
University of Thessaly

Doctoral Thesis

Solving Fundamental Problems in Hostile

Networks

Author:

Nikos Giachoudis

Supervisor:

Dr. Euripides Markou

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the department of

Computer Science and Biomedical Informatics

August 4, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

https://www.uth.gr/
https://www.linkedin.com/in/ngiachou/
http://www.jamessmith.com
http://dib.uth.gr/

University of Thessaly
School of Science

Computer Science and Biomedical Informatics

Solving Fundamental Problems in Hostile

Networks

PhD Thesis

of

Nikos Giachoudis

Advising Commitee: Euripides Markou Vassilis Plagianakos Aris Pagourtzis

Assessment Committee

Euripides Markou University of Thessally, Greece

Vassilis Plagianakos University of Thessally, Greece

Aris Pagourtzis National Technical University of Athens, Greece

Evangelos Bampas Université Paris-Saclay, France

Thanasis Loukopoulos University of Thessally, Greece

Orestis Telelis University of Piraeus, Greece

Theodoros Tzouramanis University of Thessally, Greece

Lamia, August 4, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

https://www.uth.gr/
http://dib.uth.gr/

ii

Abstract

Nikos Giachoudis

Solving Fundamental Problems in Hostile Networks

In this thesis we study three fundamental problems in hostile network environments.

Our work lies in the area of Theoretical Computer Science and in particular in the area

of Distributed Computing. We design distributed algorithms and we prove their correct-

ness and computational complexity for the following problems. We study how identical

mobile agents that move autonomously in a network and have only local information

about the environment, can gather at a node of a network despite the presence of a hos-

tile mobile agent which may prevent agents from visiting a node of the network. We

also study how a number of agents that move autonomously and have only local infor-

mation about the environment, might collectively decontaminate a network in which

there is a virus capable of infecting an area of the network. Finally, we study how mo-

bile agents that move autonomously in a network can learn a message initially carried

by only one of the agents despite the fact that the agents cannot communicate from a

distance, cannot leave messages at nodes of the network and many links of the network

might unpredictably fail at any time. The above problems are often needed to be solved

as an early step in order to solve other problems in distributed environments. Some

of those problems have been previously studied either in safe environments or when

static hostile entities are present. Here we investigate more general models in which ei-

ther hostile mobile agents exist in the network, or a hostile behaviour can spread at the

nodes of the network, or many unpredictable faults can occur in the network. We prove

lower bounds on the number of mobile agents which are necessary in order to solve the

problems and design optimal algorithms that meet those lower bounds. We show how

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

iii

those three important problems can be solved fast in severe hostile environments by au-

tonomous mobile agents having very limited resources (e.g., very limited memory and

no initial knowledge about the environment) and capabilities (e.g., no communication

from a distance and no sensory abilities). Since in most cases our models are very weak,

we hope that our techniques can be extended to handle different problems and system-

atically increase our knowledge in extremely malicious environments where the hostile

behaviour can affect large and sometimes distant areas of the environment.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

iv

Περίληψη

Νίκος Γιαχούδης

Αλγοριθμική Αντιμετώπιση Προβλημάτων σε μή-Ασφαλή

Δίκτυα

Σε αυτή τη διατριβή μελετάμε τρία βασικά προβλήματα σε περιβάλλοντα εχθρικών δι-

κτύων. Το έργο μας βρίσκεται στον τομέα της Θεωρητικής Πληροφορικής και ειδικότερα

στον τομέα των Κατανεμημένων Υπολογισμών. Σχεδιάζουμε κατανεμημένους αλγόριθ-

μους και αποδεικνύουμε την ορθότητα και την υπολογιστική πολυπλοκότητά τους για

τα ακόλουθα προβλήματα. Μελετάμε πώς πανομοιότυποι πράκτορες που κινούνται αυ-

τόνομα σε ένα δίκτυο και έχουν μόνο τοπικές πληροφορίες για το περιβάλλον, μπορούν

να συγκεντρωθούν σε έναν κόμβο ενός δικτύου παρά την παρουσία ενός εχθρικού κινη-

τού πράκτορα που μπορεί να εμποδίσει τους πράκτορες να επισκεφθούν έναν κόμβο του

δικτύου. Μελετάμε επίσης πώς ένας αριθμός πρακτόρων που κινούνται αυτόνομα και

έχουν μόνο τοπικές πληροφορίες σχετικά με το περιβάλλον, ενδέχεται να καθαρίσουν

συλλογικά ένα δίκτυο στο οποίο υπάρχει ένας ιός ικανός να μολύνει μια περιοχή του δι-

κτύου. Τέλος, μελετάμε πώς πράκτορες που κινούνται αυτόνομα σε ένα δίκτυο μπορούν

να μάθουν ένα μήνυμα που αρχικά το γνωρίζει μόνο ένας πράκτορας, παρά το γεγονός

ότι οι πράκτορες δεν μπορούν να επικοινωνήσουν από απόσταση, δεν μπορούν να αφή-

σουν μηνύματα σε κόμβους του δικτύου και η οποιαδήποτε ακμή του δικτύου ενδέχεται

να αποτύχει απρόβλεπτα ανά πάσα στιγμή. Τα παραπάνω προβλήματα συχνά χρειάζεται

να επιλυθούν ως πρώιμο βήμα για την επίλυση άλλων προβλημάτων σε κατανεμημένα

περιβάλλοντα. Μερικά από αυτά τα προβλήματα έχουν μελετηθεί προηγουμένως είτε σε

ασφαλή περιβάλλοντα ή όταν υπάρχουν στατικές εχθρικές οντότητες. Εδώ διερευνούμε

πιο γενικά μοντέλα στα οποία είτε υπάρχουν στο δίκτυο εχθρικοί κινητοί πράκτορες,

είτε μια εχθρική συμπεριφορά μπορεί να εξαπλωθεί στους κόμβους του δικτύου ή πολλά

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

v

απρόβλεπτα σφάλματα μπορούν να προκύψουν στο δίκτυο. Αποδεικνύουμε κάτω φράγ-

ματα στον αριθμό των κινητών πρακτόρων που είναι απαραίτητοι για την επίλυση των

προβλημάτων και σχεδιάζουμε βέλτιστους αλγόριθμους που ικανοποιούν τα κάτω φράγ-

ματα. Δείχνουμε πώς αυτά τα τρία σημαντικά προβλήματα μπορούν να επιλυθούν αποδο-

τικά σε πολύ εχθρικά περιβάλλοντα από αυτόνομους κινητούς πράκτορες που έχουν πολύ

περιορισμένους πόρους (π.χ. πολύ λίγη μνήμη και χωρίς αρχικές γνώσεις για το περιβάλ-

λον) και δυνατότητες (π.χ., χωρίς επικοινωνία από απόσταση και χωρίς αισθητηριακές

ικανότητες). Επειδή στις περισσότερες περιπτώσεις τα μοντέλα μας είναι πολύ αδύναμα,

ελπίζουμε ότι οι τεχνικές μας μπορούν να επεκταθούν για να χειριστούν διαφορετικά

προβλήματα και να αυξήσουν συστηματικά τις γνώσεις μας σε εξαιρετικά κακόβουλα

περιβάλλοντα όπου η εχθρική συμπεριφορά μπορεί να επηρεάσει μεγάλες και μερικές

φορές απομακρυσμένες περιοχές του περιβάλλοντος.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

vi

Acknowledgements

I wish to express my deepest gratitude to my advisor Euripides Markou. He was there at

all times answering every question I might had and passing his knowledge through his

own unique way. The most things I learned, I learned them because of Euripides and I

would be lost if he wasn’t there to guide me. He is a very passionate scientist and with

his guidance I was able to achieve the feat of this thesis.

I also wish to show my gratitude to the rest of the advisory committee, Vassilis Pla-

gianakos and Aris Pagourtzis, who were ready to help me in any case, and the rest of

the examination committee, Thanasis Loukopoulos, Evangelos Bampas, Orestis Telelis,

and Theodoros Tzouramanis, for their feedbackwhich is one of themost important steps

in order to have a good result. It is whole-heartedly appreciated that their great advice

formy study provedmonumental towards the success of this thesis. I wish to thank all of

my professorswho showedmewhat a beautiful world science is, and all ofmy colleagues

with which I could talk and exchange thoughts in order to keep our research going.

Finally, I am indebted to all of my family and friends who were there and had to listen

to all those things that I wanted to tell about my research which was very hard for them

to understand, but in the process of explaining them it helped me having a better un-

derstanding too. My parents and my sister that supported me all of those years that I

was trying quite hard to accomplice such an important thing for me. But most of all I

would like to pay my special regards to my wife Angeliki, who came into my life during

my PhD and with patience made me better and supported me even if it was one of the

most difficult things to do.

Nikos Giachoudis

August 4, 2021

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

vii

Contents

Abstract ii

Περίληψη iv

Acknowledgements vi

1 Introduction 1

1.1 Related work . 3

2 Preliminaries 7

2.1 Network . 7

2.1.1 Network topologies . 8

2.1.2 Sense of direction . 9

2.1.3 Time-varying graphs . 11

2.2 Mobile agents . 13

2.2.1 Communication . 13

2.2.2 Mobile agent capabilities . 15

2.2.3 Time . 17

2.3 Adversary . 18

2.4 Problems . 18

2.4.1 Gathering . 18

2.4.2 Black virus decontamination . 19

2.4.3 Broadcasting . 19

3 Gathering of Mobile Agents 21

3.1 Mobile agents with global visibility . 22

3.1.1 Impossibility result for two honest agents 26

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

viii

3.1.2 Gathering any number of at least 3 agents 29

3.2 Local visibility . 32

3.2.1 Gathering any number of at least 4 agents 32

3.2.2 Gathering three or more agents . 52

3.3 Discussion . 84

4 Black Virus Decontamination 85

4.1 Decontaminating an oriented ring . 87

4.1.1 Impossibility results . 87

4.1.2 An algorithm with ten agents . 95

4.2 Decontaminating an unoriented ring . 100

4.2.1 Impossibility results . 100

4.2.2 An algorithm with twelve agents . 105

4.2.3 An algorithm for six agents provided with an advice 110

4.3 Discussion . 115

5 Broadcasting 117

5.1 Broadcast model . 118

5.1.1 Agents . 118

5.1.2 Adversarial model . 119

5.2 Preliminaries . 119

5.3 Broadcast in sparse graphs . 121

5.4 Broadcast in Grids . 126

5.5 Broadcast in Dense graphs . 132

5.5.1 Broadcast in Complete graphs . 132

5.5.2 Broadcast in Hypercubes . 133

5.6 Discussion . 139

6 Discussion 140

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

ix

List of Figures

2.1 Example of an edge labeling. 8

2.2 Example of graph topologies. 9

2.3 Example of cactus graph topology. 10

2.4 Example of graph topologies. 10

2.5 An example of an oriented grid-graph. Notice that the port labeling is glob-

ally consistent. 12

3.1 Two agents gathering configurations C1, C2, and C3. The two agents are

denoted by letters A and B and the malicious agent is denoted by the letter

M . 26

3.2 Two agents in a n × m,n,m > 3 grid trying to move to two distinct nodes

(z, w) from twodistinct nodes (x, y)not in a configuration of type {C1, C2, C3}

respectively. Nodes (z, w) are not occupied nodes, but need to be in order

to get a configuration of type: C1, C2, C3. 28

3.3 Three agents in a grid: A tower of 2 and a single agent at distance two. . . . 30

3.4 Consider three colocated agents with identities 1, 2, 3which have formed a

tower andare located at node u. The agents execute Procedure Towerwalk(North,

East). The arrows depict the intended moves at step 1 on the left of the fig-

ure. Each possible configuration from step t to step t + 1 is shown under

the title ‘After step t’. In each configuration the arrows depict the agents’

intendedmoves of the next step. For the series of the lower configurations,

the demonstration continues in Figure 3.5. 39

3.5 Continuation of the series of the lower configurations of Figure 3.4. For the

series of the lower configuration, the demonstration continues in Figure 3.6. 40

3.6 Continuation of the series of the lower configuration of Figure 3.5. 42

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

x

3.7 Possible executions of Procedure ExploreLine. (a) A tower traversing back

and forth a column without been blocked (Procedure ExploreLine(North),

followedbyProcedure ExploreLine(South) andProcedure TowerWalk(East,

North)). (b) A tower traversing the West border column towards North

(Procedure ExploreLine(North)). The tower was blocked two times and

those times temporarily ended up in the next column. (c) A tower travers-

ing theWest border column towards South (Procedure ExploreLine(South),

followed by Procedure TowerWalk(East, North)). The tower was blocked

once and that time temporarily ended up in the next column. 44

3.8 Possible executions of Procedure ExploreLine. (d) A tower traversing a

non-border column towards north (Procedure ExploreLine(North)). The

tower was blocked once and that time temporarily ended up in the next

column. (e) A tower traversing a non-border column towards South (Proce-

dure ExploreLine(South), followedbyProcedure TowerWalk(East, North)).

The towerwas blocked once and that time temporarily ended up in the pre-

viously traversed column. (f) A tower traversing the East border column to-

wards North (Procedure ExploreLine(North)). The towerwas blocked once

and that time temporarily ended up in the previously traversed column. . . 45

3.9 A tower executed Procedure ExploreLine(South) traversing a column and

ended up at a node w located in the same column (the procedure returns

0). Then the tower executes Procedure TowerWalk(East, North) and ends

up at node v′′. 50

3.10 A tower executedProcedure ExploreLine(South) traversing a columnwhich

is not on the West border, and ended up at a node w located one column

to the West (the procedure returns 1). Then the tower executes Procedure

TowerWalk(East, North) and ends up at node v′′. After that, the tower ex-

ecutes one or two more times the Procedure TowerWalk in the appropriate

direction(s) and ends up on the next (unexplored) column towards East. . . 51

3.11 Both Explorer1 and Explorer2 routes are shown. The explorers’ localmoves

dependon the general route direction. For example, when Explorer1moves

towards South, North, orWest, then “forward”means towards South, North

or West, respectively. 54

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

xi

3.12 This is the case where Explorer2 is coming from theWest, whereas Explor-

er1 is coming from the East. Both of them want to switch columns and go

to node u. We can see that if Explorer2 follows the depicted protocol, then

Explorer1 will either manage to switch column and therefore progress is

done, or a third agent will meet either Explorer1 or Explorer2. Notice that

the protocol is consistent since at any given time themoves of the agents are

the same for all configuration of that time, unless their very recent history

is different. For the second time moving to u see Figure 3.13. 72

3.13 This is the case where Explorer2 is coming from theWest, whereas Explor-

er1 is coming from the East for the second time due to local movement

(forward-backward-forward). Both of them want to switch columns and

go to node u. We can see that if Explorer2 follows the depicted protocol,

then Explorer1will eithermanage to switch columnand therefore progress

is done, or a third agent will meet either Explorer1 or Explorer2 even if

they are blocked in a loop as shown at the bottom leftmost configuration.

Notice that the protocol is consistent since at any given time the moves of

the agents are the same for all configuration of that time, unless their very

recent history is different. 73

3.14 This is the case where Explorer2 is coming from theWest, whereas Explor-

er1 is coming from the North. In t = 3 if the West move by Explorer2 fails

then the same move is executed until it succeeds. In t = 4 the South move

follows the same principle “try South until you succeed”. For the cases

where Explorer2 is not on the south border and tries to move south to-

wards the same node as Explorer1 then the agents can be blocked until a

third agent meets with one of them. 74

3.15 The case where a group of explorers, which are at states Group-Explorer1

and Group-Explorer2, and an alone agent, which is at state Explorer2, are

blocked on the South border. 75

3.16 The case where a group of explorers, which are at states Group-Explorer1

and Group-Explorer2, and an alone agent, which is at state Explorer2, are

blocked on the South border. 76

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

xii

3.17 The case where a group of explorers, which are at states Group-Explorer1

and Group-Explorer2, and an alone agent, which is at state Explorer2, are

blocked on the South border. 77

3.18 Let A, B be two agents located at nodes u, v respectively. The routing dis-

tance is depicted in three examples. (a) The agent located at u is moving

towards the North-East corner by first going to the South border while the

agent located at v is moving towards the South-West corner by first going

to the South border: in that case the routing distance is the number of edge

traversals one of the agents had to do in order tomeet the other agent if the

other agent was not moving. (b) The agents are moving towards the South-

West corner of the grid and both agents are first moving towards the South

border: in that case the routing distance is the number of edge traversals

the agent at u has to do in order to meet the other agent if the other agent

was not moving. (c) The agent located at u is moving towards the South-

West corner by first moving towards the South border of the grid, while the

agent located at v is moving towards the North-East corner by first moving

towards the North border of the grid: in that case the routing distance is

the number of edge traversals the agent at u has to do in order to reach

node v plus the number of edge traversals the agent at v has to do in order

to reach again node v with direction the South-West corner by first going

towards the South border. 78

3.19 This figure depicts the algorithm of two agents in states Group-Trace1 and

Group-Trace2 respectively. In this figure the group of agents is moving to-

wards the south. The case where the group moves towards the north and

the alone agent moves towards the south is analogous. Notice that at t = 4

Group-Trace1 and Group-Trace2 start the algorithm from the start, but this

time their intended direction is West and their auxiliary line is to the South. 79

3.20 This figure depicts the algorithm for the special case of Fig. 3.19. 80

3.21 In this figure we can see two groups trying to move to the same node. One

is moving South and the other is moving North. 81

3.22 In this figure we can see two groups moving to the same node. One is mov-

ing South and the other, changing column, is moving East. 82

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

xiii

3.23 Two agents which consist a group of explorers are blocked at a routing

distance more than two from the alone agent. Note: In the cases depicted

as Special Case in this figure, the group agent associated with two outgoing

arrows repeatedly tries directions 1 and 2 until it succeeds. Since there is

at least one other agent besides this group of agents, either this third agent

or the group agent will move. Finally the third agent will either meet the

group agent on the bottom left node (see Figure 3.20) or the group agent on

theupper right node. On the latter case, the agents choose distinct identities

and move in different directions in order two create a path towards the

bottom left group agent. 83

4.1 Five agents are initially scattered on a ring containing a virus. The first

agent that moves, vanishes and the resulting configuration is shown here. . 90

4.2 Seven agents are initially scattered on a ring containing a virus. The first

agent that moves, vanishes and the resulting configuration is shown here. . 91

4.3 Seven agents are initially scattered on a ring containing a virus. The result-

ing configuration after two agents have met the black-virus. 91

4.4 Nine agents are initially scattered on a ring containing a virus. This is the

resulting configuration after two agents have met the black-virus without

leaving any tokens behind. 94

4.5 Nine agents are initially scattered on a ring containing a virus. This is the

resulting configuration after one agent has met the black-virus. The nodes

denoted with ∆ clockwise next to each agent are the initial homebases of

the respective agents. The initial homebase of agentB is now contaminated

and therefore any token that had been left there by B has disappeared. . . 94

4.6 An initial configuration consisting of n− 1 anonymous agents, where n− 1

is an even number. 103

4.7 An initial configuration consisting of n− 2 anonymous agents, where n− 2

is an odd number. 103

4.8 The resulting configuration after the agents’ first move in configuration of

Figure 4.6 or Figure 4.7. 104

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

xiv

4.9 The resulting configuration after somemoves of agents in the configuration

of Figure 4.8 . 104

4.10 Aproper sequence for this initial configuration isL = {A1, A2, A5, A3, A6, A4}.

‘S’ denotes a stationary agent and ‘M’ amoving agent. 111

5.1 A path from the source making a U-turn, with a sequence of positive edge

going away from the source, followed by a sequence of negative edge going

toward the source. 128

5.2 A path from the source that zigzags, with a repeated sequence of 2/3 posi-

tive edges followed by a single negative edge going toward the source. . . . 128

5.3 Bad configurations for k = 3 agents (denoted by black discs) and one source

(denoted by red square) in a cube. In each case the adversary makes avail-

able only the bold edges. The arrows denote all possible transformations

between configurations in one step of agent moves. 135

5.4 (a) The cube with a single source (denoted by a square) in the proof of The-

orem 5.5. (b) The cubewith two sources at distance 2; the remaining agents

must occupy the two black vertices. 136

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

xv

To Angeliki

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

1

1 Introduction

Weoften need to design algorithms used by entitieswhich act autonomously having very

little or no initial knowledge about the environment, very limited or no communication

or sensor capabilities. To answer whether a problem can be collectively solved by such

weak entities possibly tolerating faults or some times acting in hostile environments is

not important and interesting only for theoriticians but also in practise. The challenges

behind designing optimal distributed algorithms for such weak models and prove their

correctness as well as showing in what models certain problems are infeasible and care-

fully adding the necessary capabilities that makes a problem feasible, make the issue

very attractive in Theoretical Computer Science. However, such weak models are often

very useful in practice, not only because many real problems are needed to be solved

by entities that act autonomously in hostile environments, but also because it is usually

easier to implement weaker models and at a lower cost.

For example, suppose that a number of robots are scattered in an environment, and they

need to gather at the same point. Each robot has only limited information about the to-

tal number of robots and the initial configuration. It can sense the environment up to a

fixed radius, it can only communicate with close-by robots and behaves autonomously.

Moreover, the robotsmight have different coordinate systems andmight not be synchro-

nized. Furthermore, some of the robotsmight temporarily shut down. In other scenarios

the robots might operate in a network being able to move using the links of the network.

Hostile entities might exist in the network capable of damaging the robots, or at least

preventing them from effectively performing a task. The links of the network may fail

from time to time while the robots might need to discover and report hostile activities

or might need to solve a problem like broadcasting, despite hostile activities. Alterna-

tively, the nodes of the network might represent hosts and instead of robots, a piece of

information and/or software might be able to replicate itself and move from host to host

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 1. Introduction 2

using the links of the network, in order to maintain the network.

Such problems arise very often due to the heavy use of networks but also because of

the need to handle scenarios and problems where the structures are huge or it is just

not desirable to have a central authority that instructs all entities how to act. Hence it

is often more realistic (and applicable) to design distributed algorithms that can be used

autonomously by mobile entities so that the problem can be solved despite the absence

of a central authority and/or in a hostile environment.

Although there are many interesting results on what can be achieved in such scenarios

even in hostile environments, most of the work either involves non-faulty environments

or environments with static hostile entities. Our knowledge on what can be achieved

when the hostile entities are able to move or many faults can arise in distant areas of

the environment, is rather limited. In this thesis we study three problems in such hostile

environments.

We study how identical mobile agents that move autonomously in a network and have

only local information about the environment, can gather at a node of a network despite

the presence of a hostile mobile agent which may prevent agents from visiting a node of

the network ([34]). We also study how a number of agents that move autonomously and

have only local information about the environment, might collectively decontaminate

a network in which there is a virus capable of infecting an area of the network ([56]).

Finally, we study how mobile agents that move autonomously in a network can learn a

message initially carried by only one of the agents despite the fact that the agents cannot

communicate from a distance, cannot leave messages at nodes of the network andmany

links of the network might unpredictably fail at any time ([37]). The above problems

are often needed to be solved as an early step in order to solve other problems in dis-

tributed environments. Some of those problems have been previously studied either in

safe environments or when static hostile entities are present. Here we investigate more

general models in which either hostile mobile agents exist in the network, or a hostile

behaviour can spread at the nodes of the network, or many unpredictable faults can oc-

cur in the network. We prove lower bounds on the number of mobile agents which are

necessary in order to solve the problems and design optimal algorithms that meet those

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 1. Introduction 3

lower bounds. We show how those three important problems can be solved fast in se-

vere hostile environments by autonomous mobile agents having very limited resources

(e.g., very limited memory and no initial knowledge about the environment) and capa-

bilities (e.g., no communication from a distance and no sensory abilities). Since in most

cases our models are very weak, we hope that our techniques can be extended to handle

different problems and systematically increase our knowledge in extremely malicious

environments where the hostile behaviour can affect large and sometimes distant areas

of the environment.

This thesis is divided into five chapters. Chapter 1 is a quick introduction into the field of

distributed algorithms and a summary of related work that has been done for the prob-

lems studied here, as well as other similar problems. Chapter 2 consists of definitions

and notations that are needed in order to understand the rest of the chapters. Finally,

Chapters 3-5 give results on fundamental problems in a distributed context. Specifically,

the results concern three problems, as mentioned above, and each problem is studied

separately in each corresponding chapter.

1.1 Related work

There is an extended research on the problems studied in this thesis and briefly men-

tioned above. We will discuss the previously known results on those problems and also

on related problems.

Let us discuss about the gathering problem. The problem is called rendezvous when the

mobile agents are only two, gathering otherwise [65], and has been widely studied when

the environment is modelled as a graph and themobile agents canmove along the edges

of the graph. However, most of the studies are restricted to fault-free environments

and little is known about gathering when the environment is faulty or hostile. Possible

faults can be a permanent failure of a node, like for example the so called black hole that

destroys agents arriving at a node [6, 40], or, transient faults that can appear anywhere

in the graph and are controlled by a mobile hostile entity (an intruder) that behaves

maliciously [8].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 1. Introduction 4

Most of the research that has been done in hostile environments is on the direction of

how to locate a malicious node in a graph (see, e.g., [41, 61]). Protecting the network

against a malicious entity able to move along the edges of the graph, is generally a more

difficult problem. Problems in this direction include the so-called network decontami-

nation or intruder capture problem (see, e.g., [47,67]). Other types of faults or malicious

behavior that have been considered in the context of the gathering problem are Byzan-

tine agents [23,27,39], and delay-faults [20], and edge evoling graphs [79].

A Byzantine agent is indistinguishable from the legitimate or honest agents, but it may

behave in an arbitrary manner and may provide false information to the honest agents

in order to induce them to make mistakes, thus preventing the rendezvous of the honest

agents. However the Byzantine agents cannot actively harm the honest agents or physi-

cally prevent the agents frommoving. Delay-faults [20] can prevent an agent frommov-

ing for an arbitrary but finite time (i.e., they must eventually allow the agent to move),

whereas probabilistic edge evolving graphs are dynamic networks where the set of com-

munication links continuously changes thus preventing the use of standard gathering

algorithms that work for static networks [79]. Finally, the gathering problem has been

also studied in the plane when there are faulty agents which may crash [2,13].

We consider here a relatively new type ofmalicious agent thatwas first introduced in [35]

and successively investigated in [32, 33]. This malicious agent can move arbitrarily fast

along the edges of a graph, it has full information about the graph and the location of

all other honest agents, and it even has full knowledge of the actions that will be taken

by the agents. The objective of the malicious agent is to prevent the honest agents from

gathering by blocking their path. More precisely, when the malicious agent occupies a

node u of the graph, it can prevent (or block) the movement of any honest agent to node

u, and at the same time is detected by those agents. In [32, 33, 35] it is shown how this

malicious agent is a stronger adversary than the Byzantine agent or the Intruder agent,

or the delay faults, as even onemalicious agent can prevent rendezvous of honest agents

in many cases.

The gathering problem has been investigated in [33,35] for asynchnonousmobile agents

moving in a ring or in a gridwith onemalicious agent. The asynchrony among the honest

agents combinedwith the ability of themalicious agent tomove arbitrarily fast, gave the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 1. Introduction 5

power to the malicious agent to prevent the next move of several agents at any stage of

the algorithm. Thus, gathering of the honest agents was shown to be impossible [35], in

all cases exceptwhen the agents started froman initial configurationwhere the subgraph

induced by all the occupied nodeswas connected, and additionally, in the case of the grid

graph, when the honest agents were able to “see” nodes at distance two in order to check

if they were occupied or not.

To allow the possibility of gathering the honest agents in more scenarios, we relax the

constraint of asynchrony and assume that the honest agents move in synchronous steps.

Note that, if two synchronous honest agents try tomove to two distinct nodes at the same

time, then the malicious agent can block the move of at most one agent, even though the

malicious agent can executemoves of arbitrary distances between two consecutive steps

of the honest agents. This model with synchronous agents was studied in [32, 33] only

for the case of a ring, where it was already possible to solve gathering inmore cases than

with asynchronous agents.

The problem of Black Virus Decontamination (BVD) is a well known problem in the lit-

erature too. It combines the Black Hole Search (BHS) problem and the Intruder Capture

(IC) problem. The Black Hole Search problem has been extensively studied for various

topologies and communication models (e.g., in [24, 28, 42, 43]). A recent survey of the

results on the black hole search problem can be found in [70]. The Intruder Capture

problem has been also studied (e.g., in [10, 12, 38, 48, 51, 71]). The BVD problem was in-

troduced in [16] where the problem was studied in specific topologies, namely q-grids,

q-tori and hypercubes. The problemwas considered for a team of initially co-locatedmo-

bile agents that are injected somewhere in the network and a different solution protocol

was given for each topology. In [17] the BVD problemwas studied in arbitrary networks,

where the agents have a map of the network and can compute an optimal exploration

sequence. Furthermore, in [17] two types of black virus clones are considered; fertile

clones, that maintain the same capabilities as the original black virus and sterile clones

that cannot spread when visited by an agent. In [18] a protocol providing a distributed

optimal solution for arbitrary graphs is presented. The main difference between [17]

and [18] is that in [18] the agents have ‘2-hop visibility’ instead of a map. Moreover, only

the case of sterile clones is considered in [18]. In [15] the problem was considered for

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 1. Introduction 6

arbitrary networks that contain multiple black viruses for the first time. The agents in

[15] are provided with ‘2-hop visibility’ and both the cases of sterile and fertile clones

are investigated. Finally, the BVD problem has been studied in chordal rings in [3] and

parallel strategies for the decontamination were given in [66].

The problem of broadcasting has been originally investigated in message passing multi-

hop radio networks (e.g. see the survey [53]). Previous studies on broadcast and other

communication problems have focused on the efficiency of performing the task, either

in terms of time taken [22], or in terms of energy expended [26]. A slightly different

line of research considers the problem of communicating in the presence of faults and

the objective is to tolerate as many faults as possible. The faults can be missing links or

nodes [54] in the network or loss of messages [55], in case of message passing networks.

Recently there has been a lot of interest in so called dynamic networkswhichmodel both

faults and changes in network topology in a uniform manner by considering that the

network may change in each round during the execution of the algorithm. The evolving

graphmodel [44] represents a dynamic network by a sequence of graphs G = G1, G2, . . .

based on the same set of vertices V but the set of edges changes in each round i, i.e. each

graph Gi = (V,Ei) is a spanning subgraph of the graph G = (V,∪Ei), which is called

the footprint of the dynamic network. For solving most problems, some assumptions

about the connectivity of the dynamic network need to be made. We consider the model

of constantly connected dynamic networks which is discussed in detail in Section 2.4.3.

