66 research outputs found

    Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pebbles

    Get PDF
    International audienceWe prove that, for the black hole search problem in networks of arbitrary but known topology, the pebble model of agent interaction is computationally as powerful as the whiteboard model; furthermore the complexity is exactly the same. More precisely, we prove that a team of two asynchronous agents, each endowed with a single identical pebble (that can be placed only on nodes, and with no more than one pebble per node), can locate the black hole in an arbitrary network of known topology; this can be done with Θ(nlog n) moves, where n is the number of nodes, even when the links are not FIFO. These results are obtained with a novel algorithmic technique, ping-pong, for agents using pebbles

    Black Hole Search in Dynamic Tori

    Full text link
    We investigate the black hole search problem by a set of mobile agents in a dynamic torus. Black hole is defined to be a dangerous stationary node which has the capability to destroy any number of incoming agents without leaving any trace of its existence. A torus of size n×mn\times m (3nm3\leq n \leq m) is a collection of nn row rings and mm column rings, and the dynamicity is such that each ring is considered to be 1-interval connected, i.e., in other words at most one edge can be missing from each ring at any round. The parameters which define the efficiency of any black hole search algorithm are: the number of agents and the number of rounds (or \textit{time}) for termination. We consider two initial configurations of mobile agents: first, the agents are co-located and second, the agents are scattered. In each case, we establish lower and upper bounds on the number of agents and on the amount of time required to solve the black hole search problem

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Efficient, collision-free multi-robot navigation in an environment abstraction framework

    Get PDF
    Industrial automation deploys a continuously increasing amount of mobile robots in favor of classical linear conveyor systems for material flow handling in manufacturing and intralogistics. This increases flexibility by handling a larger variety of goods, improves scalability by adapting the fleet size to varying system loads, and enhances fault tolerance by avoiding single points of failure. However, it also raises the need for efficient, collision-free multi-robot navigation. This core problem is first precisely modeled in a form that differs from existing approaches specifically in terms of application relevance and structured algorithmic treatability. Collision-free trajectories for the mobile robots between given start and goal locations are sought so that the number of goals reached per time is as high as possible. Based on this, a decoupled solution called the Collaborative Local Planning Framework (CLPF), is designed and implemented, which, in contrast to existing solutions, aims at avoiding deadlocks with the greatest possible concurrency. Moreover, this solution includes the handling of dynamic inputs consisting of both moving and non-moving robots. For testing, performance analysis, and optimization, due to the complexity of multi-robot systems, the use of simulation is common. However, this also creates a gap between real and simulated robots. These issues can be reduced by using several different simulators---albeit with the disadvantage of further increasing complexity. For this purpose, the Robot Experimentation Framework (REF) is introduced to write robotic experiments with a unified interface that can be run on multiple simulators and also on real hardware. It facilitates the creation of experiments for performance assessment, (parameter) optimization and runtime analysis. The framework has proven its effectiveness throughout this thesis. Lastly, experimental proof of the viability of the solution is provided based on a case study of a complete (simulated) assembly system of decentralized autonomous agents for the production of highly individualized automobiles. This integrates all developed concepts into a holistic application of industrial automation. Detailed evaluations of more than 800 000 solved scenarios with more than 5 700 000 processed goals have experimentally proven the robustness and reliability of the developed concepts. Robots have never crashed into each other in any of the conducted experiments, empirically proving the claimed safety guarantees. A fault-tolerance analysis of the decentralized assembly system has experimentally proven its resilience to failures at workstations and, thus, specifically revealed an advantage over linear conveyor systems

    Facilitating immersion, engagement and flow in multi-user virtual environments

    Get PDF
    Virtual worlds are providing myriad opportunities for the development of innovative curricula for tertiary educators. They provide a virtual meeting space for those students and lecturers who are geographically remote from one another, rendering distance irrelevant and facilitating the formation of community. This paper will look at those factors - physical, social, virtual and those related to pedagogy - which facilitate immersion in virtual worlds; that suspension of disbelief which generates the feeling of presence or 'being there', crucial to promoting student engagement and ultimately, flow

    An augmented reality interface for multi-robot tele-operation and control

    Get PDF
    This thesis presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semi-autonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor\u27s ability to control multiple robots. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. A sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks
    corecore