiki-NG and Cooja. Our results show that in low traffic scenarios, W2M outperforms TSCH in reducing both the energy consumption and the latency (at least 68% of energy is saved), but at the cost of slightly lower reliability
    • 

    corecore