Note that, these assumptions aremuchweaker compared to that of T -interval connected

networks as in several previous results [60,64] where the network is assumed to contain

a stable spanning tree for a continuous period of T rounds.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

7

2 Preliminaries

In this chapter we discuss some preliminary definitions and observations that are going

to be used in the next chapters.

The environment where, as we will see later the entities operate in, is also the environ-

ment where the problems are defined. There are two main categories for the environ-

ment where related problems have been studied: a discrete environment and a contin-

uous environment [49]. The continuous environment is usually defined as a space in Rd,

where d is the dimension of that space, and the discrete environment is usually defined

as a graph.

2.1 Network

Definitions of models of a network come from the algorithmic theory of distributed com-

puting (see for example [63,68,72]). Following the definition in [49], the network is usu-

ally defined or represented as a simple, finite, connected undirected graph G = (V,E),

where V is the set of nodes and E ⊆ V × V is a set of edges (also mentioned as links).

The nodes of the network may or may not have distinct identities. Often the network is

anonymous (see [49, 63]), i.e., the nodes do not have any labels. Edges may or may not

have labels. For example, as defined in [49] the incident links at each node are labeled

as follows. Let V (u) = {v ∈ V : (u, v) ∈ E} denote the neighbours of u, E(u) denote the set

of edges incident to node u and λu : E(u) → L be an injective function which associates

a distinct label (also mentioned as port number) from a set of labels L to each incident

edge of u. Hence, for each edge e = (u, v) there are two associated labels, namely λu(e)

and λv(e), which may be different (for example see Figure 2.1). The labeling of graph G

is a set λ = {λu : u ∈ V } and the pair (G,λ) is the corresponding edge-labeled graph, also

sometimes called graph world or netscape.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 8

Another characteristic used for each link is a queuing policy [72]. An edge (or link) (u, v)

represents a channel of communication between u and v and when a message is sent

from one node to the other, the message actually gets transmitted via this channel. We

can have different outcomes when two or more messages are transmitted at the same

time via a channel. The ordering of the delivery of the messages may or may not be

the same as the ordering of transmission. The specific behaviour for all the edges of the

network is defined in the model for each problem. An example of a link behaviour is

that the link follows the principles of a queue. Queues follow a first-in-first-out (FIFO)

principle and this is the behaviour of moving in such a link, i.e., the order of reception

is the same as the order of transmission.

u v

w

λu(u,w)

λw(w, u)
λw(w, v)

λv(v, w)

λv(v, u)λu(u, v)

Figure 2.1: Example of an edge labeling.

2.1.1 Network topologies

Usually problems are studied in specific network topologies [49,63,68,72]. A topology is

the basic structure of the network and it is represented by classical graph families [74].

We provide some definitions and give examples for some graph families we use in our

work.

Definition 2.1 (cyclic graph [74]). If n ∈ Z and n ≥ 3, the cyclic graph on n vertices, denoted

Cn, is the simple graph having vertex set {1, 2, 3, . . . , n} and edge set {{1, 2}, {2, 3}, . . . , {(n−

1), n}, {n, 1}} (see Figure 2.2 a).

Definition 2.2 (complete graph [74]). If n ∈ Z+, the complete graph on n vertices, denoted

Kn, is the simple graph having vertex set {1, 2, 3, . . . , n} and all possible edges.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 9

(a) (b) (c)

Figure 2.2: Example of graph topologies.

Definition 2.3 (tree [78]). If n ∈ Z+, a tree graph on n vertices, denoted Tn, is the simple

graph that is connected and acyclic (see Figure 2.2 b).

Definition 2.4 (star [78]). If n ∈ Z+, the star graph on n vertices, denoted Sn, is the graph

having vertex set {1, 2, 3, . . . , n} and edge set {{1, 2}, {1, 3}, . . . , {1, n}}.

Definition 2.5 (line graph [78]). If n ∈ Z+, the line graph on n vertices, denoted Pn, is the

simple graph having vertex set {1, 2, 3, . . . , n} and edge set {{1, 2}, {2, 3}, . . . , {(n − 1), n}}

(see Figure 2.4 d).

Definition 2.6 (cactus [37]). A cactus graph is a connected simple graph in which any two

simple cycles have at most one vertex in common (see Figure 2.3.

Definition 2.7 (hypercube [58]). A hypercube graph Qn is the simple graph formed from

the vertices and edges of an n-dimensional hypercube (see Figure 2.4 e, for a 3-dimensional

hypercube).

Definition 2.8 (grid [75]). A two-dimensional grid graph, also known as a rectangular

grid graph or two-dimensional lattice graph [1], is an n×m lattice graph that is the graph

Cartesian product Pn × Pm of line graphs on n and m vertices. The n × m grid graph is

sometimes denoted L(n,m) [1] (see Figure 2.2 c for a 5× 6 grid graph)1

2.1.2 Sense of direction

In a labeled graph (G,λ) a sense of direction can be defined [45,46,49,50,63]. Let π denote

a path in G and let P [x] denote the set of all the non empty paths that start from x ∈ V .

Furthermore, P [x, y] is the set of all different paths that start from x ∈ V ending to y ∈ V ,
1In chapters 3 and 5 the origin of the grid, denoted by (0, 0), is defined as needed for each case.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 10

Figure 2.3: Example of cactus graph topology.

(d) (e)

Figure 2.4: Example of graph topologies.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 11

y ̸= x. Let Λx : P [x] → L+ and Λ = {Λx : x ∈ V } be the extensions of λx and λ for paths

respectively. Finally, let Λ[x] = {Λx(π) : π ∈ P [x]} and Λ[x, y] = {Λx(π) : π ∈ P [x, y]}.

Informally, we say that an edge-labeled graph (G,λ) has a sense of direction when there

is a consistent coding and decoding function f , which maps paths to values. Following

the description in [46], given (G,λ), a consistent coding function f for λ is a function,

which has L+ as domain, andmaps paths starting from the same node to the same value

if and only if they end at the same node. More formally, ∀x, y, z ∈ V , and ∀π1 ∈ P [x, y] and

∀π2 ∈ P [x, z], f(Λx(π1)) = f(Λx(π2))⇔ y = z.

Definition 2.9 (Weak sense of direction [45]). A system (G,λ) has aweak sense of direction

iff there exists a coding function f for λ.

Let us denote the codomain of f as N . A decoding function h for f is a function h :

L ×N → N such that ∀x, y, z ∈ V and ⟨x, y⟩ ∈ E(x), where E(x) is the incident edges to x,

and π ∈ P [y, z] : h(λx(⟨x, y⟩), f(Λy(π))) = f(λx(⟨x, y⟩) · Λy(π)), where · is the concatenation

operator. Informally, a decoding function maps the pair of an edge label λx(⟨x, y⟩) and

an encoding of a path to the same value as the encoding of the path starting from edge

⟨x, y⟩.

Definition 2.10 (Sense of direction [45]). A system (G,λ), has a sense of direction iff the

following conditions hold:

1. there exists a coding function f for λ,

2. there exists a decoding function h for f .

We say a graph is oriented when it has a sense of direction. For example, an oriented

grid graph is a grid graph where its nodes are labeled consistently with the four labels,

north, south, west, and east (see Figure 2.5).

2.1.3 Time-varying graphs

Following the description in [49], we mention that there are many models of graphs that

change over time like time-varying graphs, evolving graphs, temporal graphs etc. As

mentioned in [49] time-varying graphs are the most general ones that cover most cases.

The definition of time-varying graphs follows.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 12

north

south

eastwesteast west

south

north

Figure 2.5: An example of an oriented grid-graph. Notice that the port la-
beling is globally consistent.

A time-varying graph [19] or TVG for short, is a graph that changes over time. It is defined

as a quintuple G = (V,E, T , ζ, ρ), where V is the set of nodes and E ⊆ V × V is the set of

edges. T ⊆ T is the time-span of the time, also mentioned as lifetime of the system,

where T is the temporal domain which is N for discrete systems and R+ for continuous

time systems. Lastly, ρ and ζ are two functions. Specifically, ρ : E × T → {0, 1} is the

function of edge presence. It shows if a specific edge is present at a specific time or not.

Function ζ : E ×T → T is a latency function that shows howmuch time is needed for an

agent to cross a specific edge starting at a specific time. The static graph which consists

of all the edges available during the lifetime of G is called the footprint of G.

As stated in [49] dynamic networks are usually considered in a synchronous or semi-

synchronous models. In those models time is discrete (i.e., T = N and is measured in

rounds, and the latency function is constant ζ = 1, meaning that an agent needs one

time unit to traverse an edge. With these assumptions, the TVG is commonly viewed as

a series of static graphs G1, G2, . . . and the network that changes over time is called an

evolving graph. Specifically, Gt is the static snapshot of G at time t [44,57].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 13

2.2 Mobile agents

Based on the description of [69], a mobile agent is modeled by a finite state machine

(initially that definition was used by Shannon in 1951 [73]). Formally, a mobile agent is

defined as a hexad A = (X,Y,S, δ, λ, S0), whereX ⊆ Dv ×Cv, Y ⊆ Dv ×{actions}. S is a set

of states that a mobile agent can be in, with S0 ∈ S being the initial state. δ : S ×X → S

is the state transition function of the mobile agent and λ : S → Y is a function that takes

a state of the mobile agent and gives the move the mobile agent will make. Dv is the set

of edge labels available to the mobile agent that occupies node v and Cv is the state of

node v (for example if there are any other agents on that node, if there is some kind of

information on that node etc).

Mobile agents move in the following way. An agent starts in state S0 and from that its

first move, indicated by λ(S0), is decided. When the agent makes a move from node u to

node v it executes the following tasks: it reads the port label i ∈ Dv it came from and the

state cv ∈ Cv of v and with the pair (i, cv) decides its new state S′ = δ(S, (i, cv)) using the

state transition function, where S is the previous state the agent was in. The new state

S′ indicates the new move λ(S′) of the agent. The mobile agent continues moving in the

network like this, possibly for ever.

2.2.1 Communication

As mentioned in [49], the most crucial part of distributed computing with mobile agents

is the communication between them, or as referred to in [14] coordination. Following

the same classification as in [49] the different coordination models depend on three ba-

sic characteristics, temporal and spatial requirements, as well as in the explicitness of

the information that is being communicated. We summarize the combination of those

characteristics with the examples of models in Table 2.1.

Let us now discuss each communication model separately. Following the discussion

in [49], the most powerful model is the Globalspace. In this model the mobile agents

share a common space called globalspace in order to communicate. The operations pro-

vided are exclusive-write and concurrent-read that can be used from any node on the

network. This model is also referred as associative blackboard [14]. The access to the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 14

Model Spatial requirement Temporal requirement

globalspace
whiteboard
wireless
face-to-face
tokens (implicit)
beeping (implicit)

Table 2.1: Communication models [14,49]

globalspace has neither spatial nor temporal constraints and the information shared be-

tween the mobile agents is explicit. To be clear in this model the only way of communi-

cating is through the globalspace, and themobile agents cannot even distinguish if there

are other agents on the same node.

The opposite side is the Face-to-Face model. This is the simplest [49] model and there

are both spatial and temporal constraints. In order for themobile agents to communicate

under the face-to-face model they have to be on the same node v of the network at the

same time. In such a case each agent can read the memory and/or state of the other

colocated agents and use that information to decide its next move.

An extensively studied model is the Whiteboard model [4, 9, 29, 30, 49], which is spa-

tially restricted but not temporally restricted. In this model there is a “whiteboard” (i.e.

a local shared memory) at each node v ∈ V of the network, which the mobile agents can

access with the restriction of fair mutual exclusion in order to give access to at most one

agent at the same time, and any agent will be given access to the whiteboard within a

finite amount of time. The mobile agents that are at a node v ∈ V of the network can

read and write explicit information on the whiteboard of v and use that information to

decide their next move. In the case of anonymous agents, the author of any information

on the whiteboard is unknown and the size of the whiteboard is an optimization param-

eter to be considered. An interesting result [21, 31] is that in a graph (G,λ) under the

Whiteboard model the mobile agents can solve the same set of problems as in the more

traditional message-passing [68] distributed network with the same topology of (G,λ).

Another spatially restricted and not temporally restrictedmodel is the T okenmodel [49],

it is also one of the oldest ones. The difference between T oken andWhiteboard is that

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 15

in T oken the information given is implicit. The mobile agents have in their possession

one or more tokens (also mentioned as pebbles) and when a mobile agent is at a node

v ∈ V of the network it can request access to the tokens at v respecting the fair mutual

exclusion restriction. When the mobile agent gets access, it can count the number of

tokens at v and using that as information the mobile agent can decide whether to put

down a subset of its tokens, pick up a subset of the tokens on v or do nothing. There

are also the unmovable token and the enhanced token (see [49]). The former is a stricter

model and the latter is a more powerful model.

The Wireless model is a model with temporal restrictions and no spatial restrictions.

Essentially, the mobile agents can communicate with each other no matter where they

are located in the network. The only restriction is that there is a specific point in time

when the agents must be active in order to communicate. Usually this model assumes

that the agents cannot “see” the other agents even if they are on the same node [49]. This

model has been used e.g. in [36,52].

The Beeping model [49] has the same restrictions, temporal but not spatial, asWireless,

but the difference is that the information is implicit. It was first introduced in [25] and

in this model again the agents are not visible to each other, even when they are on the

same node. Each agent can transmit a signal called beep. If there are other agents active

at that time, they hear that beep, but not if they are transmitting themselves, i.e. an agent

can either transmit or listen.

2.2.2 Mobile agent capabilities

Mobile agents may have different range of visibility [49]. For local visibility the agents

can only read the port labels of the node they are at, and they may or may not detect

if there are more than one agent at that node. Depending on their memory they could

know the exact number of agents at that node. Anothermodel is for the agents to be able

to see at some range (i.e., at q hops from the node an agent is at), thismodel is called q - hop

visibility and studied in, e.g., [7, 11, 59]. The visibility range q ≥ 1 is independent of the

size of the graph [49]. The last model is for the agents to be able to see the whole network

as well as the position of every agent in the network, which is called global visibility [49].

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 16

Except from visibility, mobile agents may have other knowledge too. Based on the de-

scription in [49], we remind the reader some of the knowledge that might be given to

the agents before they start executing their protocol. Depending on their memory the

agents might know n (i.e., the number of nodes in graph G) or m (i.e., the number of

edges in graph G) or both. They might also know k (i.e., the number of agents operating

in the network), also as an alternative the agents might be given just an upper-bound on

those numbers (i.e., n, m, and k) and not the exact information. Other knowledge that

the agents might have is information about the network topology (for example if they

operate on a tree, grid, hypercube, etc.), if they don’t know the topology the agents might

have sense of direction or theymight have a fullmap of the network. Finally, we say that

the agents have full knowledge if they are provided with a full map of the network and

the initial location for each agent in the network.

Another capability that we have to consider is thememory of themobile agents, a notion

which is used throughout the literature (e.g., [49, 63, 72]). In order for the agents to be

able to compute their next actions, they need memory which may or may not be persis-

tent [49]. We say the memory is persistent if the mobile agents retain the information

saved in their memory even when they are not active. There is also a model called obliv-

ious [49] where the agents lose all memory when they deactivate. The memory of the

agents can either be finite, or bounded by some parameter. We could say that a lower

bound for an agent’s memory is at least the space needed to represent its states, but in

some cases the total memory needed by an agent might be dependent on the space nec-

essary to give some more powerful capabilities to the agent (e.g., global visibility). In

the problems studied in this thesis when an agent has constant memory it means that it

has constant number of states. In any case optimizing the memory usage of the mobile

agents is an assessment measure for the protocols executed by the mobile agents (i.e.,

space complexity).

One more capability that we have to consider is whether the agents have distinct iden-

tities [63]. Usually the agents do not have such distinct identities initially, such agents

are called anonymous agents. However, the mobile agents may be able to assign such

distinct identities during the execution of the protocol.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 17

2.2.3 Time

The notion of time is quite important for the agents. Each agent having a clock can op-

erate based on the ticks that clock makes. Even if all the agents have such a clock, that

does not ensure that all the agents will move and operate synchronously [49]. In fact, the

time spent by each agentmoving, observing, interactingwith the environment, and com-

puting, might be different from agent to agent and different in different stages of their

operation. Also, the time between two consecutive active stages for each agentmight dif-

fer too. Two very important models, that have been extensively studied are Async and

Ssync [49].

In the semi-synchronous (Ssync also known as just synchronous) time is divided in time

units; some of the agents then are active on any specific time unit (or round). These

agents can compute, interact with the environment, move etc. and all the other agents

are inactive for the entire time unit. An adversarial activation scheduler chooses which

agent is active and which is inactive. A fairness to the activation scheduler is enforced,

for every agent a ∈ A and time t, where A is the set of mobile agents operating in the

network, there is a time t′ ≥ t on which agent a is activated (i.e., each agent is activated

infinitely often). At the extremes of Ssync we have the fully synchronous (Fsync) model.

Under this model, in each time unit all agents are activated at the same time. Another

extreme is the sequential (Sequential) model. Under this model at each time unit only

one agent is activated.

On the contrary, in the asynchronous (Async) model there is no notion of time between

the agents. There is no assumption as to how much time it takes for an agent to op-

erate, but any agent can be active for only a finite amount of time. The agents are

activated by the activation scheduler totally independently from one another, but the

scheduler is said to be fair as mentioned before (i.e., each agent is activated infinitely

often). Notice that even though the activation scheduler is fair in both the Async and

the Ssync models, the number of activations of other agents between two consecutive

activations of the same agent amight be unbounded. There is though a stronger assump-

tion of a p - bounded (or p - fair) activation scheduler. Under that assumption, for every

agent a ∈ A, between two successive activations of agent a, every other agent has been

activated at most p times. Note that, in Fsync, the scheduler is 1 - bounded by definition.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 18

Time is also one of the assessment measures for any algorithm (i.e., time complexity).

2.3 Adversary

In the analysis of algorithms in order to prove correctness of an algorithm and show up-

per and lower bounds on time complexity as well as proving infeasibility under certain

models, the abstract notion of an adversary is often used. In the case of mobile agents,

the analysis of a problem can be thought of as a game between a proposed algorithm ex-

ecuted by mobile agents and the adversary. The adversary may have “powers” which it

utilizes in order to prevent the mobile agents from executing the algorithm successfully.

The powers of the adversary depend on howweak the model is. All parameters of an in-

stance of a problem can be decided by the adversary. For example, the initial positions

of the agents, the network topology, the time needed for a mobile agent to traverse an

edge in the Async model, the number of the agents, the size of the network. We say that

the problem is infeasible if the adversary can set the parameters in such a way to make

any algorithm fail, and when the problem is feasible then the algorithm that solves the

problem works for any options of the adversary.

2.4 Problems

In this section we discuss the main problems studied in the present thesis. Specifically,

we have three main problems which are studied, namely the gathering problem, the

broadcast problem, the black virus decontamination problem. We will formally define

all details of the problems later in the relevant chapters.

2.4.1 Gathering

Consider a set of mobile entities that are able tomove in an environment andwhose task

is to meet at the same location. This is a fundamental problem in the area of distributed

computing with mobile agents (or robots), since agents, to execute specific tasks, may

need to meet to share information or to coordinate. The problem is called rendezvous

when the mobile agents are only two, gathering otherwise [65], and has been widely

studied when the environment is modelled as a graph and the mobile agents can move

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 19

along the edges of the graph. However, most of the studies are restricted to fault-free

environments and little is known about gathering when the environment is faulty or

hostile. Possible faults can be a permanent failure of a node, like for example the so

called black hole that destroys agents arriving at a node [6,40], or, transient faults that can

appear anywhere in the graph and are controlled by amobile hostile entity (an intruder)

that behaves maliciously [8].

We investigate the gathering of multiple honest agents scattered in a graph in the pres-

ence of a malicious adversary as discussed in Section 2.3. We assume that the honest

agents are much weaker than the malicious agent.

Problem 1. Given a graph G = (V,E) and k honest mobile agents scattered at distinct

vertices on the network, find a protocol that gathers all agents at a single vertex.

2.4.2 Black virus decontamination

We study the Black Virus Decontamination (BVD) problem within the distributed com-

puting and especially the mobile agents’ area. A Black Virus is a malicious entity and the

goal is to find the minimum number of agents that can decontaminate a given network

with a Black Virus initially located at an unknown place and design a fast distributed

algorithm for a certain (preferably weak) model of mobile agents. In our study specifi-

cally we discuss the problem on rings but the problem can be defined in a general graph

environment.

Problem 2. Given a graph G = (V,E) and k mobile agents scattered at distinct vertices

of the graph, and a vertex of G unknown to the agents which is contaminated by a black

virus, find a protocol that if followed by all mobile agents G gets decontaminated.

2.4.3 Broadcasting

We are interested in communication problems for mobile agents moving in a network.

The classical problems of broadcast or convergecast dealwith the dissemination of infor-

mation in the network. In the case of message passing networks, broadcast is achieved

by spreading the information from the source node to all other nodes. For a system of

mobile agents, the equivalent problem is the propagation of information fromone source

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 2. Preliminaries 20

agent to all other agents in the system. Such problems are relevant for teams of mobile

sensor robots sent on data collectionmissions. We assume that the agents autonomously

move along the edges of a graph that represents the network; when two agents are at the

same node, they can communicate and share information. We would like to stress here

that the agents are not allowed to use any means of communicating at a distance (e.g.,

due to security reasons). The information to be broadcast can be transferred only when

the agents meet physically.

We define formally the problem of broadcasting bellow:

Problem 3 (The broadcast problem as defined in [37]). Given a constantly connected

dynamic network G based on an underlying graph G consisting of n ≥ 2 nodes, a source

agent that has a messageM and k ≥ 1 other agents that are initially located at distinct

nodes of the network, the goal is to broadcast this messageM to all the agents.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

21

3 Gathering of Mobile Agents

The problem of gathering two or more agents, in a graph is an important problem in the

area of distributed computing and has been extensively studied especially for the fault

free scenario. In this chapter we consider the mobile agents gathering problem in the

presence of an adversarialmalicious agentwhich by occupying an empty node prevents

honest agents from entering that node. The honest agents move in synchronous rounds

and at each round an agent can move to an adjacent node only if this node is not oc-

cupied by the malicious agent. We model the agents as finite state automata moving in

an environment modeled by an anonymous oriented grid graph and having no informa-

tion on the size of the graph. The malicious agent is assumed to be arbitrarily fast and

to have full knowledge of the graph, the locations, and the strategy of the honest agents

at all times. The honest mobile agents are anonymous, synchronous, cannot leave mes-

sages at nodes and they have constant memory. Two agents can see or communicate

with each-other only when they meet at a node. Previous studies consider the problem

for ring networks and for asynchronous grids, where rendezvous was solved only for

the special case of agents starting already in connected configurations. We study here

the problem for synchronous agents in anonymous oriented grid networks for any start-

ing configuration without multiplicities and any number of agents. We first show that

rendezvous is impossible for 2 agents evenwhen the agents can see the locations of each-

other at all times. We then present a universal deterministic algorithm that solves the

problem for any number of at least 3 agents with only local visibility and constant mem-

ory in any oriented grid with one malicious agent. Some of those results have appeared

in [34]

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 22

3.1 Mobile agents with global visibility

Wefirst study the case where the agents have global visibility. In this scenario the agents

are able to determine the locations of all other agents on the grid at all times. We first

show some basic properties.

Let us consider a two dimensional oriented grid consisting of n rows and m columns.

Port labels have been consistently assigned at each vertex:

{north, south, east, west}

and analogously for vertices on the border.

Algorithm 1: Solving the trivial case of no malicious agent.
1 while not on the north border do
2 move north

3 while not on the east border do
4 move east

Notice that if there is nomalicious agent, then any number of agents with constantmem-

ory, having no initial information about the size of the grid, can easily gather within at

most n + m − 2 steps by executing Algorithm 1. Eventually, each agent moves to the

North-East corner of the grid. It is shown below that when there is a malicious mobile

agent on the grid, a similar strategy can gather at least (k − 1) out of the k agents. In this

strategy when the agents are blocked by the malicious agent then they diverge a little

and all except one can reach the meeting point.

ProcedureMoveToNECorner
1 repeat
2 Compute S
3 Let A be the agent such that, x(A) = min

∀Ai∈S
x(Ai)

4 S = S −A
5 if S = ∅ then Compute S without considering A
6 Let B be the agent such that, x(B) = min

∀Ai∈S
x(Ai)

7 if A not at the north border thenmoves one step north
8 elsemoves one step east
9 if B not at the east border thenmoves one step east
10 elsemoves one step north
11 until there exists at most one agent A′ such that x(A′) + y(A′) > 1

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 23

Let us now discuss an algorithm that gathers k − 1 agents with global visibility in the

presence of a malicious agent. The idea of the algorithm is the following: The goal of

that algorithm is to gather all but one agents at the north-east corner, or if the corner

is occupied by the malicious at a neighboring node (i.e., the node immediately at the

west or at the south of the corner). To achieve that, the agents would chose at each step

two agents that are the closest to the corner but not at the corner or the adjacent nodes

of the corner. The choice is made by selecting the agent which is closest to the north

border as agent A and the second closest to the north border agent B. If there are ties,

we break them by using the distance from the east border1. The agents that have been

chosen make a move, one towards the north border and one towards the east border.

At least one of them will reach the border and when they do, they start moving towards

the north-east corner until they reach one of the adjacent nodes of the corner. When all

but one have reached one of the two adjacent nodes of the corner, they can collectively

decide at which node the should gather.

Algorithm 2: Gathering of ≥ k − 1 agents with global visibility.
1 Execute MoveToNECorner
2 if less than k − 1 agents are collocated then
3 if there are at least two agents A1, A2 with y(A1) = y(A2) = 0 then
4 Select A1, A2 (with smallest ids)
5 A1 moves east and A2 moves south
6 while ∃ agent C : y(C) = 0 do
7 moves through connected path south of (0, 0)
8 if (1, 1) is occupied then that agent moves east
9 else
10 if there are at least two agents A1, A2 with x(A1) = x(A2) = 0 then
11 Select A1, A2 (with smallest ids) and x(A1) = x(A2) = 0
12 A1 moves north and A2 moves west
13 while ∃ agent C : x(C) = 0 do
14 moves through connected path west of (0, 0)
15 if (1, 1) is occupied then that agent moves north
16 else there is one agent at (0, 1) and one at (1, 0)
17 Both agents move towards (0, 0) and if blocked move towards (1, 1)

18 if (0, 0) is occupied then all agents move to (0, 0)

We define here some additional notation used in Algorithm 2. Let (0, 0) be the north east

corner for description purposes, y(A) be the distance of mobile agent A from the north
1Since the agents start at distinct nodes, one of those distances must be different.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 24

border, x(A) be the distance of mobile agent A from the east border, and the set of the

agents who are closer to the north border, but not at nodes (0, 0), (1, 0), or (0, 1), is defined

as

S = {Ai | y(Ai) = min
∀C

y(C), and y(C) + x(C) > 1}

where (1, 0) and (0, 1) are the neighboring nodes of (0, 0) to the west and south respec-

tively.

Lemma 3.1. In an oriented grid of size n×m, with n, m ≥ 3, k ≥ 3 honest agents, initially

placed at distinct nodes, and one malicious agent, at least (k − 1) honest agents executing

Algorithm 2 can gather under the global visibility model.

Proof. Notice that initially the agents can assign distinct identities to each agent, for ex-

ample using the combination of their distances from the east and north borders. In view

of Lemma 3.3 at least k−2 agents are located at nodes (1, 0) and (0, 1) collectively. If there

are at least two agents at (1, 0), then two of that group is chosen (for example, two with

the smallest identities) and they try to move south and east respectively. At least one

agent succeeds effectively creating a “bridge” towards (0, 1). Then the rest of the agents

move through the occupied by an agent neighboring node (i.e., the bridge) towards (0, 1)

and finally the agent or agents, that moved initially, move to (0, 1). Finally, if (0, 0) is oc-

cupied then all agents move there and k−1 agents have gathered. If (0, 0) is not occupied

then there were k − 1 agents initially at nodes (1, 0) and (0, 1) collectively, and thus all

k − 1 agents have gathered at (0, 1).

If there is only one agent at (1, 0) then there are at least two agents at (0, 1) except from

two special cases which wewill consider later. The agents at (0, 1) form a bridge towards

node (1, 0) and with the same argument as before at least k − 1 agents gather either at

(1, 0) or (0, 0).

The two special cases arise when k = 3 or k = 4. For k = 3, there might be one agent at

each node (1, 0) and (0, 1) respectively. If the malicious agent blocks the third agent then

k − 1 agents can gather at (0, 0) (the same happens if there was an agent at (0, 0) from

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 25

the beginning). For k = 4, in order to only have at most one agent in both (1, 0) and (0, 1)

nodes then (0, 0)must be occupied, which is the node where k − 1 agents gather.

Lemma3.2. Let agentsA andB be the agents chosen by Algorithm 2. At least one of agents

A and B executing Algorithm 2 reaches node (0, 1) or (1, 0) after a finite amount of time.

Proof. The agents A and B are chosen depending on their distances from the north and

east borders. Since the initial placement of the agents is at distinct nodes, each pair of

agents (A,B) would have either y(A) ̸= y(B) or x(A) ̸= x(B) or both. Moreover, agent B

who is closer to the east bordermoves east and agentAmoves north, their paths towards

the nodes (1, 0) and (0, 1) for A and B respectively do not intersect, and because they are

the closest agents to those nodes they do not meet any other agent. If there was an agent

in any of those paths of A and B, then that agent would have been chosen as A or B.

The malicious agent can block only one of the agents A and B during that procedure.

Notice that blocking one of themdoes not change their states,A remainsA andB remains

B. Therefore, after a finite amount of time if A (resp. B) is not blocked, then it reaches

node (1, 0) (resp. (0, 1)).

Lemma 3.3. After a finite amount of time at least k − 2 agents that execute Algorithm 2

are located at nodes (0, 1) and (1, 0) collectively.

Proof. In view of Lemma 3.2 at least one agent reaches either (1, 0) or (0, 1). Without loss

of generality, let A be the agent that reaches (1, 0). If A is the only agent that managed to

reach its node, then it has x(A) + y(A) = 1, thus on the next round a new pair of agents

A and B is chosen. If there are two agents A and B that reach nodes (1, 0) and (0, 1)

respectively, then both agents have x(A) + y(A) = 1 and x(B) + y(B) = 1, hence on the

next round a new pair of agents A and B is chosen.

Applying at each phase Lemma 3.2 eventually at least k − 2 agents would have gathered

at nodes (1, 0) and (0, 1) collectively. The two agents C1, C2 that might be missing is one

that has x(C1)+y(C1) > 1 and is indefinitely blocked by themalicious agent and the other

which has x(C2) + y(C2) = 0

Let us now recall the following property of a grid graph:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 26

Malicious

Honest

A B

M

A

B

M

A

B

M

C1 C2 C3

Figure 3.1: Two agents gathering configurations C1, C2, and C3. The two
agents are denoted by lettersA andB and themalicious agent is denoted by

the letterM .

Definition 3.1 (vertex cut [77,78]). A vertex cut, also called a vertex cut set or separating

set, of a graph G is a subset of the vertex set S ⊆ V (G) such that G− S has more than one

connected component.

Definition 3.2 (minimum vertex cut [76,78]). Given a graph G a minimum vertex cut is a

vertex cut of smallest possible size.

Property 3.1. An n×m grid graph G = (V,E), with n,m ≥ 3 has a minimum vertex cut of

size 2, and every minimum vertex cut consists of the occupied nodes of either configuration

C2 of Fig. 3.1, or a symmetric one (all the pairs of nodes which are neighbours of a corner

of the grid).

3.1.1 Impossibility result for two honest agents

Wefirst show that two agents cannot gather in an oriented grid, even if they have unlim-

ited memory and global visibility. Notice that the agents can assign themselves distinct

identities. More specifically, each agent can assign an identity to itself consisting of two

integers by observing the distances from the borders. The first integer will be its dis-

tance from the north border, and the second integer will be its distance from the east

border. Since the agents have global visibility and they have been initially placed at

distinct nodes they can compute those distinct identities.

Lemma 3.4. In an oriented grid of size n ×m, where n,m > 3, two agents cannot gather

in the presence of one malicious agent, even if they have unlimited memory and global

visibility.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 27

Proof. Let G = (V,E) be an oriented grid. Suppose that there is an algorithm A that

gathers the two agents at a node of the grid at time t. Consider the last configuration

of the agents before they meet (i.e., the configuration at time t − 1). We first prove that

the last configuration should either be the one in which: 1) the two agents are adjacent

somewhere in the grid (let us call this configuration C1) or, 2) they are both at distance

one from the same corner of the grid (let us call this configuration C2). Examples of those

two configurations are shown in Figure 3.1. Suppose for the sake of contradiction, that

the last configuration C is not C1 or C2. In that case the agents in C have to be at distance

two (but not as in C2) at time t− 1, otherwise they cannot meet at time t. This means that

both agents have tomove to the same (free) node u in order tomeet. FromProperty 3.1, if

n,m ≥ 3, we have that the only vertex cut of size less than 3 is a vertex cut of size 2which

is the one of configuration C2, or the symmetric ones. Thus, in all other configurations,

the subgraph induced by all free nodes (i.e., nodes which are not occupied by honest

agents) is connected. Hence, in that case the malicious agent M can always reach the

free node u before the agents and thus prevent them from meeting each-other, even if

the agents, have unlimited memory and they can see each other’s locations. Thus, the

last configuration before the gathering should be C1 or C2.

Let us now define configuration C3 in which one of the agents occupies a corner node u

of the grid and the other agent occupies the node v which is at distance 2 from u and not

in the same row or column with u. We will show that unless the agents initially start in

configurationC1, C2, orC3, it is impossible to form any of those configurations, and hence

it is impossible to gather. Suppose for the sake of contradiction that the agents are able

to form a configuration of type C ∈ {C1, C2, C3} starting from a different configuration

and let C ′ /∈ {C1, C2, C3} be the last configuration before C is formed.

First observe that since C ′ is different than configuration C2 and its symmetric ones, ac-

cording to Property 3.1 configuration C ′ cannot have a vertex cut smaller than 3. Hence,

if both agents at configuration C ′ try to move to the same node z, or only one agent tries

tomove to a node z in order to form configuration C, thenM can reach node z before the

agent(s) (since, in any configuration apart from C2,M is able to reach any node which is

not occupied). Therefore configuration C cannot be formed if at C ′ only one agent tries

to move, or if both agents try to move at the same node. Let us study now the remaining

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 28

z w

x

y

z

w

w

z
Honest

Empty nodes

(a) (b) (c)

Figure 3.2: Two agents in a n ×m,n,m > 3 grid trying to move to two dis-
tinct nodes (z, w) from two distinct nodes (x, y) not in a configuration of type
{C1, C2, C3} respectively. Nodes (z, w) are not occupied nodes, but need to

be in order to get a configuration of type: C1, C2, C3.

case in which both agents at C ′ try to move to two distinct nodes.

Consider a configuration C ′ /∈ {C1, C2, C3} composed of a node x containing agent A

and a node y containing agent B. Suppose that the two agents A, B located at nodes

x, y in configuration C ′ are trying to move to two distinct nodes z and w respectively

in order to form configuration C. If z, w are not the occupied nodes of a configuration

C ∈ {C1, C2, C3}, then the malicious agentM does not block anyone and therefore C can-

not be formed. If z, w are indeed the occupied nodes of a configuration C ∈ {C1, C2, C3}

but either the pair (x,w) or the pair (z, y) are not the occupied nodes of a configuration

C ∈ {C1, C2, C3}, then the malicious agent M could block either node z (so that the new

occupied nodes are (x,w)) or node w (so that the new occupied nodes are (z, y)) respec-

tively. Hence, again the malicious agent M has a strategy to prevent the agents from

forming configuration C.

The only remaining hypothetical scenario in which the malicious agent M would not be

able to prevent the formation of configuration C fromC ′ is when all pairs of nodes (x,w),

(z, y), and (z, w) are the occupied nodes of configurations in {C1, C2, C3}. We show below

that this is impossible.

• Suppose that the nodes (z, w) (in configuration C) are the occupied nodes of config-

uration type C1. In other words, if both agents A,B move then the resulting con-

figuration is connected (see an example in Figure 3.2(a)). Node x could not be at w,

since then configuration C ′ would be of type C1. Node x can only be either North

or South of w in Figure 3.2(a), since otherwise (x,w) cannot be the occupied nodes

of some configuration in {C1, C2, C3}. Suppose without loss of generality that x is

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 29

as shown in Figure 3.2(a). Then y cannot be adjacent to x (otherwise configuration

C ′ would be of type C1) and can only be as shown in Figure 3.2(a), since otherwise

(z, y) cannot be the occupied nodes of some configuration in {C1, C2, C3}. However,

even in that case, the pairs of nodes (x,w) and (z, y) cannot be the occupied nodes

of configuration types C2 or C3 if n,m > 3.

• Suppose that the nodes (z, w) (in configurationC) are the occupied nodes of configu-

rationC2 (see an example in Figure 3.2(b)). Then nodes x, y have to be the other two

nodes of the corner 2 × 2 subgrid in Figure 3.2(b), otherwise (x,w) or (z, y) cannot

be the occupied nodes of some configuration in {C1, C2, C3}. However, this means

that configuration C ′ was of type C3, which is a contradiction.

• Suppose that the nodes (z, w) (in configurationC) are the occupied nodes of configu-

ration C3 (see an example in Figure 3.2(c)). Then nodes x, y have to be the other two

nodes of the corner 2 × 2 subgrid in Figure 3.2(c), otherwise (x,w) or (z, y) cannot

be the occupied nodes of some configuration in {C1, C2, C3}. However, this means

that configuration C ′ was of type C2, which is a contradiction.

Hence, if the two agents initially start at a configuration of type different than C1, C2, or

C3, then they cannot form a configuration of type C1, C2, orC3, and therefore they cannot

gather. Notice that, this impossibility result holds even when the agents have unlimited

memory and can see each-other’s location at any time on the grid.

We will see later that 3 or more agents can always gather in this model.

3.1.2 Gathering any number of at least 3 agents

In this section, we show that under the global visibility model, even three honest agents

(with constant memory) can gather in an oriented grid in presence of a malicious agent.

Some notations:

• Let C3
0 be the set of all connected configurations with 3 agents (i.e., the nodes occu-

pied by the agents form a connected subgraph of the grid).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 30

2

1
C3

1

C3
0

C3
2

2

1

C3
0

C3
2

C3
2 C3

0

2

1

Figure 3.3: Three agents in a grid: A tower of 2 and a single agent at distance
two.

• Let C3
1 be the set of all configurations with 3 agents, where two agents are colocated

and the third agent is at distance two from them on a straight line (i.e., either on

the same row or on the same column, see an example in Fig. 3.3).

• Let C3
2 be the set of all configurations with 3 agents, where two agents are colocated

and the third agent is at distance two from themnot on a straight line (i.e., the agents

are not all on the same row or on the same column, see an example in Fig. 3.3).

Theorem 3.1. Three honest agents with global visibility can gather in an oriented grid in

spite of one malicious agent.

Proof. It is sufficient to show that the agents can form a connected configuration (it is

straightforward to gather from a connected configuration if the agents can see each

other). Due to Lemma 3.1, we know that 2 of the 3 agents can always gather at a node,

if they have global visibility. So, let us assume that we start from a configuration where

2 agents are colocated (form a tower) and the third agent is in some distinct node of the

grid. Due to the global visibility capability, the agents can approach each other, i.e., they

can try to move to reduce the (vertical and then horizontal) distance between them. The

two agents in the tower will move together during this process. Note that, if the distance

between them is more than two then M can block either the tower or the third agent

but not both at the same time. Thus, at each time step, the distance will be reduced until

the distance is no more than two. If the distance is less than two then the agents already

form a connected configuration and they can immediately gather. So, suppose that the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 31

agents reach a configuration where the distance between the tower and the third agent

is exactly two.

Thus this configuration can be either of type C3
1 or of type C3

2 . We show that: (i) From

a configuration of type C3
1 we can reach a configuration of type C3

2 or a connected con-

figuration, and (ii) from a configuration of type C3
2 we can always reach a connected

configuration.

To prove (i), let us consider, w.l.o.g., the particular configuration C ∈ C3
1 where the third

agent is two steps to the EAST of the tower of two agents (see Fig. 3.3). Note that for

the other configurations in C3
1 , similar arguments hold, with rotation of directions etc.

In configuration C, the algorithm will instruct the tower to perform go(North) and the

solitary agent to perform go(West). If both moves succeed, then the resulting configu-

ration is in C3
2 and we are done. If only the move of the tower is blocked then we have

a connected configuration. So, we need to consider the only other case where the move

of the solitary agent is blocked byM . The resulting configuration has the tower one step

North and two stepsWest of the solitary agent (as shown in the figure). From this config-

uration, in the next step, the algorithm will instruct the tower to perform go(East) and

the solitary agent to perform go(West). If bothmoves succeed thenwe have a connected

configuration and if either one of the moves is blocked then the resulting configuration

is in C3
2 . Thus we have proved (i).

To prove (ii), note that in any configuration of type C3
2 , there are two unoccupied nodes

of the grid that are both at distance one from the tower and from the solitary agent. The

algorithmwill instruct the agents in the tower to split andmove towards those two nodes

respectively2. Themalicious agentM cannot block themoves of both and if at least one of

the moves succeeds then the resulting configuration is a connected configuration. Thus

we have proved (ii). So, three agents with global visibility can always gather starting

from any configuration.

Notice that the above result can be extended to any number of k agents, by first forming

a tower of (k − 1) agents (cf., Lemma 3.1) and repeating the technique of Theorem 3.1

with the k − 2 agents of the tower acting as a single agent. However, we will show in
2We remind the reader, that as we have noticed in the beginning of the section, the agents can assign to

themselves distinct identities and therefore they can perform distinct moves.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 32

the next section that for k > 3 agents, gathering is still possible in the more challenging

model with local visibility.

3.2 Local visibility

3.2.1 Gathering any number of at least 4 agents

In this section, we show that four or more honest agents can always gather in an n ×m

oriented grid with one malicious agent, where n,m > 1. Notice that, if n or m equals

1 (i.e., the grid is just one row or column), the gathering of all honest agents is trivially

impossible since the malicious agent can divide the agents into two separate groups and

prevent them from gathering. Hence we are interested in n × m oriented grids, where

n,m > 1. Notice also that, if in the starting configuration there are nodes with more than

one agents, then those initially colocated agentswill always behave in the sameway since

they are anonymous deterministic automata acting synchronously and they always have

the same input. Thus, for an initial configuration with two colocated groups of agents

the problem is unsolvable since the two groups will act as two agents and Lemma 3.4

will apply. Hence, in general the problem is unsolvable for initial configurations with

multiple agents at distinct nodes. Therefore, we are interested in initial configurations

with scattered agents (i.e., at most one agent at each node).

The high level description of the algorithm is the following: The agents first form at

least one group of at least 3 colocated agents. Each such group moves to the South-West

corner of the grid. Then, each group of at least 3 agents sweeps the whole grid towards

the North-East corner and on the way collects all the agents not belonging to a group.

Finally, all agents meet either at the North-East corner of the grid or at its adjacent node

on the West.

The main algorithm, called GridWalk, first creates at least one group of three colocated

agents, called tower, and thenmoves the towers of agents towards the South-West corner

of the grid. After arriving at the South-West corner the towers sweep the grid towards the

North-East corner, by exploring each column and changing columns only via the South

border while on the way collect all the agents that do not belong to any tower. Note that,

when two (ormore) agents aremoving at the same time to different nodes, themalicious

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 33

agent M can block at most one of them at each step, since the movements of the agents

are synchronous. An agent canmove in a chosen direction only if the neighbouring node

is not occupied by M , otherwise it stays (we say it is blocked) for this step.

Procedure FormTower
/* Algorithm to form Towers of at least 3 agents for k ≥ 4 */
/* Returns the state of the agent */

1 State := Initial
2 while there are less than 3 agents at the current node and there is an edge North do
3 if there is exactly one agent at the current node then
4 if previous move was North and blocked and there is an edge East thenmove

one step East
5 elsemove one step North
6 else

// there are exactly two agents at the current node
7 if previous move was North and blocked for both agents at state Initial then
8 A1moves one step North
9 if there is an edge East then A2moves one step East
10 else A2moves one step West
11 elsemove one step North

12 State := NB-reached
13 while there are less than 3 agents at the current node and there is an edge East do
14 if there is exactly one agent at the current node thenmove one step East
15 else

// there are exactly two agents at the current node
16 if previous move was East and blocked for both agents at state NB-reached

then
17 A1moves one step East
18 if there is an edge North then A2moves one step North
19 else A2moves one step South
20 elsemove one step East

21 while there are less than 3 agents at the current node and there is an edge North do
22 move one step North
23 while there are less than 3 agents at the current node doWAIT(1)
24 State := Tower
25 return State

The formal description of GridWalk is shown in Algorithm 3. The algorithm uses a num-

ber of procedures. The first one, is called Procedure FormTower and creates at least one

tower of at least 3 collocated agents. The second one, is called Procedure TowerWalk and

moves a tower of 3 agents to the next node in the intended direction. Finally Procedure

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 34

ExploreLine, is used to move a tower in a straight direction.

Let us now describe all procedures in more detail. The main idea of Procedure Form-

Tower is to let each agent navigate towards the North-East corner, by first instructing

the agent to move North up to the North border and then East up to the East border.

During this navigation, if an agent is blocked by themalicious agent while moving North

and it is alone, in the next move it will try to move East for one step (or West if it is lo-

cated on the East border column). If at some point the agent (which still moves towards

North)meets with exactly onemore agent and both of themwere blockedwhile trying to

move North, then one of themmoves East for one step (orWest if it is located on the East

border), while the other onemoves North. If two agents which have already reached the

North border are blocked on the North border while they try to move East, then one of

the agents moves South for one step. The agents that reach the North-East corner wait

until at least 3 agents are there.

Lemma 3.5. Consider k ≥ 4 agents in a n × m oriented grid, initially placed at distinct

nodes, with onemalicious agent, where n,m > 1. If the agents execute Procedure FormTower

then at least 3 agents will meet at a node at the same time within O(n+m) time units.

Proof. Initially every agent is moving towards the North border of the grid. If an agent

which is alone is blocked by the malicious agent M while trying to go North, and the

agent is not on the East-border column, then it tries to go East for just one move, i.e.,

before continuing to try to go North. If there are two co-located agents which have been

blocked while they are trying to go North, then one of them tries to go East (or West

if they are moving on the East-border column) for just one move, while the other one

tries to go North. Note that even though the agents are anonymous, since they initially

started at distinct nodes, they can assign to themselves different labels when they gather

at a node, based on the arrival times and on the incoming directions. Since M can only

block at most one node at a time, it might prevent at most 2 agents from approaching

the North border while executing the first while-loop of Procedure FormTower: M might

prevent one agent A (or a group of at most two co-located agents) from going North and

at the next time unit (when A tries to go East) it might prevent another agent B (or a

group of at most two co-located agents) from going North; M can continue to prevent

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 35

agent A (when B goes East) and B (when A goes East) from going North. Hence at least

k−2 agents will finish executing their first while-loop in the procedure approaching the

North border of the grid. At least one of the remaining two agents will first reach the

East border and then it will try to move North. Even if both remaining agents at some

point occupy the same node on the East border, they will split, one going West, and the

other North, hence at least one of them will manage to approach the North border.

Thus at least k−1 agents will exit the execution of their first while-loop in the procedure

and reach the North border after O(n + m) time units. Now every agent on the North

border will execute its second while-loop trying to go East. The malicious agent M can

divide those k − 1 agents on the North border, into at most two groups and can prevent

the western group from approaching the East border. Notice that, since k− 1 ≥ 3 at least

one of these groups should have at least two agents.

If there is only one agent on the western group of the North border, then either it will be

eventually unblocked, or otherwise the agent which was still blocked without exiting its

first while-loop, will be unblocked and reach the North border, joining one of the two

groups there.

If there are two agents on the western group of the North border, then those agents (by

executing their second while-loop) will split after they are blocked at the same node (one

of them continuing moving East and the other one moving South for one step). Hence,

the malicious agent can only prevent at most one of them from moving East within the

next two steps. Overall, at most one agent might not exit its first while-loop and at most

one more agent might not exit its second while-loop. This case can only happen if the

malicious agent has blocked the North-East corner of the grid. Otherwise, at most one

agent might not exit its first while-loop, or at most one agent might not exit its second

while-loop. Notice that the agents which have exited their first while-loop they are later

located either in the North border or one row below. The agents which have also exited

their second while-loop they are later located either in the North-East corner or one

node below. Hence if k−1 ≥ 3 agents have exited their second while-loop they meet and

finish the procedure. If the malicious agent blocks the North-East corner then it might

happen that one agent has not exited its first while-loop and is located one node South

of the North-East corner and another agent has not exited its second while-loop and is

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 36

located one node West of the North-East corner. However, in such a case at least two of

the remaining k − 2 ≥ 2 agents will soon join one of the blocked agents. Notice that, in

the special case where two groups of two agents each are temporarily formed, one West

and one South of the North-East corner, two agents might swap positions once, but then

at least three agents will gather at the node South of the North-East corner.

Hence at least one group of at least 3 co-located agents will be formed.

Procedure TowerWalk(X, Y)

/* A tower of at least 3 agents moves from a node u = (x, y) either to an

adjacent node in direction X, or to a node at a distance 2 from u in

direction XY . If at some step there are no applicable instructions for

an agent, this agent does not move in that step. All other agents

associated with the tower except the 3 basic agents, are just following

one of the three basic agents. */

1 Step 1

2 A1 :move to (x+ 1, y)

3 A2 :move to (x, y + 1)

4 Step 2

5 A3 : [together with A1]: move to (x, y + 1)

6 A3 : [together with A2]: move to (x+ 1, y)

7 Step 3

8 A1 : [alone at (x, y)]: move to (x+ 1, y)

9 A2 : [alone at (x, y + 1)]: move back to (x, y)

10 A2 : [alone at (x, y)]: move to (x+ 1, y)

11 A2 : [otherwise]: move to (x+ 1, y + 1)

12 Step 4

13 A1 : [alone at (x, y)]: move to (x, y + 1)

14 A2 : [together with A3 at (x, y + 1)]: move to (x+ 1, y + 1)

15 A2 : [together with A3 at (x, y)]: move to (x+ 1, y)

16 A3 : [together with A2 at (x, y + 1)]: move to (x, y)

17 A3 : [together with A2 at (x, y)]: move to (x+ 1, y)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 37

1 Step 5
2 A1 : [together with A3 at (x, y + 1)]: move to (x+ 1, y + 1)
3 A2 : [alone at (x, y + 1)]: move back to (x, y)
4 A3 : [alone at (x, y + 1)]: move to (x+ 1, y + 1)
5 A3 : [together with A1 at (x, y + 1)]: move to (x+ 1, y + 1)

6 Step 6
7 A2 : [alone at (x+ 1, y + 1)]: move to (x+ 1, y)
8 A2 : [together with A3 at (x, y)]: move to (x+ 1, y)
9 A2 : [together with A3 at (x+ 1, y + 1)]: move to (x+ 1, y)
10 A3 : [alone at (x, y)]: move to (x+ 1, y)
11 A3 : [together with A2 at (x, y)]: move to (x+ 1, y)
12 A3 : [together with A2 at (x+ 1, y + 1)]: move to (x+ 1, y)

Consider a number of at least three agents which gather at a node constructing a tower
3. Even in the case that more than three agents gather at the same node, three agents can

always be elected as the three distinct agents that form the tower (e.g., by comparing ar-

rival times, incoming directions, already assigned identities and making an ordered list

in which all agents agree). The remaining agents (if any) are then identified as followers

of the constructed tower. Hence assume a tower of at least three agents which has been

formed by agents A1, A2 and A3.

Procedure TowerWalk, moves all agents associated with the tower either to an adjacent

node towards a given direction or to a node at distance 2 from the agents’ current posi-

tion. LetX be the given direction and Y (which is also given) be the direction 90 degrees

clockwise or counterclockwise from X . For example if X is North then Y will be either

East orWest and so on. Suppose the tower is at position (x, y), where x is the current row-

position and y is the current column-position. Let (x+1, y) be the node which is adjacent

to node (x, y) towards directionX and let (x, y+1) be the node which is adjacent to node

(x, y) towards direction Y . Then, after an execution of TowerWalk(X,Y), the new position

of the tower is either (x + 1, y) (if the node (x + 1, y) was not blocked) or (x + 1, y + 1) (if

the node (x + 1, y) was blocked). For example if at least 3 agents belong to a tower at a

node u then Procedure TowerWalk(North, East)will move all agents associated with the

tower either to node v adjacent to u in the North direction (if v is not blocked) or to node

w at distance 2 from u in direction North-East (if v was blocked).
3We remind the reader that, even though the agents are anonymous, since they initially started at distinct

nodes, they can assign to themselves different labels when they gather at a node, based on several criteria.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 38

The formal description of Procedure TowerWalk(X,Y) can be found in Algorithm Tower-

Walk. The algorithm has also been demonstrated in Figures 3.4, 3.5, 3.6 for X = North

and Y = East, the remaining cases for X and Y work in a similar way. In the algorithm,

the related figures and correctness lemma we only analyze the movements of the three

agents A1, A2 and A3 which formed the tower. If there are more agents associated with

the tower then those agents just follow one of the three previously mentioned agents.

Lemma 3.6. Consider k ≥ 4 agents in a n × m oriented grid, initially placed at distinct

nodes, with one malicious agent, where n,m > 1. Suppose that in the grid there is at least

one tower consisted of at least l ≥ 3 colocated agents located at a node u = (x, y) at time

t. If the tower-agents execute Procedure TowerWalk(X,Y), then after at most 6 time units,

they all move either 1) to a node v = (x+ 1, y) which is adjacent to u towards direction X ,

if v was not blocked at time t + 1 or t + 3 or, 2) to a node w = (x + 1, y + 1) which is at a

distance 2 from u towards direction X − Y , if v was blocked at time t+ 1 and t+ 3.

Proof. We will prove the lemma for directions X,Y , where X is any direction and Y is

the direction 90 degrees clockwise from X . The case when Y is the direction 90 degrees

counterclockwise from X can be proved in a similar way. We have depicted the algo-

rithm in Figures 3.4, 3.5 and 3.6, forX = North and Y = East. We describe the algorithm

by just illustrating and analyzing the movement of the 3 basic agents A1, A2 and A3 that

formed the tower. If there are more agents associated with the tower then those agents

just move together with one of the three previouslymentioned agents. If one of the three

basic agents meets at any time another agent C which has not yet been associated with

any tower, then agent C is associated with the tower and after that it just moves together

with one of the three basic agents of the tower. If one of the agents associated with the

tower meets at any time an agent C which is associated with a different tower, then the

agents just ignore each-other. Note that two tower-agents thatmeet at the same node can

always decidewhether they are associatedwith the same tower or not: Suppose that two

agentsA,B associatedwith towers started the execution of Procedure TowerWalk at nodes

uA, uB respectively and meet at a node v while executing the procedure. The two tower

agents communicate and compare their port-sequences from the starting nodes uA, uB

to the meeting node v. Since, as we will prove, Procedure TowerWalk lasts at most 6 steps,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 39

a tower-agent needs only constant memory to keep the sequence of ports from the node

that started the execution of the procedure.

In the first step of the Procedure TowerWalk (X,Y), agentsA1 andA2move synchronously

to different nodes and therefore the malicious agent can only block at most one of the

agents. Agent A3 does not move. Thus the following three cases arise:

After step 1 After step 2 After step 3

After step 4Step 1

1,2,3

2, 3

1 1, 3

2

1,2,3

1

3 2

1

3 2 2, 3

1 1,2,3

1, 3 2 1 2, 3

1

2

After step 1 After step 2

After step 2After step 1

After step 3

Step 3

u

v w

u

v w

u

u u u u

u u

v

v v v v

v v

w

wwww

w w

u

v w

1 2

Honest

Figure 3.4: Consider three colocated agentswith identities 1, 2, 3which have
formed a tower and are located at node u. The agents execute Procedure
Towerwalk(North, East). The arrows depict the intended moves at step 1
on the left of the figure. Each possible configuration from step t to step t +
1 is shown under the title ‘After step t’. In each configuration the arrows
depict the agents’ intended moves of the next step. For the series of the

lower configurations, the demonstration continues in Figure 3.5.

• A2 is blocked at step 1, hence A1 moves to node (x + 1, y) and A3 does not move.

After step 1 A1 is at (x + 1, y) and A2 is at (x, y) with A3, as shown in the first row

of Figure 3.4. Therefore at step 2 A1 and A2 do not move and A3moves to (x+ 1, y)

where A1 is located. After step 2 A1 is with A3 at (x + 1, y) and A2 is alone at (x, y)

(first row, second column, of Figure 3.4). Therefore at step 3A1 andA3 do notmove,

A2 moves to (x + 1, y) where A1 and A3 are located. Therefore after step 3 A1, A2

and A3 are all together at (x+ 1, y) (first row, third column, of Figure 3.4).

• Both A1 and A2 move at step 1. Hence, after step 1 A1 is at (x + 1, y) and A2 is at

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 40

(x, y+1) and A3 is at (x, y), as shown in Figure 3.4, second row. Then at step 2 no one

will move, sinceA3 is alone at (x, y), therefore after step 2 there is no changes at the

locations (second row of Figure 3.4). At step 3A1 andA3 do not move andA2moves

back to (x, y) to meet A3. After step 3 A1 is alone at (x + 1, y) and A2 and A3 are at

(x, y). Therefore at step 4, A1 does not move and A2 and A3move to (x+1, y)where

A1 is located. Therefore after step 4 A1, A2 and A3 are all together at (x+ 1, y).

• A1 is blocked at step 1, hence A2 moves to (x, y + 1). Therefore, after step 1 A2 is

at (x, y + 1) and A1 and A3 are at (x, y), as shown third row of Figure 3.4. In step 2

A1 and A2 do not move, A3moves to (x, y + 1). Hence after step 2 A1 is at (x, y) and

A2 and A3 are at (x, y + 1) (third row of Figure 3.4). At step 3 A3 does not move, A1

tries to move to (x+ 1, y) and A2 tries to move to (x+ 1, y+ 1). Depending on which

agent succeed in his/her movement, three sub-cases arise, which are presented in

Figure 3.5:

1 2, 3

Step 3

1 2

After step 3

After step 3

After step 3

After step 4

After step 4

After step 5

After step 5

After step 6

1 2

3

1 2

3

1 2, 3 1,2,3

1

2

3 1, 3

2 1,2,3

1

2, 3

Step 42

3

u

v w

u

v
w

u

v
w

u

v
w

u

v w

u

v
w

u

v w

u

v w

u

v w Honest

Figure 3.5: Continuation of the series of the lower configurations of Fig-
ure 3.4. For the series of the lower configuration, the demonstration contin-

ues in Figure 3.6.

– Both A1 and A2move. Hence after step 3 A1 is at (x+1, y), A2 is at (x+1, y+1)

and A3 is at (x, y+1), as shown in first row, Figure 3.5. At step 4 no one moves,

hence after step 4 there is no change at the locations (first row, Figure 3.5). At

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 41

step 5A1 andA2 do notmove andA3moves to (x+1, y+1),whereA2 is located.

Therefore after step 5 A1 is at (x+ 1, y) and A2 and A3 are at (x+ 1, y + 1) (first

row, Figure 3.5). At step 6 A2 and A3 move to (x + 1, y), where A1 is located.

Therefore after step 6 A1, A2 and A3 are all together at (x+ 1, y).

– A1 is blocked, hence A2moves to (x+ 1, y+ 1). After step 3 A1 is alone at (x, y),

A2 is at (x+1, y+1) andA3 is at (x, y+1), as shown in second row, Figure 3.5. At

step 4A1moves to (x, y+1), A2 andA3 are alone so they do notmove. Therefore

after step 4 A1 and A3 are at (x, y + 1) and A2 is at (x + 1, y + 1) (second row,

Figure 3.5). At step 5 A2 does not move, A1 and A3move to (x+1, y+1), hence

after step 5 A1, A2 and A3 are all together at (x+ 1, y + 1).

– A2 is blocked, hence A1 moves to (x + 1, y). After step 3 A1 is at (x + 1, y) and

A2 and A3 are at (x, y + 1), as shown in third row, Figure 3.5. At step 4 A1 does

not move, A2 tries to move to (x + 1, y + 1) and A3 tries to move back to (x, y).

Again depending onwhich agent succeed inhis/hermove, three sub-cases arise

which are presented in Figure 3.6:

* A3 is blocked, hence A2moves to (x+1, y+1). After step 4 A1 is at (x+1, y),

A2 is at (x + 1, y + 1) and A3 is at (x, y + 1), as shown in the first row of

Figure 3.6. Therefore at step 5 A1 and A2 do not move and A3 moves to

(x+ 1, y+ 1),where A2 is located. After step 5 A1 is at (x+ 1, y) and A2 and

A3 are at (x+ 1, y + 1) (the first row of Figure 3.6). Hence at step 6 A1 does

not move and A2 and A3move to (x+ 1, y),where A1 is located. Therefore

after step 6 A1, A2 and A3 are all together at (x+ 1, y).

* A2 is blocked, hence A3 moves to (x, y). After step 4 A1 is at (x + 1, y), A2

is at (x, y + 1) and A3 is at (x, y), as shown in the second row of Figure 3.6.

Therefore at step 5 A1 and A3 do not move and A2 moves back to (x, y),

where A3 is located. After step 5 A1 is at (x + 1, y) and A2 and A3 are at

(x, y) (second row of Figure 3.6). At step 6 A1 does not move and A2 and A3

move to (x + 1, y), where A1 is located. Therefore after step 6 A1, A2 and

A3 are all together at (x+ 1, y).

* BothA2 andA3move. Hence after step 4A1 is at (x+1, y), A2 is at (x+1, y+1)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 42

Step 4

1

2, 3

After step 4 After step 5

After step 4 After step 5

After step 6

After step 6

After step 4 After step 5 After step 6

1 2

3

1 2

3

1,2,3

1

3 2

1

2, 3

1,2,3

1 2

3

1 2, 3 1,2,3

3
2

u

v w

u

v
w

u

v
w

u

v w

u

v w

u

v w

u

v w

u

v
w

u

v
w

u

v w

Honest

Figure 3.6: Continuation of the series of the lower configuration of Fig-
ure 3.5.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 43

and A3 is at (x, y), as shown in the third row of Figure 3.6. At step 5 no one

moves, hence after step 5 there is no change at the locations (third row of

Figure 3.6). At step 6 A1 does not move and A2 and A3 move to (x + 1, y),

where A1 is located. Therefore after step 6 A1, A2 and A3 are all together

at (x+ 1, y).

Procedure ExploreLine(Dir)

/* Algorithm for Exploring a line (row or column) of the Grid towards

direction Dir */

1 X = Dir

2 Y is the direction 90 degrees clockwise from direction X

3 parity = 0

4 while there is an edge towards direction X do

5 if there is no edge towards direction Y then

6 Y is the direction 90 degrees counter-clockwise from direction X

7 Let u be the location of the tower

8 Perform TowerWalk(X,Y)

9 Let v be the location of the tower after executing Procedure TowerWalk

10 if node v is at a distance 2 from u on the XY direction then

11 if there is an edge towards X then

12 Let Z be the opposite direction of Y

13 Perform TowerWalk(Z,X)

14 else

15 parity = 1

16 return parity

Procedure ExploreLine(Dir), moves a tower consisting of at least 3 agents from a node u

either to anode v on theborder of the grid in a straight directionDir from u, or to anode v′

on the border adjacent to v (if vwas blocked at that time). The procedure repeatedly calls

Procedure TowerWalk(X,Y), whereX = Dir and Y is a direction 90 degrees clockwise or

counterclockwise from X . If at some point the tower ends up at a node w ̸= v′ which

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 44

is not on the straight direction connecting nodes u, v, then a suitable correction move is

executed. For example, if the tower had to move North but ended up North-East (before

it reaches the target border) then itmovesWest, thus going back to its track. This ensures

that the tower always moves in a straight direction. Note that for parameter Dir we use

only the directions of north, south, or west.4

Possible executions of Procedure ExploreLine are shown in Figures 3.7, 3.8.

Tower (i.e three or more colocated agents)

(a) (b) (c)

Figure 3.7: Possible executions of Procedure ExploreLine. (a) A tower
traversing back and forth a column without been blocked (Procedure
ExploreLine(North), followed by Procedure ExploreLine(South) and Pro-
cedure TowerWalk(East, North)). (b) A tower traversing the West border
column towards North (Procedure ExploreLine(North)). The tower was
blocked two times and those times temporarily ended up in the next col-
umn. (c) A tower traversing the West border column towards South (Proce-
dure ExploreLine(South), followed by Procedure TowerWalk(East, North)).
The tower was blocked once and that time temporarily ended up in the next

column.

Lemma 3.7. Consider k ≥ 4 agents in a n × m oriented grid, initially placed at distinct

nodes, with one malicious agent, where n,m > 1. Suppose that in the grid there is at least

one tower consisted of at least l ≥ 3 colocated agents located at a node u at time t. Let v

be the node on the border of the grid towards direction Dir furthest from u and let p be the

distance (i.e., the length of the shortest path) between nodes u and v. If the tower-agents

execute Procedure ExploreLine(Dir), then after O(p) time units the agents will end up either

at node v (in this case the procedure returns Parity = 0) or at a node on the border adjacent

to v (in that case the procedure returns Parity = 1) depending on the location of node u and

direction Dir as follows:

i) Dir is North and u is not on the East border: v or East of v
4Even thoughDir could also get east as value, we do not use it in our algorithm since the move from one

column to the next towards the east is made by only one execution of TowerWalk.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 45

Tower (i.e three or more colocated agents)

(d) (e) (f)

Figure 3.8: Possible executions of Procedure ExploreLine. (d) A
tower traversing a non-border column towards north (Procedure
ExploreLine(North)). The tower was blocked once and that time tem-
porarily ended up in the next column. (e) A tower traversing a non-border
column towards South (Procedure ExploreLine(South), followed by
Procedure TowerWalk(East, North)). The tower was blocked once and
that time temporarily ended up in the previously traversed column.
(f) A tower traversing the East border column towards North (Proce-
dure ExploreLine(North)). The tower was blocked once and that time

temporarily ended up in the previously traversed column.

ii) Dir is North and u is on the East border: v or West of v

iii) Dir is South and u is not on the West border: v or West of v

iv) Dir is South and u is on the West border: v or East of v

v) Dir is West and u is on the South border: v or North of v

Proof. Consider a tower of at least three agents at a node u = (x, y) not on the East bor-

der. Assume that the agents associated with the tower execute Procedure ExploreLine

towards direction North (i.e., case (i)). Let v be the node on the North border which is

the furthest node on the same column and north of u and let p be the shortest path from

u to v. According to Algorithm ExploreLine directionX = North and direction Y = East.

The tower will execute Procedure TowerWalk(X, Y) and by Lemma 3.6 will either reach

node (x + 1, y) (which is the node next of u on path p) or node (x + 1, y + 1) (which is

the node at distance 2 from u towards direction X − Y (i.e., North-East) within at most 6

time units. The tower agents repeatedly execute Procedure TowerWalk(X, Y) from their

current node (say u′) until they either reach node v in the X (i.e., north) border (in which

case the procedure ends and Parity = 0 is returned), or they reach a node w which is

not straight in direction X (i.e., north) from u for the first time. In that case node w has

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 46

to be at distance 2 in direction X − Y (i.e., North-East) of node u′. If w is on the X (i.e.,

north) border then it must be Y (i.e., East) of v and the procedure ends and Parity = 1 is

returned. If w is not on theX border, then the agents execute TowerWalk(Z, X), where Z

is opposite than Y (i.e., Z is West when Y is East). Therefore the agents will either reach

the node next of u′ on p or the second next node of u′ on p. Hence the agents will either

reach node v or the node Y (i.e., east) of v on the X (i.e., north) border within O(p) time

units.

If the starting node u is on the East border (case (ii)), then the tower agents always execute

TowerWalk(North, West). The proof of this case can be done in a similar way as before

by taking X = North and Y = West.

If the direction is South and the starting node u is not on the west border (case (iii)), then

the proof can be done in a similar way as before by taking X = South and Y = West.

If the direction is South and the starting node u is on the west border (case (iv)), then the

proof can be done in a similar way as before by taking X = South and Y = East.

Finally, if the direction is West and the starting node u is on the south border (case (v)),

then the proof can be done in a similar way as before by taking X = West and Y =

North.

We now present Algorithm GridWalkwhich gathers k > 3 agents in an oriented grid with

one malicious agent. The algorithm first instructs the agents to form at least one tower

(using Procedure FormTower). Each tower moves to the South-West corner of the grid

(using Procedure ExploreLine). Then each tower explores the grid, starting from the

South-West corner, and traversing the grid moving back and forth on each column and

changing columns from the south border using Procedures ExploreLine and TowerWalk,

trying to reach the North-East corner of the grid. Along the way the towers collect any

agents which do not belong to any tower. The formal algorithm is shown in Algorithm 3.

Theorem 3.2. Consider k ≥ 4 agents in a n ×m oriented grid, initially placed at distinct

nodes, with a malicious agent, where n,m > 1. If the (honest) agents execute Algorithm

GridWalk then they gather within at most O(nm) time units.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 47

Algorithm 3: GridWalk
/* Algorithm for Gathering k ≥ 4 agents in Oriented Grid */
/* State = Tower */

1 execute FormTower
2 if there is an edge towards South then execute ExploreLine(South)
3 if there is an edge towards West then execute ExploreLine(West)
/* The tower has reached the West border */

4 while there is an edge towards East do
5 execute ExploreLine(North)
6 if ExploreLine returns 1 then execute TowerWalk(West, South)
7 Perform ExploreLine(South)
8 if ExploreLine returns 0 then execute TowerWalk(East, North)
9 if ExploreLine returns 1 and the ExploreLine was not performed at the West border

then
10 Let u be the current node
11 execute TowerWalk(East, North)
12 if tower ended up at distance 2 North-East of u then
13 Let v be the current node
14 execute TowerWalk(South, East)
15 if tower ended up South of v then execute TowerWalk(East, North)
16 else execute TowerWalk(East, North)

/* The tower has reached the East border */
17 execute ExploreLine(North)
18 if ExploreLine returns 1 then
19 while there is an edge towards East domove East

Proof. The agents first execute Procedure FormTower. In view of Lemma 3.5, they form

one or more groups (towers) of at least 3 agents within O(n +m) time units. Then, each

tower first moves to the South and then to the West border (using Procedure Explore-

Line). Hence, in view of Lemma 3.7 each tower will eventually reach either exactly the

South-West corner of the border, or one node above the South-West corner, of the grid

within anotherO(n+m) time units. Then each tower traverses the whole grid as follows:

it traverses each column back and forth (using Procedure ExploreLine) andmoves to the

next column in direction East (using Procedure TowerWalk). Examples of such traver-

sals are shown in Figures 3.7, 3.8. By repeatedly applying Lemmas 3.6 and 3.7, we get

that each tower will either reach the North-East corner or its neighbour node z to the

west, within at most O(nm) time units in total. Any tower that reaches node z tries for

ever to move East to the North-East corner. Therefore within at most O(nm) time units

all towers will meet either at the North-East corner or at node z.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 48

What remains to be proved is that any agents not belonging to a towerwill be discovered

and collected by a tower on its way to the North-East corner. Notice that any agent H

which has not yet been associated with a tower, must still execute Procedure FormTower

and therefore according to that procedure, agentH either waits at the North-East corner

or otherwise tries to move towards North, East, or West5.

Let us closely follow the exploration of a tower starting at the South-West corner of the

grid (or its neighbour node on the north).

Let u be the starting node of such an exploration (i.e., either the South-West corner of

the grid or its neighbour node on the north). First notice that if u is not the South-West

corner, then it means that the tower could not reach the South-West corner during the

execution of Procedure ExploreLine(West). The only case where this can happen is if

the South-West corner is blocked during step t of the last call of Procedure TowerWalk, as

it can be verified in the procedure. Since agent H cannot move to the South-West corner

from any other node, it means that if u is not the South-West corner, agent H can not

move at the South-West corner at time t or later.

Hence the tower executes Procedure ExploreLine(North) starting at node u at time t′

(e.g., see Figure 3.7(a), (b)). Agent H cannot move to the South-West corner or to node u

at t′ (without meeting a tower agent) or later. Let v be the node where the tower ends-

up after the execution of the procedure. Since n,m > 1, this first column is not the East

border of the grid.

Suppose that the column is not adjacent to the East border of the grid. In viewof Lemma 3.7,

since the column (where u is located) is not on the East border, node v is on the North

border and either on the same column with u or on the next column towards east. Let

t be the first time when one of the tower agents was blocked while trying to move to-

wards North to a node u′ on the same column with u (i.e., while executing Procedure

TowerWalk(North, East) within Procedure ExploreLine(North)). Since, up to this mo-

ment, no tower agent was blocked while moving North, if agent H was at any node in

the shortest path p from u to u′, then the tower agents should have met it. Moreover, if u′

5We remind the reader that according to Procedure FormTower, agent H will try to move West only if it
has not yet reached the North border and is located in the East border together with another agent and both
of them were blocked in the previous step while trying to go North.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 49

is not adjacent to v then H can not move at u′ at time t (without meeting a tower agent)

or later since agent H always tries to move towards North or East (unless it is located

on the North or East border) and therefore cannot reach u′ from a node not in p. If u′

is indeed adjacent to v, then it might happen that H will try to move to u′ at t or later.

However, the tower agents will finish the current Procedure TowerWalk(North, East) by

either gathering at u′ or at a node east of u′. In the first case ifH is at v a tower agent will

meet H within the first step of the next Procedure TowerWalk(North, East). In the sec-

ond case ifH is at u′ or v the tower agents will meet H during the next two executions of

Procedure TowerWalk (i.e., either during the correction movement by calling Procedure

TowerWalk(West, North), or during the next Procedure TowerWalk(North, East)). Hence

when the tower reaches the north border of the grid at time t′, either a tower agent has

metH orH will never try to move to a node in the same columnwith u at time t′ or later.

If u, v are not on the same column, then the tower executes Procedure TowerWalk (West,

South) and moves to a node v′ on the same column with u either on the North border or

one row below.

Afterwards, the tower executes Procedure ExploreLine(South) (e.g., see Figure 3.7(c))

and let w be the node where the tower is located after finishing the execution of Proce-

dure ExploreLine(South).

Since v′ was on the West border then in view of Lemma 3.7, nodes v′, w either belong to

the same columnorw is on the next column towards East. If v′, w are on the same column,

Procedure ExploreLine returns 0, and the tower executes Procedure TowerWalk(East,

North) and moves from w to the next column c towards East at a node v′′ either on

the South border or one row above (see Figure 3.9). If the tower after TowerWalk(East,

North) is located one row above the south border, then that means that the malicious

agent was blocking the tower from moving to node v′′ on the south border, hence there

can be no agent H at that location at any later time.

The tower continues exploring this next column c towards north until it reaches thenorth

border at a time t (e.g., see Figure 3.8(d)). If c is not adjacent to the east-border column,

then using the same arguments as before, any agent H cannot move to any node of that

column cwithin time t (withoutmeeting a tower agent) or at a later time. Therefore agent

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 50

H (if not already met with a tower agent) is located at a column not yet traversed. Then

the tower executes Procedure ExploreLine (South) and ends up on the south border

either on the same column c or one column to the west (e.g., see Figure 3.8(e)). In the

first case the tower agent acts exactly as described a few lines above. In the second

case, Procedure ExploreLine returns 1 and the tower executes 2 or 3 times Procedure

TowerWalk as it can be seen in Figure 3.10, in order to move to the next (not yet explored)

column to the east. Once more if the tower never reaches the initially intended node,

then the malicious was blocking the tower (and any other agents) from moving to that

node, hence there can be no agent H at that node at that time or any time later.

TowerWalk(East, North)

w

v′′

v′′

Figure 3.9: A tower executed Procedure ExploreLine(South) traversing a
columnand endedup at a nodew located in the same column (the procedure
returns 0). Then the tower executes Procedure TowerWalk(East, North) and

ends up at node v′′.

Now, consider the case of a tower entering and starting to explore (i.e., towards north)

a column c which is adjacent to the East border column of the grid (i.e., c is not the East

border but the adjacent column on the west) (e.g., see Figure 3.8(d)). In that case, if agent

H is somewhere on the east border, it might happen that H will try to move to a node on

the west. Nevertheless it is easy to see that when the tower traverses column c towards

North it explores both column c and the east border column. To see why, suppose that

agentH is located at a node x in the east border column and let x′ be the node on column

cwhich is adjacent to x. Suppose also that the tower is located at a node z in column c on

the shortest path between the south border and node x′. Each time the tower executes

Procedure TowerWalk(North, East), one tower agent tries tomove north of z and another

one tries to move east of z. Hence, since agentH will not try moving South, will be either

collected by one of the tower agents by the time the tower agents reach the north border

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 51

TowerWalk(East, North) TowerWalk(East, North)

TowerWalk(South, East) TowerWalk(East, North)

w v′′

v′′

Next column to be exploredPreviously explored column

Figure 3.10: A tower executed Procedure ExploreLine(South) traversing
a column which is not on the West border, and ended up at a node w lo-
cated one column to the West (the procedure returns 1). Then the tower
executes Procedure TowerWalk(East, North) and ends up at node v′′. After
that, the tower executes one or two more times the Procedure TowerWalk in
the appropriate direction(s) and ends up on the next (unexplored) column

towards East.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 52

or H will reach the North-East corner of the grid. Notice that by the time the first tower

finishes the exploration (i.e., traversing towards north) of the column which is adjacent

to the east-border column, if there are agents not associated with a tower, then those

agents must wait at the North-East corner of the grid.

Finally, when the tower reaches the East border, the execution of ExploreLine(North)

starts, and as a result the tower is now located either at the north-east corner of the grid

or at an adjacent node to the west (say y) (e.g., see Figure 3.8(f)). In the second case

all agents associated with that tower try to move East until they reach the North-East

corner. Notice that, if there is at least one tower at node y trying to go East (at the North-

East corner of the grid), then either the malicious agent prevents all agents frommoving

to the North-East corner, or there is an agent that reaches the North-East corner. Hence

all agents will gather either at node y or at the North-East corner.

3.2.2 Gathering three or more agents

Let us now present a more sophisticated technique for gathering any number of three

or more agents. We start with a high-level description of the algorithm.

Notice that in the algorithm for 4 agents, as discussed in Section 3.2.1, the idea was to

form a group of 3 agents which can explore the grid (while the members of the group

stay close to each other), and this can be done independently of whether other agents

are also moving at the same time or not. In the algorithm for 3 agents the idea is to

form a group of two agents which can explore the grid (while the members of the group

stay close to each other). However now it is necessary that at least one other agent is also

trying to explore thewhole grid. The reason is that if all other agents plan tomovewithin

a limited area, then the adversary could block one of the group agents and therefore it

would be impossible for the group agents to explore the whole grid staying close to each

other.

For all the reasonsmentioned above, the algorithms, procedures, and proofs for 3 agents

are much more complicated: A tower of 3 agents (as in the algorithm for 4 agents) can

never be blocked by the adversary and it will always explore the grid (even if there were

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 53

no other agents). However, a tower of 2 agents (as in the algorithm for 3 agents) can some-

times be blocked without making any progress, but the malicious agent while blocking

the tower should allow the alone agents to move freely. Therefore, the algorithms for 3

agents have to be carefully designed so that the tower can not be blocked together with

another agent at the same time, which would bring as to a standstill.

The agents executing the algorithmaremoving as follows: At least two of the agentsmeet

and form a group of explorers. Then they explore the whole grid moving in a “cautious

way” and maintaining a distance of at most one edge between them until they either

meet a third agent or they are blocked by the malicious agent. If the routing distance h

(i.e., the distance with respect to the routing, that we formally define later) between one

of the agents in the group and an agent not in the group is h ≤ 2, then they all meet after a

constant number of steps. On the other hand, if the routing distance is h > 2, then within

O(h) steps either the two agents of the group meet again and their routing distance from

the third agent is at most 2, or one of the agents in the group meets the third agent. In

this last case all agents meet after a constant number of extra steps. We describe below

the algorithm in detail.

Each agent is initially located at a distinct node, and starts at state initial moving to-

wards the North border of the grid and then towards the East border until it either

reaches the North-East corner or it meets another agent.

If an agent reaches theNorth-East corner of the grid (i.e., withoutmeeting another agent),

it switches to state Explorer1 and starts exploring the grid by a zig-zag technique: it first

traverses the current column to the South; then it proceeds (via an edge on the South

border) to the next column to the West and it repeatedly traverses that column initially

moving North and then back South until it reaches the South border; it then moves to

the next column to theWest, and so on (see Figure 3.11). The agent follows the described

route with the following additional local moves (see Figure 3.11): it moves one step for-

ward along the route, then back (i.e., to the previous position) and forward again. If the

agent is blocked while taking the move backwards it continues moving forward, while if

it gets blockedwhile moving forward it keeps trying tomove forward. Hence, if an agent

is blockedwhile moving, on the next step it tries to move again forward until it succeeds.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 54

.

Explorer1 Explorer2

Start

End Start

End

Explorer1 Local

Move

Wait

Explorer2 Local

Forward

Forward

Backward

Figure 3.11: Both Explorer1 and Explorer2 routes are shown. The explor-
ers’ local moves depend on the general route direction. For example, when
Explorer1 moves towards South, North, or West, then “forward” means to-

wards South, North or West, respectively.

After having traversed back and forth the column on theWestern border of the grid (i.e.,

reaching for the second time the South-West corner), the agent switches to state Explor-

er2 and explores the grid in the opposite way (i.e., traversing one by one the columns

from the West to the East and changing columns only via edges on the South border),

until it again reaches the North-East corner (see Figure 3.11). The agent at state Explor-

er2 follows the described route with the additional local moves: it repeatedly moves one

step along the route and then (if not blocked) waits for one time unit before it moves

again (see Figure 3.11). In case the agent is blocked while trying to move it tries to move

again (i.e., without waiting) until it succeeds.

Each agent repeats those procedures until it meets another agent or reaches the North-

East corner of the grid while at state Explorer2. We will later show that at least two

agents will meet before an agent visits twice the North-East corner of the grid (i.e., at

state Explorer2). In fact, we will show that at most one agent will switch to state Explor-

er2 and before the first agent at state Explorer2 finishes its traversals, at least two agents

meet.

If two agents meet (at any time during the main algorithm) they change their state to

Group-Explorer1 and Group-Explorer2 respectively (they can always switch to different

states since they either come from different directions or one of them did not move in

the previous step), and they start (or continue) the exploration in the zig-zag route: the

agent at state Group-Explorer1 follows a similar movement as an Explorer2 (i.e., starts

or continues a zig-zag route towards the North-East corner by repeatedly moving one

step forward and waiting for one time unit), while the agent at state Group-Explorer2

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 55

just follows Group-Explorer1 with one time unit delay; in other words Group-Explorer1

moves forward while Group-Explorer2 waits and on the next time unit Group-Explorer1

waits until Group-Explorer2 joins.

The group of explorers moves as described until one of them meets a third agent or

Group-Explorer1 is blocked (notice that only a Group-Explorer1 could be blocked) by the

malicious agent. If they reach the North-East corner they switch direction and move in

a similar way towards the South-West corner and then back to the North-East corner.

If Group-Explorer1 is prevented to move by the malicious agent, then the two agents

change their states to Group-Trace1 and Group-Trace2 and start moving in a special lo-

cal way which is described in detail later, which guarantees that they progress in the

exploration while maintaining a close distance between them and almost preserve the

exploration route. We show later that before the two agents reach twice the North-East

corner of the grid they meet a third agent.

Algorithm 4: Gathering k ≥ 3 agents in a n×m grid

1 State = Initial

2 while you are alone and not on the North border domove North

3 while you are alone and not on the East border domove East

4 if you are alone then

/* you have reached the North-East corner */

5 State = Explorer1

6 else

7 if you have met with exactly one more agent B then

8 if agent B’s state is either Initial, Explorer1 or Explorer2 then GroupMove

9 else State = Group-Follower

Lemma 3.8. Consider k ≥ 3 agents initially placed at distinct nodes in a n × m grid. By

executing Algorithm 4, within O(n + m) time units either at least two agents meet or at

least one agent reaches the North-East corner. If k > 3 then at least two agents meet.

Furthermore, all agents (if any) that meet at the same node switch to distinct states.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 56

Procedure GroupMove
1 Let u be the current node
2 Let A be the ordered set A = {West, North, East, South}
3 Let d1 be the direction from which you entered node u
4 Let d2 be the direction from which the other agent entered node u
5 if d1 ̸= d2 then
6 if d1 appears before d2 in set A then State = Group-Explorer1
7 else State = Group-Explorer2
8 else
9 if you were already at node u in the previous step then State = Group-Explorer1
10 else State = Group-Explorer2

Proof. Since the malicious agent may only block one node u at a time, it might only (for-

ever) prevent agents of the same column to reach the North border. Hence either at least

k−1 agents finish the execution of the first while-loop of Algorithm 4 and reach theNorth

border or at least 2 agents meet within O(n+m) time units. Therefore, if no two agents

meet sooner then at least k − 1 ≥ 2 agents will reach the North border within O(n +m)

time units.

The malicious agent can divide those k − 1 agents on the North border, into at most two

groups and can prevent the western group from approaching the East border. Notice

that, if k > 3 at least one of these groups should have at least two agents.

Therefore if k > 3 then at least two agents meet while if k = 3 either at least two agents

meet or at least one agent will reach the North-East corner of the grid within O(n + m)

time units.

Moreover, two agents that meet at the same node anywhere on the grid, should have

been at different nodes at the previous step and hence they can switch to different states

as shown in Procedure GroupMove.

Hence by executing Algorithm 4 within O(n + m) time units either at least two agents

have met or one agent has reached the North-East corner of the grid. We show below

that within a total number of O(nm) traversals at least two of the k ≥ 3 agents have met.

Before going on let us present the notationwe use in the following proofs and figures. On

the figures the transition between configurations are shown. On each configuration the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 57

Procedure Explorer1
/* Explorer1 state */

1 while you are alone and not on the South border do
2 MoveFBF(South)
3 while you are alone and not at the South-West corner do
4 MoveFBF(West)
5 while you are alone and not on the North border do
6 MoveFBF(North)
7 while you are alone and not on the South border do
8 MoveFBF(South)

9 if you are alone then
/* you have reached the South-West corner */

10 State = Explorer2
11 else
12 if you have met with exactly one more agent B then
13 if agent B’s state is either Initial, Explorer1 or Explorer2 then
14 GroupMove
15 else State = Group-Follower

ProcedureMoveFBF(dir)
/* Move forward-back-forward towards direction dir */

1 Move one step at direction dir until you succeed
2 Move one step back
3 if succeeded moving backwards then
4 Move one step at direction dir until you succeed

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 58

geometric shapes represent the positions of the honest agents, while the arrows denote

the move of each corresponding agent. The position of the malicious agent is omitted.

Depending on all possible positions of the malicious agent, two or more configurations

may arise. In most cases when the goal of a procedure is achieved the word “Done”

followed by a specific time unit t is written on the configuration. Some configurations

can occur in two different times from the start of this procedure. We denote t = {x, y} if a

configurationmay occur either at t = x or at t = y. When two arrows are associated with

an agent, then that agent tries those moves interchangeably until another agent arrives

or one of those moves succeeds.

The figures show a very specific movement, usually North-to-South and South-to-North,

but the protocol for thesemoves, andmore specifically for the agents in a state of Group--

Trace1 or Group-Trace2, can be generalized with a main and a secondary directions. Let

us define these directions as (fwd, aux) which take values based on the following rule.

aux ∈ {east, west} if fwd ∈ {north, south}

aux ∈ {north, south} if fwd ∈ {east, west}

Lemma 3.9. Consider k ≥ 3 agents initially placed at distinct nodes in a n×m grid. By ex-

ecuting Algorithm 4, within O(nm) steps at least two agents meet. Furthermore, all agents

that meet at the same node switch to distinct states.

Proof. In view of Lemma 3.8, if k > 3 then at least two agents meet while if k = 3 either

at least two agents meet, or at least one agent has reached the North-East corner of the

grid within O(n+m) time units.

Suppose that k = 3 and no two agents have met until one agent reaches the North-East

corner of the grid. Let A be the first agent that reaches the North-East corner. According

to Algorithm 4, agent A’s state changes to Explorer1 and then moves according to Algo-

rithmExplorer1. AgentAwill eithermeet another agent as itmoves, or it will be blocked,

possibly for many time units, or it will reach the South-West corner of the grid without

meeting an agent. It is easy to see that agent A can not be overtaken by another agent at

state Explorer1 without the two agents meet. Therefore, as long as no agents have met,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 59

all other agents at state Explorer1 except agent A, may only exist in the same column as

A or in different columns closer to the East border of the grid.

Suppose that, while no agents have met, agent A is blocked while moving forward6 to-

wards a node u (i.e., the malicious agent is at u). There are three cases for the location

of node u. It could be either on the north border, on the south border, or somewhere in

between.

• If node u is on the North border, then only an agent (at state Initial) coming from

the West could be blocked at the same time, since no agent would try to move to

node u coming from the East. Hence, in that case, at most one more agent could be

blocked while moving to u.

• If node u is not on the North or the South border, then only an agent coming from

the opposite direction of A (i.e., moving in the same column as A) could be blocked

at the same time, since no agent would try to move to node u coming from the East

or West. Hence, again at most one more agent B could be blocked while moving to

u (notice that B should either be at state initial if u is at the East border, or at state

Explorer1, otherwise).

• If node u is on the South border, then again only onemore agentB could be blocked

at the same time: when A is coming from the North and B is coming from the East

(notice that B should also be at state Explorer1).

Since, in all above cases, atmost two agents can be blocked at the same time, either Awill

be unblocked, or a third agent will meet agent A or B, within O(nm) time units. Hence

either two agents meet or agent A is the first agent that reaches the South-West corner,

switches to state Explorer2 and moves according to Algorithm Explorer2.

We now show that at least two agents meet before agent A reaches again the North-East

corner. To show this we first observe that while no two agents have met and A has not

been blocked, if at a time t there is an agent at a node v and at state Initial while agent

A (at state Explorer2) is moving towards the North-East corner, then agent A will pass

from v at a time t′ > t and before reaching the North-East corner. We also observe that as
6We analyze only the forward moves of agents at state Explorer1, since if such an agent is blocked while

moving backwards, it immediately tries to move forward until it succeeds. Hence it can not be blocked for
more than one time unit trying to move backwards.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 60

long as no two agents have met and agent A has not been blocked: if at a time t there is

an agentB at a node v and at state Explorer1while agentA (at state Explorer2) is moving

towards the North-East corner, then agent Awould either pass from v at a time t′ > t and

before reaching the North-East corner or agents A, B, will meet at time t+ 1.

Hence while agent A at state Explorer2 is moving towards the North-East corner without

having been blocked and before two agents meet, any other agent B is either at state

Initial or Explorer1. Moreover as long as no two agents have met and agent A is not

blocked, A will meet with another agent B before reaching the North-East corner.

Wenow show that ifA is blocked, then itwill either eventually be unblocked or otherwise

two agents will meet after a finite number of time units. If A is blocked while trying to

move to a node u then it might happen that another agent B is also blocked at the same

time while trying to move to u (in that case agent B cannot be at state Initial). Similarly

as in the cases above (i.e., when agent A was at state Explorer1), if node u is not on the

South border, then no third agent can be blockedwhilemoving to u7, and since any other

agent at state Explorer1 should pass from node u on its way to the South-West corner

either A will be unblocked or a third agent would meet agent A or B within O(nm) time

units. If however node u is on the South border, then there is a single casewhere 3 agents

could be blocked at the same time: it might happen that B is at state Explorer1 coming

from the North and moving to u and another agent C at state Explorer1 is coming from

the East and moving to u while A was trying to move to u coming from the West. Note

that there can be no two agents at state Explorer2 since if agent B was at state Explorer2

it would have met agent A.

In order to avoid a scenario like this, agent A (at state Explorer2) is instructed to deviate

a little from its usual algorithm when it is blocked while trying to move to a node on the

South border, coming from the West, on its way to the North-East corner, while agents

B, C execute Algorithm Explorer1. The details are shown in Figures 3.12, 3.14 where all

possible scenarios are demonstrated.

Because of this route-deviation of agent A, now it is not clear whether agents A, B could
7Actually when A was previously blocked on the South border it then deviates for a few moves from its

usual algorithm (see this deviation ofA later in the proof), and itmight happen that three agents are blocked
at the same time. However, in that case, as we will see, agent A will soon be unblocked.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 61

miss each other. However, we show in Figures 3.12, 3.14 that in any configuration A, B

cannot miss each other and continue their way to the corners of the grid.

Hence in all cases at least two agents will meet before agent A reaches for the second

time the North-East corner of the grid. Two agents that meet at the same node anywhere

on the grid, they should have been in different configurations at the previous step and

hence they can switch to different states as shown in Procedure GroupMove.

Procedure Explorer2
/* Explorer2 state */

1 MoveFW(East)
2 while you are alone and not on the North border do
3 MoveFW(North)
4 while you are alone and not at the North-East corner do
5 while you are alone and not on the South border do
6 MoveFW(South)
7 if you are alone thenMoveFW(East)
8
9 while you are alone and not on the North border do
10 MoveFW(North)

11 if you have met with exactly one more agent B then
12 if agent B’s state is either Initial, Explorer1 or Explorer2 then
13 GroupMove
14 else State = Group-Follower
15

ProcedureMoveFW(dir)
/* Move forward-wait towards direction dir */

1 Move one step at direction dir
2 if you have been blocked then
3 if (dir = East) AND (state = Explorer2) then
4 Move as shown in Figures 3.12, 3.14
5 else
6 Move one step at direction dir until you succeed
7 Wait for one time unit

8 else
9 Wait for one time unit

Notice that, all agents except those at state Initial are moving on the same route (ex-

cluding a temporary deviation of an Explorer2 when it is blocked on the South border).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 62

Procedure Group-Explorer1
/* Group-Explorer1 state */
/* First moving towards the North-East corner */

1 Group-Explorer1MoveNE
/* Then moving towards the South-West corner */

2 Group-Explorer1MoveSW
/* Then moving again towards the North-East corner */

3 Group-Explorer1MoveNE
4 if you have been blocked and you have not met a third agent then
5 State=Group-Trace1

Procedure Group-Explorer1MoveNE
/* Moving towards the North-East corner */

1 while you have not met a third agent and you are not on the North border and not
blocked do

2 MoveFW(North)
3 while you have not met a third agent and you are not at the North-East corner and

not blocked do
4 while you have not met a third agent and you are not on the South border and not

blocked do
5 MoveFW(South)
6 if you have not met a third agent and not blocked thenMoveFW(East)
7 while you have not met a third agent and you are not on the North border and not

blocked do
8 MoveFW(North)

Procedure Group-Explorer1MoveSW
/* Moving towards the South-West corner */

1 while you have not met a third agent and you are not on the South border and not
blocked do

2 while you have not met a third agent and you are not on the South border and not
blocked do

3 MoveFW(South)
4 if you have not met a third agent and not blocked thenMoveFW(West)
5 while you have not met a third agent and you are not on the North border and not

blocked do
6 MoveFW(North)

7 while you have not met a third agent and you are not at the South-West corner and
not blocked do

8 MoveFW(South)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 63

Procedure Group-Explorer2
/* Group-Explorer2 state */

1 Wait for one time unit
/* First moving towards the North-East corner */

2 Group-Explorer2MoveNE
/* Then moving towards the South-West corner */

3 Group-Explorer2MoveSW
/* Then moving again towards the North-East corner */

4 Group-Explorer2MoveNE
5 if you have been blocked and you are together only with a Group-Explorer1 then
6 State=Group-Trace2

Procedure Group-Explorer2MoveNE
/* Moving towards the North-East corner */

1 while you have not met a third agent and you are not together with a
Group-Explorer1 on the North border do

2 MoveFW(North)
3 while you have not met a third agent and you are not together with a

Group-Explorer1 at the North-East corner do
4 while you have not met a third agent and you are not together with a

Group-Explorer1 on the South border do
5 MoveFW(South)
6 if you have not met a third agent and you are not together with a Group-Explorer1

then
7 MoveFW(East)
8 while you have not met a third agent and you are not together with a

Group-Explorer1 on the North border do
9 MoveFW(North)

Procedure Group-Explorer2MoveSW
/* Moving towards the South-West corner */

1 while you have not met a third agent and you are not together with a
Group-Explorer1 on the South border do

2 while you have not met a third agent and you are not together with a
Group-Explorer1 on the South border do

3 MoveFW(South)
4 if you have not met a third agent and you are not together with a Group-Explorer1

then
5 MoveFW(West)
6 while you have not met a third agent and you are not together with a

Group-Explorer1 on the North border do
7 MoveFW(North)

8 while you have not met a third agent and you are not together with a
Group-Explorer1 at the South-West corner do

9 MoveFW(South)

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 64

Let us now define the routing distance, denoted by ht(A,B), between agents A and B at

time t:

Definition 3.3. Let A be a group agent colocated with its related group agent and let B

be either an agent at state Explorer1, Explorer2 or another group agent colocated with

its related group agent. Agents A and B are executing the corresponding algorithms and

hence they are moving on the samemain route between the North-East and the South-West

corner back and forth as instructed by the algorithms. Suppose that agent A occupies node

u and agent B occupies node v at time t. We define the routing distance ht(A,B) as the

number of edge traversals, without including back and forth or local moves, the agents

need to do (where each agent follows its instructed route) in order to meet if the agents had

not been blocked.

In Figure 3.18 the routing distances of agents A, B are shown in three different cases.

The procedures that are executed by an agent at state Group-Trace1 and the other agent at

state Group-Trace2 are quite technical and therefore are only shown in the correspond-

ing figures. An agent at state Group-Follower “sticks” together with (i.e., follows) the

agent that met.

In view of Lemma 3.9, within O(mn) time units there is at least one group of agents and

any agent not belonging to a group is either at state Initial, Explorer1 or Explorer2.

Observe that, if an agent at state Explorer1 is blocked while trying to move forward or

backward then it tries to move forward on its route (i.e., at most every 2 time units tries

to move forward). Also observe that, an agent at state Explorer2 tries to move forward

on its route every 2 time units (unless it was blocked on the South border going East).

In the next lemmas we analyze the movements of agents at the explorer states (i.e. Ex-

plorer1 and Explorer2) without taking into account the local movements (shown in Fig-

ure 3.11) of those agents for keeping the presentation simpler. Nevertheless the results

continue to hold even if we include the local movements of the agents, since the only

difference is that due to the local movement an agent instead of going forward it might

first go back or wait for one step (unless it was blocked on the South border going East,

which case we handle separately). In order to explain further why these local moves do

not interfere with the algorithms while ensuring the gathering of the two agents moving

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 65

in opposite directions let us consider the following. Explorer2, which is moving one step

forward and then waits for one time unit, is located at any node for at least two time

units, while Explorer1, whichmoves one step forward, then one step backward, and one

step forward again, is located at a node different from the one trying to reach for at most

one time unit. Therefore, there are not enough time units in order for an Explorer1 and

an Explorer2 to cross on an edge of the grid without noticing each other. They are going

to meet at a node, assuming there is no malicious agent interfering.

Lemma 3.10. Let k ≥ 3 agents initially placed at distinct nodes in a n ×m grid. Suppose

that the agents are executing Algorithm 4. Consider a group of explorers A1, A2 at states

Group-Explorer1 and Group-Explorer2 respectively, which are co-located at a node u and

an alone agentA3 at state Explorer1 or Explorer2which is located at a node v at time t = 0.

Suppose also that all agents are about to start their movement. If the routing distance

between the group of agents and the alone agent is h0(A1, A3) ≤ 2 then within at most 11

additional time units either all three agents meet or the alone agent has met another agent.

Proof. If h0 = 1, then in the next time unit Group-Explorer1 and the alone agent will

cross the same edge (without noticing each-other) effectively swapping positions, while

the alone agent meets Group-Explorer2. At the next time unit Group- Explorer2 and the

previously alone agent move to Group-Explorer1 while Group-Explorer1 waits, thus all

three agents meet within a total of 2 time units.

If h0 = 2 then the malicious agent can either block or not block the agents by moving to

the node (say w) between the group explorers and the alone agent.

If the malicious agent does not block the agents then Group-Explorer1will meet with the

alone agent at node w. On the next time unit the agent in state Group-Explorer2 moves

to w while both Group-Explorer1 and the previously alone agent wait. Thus after a total

of 2 time units all three agents meet.

In the last case where the malicious agent occupies node w the agents Group-Explorer1

and Group-Explorer2 change their states to Group-Trace1 and Group-Trace2 respectively

and no agent moves. Depending on the exact location of node u there are a number of

cases which are shown in Figures 3.15, 3.16, 3.17, 3.19 and 3.20.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 66

If node w is on the South border and the agent at state Explorer2 was trying to move to

w coming from a node West of w on the South border, then the situation is depicted in

Figures 3.15, 3.16. A similar case where w is one row above the south border but again

the agent at state Explorer2 is trying to move to w coming from west of w is depicted in

Figure 3.17.

In every other case, on the next time unit the agents start a procedure as shown in Figure

3.19. The starting configuration for this case along with all resulting configurations until

all agentsmeet (if no other agents interfere) are depicted in Figures 3.19 and 3.20. Hence,

if no other agents interfere, then the agents meet within at most 11 time units. If within

less than 11 time units, a fourth agent interferes andmeets one of the group agents, then

if the agent was alone, it becomes a follower of the group, while if it was a member of

another group then one of them is elected as a follower of the other group. If another

agent interferes and meets the alone agent, then the alone agent joins another group.

Notice that the protocols are consistent since for any two possible configurations C1, C2

at any fixed time t the strategy of a fixed agent A is the same when the recent history of

A is the same at both C1, C2.

Lemma 3.11. Let k ≥ 3 agents in a n×m grid initially located at distinct nodes. Suppose

that the agents are executing Algorithm 4. Consider a group of explorers A1, A2 at states

Group-Trace1 and Group-Trace2 respectively, which are located at nodes u, v, where u ̸= v

and an alone agent at state Explorer1 or Explorer2which is located at node u at time t = 0

in the configurations shown in Figure 3.20. Then after at most 4 additional time units, all

three agents meet.

Proof. Agents A1 and A2 are located at different nodes either at distance one or at dis-

tance two diagonally from each other. In the first case if the alone agent is together with

either A1 or A2 then the three agents meet on the next time unit as it is shown in Fig-

ure 3.19. In the second case where the agents of the group are at distance two diagonally

from each other, the alone agent somehow helps the two group agents in order to meet.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 67

The agents of the group behave in the following manner. One agent is waiting, while

the other is trying to move either south or west interchangeably until either it succeeds

or the group agent meets with another agent that moves to the same node. Notice that

these moves depend on the general direction of the group. We suppose that the group

was moving south without loss of generality since we can change the direction of the

moves based on the rotation and the forward and secondary directions mentioned ear-

lier. Thus, if there is no other agent the two group agents can be blocked by themalicious

agent indefinitely. When the alone agent meets the agent that tries to move interchange-

ably south and west, they can do a simultaneous move (i.e., one agent moves west and

the other south) and after at most three time units all three agents gather. If the alone

agent meets the group agent that waits, it tries to move in such a way in order to create a

“bridge”. As shown in Figure 3.20 that move is either north or east (which is actually the

opposite moves of south and west). In any case it is easy to see that after at most three

time units all agents gather.

The proof is depicted in Figure 3.20. Notice that the protocols are consistent since any

two possible configurations C1, C2 at any fixed time t the strategy of a fixed agent A is the

same when the recent history of A is the same at both C1, C2.

Lemma 3.12. Let k ≥ 3 agents in a n×m grid, initially located at distinct nodes. Suppose

that the agents are executing Algorithm 4. Consider a group of explorers A1, A2, at states

Group-Explorer1 and Group-Explorer2 respectively, which are co-located at a node u and

an alone agent A3 at state Explorer1 or Explorer2 which is located at a node v at time

t = 0. Suppose also that all agents are about to start their movements. Let h0(A1, A3) be

the routing distance at time t = 0 between the group of agents and the alone agent. Then

at time t ≤ 8h0 + 11 either three agents meet, or the alone agent has met another agent.

Proof. If h0(A1, A3) ≤ 2 then in view of Lemma 3.10 all agents meet within at most 11

time units or the alone agent meets another agent. Consider the remaining case where

h0(A1, A3) > 2. Wewill first prove that within a time t∗ ≤ 8h0, if no other agent interferes,

then either all three agents meet or one of the group explorers meets the alone agent in

the configurations shown in the upper part of Figure 3.20.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 68

Then in view of Lemma 3.11 within an additional time of at most 4 time units all three

agents meet.

In order to prove our first claim, we will show that every at most 8 time units there is at

least one of the group agents A′ ∈ {A1, A2} (not necessarily always the same) for which

the routing distance between A′ and the alone agent A3 strictly decreases by at least one.

Hence eventually one of the group agents meets the alone agent. We will also prove that

when this happens, the possible formed configurations are the ones shown in the upper

part of Figure 3.20.

As it can be seen in Figure 3.23, within at most t1 ≤ 4 time units, either there is at least

one of the group agents A′ ∈ {A1, A2} for which the distance between A′ and node v (i.e.,

the node where the alone agent A3 was located at time t = 0) has strictly decreased by at

least one, or the situation is the one depicted at the bottom-rightmost configuration. In

the last case after 4 time units more there is at least one of the group agents A′ ∈ {A1, A2}

for which the distance between A′ and node v has strictly decreased by at least one.

Notice that, at every single time unit, at least one of the agents A1, A2 either is located

on the main-route where all three agents move or tries to move there and hence there is

no chance that agent A3 could escape without meeting at least one of the group agents.

Furthermore, within those 8 time units, either agent A3 has moved at least two times, or

there is at least one of the group agents A′ for which the distance between A′ and node

v has strictly decreased by at least two. Therefore within a total of at most 8 time units

there is at least one of the group agents A′ ∈ {A1, A2} for which the distance between

A′ and agent A3 has strictly decreased by at least one. There is a special case where

A3 is an Explorer2 moving on the south border trying to move to the same column the

group tries to move to, where the routing distance is actually greater than two, but their

normal distance is 2 and hence this case is as if their routing distance was 2. Then in

view of Lemma 3.10 all agents meet within at most 11 time units or the group passes and

progress is made as shown in Figure 3.15.

Hence within a total of at most 8h0 time units, at least one of the group agents meets the

alone agent. The possible configurations are shown in the upper part of Figure 3.20.

Notice that it might be the case that A3 is collected by another group which was closer.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 69

Then the meeting would not occur but there will be progress in the general sense.

Lemma 3.13. Consider k ≥ 3 agents in a n × m grid, initially located at distinct nodes.

Suppose that the agents are executing Algorithm 4. Then, within O(nm) time units, either

at least 3 agents gather or there is no agent at state Initial.

Proof. In view of Lemma 3.9, two agents A, B meet at a time t = O(nm). Suppose that at

time t the remaining agent C is at state Initial. We show below that within O(mn) time

units, either at least three agents meet, or all non-group agents have switched to state

Explorer1 or Explorer2. In other words, an agent C cannot be blocked ‘for a long time’

to state Initial. Notice that, if an agent C at state Initial is not blocked while moving

then it will either meet an agent (hence entering a different state) or it will reach the

North-East corner of the grid switching to state Explorer1.

Suppose that C is not located at the North border and is blocked while trying to move

towards the North border. Then the situation is similar to the one that agent C is at a

state Explorer1 or Explorer2, and for those cases we proved that C soon meets at least

one of the group agents.

Suppose that C is located at the North border and is blocked while trying to move East.

Then the situation is similar to the one that agent C is at state Explorer1 located on the

South border and trying to switch columns towards theWest border, and for those cases

we proved that C soon meets at least one of the group agents.

Lemma 3.14. Consider k ≥ 3 agents in a n × m grid initially located at distinct nodes.

Suppose that the agents are executing Algorithm 4. Consider a group of explorers A1, A2 at

states Group-Explorer1 and Group-Explorer2 respectively, which are co-located at a node

u and another group of explorers B1, B2 at states Group-Explorer1 and Group-Explorer2

respectively, which are co-located at a node v at time t = 0. Suppose also that all agents are

about to start their movements. If the routing distance between the two groups of agents

is h0(A1, B1) ≤ 2 then within at most 8 time units at least one group of at least 3 co-located

agents has been formed.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 70

Proof. When h0 = 1 the groups cannot be blocked since they are on adjacent nodes

moving toward each other. After one time unit the Group-Explorers 1 meet the Group-

Explorers 2 of the opposite group. Since the groupswheremoving opposite to each other,

onewasmoving toward the northeast corner and the other toward the southwest corner.

The group that was moving toward the northeast corner follows the other group.

When h0 = 2 and the groups are not blocked, the Group-Explorers 1 of both groups meet

after one time unit, then after one more time unit the Group-Explorers 2 will join them.

When the groups are blocked they change states into group traces. As it is shown in

Figures 3.21 and 3.22 the agents move following the group-trace protocol, except when

two agents of different groups meet. As shown in the figures, that is bound to happen

after at most three time units.

The case in Figure 3.21 would be the same on the South-border if we rotate every config-

uration 90◦ counter-clockwise. This is achieved with the following transformation of the

fwd and aux directions respectively. For the group moving South the directions change

in the following way: fwd from S to E and aux from E to N.

Those agents carry now the information that the two groups are near each other. Having

that knowledge the agents can now deviate from the original group trace protocol and

as shown in the figures, after at most eight time units at least one group of at least 3

co-located agents has been formed.

Lemma 3.15. Consider k ≥ 3 agents in a n × m grid initially located at distinct nodes.

Suppose that the agents are executing Algorithm 4. Consider a group of explorers A1, A2

which are co-located at a node u and another group of agents B1, B2 which are co-located

at a node v at time t = 0. Suppose also that all agents are about to start their movements.

Let h0(A1, B1) be the routing distance at time t = 0 between the two groups of agents. Then

at time t ≤ O(h0) at least one group of at least three agents has been formed.

Proof. At t = 0 the initial routing distance between the two groups of explorers is h0. If

h0 > 2 then after a constant number of steps and because the malicious agent can only

block one of the two groups, groupA and groupB, will get closer. Let us considerwithout

loss of generality that groupA is the groupwhich is not blocked. Then, groupA being free

to move will reach, after a constant number of steps, a node which is closer to group B.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 71

Hence, the new routing distance h1(A1, B1) is strictly less than the initial routing distance

(i.e. h0 < h1).

The same procedure goes on for a number of steps O(h0), until the two groups reach

a routing distance hl ≤ 2. Then it follows from Lemma 3.14 that the two groups meet.

The two groups will meet if and only if they are moving on opposite direction on the

same column, or on the south border, or trying to move to the same node. Since the

agents move to the north-east corner of the gird and then change their direction moving

opposite towards the south-west corner, any two groupswill eventuallymove in opposite

directions during the execution of the algorithm.

When a group of at least three agents is formed, the group can still execute the previous

algorithmswhich consider a group of two agents. The agents split into two groups which

represent the two agents which are in state Group-Explorer1 and Group-Explorer2 and

continue themovement of the group fromwhere it stopped. Hencewehave the following

theorem.

Theorem 3.3. Consider k ≥ 3 agents in a n ×m oriented grid, initially placed at distinct

nodes, with a malicious agent, where n,m > 1. If the (honest) agents execute Algorithm 4

then they gather within O(nm) time units.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 72

Explorer1

Explorer2

First time moving to u

u

t = 0 t = 1

t = 2

t = 3

t = 4

t = 5

Second time moving to u

u

t = {0, 6}

progress is made progress is made same as in t = 3

progress is made

progress is made progress is made

done in t = 4

progress is made

see related figure

Figure 3.12: This is the case where Explorer2 is coming from the West,
whereas Explorer1 is coming from the East. Both of them want to switch
columns and go to node u. We can see that if Explorer2 follows the depicted
protocol, then Explorer1will eithermanage to switch column and therefore
progress is done, or a third agent will meet either Explorer1 or Explorer2.
Notice that the protocol is consistent since at any given time the moves of
the agents are the same for all configuration of that time, unless their very
recent history is different. For the second time moving to u see Figure 3.13.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 73

Explorer1

Explorer2

Second time moving to u

u

t = {0, 6} t = {1, 7}

t = {2, 8}

t = {3, 9}

t = {4, 10}

progress is made

progress is made

progress is made progress is madespecial loop case

Figure 3.13: This is the case where Explorer2 is coming from the West,
whereas Explorer1 is coming from the East for the second time due to lo-
cal movement (forward-backward-forward). Both of them want to switch
columns and go to node u. We can see that if Explorer2 follows the depicted
protocol, then Explorer1will eithermanage to switch column and therefore
progress is done, or a third agent will meet either Explorer1 or Explorer2
even if they are blocked in a loop as shown at the bottom leftmost config-
uration. Notice that the protocol is consistent since at any given time the
moves of the agents are the same for all configuration of that time, unless

their very recent history is different.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 74

First time moving to u

u

t = 0 t = 1

t = 2

t = 3

t = 4

Second time moving to u

u

t = 0 t = 1

t = 2

t = 3

t = 4

u′ u′ u′

First time to u′ Second time to u′ Second time to u′

u′

First time to u′

Explorer1

Explorer2

Explorer1

Explorer2

Done

Done

Done

t = 5

Done

First time to u′u′

First time to u′u′

Second time moving to u

u

Figure 3.14: This is the case where Explorer2 is coming from the West,
whereas Explorer1 is coming from the North. In t = 3 if the West move
by Explorer2 fails then the samemove is executed until it succeeds. In t = 4
the South move follows the same principle “try South until you succeed”.
For the cases where Explorer2 is not on the south border and tries to move
south towards the same node as Explorer1 then the agents can be blocked

until a third agent meets with one of them.
Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 75

Group-Trace2

Explorer2

Group-Trace1

u

t = 0

u

t = 1

u

u u

t = 2

u

u u u
u

t = 3

Done in t = 4

u

u

t = 4

u uu

t = 5

Done in t = 6

Done in t = 8

Done in t = 7Progress is made

Progress is made

Progress is made Done in t = 10

Figure 3.15: The case where a group of explorers, which are at states
Group-Explorer1 and Group-Explorer2, and an alone agent, which is at state

Explorer2, are blocked on the South border.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 76

Group-Trace2

Explorer2

Group-Trace1

u

t = 0

u

u

u

u

u

u

t = 1

t = 2

u u u u

t = 3

Progress is madeDone in t ≤ 7

Done in t ≤ 8 Progress is made Progress is made Progress is made

Figure 3.16: The case where a group of explorers, which are at states
Group-Explorer1 and Group-Explorer2, and an alone agent, which is at state

Explorer2, are blocked on the South border.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 77

Group-Trace2

Explorer2

Group-Trace1

u

u

t = 0

u

t = 1

t = 2

u

u

u

u

u

u u

t = 3

u u

u

u

u

u

t = 4

t = 5

Done in t = 6

Group strats second local trace

Group makes progress

Group makes progress Group makes progress

Done in t ≤ 9Done in t = 5

∗

∗

Figure 3.17: The case where a group of explorers, which are at states
Group-Explorer1 and Group-Explorer2, and an alone agent, which is at state

Explorer2, are blocked on the South border.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 78

u

v

(a) (b) (c)

u

v×2

u

v×2 ×2

Figure 3.18: Let A, B be two agents located at nodes u, v respectively. The
routing distance is depicted in three examples. (a) The agent located at u
is moving towards the North-East corner by first going to the South border
while the agent located at v ismoving towards the South-West corner byfirst
going to the South border: in that case the routing distance is the number
of edge traversals one of the agents had to do in order to meet the other
agent if the other agent was not moving. (b) The agents are moving towards
the South-West corner of the grid and both agents are first moving towards
the South border: in that case the routing distance is the number of edge
traversals the agent at u has to do in order to meet the other agent if the
other agent was not moving. (c) The agent located at u is moving towards
the South-West corner by first moving towards the South border of the grid,
while the agent located at v is moving towards the North-East corner by
first moving towards the North border of the grid: in that case the routing
distance is the number of edge traversals the agent at u has to do in order
to reach node v plus the number of edge traversals the agent at v has to do
in order to reach again node v with direction the South-West corner by first

going towards the South border.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 79

Group-Trace1

Group-Trace2

Alone agent

Special Case

Special Case

Special Case

u

v

u′

u u u

u′ u′ u′

v v v

u u u

u′ u′ u′

v v v

u u u

u′ u′ u′

v v v

u′

u′

u

v

v

u′ → v : WEST
aux : SOUTH

Special Case

u′ u′u′

v

v v

u′vu′v

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6
u′v u′v u′v

Special Case

t = 7

Done in t = 3

Done in t = 4

Done in t = 5

Done in t = 5

Done in t = 6

Done in t = 7

Done in t = 8 Done in t = 9

Figure 3.19: This figure depicts the algorithmof two agents in states Group--
Trace1 and Group-Trace2 respectively. In this figure the group of agents is
moving towards the south. The case where the group moves towards the
north and the alone agent moves towards the south is analogous. Notice
that at t = 4 Group-Trace1 and Group-Trace2 start the algorithm from the
start, but this time their intended direction is West and their auxiliary line

is to the South.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 80

Group-Trace1

Group-Trace2

Alone agent

Special Case
t = 0

t = 1

t = 2

Done in t = 2 Done in t = 2 Done in t = 2 Done in t = 3 Done in t = 3

Done in t = 2

Done in t = 3 Done in t = 3

Done in t = 4

Figure 3.20: This figure depicts the algorithm for the special case of Fig.
3.19.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 81

Group-Trace 1

Special case Special case Special case

Special case

Group 1 Group 2

Group-Trace 2

t = 0 t = 1

t = 2

t = 3

t = 4t = 4

Done in t = 5

Done in t = 6 Done in t = 6 Done in t = 6

Done in t = 6

t = 5

u′ → v : WEST
aux : SOUTH

v u′

v

Figure 3.21: In this figure we can see two groups trying tomove to the same
node. One is moving South and the other is moving North.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 82

t = 0 t = 1

t = 2

t = 3

t = 4

Group-Trace 1

Group 1 Group 2

Group-Trace 2

Done in t = 4 Special case Special case

Done in t = 5 Done in t = 4

Done in t = 6 Done in t = 6

t = 5

Done in t = 7 Done in t = 6 Done in t = 8

Figure 3.22: In this figure we can see two groups moving to the same node.
One is moving South and the other, changing column, is moving East.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 83

Group-Trace1

Group-Trace2

1

2

1

2

1

1

2

1

u

v

u → v : SOUTH
aux : EAST

u′ → v : WEST
aux : SOUTH

u′

v

Special Case

Special Case

Special Case

t = 0

t = 1

t = 2

t = 3

t = 4

Figure 3.23: Two agents which consist a group of explorers are blocked at
a routing distance more than two from the alone agent. Note: In the cases
depicted as Special Case in this figure, the group agent associated with two
outgoing arrows repeatedly tries directions 1 and 2 until it succeeds. Since
there is at least one other agent besides this group of agents, either this third
agent or the group agent will move. Finally the third agent will either meet
the group agent on the bottom left node (see Figure 3.20) or the group agent
on the upper right node. On the latter case, the agents choose distinct iden-
tities and move in different directions in order two create a path towards

the bottom left group agent.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 3. Gathering of Mobile Agents 84

3.3 Discussion

Comparing our results with the previously known results for asynchronous agents in an

oriented grid, we notice that k ≥ 3 synchronous agents with only local visibility capa-

bility can gather starting from any configuration without multiplicities, while for asyn-

chronous agents it has been previously proved that the agents can only gather if they can

“see” at distance two and they start from a connected configuration. On the negative side

we proved that two synchronous agents cannot gather even if they have global visibility

capability.

When the synchronous agents start from a configuration with multiplicities (i.e., includ-

ing nodeswithmore than one agents), then the problem is unsolvable in the general case,

since the initial configuration could be such that the agents form two groups located at

two distinct nodes and they behave like two agents.

Some interesting directions include the study of the problem in other network topologies

such as oriented multidimensional grids, well structured graphs that are easy to explore

by constant memory agents, and arbitrary graphs where agents have a map. Another

scenario is onewith a less powerfulmalicious agentwhich has limited speed capabilities.

It would be interesting to see whether the impossibility results could be circumvented in

this case, and to investigate whether the problem could be solved even in the presence

of multiple malicious agents.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

85

4 Black Virus Decontamination

In this chapter we discuss the black virus decontamination problem. We often need

to solve problems in networks when hostile entities are present which may harm the

system. A model of a hostile static entity which is called black hole has been defined

and extensively studied. A black hole is assumed to be a node which is infected by a

malicious process that destroys any incoming agent without leaving any trace, and the

goal is for a group of agents to locate the black hole within finite time. Another type of a

malicious mobile entity is the intruder. In the intruder capture problem (also known as

graph decontamination and connected graph search) a harmful agent, called the intruder,

can move in the network and infect the visited nodes. The objective is for a team of

mobile agents, that cannot be harmed by the intruder, to decontaminate the network.

Hence a black hole is harmful to themobile agents but not to other nodes of the network,

while an intruder damages nodes but not agents.

We study here a model of another hostile entity called Black Virus which has been in-

troduced by J., Cai et al in 2014. In particular we study the Black Virus Decontamination

(BVD) problem within the distributed computing and especially the mobile agents’ area.

The Black Virus is a malicious entity similar to a black hole which is initially located at

a node u of the network and has the following behaviour: when a mobile agent enters

node u, the agent is removed from the network without leaving any trace. The Black

Virus spreads to all unoccupied by agents neighbouring nodes of u, effectively expand-

ing its contamination over the network, but node u is now clean (decontaminated). The

goal is to find the minimum number of agents that can decontaminate a given network

with a Black Virus initially located at an unknown place and design a fast distributed

algorithm for a certain (preferably weak) model of mobile agents.

Hence the black virus model combines some of the characteristics of both the black hole

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 86

and the intruder. More specifically, the black virus combines the threat of a harmful

node with the need for decontamination and the ability to infect additional nodes.

In order to prevent the Black Virus from spreading the agents must occupy the node(s)

where the Black Virus is going to spread to. Hence the only way to clear a contaminated

node and at the same time prevent it from spreading the contamination, is to have the

node visited by an agentwhile at the same time all adjacent nodes are occupied by agents.

We study the black virus decontamination problem on synchronous ring graphs. More

specifically, a ring (or cyclic defined in 2.1) graph is an undirected simple graph G =

(V,E) where each vertex u ∈ V has exactly two neighbours. The nodes of the ring are

anonymous. The ring initially contains a number of mobile agents, initially located at

distinct nodes, and one black virus. All edges incident to a node have distinct port labels,

visible to an agent at the node. In the case of an oriented ring the port labels at each

node are globally consistent and all agents agree in a common sense of direction. In the

case of an unoriented ring the port labels at each node are locally consistent, hencewhen

two agents which are initially located at different nodes choose the same port label, they

might choose different directions. Thus, in this case it might happen that not all agents

perceive the same direction as clockwise (resp. counter-clockwise) direction.

The ring is synchronous meaning that an agent needs one unit of time to traverse an

edge. The time an agent needs in order to compute its next move is negligible.

Themobile agents are computational entities that operate in the network and are able to

move fromonenode to another. The agents can onlymove fromanode to aneighbouring

one, in one time unit. The agents may have distinct identities. Most of our negative

results hold even for agents with distinct identities. Our algorithm for oriented rings,

although it is initially presented (for convenience) assuming that the agents have distinct

identities, as we later describe, it can be slightlymodified towork for anonymous agents.

The agents are identical (apart from their identities when they are distinct) and they are

equippedwithmovable identical tokens, which they can leave at (or pick-up from) nodes.

In all our algorithms each agent has at most one token. An agent can communicate with

other co-located agents. More specifically, when two (or more) agents are at the same

node they can read each other’s state, as in the face-to-face model of communication

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 87

described in Chapter 2. Moreover, they can read each other’s identity (only in the case

of having distinct identities). They cannot exchange messages. Their memory, although

it is enough for reading other agents’ identities when needed, it is not related to the

number of nodes of the ring and therefore for example the agents cannot count more

than a constant number of nodes. The agents can only meet at nodes and not inside

edges, i.e., two agents traversing the same edge do not notice each other.

All the agents are initially scattered in the network and they execute the same determin-

istic protocol starting at the same time. The agents do not initially have any knowledge

about the size of the ring or their configuration.

The black virus is a malicious entity which is initially placed at an unknown location in

the ring. The interaction between the agents and the Black Virus is the following. When

an agent decides at time t to move to a node wwhere the Black Virus resides three events

occur. At time t+ 1 the agent vanishes without a trace, node w is cleaned, and the virus

copies itself to any neighbouring nodes of wwhich are unoccupied by agents at time t+1.

Notice that if an agent tries to move to a node v and at the same time a clone of the black

virus tries to move to v, then the agent moves to v while the clone does not. If a clone

of the Black Virus moves to a node (unoccupied by agents) where a clone already exists

(or moves there at the same time), then the two clones merge to one. In other words any

node can contain at most one clone of the Black Virus.

The goal of the Black Virus Decontamination problem is to design an algorithm which

eliminates any clones from thenetworkwithin finite time and at least one agent survives.

The agents are able to coordinate using the T okenmodel defined in 2.2.1. The agentsmay

have one or more tokens which can be put down or picked up by any agent in the ring.

Preliminary results of this chapter have appeared in [56] and more results can also be

found in [62].

4.1 Decontaminating an oriented ring

4.1.1 Impossibility results

The following simple observations easily lead to a few impossibility results.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 88

Consider a ring with a black-virus located at a node u. The only way to clean the black-

virus, demands having an agent visiting the contaminated node u. It is obvious that one

agent is not enough to decontaminate the ring, even if the nodes of the ring are distinctly

labelled (in that case we say that the ring is labelled) and the agent knows exactly the lo-

cation of the black-virus, since the agent will vanish and the virus will spread to the

adjacent nodes of u. Two agents are also not enough to solve the problem, even if the

ring is labelled and the agents know exactly the location of the black-virus, since at least

one agent will vanish and at that time at least one of the adjacent nodes of uwill be unoc-

cupied by agents. Hence the virus will spread there and due to the previous observation,

the (only one) remaining agent cannot decontaminate the network.

Lemma 4.1. Consider a synchronous, oriented and labelled ring whose one node is con-

taminated by a black-virus. Then 2 agents are not enough to decontaminate the ring, even

if they have distinct ids, an unlimited number of tokens, unlimited memory and know the

initial configuration on the ring (i.e., they have an exactmap of the ring and know the initial

locations of all agents), and the location of the black-virus.

Consider an interval of x ≥ 2 consecutive nodes (i.e., an interval of length x−1 ≥ 1 edges)

in a synchronous, oriented and labelled ring so that its two endpoints u, v are occupied

by clones of the virus and no node of the interval is occupied by an agent. We call such

an interval a contaminated interval (notice that any other node of the interval apart from

its endpoints could be either clean or not). Then the only strategy which can be used to

decrease the length of the contaminated interval, is first having anagent located at anode

w which does not belong in the interval and is adjacent to an endpoint, say u. We call it

guarding action. Then another agent should visit node u (we call it attacking action), and

hence u will be cleared and since w is guarded, the length of the contaminated interval

will be decreased. The guarding action should take place either before or at the same

time as the attacking action. We will later define formally a combination of those two

actions in order to effectively scan unexplored nodes of the network.

Lemma 4.2. Consider an interval of x ≥ 2 consecutive nodes in a synchronous, oriented

and labelled ring so that the two endpoints of the interval are occupied by clones of the

virus and no node of the interval is occupied by an agent. Then x+1 agents are not enough

to decontaminate the interval, even if they have distinct ids, an unlimited number of tokens,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 89

unlimited memory and know the initial configuration on the ring (i.e., they have an exact

map of the ring and know the initial locations of all agents) and the exact location of the

contaminated interval.

Proof. While the contaminated interval consists of x ≥ 2 nodes, the only strategy that

can be used in order to decrease its length l (l = x − 1 ≥ 1) should be a combination of

an attacking and a guarding action as described before. Hence at least one agent should

vanish in order to decrease the length of the interval by one node. Finally, when the

interval has been decreased to just one contaminated node, in view of Lemma 4.1, the

remaining two agents are not enough to completely clean the black-virus.

An immediate consequence of Lemma 4.2 is the following lemmawhich gives us a better

lower bound on the number of agents when the location of the black-virus is not initially

known, even for a powerful model of agents.

Lemma 4.3. Consider a synchronous, oriented and labelled ring which is contaminated by

a black-virus. Then five initially scattered agents are not enough to decontaminate the ring,

even if they have distinct ids, an unlimited number of tokens, unlimited memory and know

the initial configuration, i.e., have an exact map of the ring and know the initial locations

of all agents.

Proof. Suppose for the sake of contradiction that there is an algorithm that solves the

problem in any ring and for any initial configuration (and initially unknown location of

a black-virus). Consider an initial configuration in which the distance d0ij between any

two agents i, j at time t = 0 is greater than 3 edges. The algorithm should eventually

move at least one agent. Let A be the first agent that moves from its initial location u to

an adjacent node v at time t (if more than one agents simultaneously move then let A be

anyone of them). Then the adversary places the virus at v and agentA vanishes. Since the

distance dtAj ≥ d0Aj−2 ≥ 2, where j is any of the two agents closest toA, the adjacent nodes

u,w of v cannot be occupied by agents other than A at time t or before. Hence clones of

the virus contaminate the nodes u,w creating a contaminated interval which consists of

3 nodes: u, v, w as shown in Figure 4.1. In view of Lemma 4.2, the four remaining agents

are not enough to decontaminate this 3-node interval. Hence five agents are not enough

to decontaminate the ring.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 90

Figure 4.1: Five agents are initially scattered on a ring containing a virus.
The first agent that moves, vanishes and the resulting configuration is

shown here.

Moving toweaker agentmodels and following a similar reasoningwe can easily improve

the lower bound from 5 to 7 when the agents do not know their initial configuration.

Lemma 4.4. Consider a synchronous, oriented and labelled ring which is contaminated by

a black-virus. Then seven initially scattered agents are not enough to decontaminate the

ring, even if they have distinct ids, an unlimited number of tokens, unlimited memory and

know the size of the ring.

Proof. Suppose for the sake of contradiction that there is an algorithm that solves the

problem in any ring and for any initial configuration and consider an initial configura-

tion inwhich the distance between any two agents is greater than 3 edges. The algorithm

should eventuallymove at least one agentA. Similarly as in the proof of Lemma 4.3, after

the first move of the first agent A that moves, this agent vanishes along with its tokens

(even if some of them had been left at its initial position) and the configuration is like the

one shown in Figure 4.2. Suppose the initial configuration was selected so that for the

distances x, y in Figure 4.2 it holds x ≥ 2y and y ≥ 1.

The algorithm should eventually move at least one of the remaining agents for at least y

nodes on the same direction in order to meet with another agent, meet another agent’s

token or approach the contaminated area. The agent B that first moves such a distance

can always be selected by the adversary to be one of the agents closest to the contami-

nated interval in such away that this agent vanishes (possibly leavingmany tokens), and

the contaminated interval now consists of at least 4 nodes, since the closest agent to B

towards the safe area is at a distance greater or equal to x ≥ 2y ≥ 2 (see Figure 4.3).

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 91

y

x

x

x
x

x

y

Figure 4.2: Seven agents are initially scattered on a ring containing a
virus. The first agent that moves, vanishes and the resulting configuration

is shown here.

y

x

x

x
x

x

Figure 4.3: Seven agents are initially scattered on a ring containing a virus.
The resulting configuration after two agents have met the black-virus.

In view of Lemma 4.2, the remaining 5 agents cannot decontaminate the interval con-

sisting of 4 nodes and therefore the algorithm cannot decontaminate the network.

In order to prove the impossibility result for 7 agents (Lemma 4.4) it was enough to ini-

tially place the agents so that at least two of them vanish while the black-virus spreads

to a contaminated interval consisting of at least four nodes. Then Lemma 4.2 applies.

If however more than 7 agents are initially available, then after 2 agents vanish, the

contaminated interval consisting of at least four nodes combined with the fact that the

number of the remaining agents in that case is more than 5 do not immediately permit

the application of Lemma 4.2. Moreover, some tokens (which belonged to agents that

vanished) might have been left over, and could potentially help the remaining agents

to decontaminate the ring. Nevertheless with a more careful initial placement of the

agents, we can show that for any possible algorithm there is an initial placement of nine

agents so that, the first two agents vanish leaving behind atmost one tokenwhich cannot

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 92

help the remaining agents to form a group of at least two agents before a third agent also

perishes thus increasing the length of the contaminated interval to 5 nodes. Hence, due

again to Lemma 4.2, 6 remaining agents cannot solve the problem.

Lemma 4.5. Nine agents are not enough to decontaminate an n−node, synchronous, ori-

ented and labelled ring, even if they have distinct ids, an unlimited number of tokens, un-

limited memory and know the size of the ring.

Proof. Suppose for the sake of contradiction that there is an algorithm A that solves the

problem in any ring and for any initial configuration. Consider the first two agents A,B

which are instructed to move by Algorithm A (if more than two move at the same time

take any two of them). Agents A,B should either simultaneously move, or one of them

first moves and then, within a finite time, a second one moves. Notice that an algorithm

that does not move a second agent within a finite time, cannot be a correct algorithm,

since the adversary can initially place the agents so that the first one immediately van-

ishes and then nobody moves.

First consider the case where the agents A,B do not move simultaneously. Let A be the

first agent that moves from node u to an adjacent node v. The adversary initially places

the black virus at v and agent A vanishes along with its tokens (even if some of them

were placed at u before the agent moves). Now the contaminated interval extends to the

two neighbouring nodes u,w of v. Agent B moves within a finite time. According to the

direction agent B selects, the adversary can select its initial position to be at an adjacent

node of u or w different than v, and therefore B vanishes after its move at time t along

with its tokens (even if some of them were placed at its initial position). The contami-

nated interval at time t has increased to 4 nodes. A third agent should be instructed to

move either simultaneously with agent B or within a finite time after agent B’s move. If

the remaining agents have been initially placed so that the distance between any two of

them is more than 3 edges, and two of them C,D occupy nodes at a distance of at most

two edges at time t from the endpoints of the current contaminated interval, then the

first agent that moves a distance of at least 2 edges towards one direction (there must be

such an agent, otherwise the agents will nevermeet other agents or tokens different than

their tokens, or approach the contaminated interval) is selected to be one of the agents C

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 93

or D and therefore vanishes. The contaminated interval increases to 5 nodes, while the

remaining agents are 6. Hence due to Lemma 4.2, the 6 remaining agents cannot solve

the problem.

Now consider the remaining case where the agents A,B move simultaneously. If those

are the only agents that move at the same time and they move towards different direc-

tions then the adversary can initially place them at a distance two at nodes u,w and

place the black virus at the common neighbour v of u,w. Therefore both agents along

with their tokens (even if some of them were placed at nodes u,w) are vanished. Now

the remaining 7 agents are in their initial configuration and they need to clean a con-

taminated interval of 3 nodes which is impossible since they cannot solve the problem

even when there is only one contaminated node as we showed in Lemma 4.4. In the re-

maining subcases, either agents A,B are not the only ones that moved simultaneously,

or they moved towards the same direction. Notice that if more than two agents moved

simultaneously then at least two of them moved towards the same direction. Hence in

all the remaining subcases there are at least two agents that moved simultaneously to-

wards the same direction. Let A,B be two agents that moved simultaneously towards

the same direction. If among all agents that moved simultaneously there is at most one

agentA that left some of its tokens before its move, then the adversary can initially place

the agents so that agent A vanishes along with its tokens (even if some of them were

left at its initial location) and two other agents occupy the two nodes adjacent to the

endpoints of the contaminated interval which now consists of 3 nodes. Hence, the next

agent whichmoves can be selected by the adversary to be one of those two agents, which

vanishes along with its tokens. Now there are 7 remaining agents with a contaminated

interval consisting of 4 nodes (see Figure 4.4). The configuration is similar to the one

in Figure 4.2, but with 7 agents and a contaminated interval consisting of 4 nodes. Fol-

lowing the same arguments as in the proof of Lemma 4.4, we can show that the agents

cannot solve the problem. Finally, suppose that there are at least two agents A,B that

leave some of their tokens and move simultaneously towards the same direction (say

counter-clockwise without loss of generality). The adversary can arrange the initial po-

sitions of the agents so that agent A vanishes along with its tokens, while the tokens that

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 94

Figure 4.4: Nine agents are initially scattered on a ring containing a virus.
This is the resulting configuration after two agents havemet the black-virus

without leaving any tokens behind.

agent B had left, are vanished and B is now located next to a contaminated node. A re-

sulting configuration is shown in Figure 4.5, where∆ denotes the nodeswhere the agents

were initially located. If the next agent moves clockwise then the adversary can select

∆
∆

∆

∆

∆ ∆

∆

∆

C

B

Figure 4.5: Nine agents are initially scattered on a ring containing a virus.
This is the resulting configuration after one agent has met the black-virus.
The nodes denotedwith∆ clockwise next to each agent are the initial home-
bases of the respective agents. The initial homebase of agent B is now con-
taminated and therefore any token that had been left there by B has disap-

peared.

B as the next agent and the situation is exactly like in the previous case with 7 agents

and a contaminated interval consisting of 4 nodes and can be again treated in the same

way. If the next agent moves counter-clockwise then the adversary can select C as the

next agent (which was initially located at a distance 2 clockwise from agent A) which

vanishes and the contaminated interval consists of 4 nodes. Now each of the remaining

agents can safely move clockwise until one node before its respective initial homebase

(∆) (without reaching it) and counter-clockwise until the closer (another agent’s) initial

homebase. Notice that all those intervals do not have a node in common. Therefore

at least one agent should eventually move to a node outside its safe area (otherwise no

agent can meet any other agent or the black-virus). The first agent that moves clockwise

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 95

(respectively counter-clockwise) to a node outside its safe area is selected to be agent B

(respectively the next agent clockwise of C) and vanishes. Due to Lemma 4.2 the remain-

ing 6 agents cannot clean a contaminated interval consisting of 5 nodes.

4.1.2 An algorithm with ten agents

In this section we present an algorithm that decontaminates an oriented ring using ten

agents. In order to make the presentation easier, we first describe the algorithm for

agents with distinct identities and then we discuss how this algorithm can work with

anonymous agents.

Before describing the algorithm, we define the Cautious-Move procedure, which we use

in all our algorithms. This procedure is a combination of an attacking and guarding ac-

tionwhich is used by a group of at least two co-located agents in order to scan unexplored

nodes and decrease the length of a contaminated interval, as follows. One of the agents

(leader) of the group located at a node u at time t, moves to an adjacent node v while

the remaining agents of the group (companion) wait at u. Hence at time t+ 1 the leader

agent is at v while the remaining agents of the group are at u. In the next time unit all

remaining agents of the group move to v while the leader (if it is still alive) waits at v.

Procedure Cautious-Move(dir)
1 if leader then
2 Move 1 step dir
3 Wait(1)
4 else if companion then
5 Wait(1)
6 Move 1 step dir

It is easy to see that if node vwas safe when the leadermoved there then all agents of the

group gather at v within two time units. If there was a black-virus at v when the leader

moved there, then the leader has vanished but the virus did not spread to node u, and

node v is now safe. Hence if the companion agents do not meet the leader at node v, they

can conclude that the viruswas at v. Furthermore, if vwas an endpoint of a contaminated

interval consisting of at least two nodes, now its length has been decreased by one.

The general idea of the algorithm which cleans any oriented ring is the following. First

each agent tries to discover whether there is another agent at distance one. Then each

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 96

agent leaves its token and moves clockwise until it finds a token. This is a special case

which we handle separately in the algorithm. Now each agent moves back to its home-

base, picks up any tokens, and moves clockwise again until it finds a token. This time

it waits at the node with the token until another agent comes. Now the group scans the

ring, using Procedure Cautious-Move, until it meets the black-virus. Then the remaining

agent of the group waits there forever. The rest of the agents repeatedly form groups

of at least two agents and scan the ring in order to find the other endpoint (i.e., other

than that guarded by an agent) of the contaminated interval and decrease one-by-one its

length. The algorithm takes care of situations where some agents were initially located

at distance one, or an agent which belongs to a group meets another agent, etc.

Procedure Initialize
1 Release token
2 Move one step cw
3 if there is a token on the node then
4 pick up token
5 move one step ccw
6 release token
7 wait(1)
8 if there is another agent on the node then state← leader
9 else state← explorer
10 else
11 move one step ccw
12 if no token on the node then
13 move one step ccw
14 if no token on the node then state← guard
15 else state← companion
16 else
17 state← explorer

18 return state

Lemma 4.6. At most three agents are lost until at least two agents meet. The length of the

contaminated interval can be increased to at most five nodes.

Proof. We will first show that at most two agents can be lost while executing Proce-

dure Initialize, increasing the length of the contaminated interval to at most 4 nodes.

Then we will show that at most one more agent can be lost while executing Procedure

Explorer, increasing the length of the contaminated interval to at most 5 nodes. First, all

agents begin executing Procedure Initialize. During Initialize an agent first moves

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 97

Procedure Explorer
1 Move cw until you find a token and return to your homebase
2 Pick up token(s)
3 if there is another agent on the node then execute Leader(cw)
4 repeat
5 Move 1 step cw
6 v ← current_node
7 until (a member of a pair moving ccw is encountered) OR (a token is detected)
8 if there is a token at v then
9 if there is a companion at v then
10 execute Leader(cw)
11 else
12 Switch to state companion and wait until an agent gets to v
13 execute Companion(dir_of_leader)
14 else
15 execute Companion(ccw)

Procedure Companion(dir)
1 state← companion
2 while true do
3 execute Cautious-Move(dir)
4 if dir = cw then
5 if leader not on node then execute Guard()
6 else if guard on node then dir = ccw

7 else if dir = ccw then
8 if leader not on node then
9 Companion with smallest ID becomes leader
10 if you became the leader then execute Leader(ccw)

one step clockwise and then one step counterclockwise. During those two steps at most

two agents might vanish. This case may only occur when one agent vanishes during the

first step and a second agent vanishes during the second step. Notice that some agents

may perform an additional counterclockwise step. However, no agent can be lost during

this step. Let us suppose that there is an agent A1 that performs the additional counter-

clockwise step. This means that A1 did not encounter a token during the clockwise step

and another agent, A2, that is at distance one from A1, moved the token left by A1. If A2

is also the agent that is lost during the second step, A1 moves to a node incident to the

contaminated interval and becomes a guard. If A2 is not one of the agents that are lost

then A1 moves to the same node as A2 and the two agents form a pair. In either case, A1

is not lost. Next, the agents begin executing Leader, Companion, Guard or Explorer. The

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 98

Procedure Leader(dir)
1 state← leader
2 Let v be the current node
3 while true do
4 execute Cautious-Move(dir)
5 if dir = cw then
6 if you meet another leader on v then execute Companion(ccw)
7 else if guard on v then dir = ccw

Procedure Guard
1 state← guard
2 Let v be the current node
3 repeat
4 Wait on v
5 until leader at v AND dir_of_leader = ccw
6 execute Companion(ccw)

agents executing Leader or Companion always move using Cautious-Move and therefore

even if an agent is lost, the contaminated interval is decreased. Furthermore, an agent

executing Guard waits on a safe node and therefore is not lost. Let us now consider the

agents executing Procedure Explorer. Those agents move clockwise until they detect a

token. Exactly one agent that is moving towards the black virus in the path that does

not contain a token is lost. Notice that the token that was left by the agent that was lost

cannot be destroyed, therefore all other agents will reach a token and eventually at least

two agents will meet.

The first agent that is lost increases the size of the contaminated interval from one to

three nodes1. Each additional agent that is lost infects one node that is already in the

contaminated interval and one previously clean node. Therefore, each agent that is lost

increases the size of the contaminated interval by one node. After at most three agents

are lost, the contaminated interval consists of five nodes. Finally, any other agent that

visits an infected node is executing Procedure Cautious-Move and will decrease the size

of the contaminated interval.

1Recall that in a contaminated interval, clean nodes might be enclosed between infected ones. However,
those clean nodes can be considered infected as well since they will get infected while the agents try to
decontaminate the interval.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 99

Algorithm 5: ScatteredBVD
1 State← Initialize
2 switch State do
3 case leader do Leader(cw)
4 case companion do Companion(cw)
5 case explorer do Explorer
6 case guard do Guard

Lemma 4.7. The algorithm Scattered BVD solves the black virus decontamination prob-

lem in any synchronous oriented ring consisting of n nodes within O(n) time units, using

ten scattered agents with constant memory and one token each.

Proof. First the agents begin executing Procedure Initialize. As we showed in Lemma

4.6, at most two agents can be lost during this step. The agents that did not form a pair

during Procedure Initialize, begin executing Procedure Explorer. During this proce-

dure atmost one agent canbe lost aswe showed in Lemma 4.6. Each one of the remaining

agents executing Procedure Explorer reaches a token while moving clockwise, return to

its homebase, picks-up its own token and once again moves clockwise until it reaches a

token. The agents that reach a token for the second time are at a node containing a token

left either by an agent that has not yet returned or by the agent that was lost. In the first

case, another agent will eventually return and the two agents will form a pair. In the

second case, since the agent that is waiting has removed its own token, at least one more

agent will reach the same node. Therefore, eventually at least one pair is formed. The

agents executing Procedures Leader or Companionmove using Procedure Cautious-Move.

As we showed in Lemma 4.6, the contaminated interval consists of at most five nodes.

At some time t, a pair will reach the contaminated interval for the first time. The leader

of the pair will be lost, the contaminated interval will be decreased by one node and the

companion will become a guard when it detects the loss of the leader. Any other pair

moving clockwise will reach the guard and change direction, therefore no additional

agent moving clockwise will be lost. Furthermore, any agent that encounters a pair or

a team of agents moving counterclockwise begins executing Companion and follows the

leader of the team. Therefore, eventually all the remaining agents in the ring except the

guard (i.e., six agents), will be part of the same team, moving counterclockwise. At most

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 100

four of those agents will be lost decreasing the length of the contaminated interval (con-

sisting of at most five nodes) to one infected node. Let v, u and w be three consecutive

nodes and let u be the last infected node in the ring. The guard is located at v and the

last leader and companion are located at w. In the last step of the algorithm, the leader

moves to the infected node and is destroyed by the black virus. The black virus copies

itself and attempts to spread to v and w. However, both nodes are already occupied by

the last two agents and the ring is decontaminated. It is easy to see that the agents travel

a distance equal to at most a constant times the length of the ring.

Although, the algorithm above has been described for agents with distinct identities, it

is easy to slightly modify it so that it works for anonymous agents. Notice that the agents

use the distinct identities in order to assign different roles to themselves only when they

are co-located. Hence, a mechanism could be used to help co-located agents to assign

themselves different roles. For example, as soon as (i.e., the first time that) two agents

occupy the same node u and they are at the same state, theymay differentiate themselves

according to the direction by which they entered node u and the actions they were doing

one time unit before. Notice that if the agents entered u through the same edge, they

have the same state and they were not co-located before, then exactly one of them was

moving to u one time unit before, while the other one was already at u.

4.2 Decontaminating an unoriented ring

4.2.1 Impossibility results

Suppose that the agents do not agree on the clockwise direction of the ring. Naturally,

all impossibility results for oriented rings hold for unoriented rings. We first show that

ten agents with distinct identities and an unlimited number of tokens cannot solve the

problem. We then show that eleven agents with distinct identities and one token each

are also not enough. We also show that if the agents are anonymous then they cannot

solve the problem no matter how many they are and how many tokens they have.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 101

Lemma 4.8. Ten agents are not enough to decontaminate any synchronous, unoriented

ring, even if they have distinct identities, an unlimited number of tokens and unlimited

memory.

Proof. Let A and B be two agents that are located at the two nodes which are adjacent

to the one containing the black virus. Furthermore, let C and D be two agents that have

been placed so that the initial distance between A and C and between B and D is two

edges. Finally, let no other agent be located between A and C or B and D in the part of

the ring that does not contain the black virus. We will first consider the case in which at

least two agents begin moving simultaneously. The adversary can pick the direction in

which the agentsmove so that bothA andBwill beginmoving towards the infected node.

A and B are destroyed in the first step along with their tokens, and the contaminated

interval consists of three nodes. Notice, that their tokens are destroyed regardless of

whether they were placed before A and B moved. Now, C and D are located closest to

the contaminated interval. The adversary can always pick C andD as the next agents to

move a distance of at least two edges in the same direction so that both agents are lost,

while their tokens possibly survive. The length of the contaminated interval has been

increased to five nodes. The six remaining agents cannot clean a contaminated interval

of five nodes as we showed in Lemma 4.2.

If only one agent moves first then there are nine remaining agents (at their initial posi-

tions)with a contaminated interval consisting of threenodes. Hence in viewof Lemma 4.5

the problem is unsolvable.

Lemma 4.9. Eleven agents with distinct IDs and one token each do not suffice to decon-

taminate an unoriented synchronous ring.

Proof. If atmost two agents firstmove simultaneously then the adversary initially places

the agents so that they meet the black-virus and vanish after their first step. Hence at

most ten agents remain located in their initial nodes while the contaminated interval

consists of three nodes. Thus in view of Lemma 4.8 the problem is unsolvable.

Suppose now that at least three agents first start to move simultaneously and consider

the following initial configuration. Two agents, A and B are initially placed at nodes

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 102

which are adjacent to the node containing the black virus. Another agent C is the closest

neighbour of A in the part of the ring that does not contain the black virus, and agent

D is the closest neighbour of B in the part of the ring that does not contain the black

virus. The adversary arranges chirality of agents so that agent A will move towards the

black virus, agents B and C will move in the same direction as A and D will move in

the opposite direction. The adversary selects all those four agents (if at least four move

simultaneously) or A, B and C (if only three first move) to move simultaneously. The

agents might place their token, and begin moving. Notice that as long as the agents do

not place their tokens on a node, when an agent is lost, its token is lost aswell and the sur-

viving agents do not learn anything about the location of the black virus or of the other

agents. Therefore we can assume that the agents place their token, and begin moving.

After the first step, A along with its token and the token left by B are destroyed and the

black virus copies itself and infects its neighbouring nodes. The remaining agents can

either move for a specific number of steps or move until they detect a token or an agent.

Notice that if the agents do not move, the ring cannot be decontaminated. If the agents

only move for a specific number of nodes and return to their respective homebase, the

ring will not be decontaminated. Therefore, the agents need to move until they find a

token or an agent. If the agents move then agents C andD are destroyed, the black virus

infects two additional nodes andB reaches the token left byD. Now, there are five nodes

that need to be cleaned, eight agents and nine tokens in the network. Agent B can either

move past the token left by D, remain at the node containing the token or change direc-

tion and continue moving. If B stops moving when it encounters a token, all the agents

in the ring will eventually reach a token and stop moving. If B continues moving past

the token, B will not be harmed by the black virus, but some other agent will also move

past the tokens left byD and C and be destroyed by the black virus. Hence, there will be

seven remaining agents and in view of Lemma 4.2 the problem is unsolvable in this case.

Let us consider the case in which B changes direction and continues moving. If B only

moves for a number of steps less than the distance to its homebase, all other agents will

also move likewise and the agents will not be able to meet, since no two agents will visit

a common node in this case. Therefore, B needs to move until it reaches its homebase.

However, B will be destroyed by a black virus before reaching its homebase. Now, there

are seven agents and a contaminated interval consisting of six nodes in the ring. The

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 103

remaining agents are not enough to decontaminate the ring as we showed in Lemma

4.2.

Lemma 4.10. An unoriented synchronous ring cannot be cleaned by any number of anony-

mous agents even if they have an unlimited number of tokens and unlimited memory.

Proof. Assume an unoriented ring with k anonymous agents and consider the starting

configuration of Figure 4.6 (if k is even) or of Figure 4.7 (if k is odd). If the initial number

of agents is even, the ring consists of n = k + 1 nodes and there are initially k agents

and one black virus. Each node is initially occupied by one agent, except the node that

contains the black virus (see Figure 4.6). If the initial number of agents is odd, the ring

consists of n = k+2 nodes and there are initially k agents and one black virus. Each node

is initially occupied by one agent, except the node that contains the black virus and one

of the nodes incident to the black virus (see Figure 4.7). In either case, each agent has the

same number of tokens and neighbouring agents are forced by the adversary to move in

different directions: agent A1 moves clockwise and agent Ai+1 moves opposite than Ai,

∀i ≥ 1.

∆1

∆2

∆3

∆4

∆5

∆n−1

∆n−2

∆n−3

∆n−4

∆n−5

Acw
1

Accw
2

Acw
3

Accw
4

Acw
5

Accw
n−1

Acw
n−2

Accw
n−3

Acw
n−4

Accw
n−5

Figure 4.6: An initial
configuration consist-
ing of n − 1 anonymous
agents, where n − 1 is

an even number.

∆1

∆2

∆3

∆4

∆5

∆n−2

∆n−3

∆n−4

∆n−5

Acw
1

Accw
2

Acw
3

Accw
4

Acw
5

Acw
n−2

Accw
n−3

Acw
n−4

Accw
n−5

Figure 4.7: An initial
configuration consist-
ing of n − 2 anonymous
agents, where n − 2 is

an odd number.

If the initial number of agents is even, two agents, A1 and An−1, along with their tokens

are destroyed after the first step. If the initial number of agents is odd, one agent, A1,

alongwith its tokens is destroyed after the first step. In both cases, each of the remaining

agents reaches a node containing the same number of tokens. The configuration is that

of Figure 4.8.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 104

∆2

∆3

∆4

∆5

∆n−2

∆n−3

∆n−4

∆n−5

A3

A2

A5

A4

An−3

An−2

An−5

An−4

Figure 4.8: The resulting configuration after the agents’ first move in con-
figuration of Figure 4.6 or Figure 4.7.

The agents cannot stop moving after finding a token, otherwise, the ring will not be

cleaned. If the agents continue moving in the same direction, two additional agents and

two piles of tokens are lost immediately and once again all the remaining agents reach

the same number of tokens. If the agents change direction and move until they find a

token, all agents return to their respective homebases and no agent is destroyed. How-

ever, the agents cannot keep moving between any two nodes with tokens indefinitely,

otherwise the ring will not be decontaminated. Therefore, the agents eventually have to

move to a node they have not visited before. Consequently, in any case two additional

agents and two piles of tokens are destroyed, leaving k − 4 agents, k − 4 nodes with (the

same number of) tokens and five nodes that need to be cleaned. The configuration is

shown in Figure 4.9.

∆

∆

∆

∆

∆

∆

Figure 4.9: The resulting configuration after some moves of agents in the
configuration of Figure 4.8

The configuration of Figure 4.9 is similar to that of Figure 4.8, with the difference that

there are two more nodes that need to be cleaned and two agents less. The agents on

Figure 4.9 do not have any further knowledge of the network and cannotmove in amore

effective / different way than the agents of Figure 4.8. More generally, the ring cannot

be cleaned unless the agents visit new nodes. However, each time the agents move to a

new node, the two agents close to a node containing a black virus are destroyed along

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 105

with their tokens. Each time an agent is lost, a pile of tokens is lost as well. Thus, any two

agents have always the same input and therefore they cannot break this symmetry and

they all eventually vanish.

4.2.2 An algorithm with twelve agents

We present here an algorithm for twelve agents with distinct identities and one token

each which can decontaminate any unoriented synchronous ring. We use the following

notation.

f ∈ {cw, ccw}

The direction f is chosen by the adversary to be either cw (i.e., clockwise) or ccw (i.e.,

counter-clockwise), with the agent not having knowledge of that. We define f ′ as the

opposite direction of f . The agents start by releasing their tokens at their initial locations,

and move one step forward (either cw or ccw whichever the adversary chooses). Then

the agents that survivedmove back to pick up their respective tokens andmove forward

to the safe node they explored and release their tokens there. Afterwards, the agents

start moving towards the direction opposite to the direction they moved on their first

move trying to converge with another agent onto the same node.

During this phase, the agents bounce back and forth between the two tokens they find,

bringing those tokens closer and closer (by moving only their token). Eventually, at least

two agents meet and start to move trying to decontaminate the ring using Procedure

Cautious-Move.

Algorithm 6: ClearRing
1 release token
2 move one step towards f
3 execute Secure
4 if did not meet agent during Secure then
5 execute Converge
6 repeat
7 wait
8 untilmeet with another agent carrying a token OR meet a pair
9 execute Decontaminate

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 106

Procedure Secure
1 move one step towards f ′

2 pick up token
3 move one step towards f
4 release token

Procedure Bounce
1 repeat
2 move one step towards f ′

3 until token found
4 repeat
5 move one step towards f
6 until token found

Lemma 4.11. At most four agents are lost until all agents have finished executing Proce-

dure Converge. Furthermore, the contaminated interval has been surrounded by tokens

and all remaining agents are located in the part of the ring divided by those tokens and not

containing the black virus.

Proof. In the first two lines of Algorithm 6, each agent leaves its token at its initial node

and moves one step towards direction f . After the move, there are c ≥ 10 agents still

alive, and c′ ≥ 10 tokens.

The remaining agents proceed to line 3. In Procedure Secure the agents first move back

to their starting node to pick up their token. If c > c′ then in the previous phase two

tokens and one agent were lost. Notice that at least one agent must vanish in order for

a token to disappear. The agent that has no token, due to the black virus, is destroyed

trying to return back to its token. We still have c ≥ 10 and c′ ≥ 10 but now c = c′.

After line 3 of Algorithm 6 each remaining token must be at least two edges away from

any black virus towards f ′. Thus, any agent moving towards f ′ does not result in the loss

of any more tokens, but it may result in the loss of more agents. More specifically, the

agents that can be destroyed are the two agents located closest to both endpoints of the

contaminated interval since all other agents reach a node containing a token.

Lemma 4.12. After a finite number of moves, at least two agents meet.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 107

Procedure Converge
1 repeat
2 execute Bounce
3 if token is one step away then
4 execute Check
5 else
6 pick up token
7 move one step towards f ′

8 release token
9 until another token is on same node

Procedure Check
1 Let x be your identity number
2 wait for x time units
3 pick up token
4 move one step towards f ′

Proof. In view of the previous lemma, by the time the agents finish the execution of the

Procedure Converge, the contaminated interval is surrounded by two tokens and the

part of the ring divided by those tokens and including the black virus does not contain

any of the at least 8 remaining agents. Let p1 and p2 be those tokens and let, without loss

of generality, p2 be the token clockwise from the endpoint of the contaminated interval.

There are two distinct cases:

1. Each surviving agent Ai executing Procedure Converge has the same sense of di-

rection as any other surviving agent Aj executing the same procedure (i.e., fAi =

fAj∀i ̸= j). Since all remaining agents have a common sense of direction either p1

or p2 (or both) should have been initially belonged to an agent that vanished. Since

none of the remaining agents move past a token left by another agent, at some time

t1, an agent A will move its token to a node with a token left by the agent that was

lost. Agent A, stops and waits until another agent reaches the same node. Since all

agents move in the same direction, another agent A′ will reach the same node as A

at some time t2 > t1.

2. There are at least two consecutive agents A′
1, A

′
2 that move in opposite directions

when executing the same command (i.e., fA′
1
= f ′

A′
2
). If there are more than two

such agents, we choose A′
1 and A′

2 to be two consecutive agents that move towards

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 108

Procedure Decontaminate
1 agent with biggest id becomes leader and all others become companions
2 guard_found← false
3 repeat
4 execute Cautious-Move(dir_of_leader)
5 if meet agent performing guarding action then
6 if guard_found = false then
7 change direction
8 guard_found← true
9 else if guard_found = true then
10 guarding agent becomes companion and executes

Cautious-Move(dir_of_leader)

11 else if meet another pair then
12 agent with biggest id becomes leader and all others companions
13 until leader lost
14 if number of companions on node = 1 then
15 begin guarding action
16 else
17 agent with biggest id becomes leader and all others companions
18 if guard_found = false then
19 agent with smallest id begin guarding action
20 all other agents on node change direction

21 repeat
22 execute Cautious-Move(dir_of_leader)
23 if leader not on node then agent with biggest id becomes leader
24 until ring is clean

each other if such a pair exists. If there is originally an odd number of nodes be-

tween A′
1 and A′

2 eventually the two agents simultaneously move their tokens to

the same node v, where the distance dist{A′
1, v} = dist{A′

2, v} at any time. If there

is originally an even number of nodes between the two agents, the agents eventu-

ally place their tokens on neighbouring nodes and detect that there is an agent on

a neighbouring node (Procedure Check). After detecting another agent and a token

on a neighbouring node, the agent returns to the node where it left its token and

waits for a number x of time units, where x is the agent’s identity label. The agent

that finishes waiting first, moves one step towards f ′ and the two agents meet. Let

us now consider the case in which A′
1 and A′

2 move away from each other. In this

case, all the remaining agents in the ring are divided into two groups. One of the

groups consists only of consecutive agents that move in the same way as A′
1, while

the other group consists only of consecutive agents that move in the same way as

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 109

A′
2. Any one of the groups can possibly contain only a single agent (A′

1 or A′
2 respec-

tively). The agents in the group or the groups that contain more than one agents

will form at least one pair in the way described in case 1 of this lemma.

Lemma 4.13. Twelve agents with distinct identities (taken from the set of natural num-

bers), constant memory and one token each can decontaminate any n−node, synchronous,

unoriented ring using Algorithm 6 within O(n2 + L) time units, where L is the maximum

identity label.

Proof. As we showed in Lemma 4.11, at most four agents are lost until all agents have

finished executing Procedure Converge. The first agent that is lost creates a contami-

nated interval of three nodes. Each subsequent agent that is lost increases the size of

the contaminated interval by one node. Therefore until the agents start executing Pro-

cedure Decontaminate, the contaminated interval consists of at most six nodes. As we

showed in Lemma 4.12, at least two agents will meet after a finite number of steps and

will therefore start executing Procedure Decontaminate. When executing Procedure De-

contaminate, the agents only move using Procedure Cautious-Move. When a pair meets

another pair or team, all agents form a single team and the agent with the biggest ID

becomes the leader. When a team of agents encounters for the first time an agent that

is guarding the contaminated interval, the team changes direction. Notice that since at

least one team of agents reaches one end of the contaminated interval, changes direc-

tion and approaches the contaminated interval from the opposite direction all teams in

the ring will eventually merge. When a leader is lost, its companion begins guarding the

node incident to the contaminated interval until a team that has already met another

guard reaches it. Therefore, when the agents clean more than one nodes in the same

direction, both ends of the contaminated interval are guarded and the black virus can-

not spread to new nodes. Finally, the eight remaining agents clean the six nodes in the

contaminated interval in the following way. Five agents clean five of the nodes in the

contaminated interval by moving using Procedure Cautious-Move. One black virus and

three agents remain. When one of the agents moves to the infected node, both of the

nodes incident to the last contaminated node are occupied by one companion and an

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 110

agent performing a guarding action and the ring is cleaned. It is easy to see that the

algorithm takes at most O(n2 + L) time units (due to Procedure Converge).

4.2.3 An algorithm for six agents provided with an advice

As we proved in Lemma 4.3, five agents with distinct identities and unlimited tokens

cannot solve the problem in oriented rings even when the agents know their initial con-

figuration. We show here that if the agents are provided with an advice that encodes a

few agents’ identities then the problem can be solved in any unoriented ring by only six

agents without tokens.

Let L = {A1, . . . , A6} be a sequence of 6 successive agents, where ∀i : 1 ≤ i ≤ 6, Ai are

their distinct identities (which are taken froma totally ordered set, e.g., positive integers),

A1 is the minimum one and A2 is the minimum identity between the identities of the

two successive agents (clockwise and counter-clockwise) of A1. An example is shown in

Figure 4.10. If an agent’s identity appears at an odd index in this sequence, then the agent

will be instructed to move, otherwise it will be instructed to wait. Hence, exactly 3 of the

agents in the example will be instructed to move. We describe the algorithm below.

All agents receive the same sequence with the identities of the agents that are instructed

to move as advice (which needs O(logL) space, where L is the maximum identity label),

and they move until they meet an agent. If a group of agents is formed then the agents

switch to state ‘group1’ and they start to move in the opposite direction of the moving

agent’s direction using Procedure Cautious-Move. If a group of two or three agents at

state ‘group1’ meets the Black Virus then the surviving agents switch to state ‘guard’ and

wait until theymeet an agent. If a non-group agentmeets a guard then it switches to state

‘explorer’, it changes direction and moves until it meets an agent. If a group of agents

at state ‘group1’ meets a guard then the agents of the group switch to state ‘group2’,

they change direction and move using Procedure Cautious-Move. If an agent meets an

explorer then they form a group of agents, they switch to state ‘group2’, and they move

in the direction of the explorer using Procedure Cautious-Move.

Lemma 4.14. Six initially scattered agents with distinct identities (which are positive in-

tegers) suffice to decontaminate any, synchronous unoriented ring, if they have an initial

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 111

Algorithm 7: AdviceProtocol
Input: L = {A1, . . . , A6}

1 if identity at odd index then
2 state←moving
3 repeatmove one step f untilmet with an agent
4 if agent met is a stationary then state← group1
5 else if agent is from a group then follow group
6 else if there is exactly one guard then
7 state← explorer
8 repeatmove one step f ′ untilmet with an agent
9 state← group2
10 else state← group2
11 execute Group
12 else
13 state← stationary
14 repeat wait untilmet with an agent
15 if met with a moving agent then state← group1
16 else if met with an explorer then state← group2
17 else follow group
18 execute Group

advice of size O(logL), where L is the maximum of the agents’ identities.

Proof. Notice that each moving agent is between two stationary agents, denoted by S1

and S2. Since there is one black virus initially, at most one agent is lost before an agent

meets another agent and a contaminated interval of at most 3 nodes is produced. For

example in Figure 4.10 only agent A5 could meet the black-virus and vanish before a

group of at least two agents is formed.

A5,M

A2,S

A1,M
A4,S

A6,M

A3,S

Figure 4.10: A proper sequence for this initial configuration is L =
{A1, A2, A5, A3, A6, A4}. ‘S’ denotes a stationary agent and ‘M’ amoving agent.

The first group (group A) that is formed starts to move in the opposite direction of the

moving agent’s direction using Procedure Cautious-Move. If a non-group agent, or a

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 112

Procedure Group
1 switch state do
2 case group1 do
3 repeat execute Cautious-move(f ′) until BV is found ∨met with a guard
4 if BV is found ∧ group had two or three agents then
5 state← guard
6 execute Guard
7 else if BV is found then
8 if have lowest identity then
9 state← guard
10 execute Guard
11 else
12 state← group2
13 execute Group

14 else if met with a guard then
15 state← group2
16 execute Group

17 case group2 do
18 repeat execute Cautious-move(opposite of previous group’s direction) until

ring is decontaminated

group of agents reaches a guard then it changes direction. If a group of three agents

reaches the Black Virus then the remaining two agents wait (as guards).

Since each moving agent is between two stationary agents S1, S2, if the group is formed

at S1 then it moves towards S2 and vice versa. Suppose, without loss of generality, that

the group A is formed at S1 and moves towards S2.

There are three possible cases.

1. Group A reaches S2, and the group now has three agents

2. There is a black virus between group A and S2, thus group A reaches the virus and

its leader is destroyed making the other agent a guard

3. S2 becomes part of another group (group B) and that group starts moving the same

direction as group A

Weexamine each case separately. Fromhere onwe refer to the initially stationary agents

as S, the initially moving agents asM, and the guards as G.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 113

Procedure Guard
1 repeat wait untilmet with any agent
2 if met with a group2 ∨ explorer ∨ ((moving agent ∨ group1) ∧ there are two guards)

then
3 if there are two guards ∧ have the lowest identity then
4 state← guard
5 execute Guard
6 else
7 state← group2
8 execute Group

Case 1. In this casewe have a group of 3 agents (two S and oneM). There are 4 sub-cases.

Either the group reaches a Black Virus, or the group meets with aM, or the group meets

with another group, or the group meets a G. Lets examine those more carefully.

1. The group (of three agents) reaches a Black Virus.

(a) If this is the first time any agent reaches a Black Virus, then the leader of the

group vanishes and the Black Virus spreads towards the unguarded neighbor.

We now have one Black Virus and 5 agents, of which two Gs, twoMs, and one

S.

Firstly, if a second group reaches the Black Virus then the ring is decontam-

inated. Secondly, if a moving agent reaches the guards, then one guard and

the moving agent form a group which now moves in the opposite direction

collecting the stationary agent and decontaminating the ring, even if the other

moving agent reaches the Black Virus first. Thirdly, if a group reaches the

guards, then one guard is collected and the group, with either three or four

agents, moves in the opposite direction decontaminating the ring.

(b) If this is the first time a group reaches a Black Virus, then a moving agent has

already vanished before, making it a contaminated interval of three nodes.

The leader vanishes and the Black Virus does not spread further. We now

have a contaminated interval of 2 nodes and 4 agents, of which two Gs, one

S, and oneM. The moving agent cannot reach the Black Virus before meeting

another agent and therefore either meets the guards or the stationary agent.

In both cases it forms a group. If the group reaches the guards, then one guard

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 114

is collected and the group of three agents move in the opposite direction de-

contaminating the ring. If the moving agent firstly meets the guards, then a

group is formed which collects the stationary agent decontaminating the ring.

(c) If this is the second time a group reaches the Black Virus then the ring has been

decontaminated.

2. The group (of three agents) meets with a M. Then there is one S and one more M

left. The group can then reach either the Black Virus, or another group, or S. If the

group reaches the Black Virus after the other group then we are done. If it reaches

the Black Virus first then one agent vanishes, one becomes a guard, and the other

two form a group moving in the opposite direction decontaminating the ring. If

two groups are met then all agents have gathered and can decontaminate the ring.

Lastly, if the group collects S then even if the remaining M vanishes before it is

collected there is a contaminated interval of 3 nodes and a group of 5 agents which

can decontaminate the ring.

3. The group (of three agents) meets with another group. Then we have a group of 5

agents which can decontaminate a contaminated interval of 3 nodes.

4. The group (of three agents) meets a guard. Then it changes direction collecting any

redundant agent and decontaminating the ring.

Case 2. If the group reaches the Black Virus, then this is either the first time any agent

reaches the Black Virus, or this is the first time a group reaches the Black Virus, or this is

the second time a group reaches the Black Virus, hence the ring is decontaminated. We

examine the first two cases more closely.

1. If it is the first time any agent reaches the Black Virus then we have a contaminated

interval of one node and 5 agents left. The agents left are one guard, 2Ms, and 2 Ss.

This is a similar case to case’s 1.1.a and can be examined in a similar manner.

2. If it is the first time a group reaches the Black Virus, then a moving agent has

reached the Black Virus before. The group reaches the Black Virus and we now

have a contaminated interval of 2 nodes, one guard, 2 Ss, and oneMwhich cannot

reach the Black Virus before meeting another agent. Then it either meets the guard

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 115

and changes direction, or it meets with a S forming a group. In either case a similar

argument as before can be presented.

Case 3. Since group A never meets S2, it can only meet with group B or meet a guard. If

the two groupsmeet then there is one S still left and either aM depending on the number

of agents of group B. If group B has three agents, then 5 out of 6 agents have met and

they can decontaminate the ring collecting the remaining S. If group B has only two

agents then 4 agents have gathered and there is still aMmoving. Even if the last moving

agent reaches the Black Virus first the ring can be decontaminated by the rest agents 4 in

a group and one stationary, because the contaminated interval does not increase further.

In all three cases the ring is decontaminated.

4.3 Discussion

We can show that the algorithm for unoriented rings (with twelve agents) will decontam-

inate any oriented ring using at most ten agents (i.e., at most nine will vanish). Hence in

other words, the algorithm for unoriented rings is a uniform algorithm that is optimal

with respect to the number of agents in both oriented or unoriented rings. However, it

takesO(n2+L) time units to finish even in oriented rings, where L is the maximum label

of the agents, in contrast with the algorithm for oriented rings which takes O(n) time

units to solve the problem with ten agents. Whether there exists an O(n) algorithm for

unoriented rings is an interesting open question.

Another difference between the two algorithms is the following. The algorithm for ori-

ented rings can work for anonymous agents mainly because the agents use their distinct

identities to assign different roles to themselves onlywhen they are co-located. However,

the algorithm for unoriented rings heavily relies on agents’ distinct identities: they are

distinct positive integers and each agent might need to use its label even before meet-

ing another agent. In fact as we proved, the problem is unsolvable by any number of

anonymous agents in unoriented networks.

Another interesting question is whether those algorithms can be extended to handle

asynchronous networks. Does there exist an algorithm for unoriented rings using eleven

agents with more than one token each? Finally it is interesting to investigate whether

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 4. Black Virus Decontamination 116

there are different (or better) solutions for rings consisting of n nodes, where n is small.

For example it is easy to see that if n ≤ 3 the problem is unsolvable due to Lemma 4.1

(even for agents with advice). If n = 4 it is solvable by 3 agents with advice, but otherwise

impossible. If 5 ≤ n ≤ 7 then 4 agents with advice can solve the problem.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

117

5 Broadcasting

The communication between nodes of a network has been studied a lot in the litera-

ture. The classical problems of broadcast or convergecast deal with the dissemination

of information in the network. In the case of message passing networks, broadcast is

achieved by spreading the information from the source node to all other nodes. For a

system of mobile agents, the equivalent problem is the propagation of information from

one source agent to all other agents in the system. Such problems are relevant for teams

of mobile sensor robots sent on data collection missions. We assume that the agents

autonomously move along the edges of a graph that represents the network; when two

agents are at the same vertex, they can communicate and share information. However,

the agents cannot communicate from a distance.

The problem of broadcasting has been originally investigated in message passing multi-

hop radio networks (e.g. see the survey [53]). Previous studies on broadcast and other

communication problems have focused on the efficiency of performing the task, either

in terms of time taken [22], or in terms of energy expended [26]. A slightly different

line of research considers the problem of communicating in the presence of faults and

the objective is to tolerate as many faults as possible. The faults can be missing links or

nodes [54] in the network or loss of messages [55], in case of message passing networks.

Recently there has been a lot of interest in so called dynamic networkswhichmodel both

faults and changes in network topology in a uniform manner by considering that the

network may change in each round during the execution of the algorithm. As discussed

in 2.1.3 the evolving graphmodel represents a dynamic network by a sequence of graphs

G = G1, G2, . . . based on the same set of vertices V but the set of edges changes in each

round i, i.e. each graph Gi = (V,Ei) is a spanning subgraph of the graph G = (V,∪Ei),

which is called the footprint of the dynamic network. For solving most problems, some

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 118

assumptions about the connectivity of the dynamic network need to be made. We con-

sider the model of constantly connected dynamic networks where in round i, the graph

Gi is assumed to be connected. No other assumptions are made about the network. This

means that in the worst case, the graphs Gi and Gi+1 in two consecutive rounds may

differ completely in the set of available edges. To show correctness of our algorithms,

we will assume that an adversary having knowledge of the algorithm, chooses the graph

Gi in each round (respecting the connectivity constraint). Note that these assumptions

are much weaker compared to that of T -interval connected networks as in several pre-

vious results [60,64] where the network is assumed to contain a stable spanning tree for

a continuous period of T rounds.

Following the definition of the problem which appeared in Section 2.4.3 let us give some

more details about this study. We consider different graph families, including sparse

graphs, as well as dense graphs, for example when G is a ring or a cactus, or when G

is a grid, a hypercube or a complete graph respectively. For each family we present

algorithms in order to solve the broadcast problem using the minimum number k of

agents. Note that, having more agents makes the problem easier, due to the fact that

when at least one of them reaches a source agent, there is progress in the propagation

of the message. We also show strict lower bounds on the minimum number of agents

needed to solve the problem in the graph familiesmentioned earlier. Preliminary results

of this chapter have appeared in [37]

5.1 Broadcast model

In this section the capabilities of the agents and the adversary model is defined.

5.1.1 Agents

The agents are autonomous and identical entities, having their own internal memory,

and are able to move along the available edges of the graph. The agents cannot mark

the nodes or edges of the graph. The agents are initially located at distinct nodes of the

network, they all start in the same initial state, and they execute the same deterministic

algorithm. They have global visibility and they move in synchronous steps, i.e., time is

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 119

discretized into atomic time units called rounds. During each round r, each agent can see

the graph Gr and the location of all agents in Gr and can distinguish which agents have

the messageM (called source agents), and which agents do not (called ignorant agents).

Based on this information, the agent can decide to stay at the current node or move to a

neighboring node in Gr. In the latter case, the agent arrives at its destination node at the

end of the round. At the start of the next round r + 1, the adversary chooses the graph

Gr+1, and the agents execute the next step of the algorithm. In the initial round, there is

exactly one source agent and k ignorant agents in the network.

5.1.2 Adversarial model

The adversary can decide the initial placement of all the agents in the network, and in

each round the adversary chooses the graph Gr which represents the available links in

the network for that round. The adversary may have knowledge of the algorithm and

can use this knowledge for deciding the placement of agents and the dynamicity of the

network (subject to the connectivity constraint as described).

Unknown Adversary: The agents do not have any knowledge of the adversary, and

thus they do not know the dynamic network G in advance.

Global visibility: We assume global visibility to simplify the task of achieving broad-

cast. Note that, if the agents are restricted to local visibility in an unknown dynamic

network, even in the simplest case of a ring network, it may not be possible for two

agents to meet, and thus broadcasting would not be possible.

Distinct starting locations: Weassume the agents are initially located at distinct nodes

of the network.

5.2 Preliminaries

Wemake some preliminary observations about the problem. Recall that the dynamicity

of the network is unknown to the agents. However, in each round i the agents can see

the graph Gi and the positions of all agents in it.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 120

Notice that, due to the facts that the agents start at distinct locations, they have global

visibility, there is a unique source agent and the network is locally oriented, the agents

can assign themselves distinct identities in the following way:

Each agent computes for every agent Ai (including itself) initially located at a node ui

the lexicographically minimum string of port labels that corresponds to a shortest path

from node ui to node v where the source agent is initially located. Hence all agents have

constructed the same list of strings. Further they can lexicographically sort in increas-

ing order those strings and assign accordingly distinct identities to all agents. Once the

identifiers are computed in a pre-computation, the agents can remember these identi-

fiers and can track all other agents during the algorithm (thanks to the global visibil-

ity). Hence, in the following, we assume without loss of generality, that all agents have

distinct identities. Moreover, for simplicity, we shall describe the algorithms in a cen-

tralized manner, describing which agents perform which operations in any round. It

is evident that the agents executing the same algorithm, can autonomously decide their

role in the computation. Finally, we denote with k the number of ignorant agents (i.e.,

the agents that do not know the initial message).

Observation 1. Given a constantly connected dynamic network G based on an arbitrary

connected graph G consisting of n nodes, with k ≥ n− 2 ignorant agents on distinct nodes

of the network, then within O(k) steps, we can solve the broadcast problem.

Proof. Since there are at least n − 2 ignorant agents on distinct nodes and one node is

occupied by the source agent, there is at most one empty node. Thus, in any connected

graph Gi there would be a path of length at most two between a source agent and an ig-

norant agent. These two agents wouldmeet in this round. So, we reduced the number of

ignorant agents. The agents can now spread to distinct nodes (using their distinct identi-

ties that have been assigned before they meet, as described in the previous subsection),

and we can repeat the same argument.

The above result provides a general upper bound on the team size needed for solving

broadcast. We will present smaller bounds for specific graph topologies. For the special

case of trees, the adversary cannot block any edge without losing connectivity. Hence

we have the following trivial result for trees.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 121

Observation 2. If G is a tree then broadcast can be solved for any k ≥ 1.

Proof. The adversary cannot block any edge without disconnecting the graph. Thus, the

graph is static and in each step each agent can move one step closer to the node contain-

ing the source agent, thus in O(D) time all agents would be colocated with the source

agent and we solve broadcast in O(D) time, whereD is the distance of the farthest agent

from the source.

5.3 Broadcast in sparse graphs

In this section, we will study the broadcast problem with agents in sparse graphs. A

simplest non-trivial sparse network is the ring (or cyclic graph 2.1) topology.

Theorem 5.1. If G is a ring of size n ≥ 5, then broadcast can be solved if and only if k ≥ 2

within O(n) steps. If G is a ring of size n < 5, then broadcast can be solved for any k ≥ 1

within at most 2 steps.

Proof. Consider a ring of size n ≥ 5, with one source that has the informationM and

one ignorant agent. At each step, the adversary can remove an edge on the shortest path

between the two agents. Note that, the longer path is always of size at least 3, thus the

agents cannot meet on this path in one step. Hence the two agents can never meet.

Now we show that if there are at least two ignorant agents (k ≥ 2), then broadcast is

possible. The two agents can try to reach the source agent by opposite directions, then at

each step one of the agents gets closer, and eventually one of the agents would reach the

source and obtainM. At this stage there are 2 source agents, they can traverse the ring

in opposite directions, thus at least one of them will soon meet the remaining ignorant

agent and broadcast is solved within O(n) steps.

The impossibility of solving broadcast with k = 1, does not hold for rings of size 3 as in

this case any path between the source and the other agent is of size at most 2, and since

one of these paths must be available, the two agents can meet in one step and solve the

problem. For rings of size 4, if the longer path between the source agent and an ignorant

agent has length 3, then one of the agents moves so that both paths between the agents

are of length 2. Then within the next step, the two agents meet in one of those paths,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 122

similarly as in the case of rings of size 3. Thus, broadcast is solvable for rings of size

n < 5 with any k ≥ 1.

We nowmake the following observation that will allow us to generalize the results from

rings to other graphs containing cycles.

Lemma 5.1. If G contains a cycle C of length at least 3, such that there is a single node

v ∈ C that is connected to nodes in G \ C, then the adversary can always prevent at least

one agent located in C \ v from reaching node v, thus trapping the agent in cycle C.

Proof. Consider an agent located at a node u ∈ C \ v. Since the cycle must be of length

at least 3, the longer path from node u to node v is of length ≥ 2. If the adversary always

blocks the shorter path from the agent’s location to node v, then the agent cannot reach

node v. The only way to get out of the cycle is passing through node v, so the agent is

forever trapped in C.

Lemma 5.2. If G is a ring of size n ≥ 3, given any vertex v ∈ G, if there are two agents

at distinct vertices of G, then there is an algorithm to ensure that within O(n) steps either

(i) the two agents meet at a vertex of G or (ii) at least one of the agents (chosen by the

algorithm) can reach vertex v.

Proof. Let us call the two agents A and B. If we require agent A to reach node v, then the

algorithm asks agentB tomove along the path containing agentA and then node v in this

order (if agent B was already at node v then we first move it to any neighbouring node

of v). In each round, only one edge of Gmay be unavailable, so either agent B will move

closer to agent A or agent Awill move closer to node v. So eventually either condition (i)

or (ii) will be true.

In the following we consider cactus graphs which can be seen as combinations of trees

and rings.

Definition 5.1. A cactus graph is a connected graph in which any two simple cycles have

at most one vertex in common.

In cactus graphs, the size of the team depends on the number and sizes of the cycles of

the graph, as follows:

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 123

Lemma 5.3. IfG is a cactus graph of size n having c1 ≥ 1 cycles of length< 5 and no larger

cycles, then broadcast can be solved if and only if k ≥ c1 within O(n) steps.

Proof. Consider the family of cactus graphs obtained from a line of length c1 by attaching

to each vertex of the line a cycle of length < 5. Each cycle thus satisfies the conditions of

Lemma 5.1.

If k < c1, the total number of agents is k+1 ≤ c1, so the adversary can place each agent in a

distinct cycle, including the source agent. No agent can leave its cycle due to Lemma 5.1.

So, no two agents can meet, thus broadcast is not possible.

For k ≥ c1, broadcast is solvable in any cactus graph with c1 small cycles. To prove this

it is enough to analyze the case where at least one cycle has at least two agents, either

two ignorant ones or one ignorant agent and a source. This is because if an agent is

outside of any cycle it can always move to a cycle (all non cyclic edges are available in

each round). If two agents are in a cycle and none of them is the source, then one of the

agents can leave the cycle within at most 2 steps (both agents move towards an elected

exit approaching it from different directions). The agent that leaves the cycle can move

towards the source, until it reaches another cycle.

Thus, one agent will eventually reach the cycle containing the source. This agent can

meet the source and obtain the informationM due to Theorem 5.1. Now, there are two

source agents in the same cycle, and thus, one of them can leave the cycle as described

before within at most 3 steps. This source agent reaches another ring containing an

ignorant agent, the information is propagated and we have again two source agents in

a cycle. Repeating the same algorithm, all agents will eventually learn the information,

and thus we can solve broadcast within O(n) steps.

Lemma 5.4. If G is a cactus graph of size n having c2 cycles of length ≥ 5 and no cycles of

smaller length, then broadcast can be solved if and only if k ≥ c2 + 1 within O(n) steps.

Proof. Consider the family of cactus graphs obtained from a line of length c2 by attaching

to each vertex of the line a cycle of length ≥ 5.

Suppose that k < c2 +1. Then, the adversary places each of the k ≤ c2 agents in a distinct

cycle and the source in one of these cycles. Due to Theorem 5.1, the source and the other

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 124

agent cannot meet, since the ring is of length ≥ 5. At the same time, due to Lemma 5.1

the adversary can trap each other agent in its cycle. In the cycle that contains the source,

at most one of the two agents can exit this cycle. Even if the source agent exits this cycle

and enters another cycle the configuration is similar to the initial one. Hence, no two

agents can ever meet and therefore the problem is unsolvable.

To prove that k ≥ c2 + 1 agents are enough to solve broadcast, we first show that at least

one ignorant agent can reach the source and can become a new source. As in the proof

of Lemma 5.3, we assume all agents move to some cycle if they are not in a cycle. If

the source agent is in the same cycle with at least two ignorant agents, by Theorem 5.1

both these agents can become sources. If not, then, given k ≥ c2 + 1, there must be some

cycle with two or more ignorant agents and all except one of these agents can leave the

cycle to reach another cycle. Eventually two or more ignorant agents would reach the

same cycle as the source, and again applying Theorem 5.1, all these agentswould become

source agents. Thus we have now at least x ≥ 3 source agents in a cycle. Furthermore

each of the remaining k−x+1 ignorant agents are alone in some cycle. This implies that

the number of empty cycles (cycles without any agent) are at most x − 3. Among the x

source agents, x − 1 of them can move to another cycle. When the source agents move

to an empty cycle, at most one of them may be trapped. In total x − 3 source agents can

be trapped, thus at least two source agents can reach any cycle that contains an ignorant

agent, so this agent will meet a source. Hence, all ignorant agents will eventually become

sources and thus broadcast can be solved within O(n) steps.

Theorem 5.2. Let G be a cactus graph of size n having c1 cycles of length < 5 and c2 cycles

of length ≥ 5, then:

• If c2 = 0, broadcast can be solved if and only if k ≥ c1 within O(n) steps.

• If c2 > 0, broadcast can be solved if and only if k ≥ c1 + c2 + 1 within O(n) steps.

Proof. If c2 = 0, then the cactus graph has only c1 cycles of length < 5, and in view of

Lemma 5.3 broadcast can be solved if and only if k ≥ c1.

On the other hand if c2 > 0 and c1 = 0, then in view of Lemma 5.4 broadcast can be solved

if and only if k ≥ c2 + 1, and thus the second condition holds.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 125

Finally, if c1 > 0 and c2 > 0, similarly as in the proofs of Lemmas 5.3 and 5.4, we can

construct a cactus graph from a line of length c1 + c2 by attaching a cycle of length < 5 to

each of the first c1 vertices and attaching a cycle of length ≥ 5 to each of the remaining c2

vertices. Now, if k ≤ c1 + c2, then the adversary places each ignorant agent in a distinct

cycle, and places the source agent in the last big cycle C of length ≥ 5. Since there is at

most one ignorant agent and the source in cycle C of length ≥ 5, they cannot meet (see

the proof of Theorem 5.1). Furthermore no other agent (in a cycle different than C) can

leave its cycle due to Lemma 5.1. The source agent may escape from the cycle C and

reach another cycle C ′. If the cycle C ′ is big (size ≥ 5), then as before the source agent

would not be able to meet the only agent that is in cycle C ′. On the other hand, if the

source reaches a small cycle (size < 5) it may meet the ignorant agent in that cycle, so

we will have two sources; however at most one of the two can leave this cycle. Thus the

agents in the big cycles would never meet any source agent. Thus broadcast can not be

solved.

We now show how to solve broadcast using k ≥ c1 + c2 + 1 ignorant agents. First, as

argued before, any agent that is not on a cycle can move to the nearest cycle. Since

there are more agents than cycles, there are some cycles that contain multiple agents. In

any such cycle, one of the agents can move to a neighboring empty cycle if there is one.

Repeating this process, we can distribute the agents such that there is at least one agent

in each cycle.

Let C be the cycle that contains the source. In any cycle other than C, if there are more

than one ignorant agents, all except one of them can move to another cycle that is closer

to cycle C. Repeating this process, we will reach a configuration where there will be at

least 2 ignorant agents and the source in cycle C and exactly one agent in each other

cycle. Now it is easy to solve broadcast from this configuration. Using the ring algorithm

(Theorem 5.1) all ignorant agents in cycle C would become sources. Since we have at

least three source agents now, at least two of them can move to a different cycle. In any

other cycle reached by those two source agents, there is one ignorant agent, so we can

apply the same algorithm and have 3 source agents in this cycle. Repeating this process

all ignorant agents will become sources and broadcast is solved within O(n) steps.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 126

5.4 Broadcast in Grids

We now study grid graphs which are slightly more dense than rings or cactuses. Even

for 2-dimensional grids, we show that we need Ω(n) agents to solve broadcast. Let us first

consider the simplest grid graph with only two rows (called ladder graph).

Lemma 5.5. If G is 2× L grid graph, then broadcast is unsolvable for k < L− 1.

Proof. Suppose that k < L−1. The adversary can put all k agents in one row consisting of

L vertices and the source agent in the other row. So, there is at least one column where

both vertices are empty. The adversarywould allow this edge and remove all other edges

connecting the two rows. So the agents could only move within their respective rows.

After some agents move, there would again be some column containing only empty ver-

tices. So the above argument can be repeated. Thus, no agent can leave its respective

row at any step, and hence no agent can meet the source.

The above lower bound is almost tight as we can show an upper bound of k ≥ L for

broadcast in any 2× L grid graph.

Theorem 5.3. If G is a 2× L grid graph, then broadcast is solvable for k ≥ L.

Proof. Wewill denote the bottom left vertex in the grid as origin [0, 0], and the rest of the

vertices will be denoted accordingly as [i, j] where is i = 0 for the bottom row and i = 1

for the top row, while 0 ≤ j ≤ L − 1 is the column number. We will prove the above

theorem using the following lemmas:

Lemma 5.6. If G is 2 × L grid graph containing a source agent at origin [0, 0], such that

the number of vertices occupied by ignorant agents is strictly greater than the number of

unoccupied vertices in G, then there exists a move of subset of the agents which maintains

the ignorant agents in distinct locations and, either (i) one ignorant agent meets the source

agent, or (ii) the sum of distances from the ignorant agents to the source agent in G, de-

creases by at least one.

Proof. Consider the spanning subgraph Gr that is available at the current round and

consider any shortest path P in this subgraph from the source to any ignorant agent. Let

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 127

P = (u0, u1, . . . ut)where uo contains the source and ut contains some ignorant agent. We

say that an edge (ui, ui+1) is positive if dG(u0, ui+1) > dG(u0, ui) and otherwise the edge is

called negative. Thus positive edges in P increase the distances from source and negative

edges decrease the distance from source (distances are measured in the original grid G).

Notice that the distance between vertices u0 and ut in G is strictly less than the length of

P if and only if there is a negative edge in P . If there is an ignorant agent on vertex ui+1

and vertex ui is empty, then moving this agent to ui would satisfy condition (ii) of the

lemma, if and only if edge (ui, ui+1) is positive. So, let us assume there is no such positive

edge with an empty vertex on one end and an agent on the other end. In this case we

need to look for a move of a sequence of consecutive agents on a path P from the source.

If the path P from the source contains a sequence of x ≥ 2 consecutive negative edges,

these must be preceded by at least x+ 1 positive edges. (This corresponds to a path that

makes a U-turn and goes back towards the origin, see Figure 5.1.) If path P started with

these edges, then vertices at the end of each positive edge must be empty otherwise we

immediately obtain a move satisfying the conditions of the lemma. In other words, if

there is no move on P satisfying the lemma, then, there are more empty vertex than

vertices occupied by ignorant agents on path P .

The only other possibility is that the path P starts with the sequence of 2 positive and one

negative edge, followed by a repeated sequence of (3 positive, 1 negative) edges. (This

corresponds to a zigzag path where the edges going down from top to bottom row are

the negative edges; See Figure 5.2. The zigzag path may be followed by a path making a

U-turn.) To ensure that there is no valid move of agents on P satisfying the lemma, the

adversary must leave the first two vertices empty, it can place ignorant agents on the

next two vertices, but must leave the next two vertices empty and so on. Thus, if there

is no valid move on P satisfying the lemma, then there must be as many empty vertices

as vertices occupied by ignorant agents, in P . If this condition holds for all paths in the

subgraph Gr then the total number of empty vertices is not smaller than the number of

vertices occupied by ignorant agents - which is a contradiction to the assumptions of the

lemma. Thus the lemma holds.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 128

u0

u1 u2 u3 u4

u6 u5u7

+
+ + +

−
−−

Figure 5.1: A path from the sourcemaking a U-turn, with a sequence of pos-
itive edge going away from the source, followed by a sequence of negative

edge going toward the source.

u0

u1 u2

u3 u4

u6u5

u7

+
+

+
+ −−

+

Figure 5.2: A path from the source that zigzags, with a repeated sequence
of 2/3 positive edges followed by a single negative edge going toward the

source.

Lemma 5.7. IfG is a 2×L grid graph, with k ≥ L ignorant agents in distinct vertices, then

one of the agents meets the source.

Proof. If G is 2 × L grid graph, with the source at the origin and at least k = L igno-

rant agents, then the number of empty vertices is L − 1, then we can repeatedly apply

Lemma 5.6, until at least one agent meets the source. Note that the agents are always on

distinct locations, until an agent meets the source.

Let us now consider the case when the source is not at [0, 0] but is at a vertex [0, j] (we

can assume without loss that row 0 contains the source as there are only two rows).

Consider the partition of G into a left grid of size 2× j and a right grid of size 2× (L− j).

The algorithm would make one of the following moves:

1. If the edge ([0, j − 1], [0, j]) is available, the source moves left to vertex [0, j − 1]

2. If the edge ([0, j − 1], [0, j]) is not available, and the right grid has more ignorant

agents than empty vertices, apply Lemma 5.6 on the right grid until an ignorant

agent meets the source

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 129

3. Otherwise, if vertex [1, j − 1] is occupied by an ignorant agent, this agent moves

to vertex [1, j] (pushing other agents to maintain agents in distinct locations). If

not, assume that vertex [1, j − 1] contains an “imaginary” source agent and apply

Lemma 5.6 on the left grid until an ignorant agent reaches vertex [1, j − 1].

We first show that it is always possible to execute one of the three moves above. If the

edge ([0, j−1], [0, j]) is not available, then the edge ([1, j−1], [1, j])must be available. So any

agent at [1, j − 1] can move to [1, j] (first part of step (3)). Moreover edge ([1, j − 1], [1, j])

is the only connection between the left and right grids. So, each of these grids has a

spanning subtree available, sowe can apply the algorithm independently on one of those

grids. Thus step (2) is possible. If neither of the first 2 steps are possible, then again edge

([1, j − 1], [1, j]) is the only connection between the left and right grids, plus there are

more empty vertices than occupied vertices in the right grid. However, since k ≥ L, this

implies that the left grid must satisfy the condition that there are more vertices occupied

by ignorant agents than empty vertices. The algorithm tries to move agents from the left

to the right grid.

If the algorithm applies step (1) repeatedly, then eventually the source agent would be

at the origin [0, 0] or it meets an ignorant agent on the way and the lemma holds. If the

source reach the origin [0, 0], using Lemma 5.6 we can ensure that an agent meets the

source. Now suppose step (1) cannot be applied in some round r. Consider the partition

of Gr into left and right grids. As long as there are sufficiently many ignorant agents in

the right grid, we can apply Lemma 5.6 repeatedly then an agent would meet the source

eventually. If we apply step 3 then agents from the left grid move to the right grid (we

can do so while maintaining agents on distinct locations). If enough agents move to the

right grid then the conditions of Lemma 5.6 would be satisfied in the right grid, so we

can apply one of the first two steps. Thus, eventually one of the ignorant agent meets the

source and the lemma holds.

Lemma 5.8. In the algorithm described above, the ignorant agents are always in distinct

locations in each round.

Proof. Every move of an ignorant agent at a vertex v is one of the following types: (i)

The neighboring vertex w contains the source the agent moves to meet the source at

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 130

vertex w. (ii) The neighboring vertex w is unoccupied and the agent moves to occupy

this vertex. (iii) The neighboring vertex w contains an ignorant agent and there is a

sequence of agents that move simultaneously, each agent occupying the vertex vacated

by the predecessor, and the first agent in the sequence moves to an empty vertex.

Now, we show how to solve broadcast after one of the ignorant agent has reached the

source, so now there are two sources at a vertex of G. The two sources can move to

adjacent columns (say columns j and j + 1) in at most two steps. As before, we can

partition the graph Gr at this round, into a left grid of size 2 × j and a right grid of size

2× (L− j). We have two cases.

Case (i): Both left and right grids have a connected spanning subgraph in the current

round. We can thus apply Lemma 5.6 recursively to at least one of the grids. Case (ii):

One of the partitions (say, the left grid) is disconnected. Since Gr is connected this means

that there are exactly 2 connected components of the left grid and these two components

are connected by a path passing through the right grid. Further at least one component

must be a line (i.e. a subset of a row) connected to the right grid. If there are empty

vertices on the left grid, then the agents, if any, on this line can move towards the left

grid (as before any sequence of consecutive agents move together). On the other hand,

if the left grid has no empty vertices, we can apply Lemma 5.6 on the left grid as in case

(i).

Thus we can ensure progress in each of the cases.

Lemma5.9. IfG is an h×L grid graph, with h ≥ 1, L > 2, then starting froma configuration

withL−1 agents in each row, the adversary can ensure that there are nevermore than L−1

agents in the bottom row. Moreover, if we add an additional agent at the bottom row, again

the adversary can ensure that there are never more than L agents in the bottom row.

Proof. If h = 1 then there is only one row, so the number of agents on the bottom row

never changes and the lemma holds trivially. We now prove the lemma by induction on

the number of rows. Suppose that the lemma holds for a grid G with h ≥ 1 rows. We

can construct a grid G′ by adding an additional row at the bottom with L vertices and

L − 1 agents on distinct vertices. Since the bottom row of G has at most L − 1 agents

(by induction hypothesis), there exists an empty vertex v in this row. In the grid G′ the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 131

adversary makes available the edge from v to the vertex below; all other edges between

G and the additional row are unavailable. In the current round, no agent can enter the

bottom row of G′; although an agent from the bottom row may go up and reach grid

G. In the next round if there are L − 2 agents in the bottom row, and L agents in the

row above then the adversary makes available the edge between a vertex (containing

at most one agent) in this row to the vertex below in the bottom row (and disables all

other edges between these two rows). So, either an agent moves to the bottom row or

the number of agents in the bottom row remains the same. In the first case, we are back

in the initial situation and we could use the same arguments as before. In the second

case, the number of agents at the bottom row is smaller than what was initially. Thus

the lemma holds for grids of h + 1 rows and thus by induction for all grids satisfying

the conditions of the lemma. Furthermore, note that all arguments remain the same

if initially there are x > L − 1 agents in the bottom row, i.e. the number of agents in

the bottom row is never more than x if the higher rows contain at most L − 1 agents

initially.

Lemma 5.10. If G is a W × L grid graph, with W > 2 then broadcast in unsolvable for

k < (L− 1)(W − 1).

Proof. We can construct a grid of size W × L by joining two grids: a grid G1 of (h =

W − 2) × L with a grid G2 of size 2 × L (by adding L edges between the bottom row of

G1 and the top row of G2). In grid G1, we place L − 1 ignorant agents on each row, at

distinct locations, while in grid G2 we place k2 < (L− 1) agents plus the source agent, as

in Lemma 5.5. Thus the total number of agents is k = (W−2)∗(L−1)+k2 < (L−1)(W−1).

We now show that broadcast is not solvable in this graph.

Firstly, if no additional agents enter grid G2 and the source never leaves G2 then by

Lemma 5.5, broadcast is not possible as no agent would meet the source in G2. Further-

more, if the source is in the bottom row, it can never leave this row and thus it cannot

leave G2. In the grid G1 there are L− 1 agents in the bottom row and by the Lemma 5.9

the number of agents on this row does not increase (considering only agents in G1), so

there is at least one empty vertex on this row. The edge between this vertex and the grid

G2 is made available and all other edges between the two grids are unavailable. In this

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 132

case, no agents from G1 can enterG2. However, some ignorant agents from G2 can enter

G1. If x ignorant agents from G2 enter the grid G1, then by Lemma 5.9, the number of

agents on the bottom row of G1 is at most L−1+x. In each round, if there is some empty

vertex v on this row, the edge between v and G2 is the only edge between the two grids

that is made available in that round (in this case, no agents can move from G1 to G2).

Otherwise any vertex in the bottom row of G1 can have at most x agents in this round;

so, if one edge is available between the two grids, at most x agents can move from G1 to

G2. Thus, after each round, the number of ignorant agents in G2 is less than L − 1 and

thus broadcast is not possible by Lemma 5.5.

We can generalize the above to higher dimensional grids as follows:

Lemma 5.11. If G is a d + 1-dimensional grid graph of size W1 ×W2 × . . .Wd × L where

Wi ≥ L ≥ 2 then broadcast in unsolvable for k < (L− 1)(W1 ·W2 . . .Wd − 1).

Proof. Consider the subgraphof the grid that is a 2-dimensional grid of size (W1·W2 . . .Wd)×

L. In each round the adversary chooses the available graph to be a connected subgraph

of this 2D grid, then we can apply Lemma 5.10 to obtain the above lower bound.

5.5 Broadcast in Dense graphs

In dense graphs there are many disjoint paths between two vertices and thus there are

many possible ways for the adversary to change the networkwhile keeping it connected.

In other words, the dynamicity of a (constantly connected) dynamic graph whose foot-

print is a dense graph, is higher than that of sparser graphs that we studied before. The

worst case is when the underlying graph is a complete graph.

5.5.1 Broadcast in Complete graphs

Lemma 5.12. If G is a complete graph of size n then broadcast can be solved if and only if

k ≥ n− 2 within O(n) steps.

Proof. If k < n − 2 then at most n − 2 vertices are occupied (including the source), and

therefore there are at least two empty vertices. The adversary will make available the

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 133

spanning tree where the source is connected to one empty vertex and all other occupied

vertices are connected to the other empty vertex. The two empty vertices are connected

with an edge. This is a spanning tree of G and in this tree, the distance from the source

to any occupied vertex is more than two. So no agent can meet the source in one step.

After one step, duringwhich some agentsmaymove, there will still be at least two empty

vertices; thus the same argument can be repeated for any step. Hence broadcast is im-

possible for k < n− 2.

If k ≥ n − 2, then by the Observation 1, it is possible to solve broadcast in any arbitrary

topology, and thus in a complete graph.

The impossibility result above can be generalized to arbitrary graphs G having the fol-

lowing property.

Lemma 5.13. Consider a graph G and an integer k ≥ 1. Suppose that for every possible

placement of the source agent and k agents on distinct vertices of G, there always exists a

spanning tree ofGwhere the distance from each agent to the source is≥ 3. Then, broadcast

is impossible in G with k ignorant agents.

5.5.2 Broadcast in Hypercubes

We now study the problem in hypercube networks as defined below.

Definition 5.2. A d-dimensional hypercube is a graph Hd = (V,E) with n = 2d vertices

labelled with distinct d-bit strings. A vertex vi ∈ V , 0 ≤ i ≤ 2d − 1, is connected to the d

vertices whose labels differ in exactly one bit from its own. Hereafter, we freely identify

vertices with their labels.

A hypercube Hd consists of two d− 1 dimensional hypercubes labelled as [0 ∗ ∗ · · · ∗] and

[1∗∗ · · · ∗], the corresponding vertices of these two hypercubes are connected by edges of

dimension d.

Theorem 5.4. Given a hypercube Hd of dimension d > 2, at least k = n/2 − 1 ignorant

agents are necessary to solve broadcast in the dynamic graph based on Hd.

Proof. Assume k < n/2 − 1. Suppose the source agent is at the vertex [00 . . . 0] of Hd; the

adversary places all the ignorant agents among the vertices of the sub-hypercube Hd−1

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 134

labelled [1∗∗ · · · ∗]. Out of the n/2 vertices inHd−1[1∗∗ · · · ∗], theremust be at least 2 empty

vertices. At most one of these two vertices can be a neighbor of the source vertex [00 . . . 0]

in the other sub-hypercube. So, the other empty vertex vmust be a neighbor of an empty

vertex u in Hd−1[0 ∗ ∗ · · · ∗]. The adversary chooses the available graph Gi as the union

of a spanning tree of Hd−1[0 ∗ ∗ · · · ∗] and a spanning tree of Hd−1[1 ∗ ∗ · · · ∗], plus the edge

(u, v). All other edges of dimension d are missing in Gi. After the agents move in this

round, the ignorant agents would still be in sub-hypercubeHd−1[1∗∗ · · · ∗] and the source

would be in the other sub-hypercube Hd−1[0 ∗ ∗ · · · ∗]. Thus, using the same argument,

in each round r the adversary can choose the graph Gr as a spanning tree where each

ignorant agent is at a distance of at least 3 from the source, so by Lemma 5.13, broadcast

is impossible.

The above result does not hold for the trivial case of d = 2, since H2 is simply a ring of

four vertices where broadcast can be solved even for k = 1 (see Theorem 5.1). For a

hypercube of dimension d = 3 (i.e. a cube) we can show a matching lower and upper

bound of k = n/2 ignorant agents.

Theorem 5.5. If G = H3 is a hypercube of dimension d = 3 i.e. a cube consisting of n = 23

vertices, then k = n/2 ignorant agents are necessary and sufficient to solve broadcast.

Proof. (Lower Bound) We show that if there are only k = 3 ignorant agents, then it is not

possible to solve broadcast starting from arbitrary configurations. In particular, we de-

fine a classQF of forbidden initial configurations, with one source and 3 ignorant agents

in a cube, such that starting from any such configuration, the adversary can force the

agents to move only to another configuration in QF . Further, in every configuration in

QF , there is a spanning tree (defined by the available links) where the distance from

source to the nearest agent is at least 3. (See Figure 5.3, showing all the forbidden config-

urations, up to isomorphism, and the corresponding spanning trees in each case.) The

configurations in the set QF are listed below by showing the positions of the 3 agents,

with respect to the source vertex which is always assumed1 to be [000]:

Q1 ([100], [010], [110])

Q2 ([100], [010], [011])

1After any moves, we rename the vertices.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 135

empty node

mobile agent

the source

Q1 Q2

Q3

Q4

Q5

Q6

Q7

Figure 5.3: Bad configurations for k = 3 agents (denoted by black discs) and
one source (denoted by red square) in a cube. In each case the adversary
makes available only the bold edges. The arrows denote all possible trans-

formations between configurations in one step of agent moves.

Q3 ([100], [110], [101])

Q4 ([101], [011], [111])

Q5 ([100], [110], [111])

Q6 ([100], [011], [111])

Q7 ([100], [101], [011])

Note that starting from any other initial configurations with 3 agents permits a solution

to broadcast. However, when the 3 ignorant agents start in any configuration isomorphic

to configurations in QF , then the configuration in the next round can only be another

configuration in QF . All of the available transitions are listed bellow.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 136

(a) (b)

u0 u1
1

u2
1

u3u2
3

u1
3

u2
2

u1
2

[000]

[101]

[011]

[110]

Figure 5.4: (a) The cube with a single source (denoted by a square) in the
proof of Theorem 5.5. (b) The cube with two sources at distance 2; the re-

maining agents must occupy the two black vertices.

• Q1 → {Q2, Q3, Q4, Q5, Q7}

• Q2 → {Q1, Q3, Q4, Q5, Q6, Q7}

• Q3 → {Q1, Q2, Q3, Q4, Q5, Q6, Q7}

• Q4 → {Q1, Q3, Q4, Q5, Q6, Q7}

• Q5 → {Q1, Q2, Q3, Q4, Q5, Q6, Q7}

• Q6 → {Q4, Q6, Q7}

• Q7 → {Q4, Q6, Q7}

We will demonstrate the transitions from Q3. We get Q1 if two agents and the source

move to the same face of the cube. We get Q2 if the source agent moves to the same face

as the two diagonally positioned agents. We get Q3 if the source agent and one agent

from the bottom face change face and move toward the right as depicted. We get Q4 if

the two agents on the bottom face move. We get Q5 if the source agent moves to the right

face. We get Q6 if the agent from the top face moves to the bottom face. And finally, we

get Q7 if the source moves above the agent on the front and the agent on the top face

moves to the bottom.

This implies that no ignorant agent canmeet the source after any number of rounds, and

thus it is not possible to solve the Broadcast problem.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 137

Proof. (Upper Bound) We show that k = 4 agents can solve broadcast by providing an

algorithm. We first show that one of the four agents can meet the source agent. We

denote the vertices of the cube as follows: u0 = [000] is the vertex containing the source,

u11, u
1
2, u

1
3 are the three vertices at distance one from source, u1i means a generic vertex at

distance 1 from the source, u21, u22, u23 are the three vertices at distance 2 from the source,

and u3 = [111] is the only vertex at distance 3 (see Figure 5.4(a)). We now consider all

possible initial configurations with agents placed on distinct vertices; Note that, each

such configuration has at least three empty vertices. We denote such a configuration as

[x, y, z, l] showing the positions of the 4 ignorant agents at vertices x, y, z, l (with ∗ denoting

any vertex other than the source).

C1 Configuration [u11, u
1
2, u

1
3, ∗]: At least one of the links (u0, u11), (u0, u12), or (u0, u13) must

be active, otherwise vertex u0 would be disconnected. Hence at least one agent can

meet the source within the next time unit.

C2 Configuration [u21, u
2
2, u

2
3, ∗]: At least one of the paths of distance two between the

source vertex u0 and one of the vertices u21, u22, or u23 must be available, otherwise

vertex u0 would be disconnected from vertices u21, u22 and u23. Hence, within the next

step the agent at a distance two from the source, and the source agent move to the

middle vertex of the path and meet.

C3 Configuration [u11, u
1
2, u

3, ∗]: If at least one of the links (u0, u11) or (u0, u12) are active,

then at least one agent can meet the source within the next time unit. Otherwise,

the link (u0, u13)must be active (to ensure connectedness), so in that case, the source

agent moves to vertex u13. The configuration we obtain is isomorphic to the config-

uration [C2] above, so we are done.

C4 Configuration [u11, u
1
2, u

2
1, u

2
2]: Assume that there are no paths of length 1 or 2 from

source to any agent (otherwise we are done as explained above). In that case, any

possible spanning tree must have the edges (u0, u13) and (u13, u
2
3) and further at least

one of the edges (u12, u23) or (u21, u
3) or (u22, u

3). In the first case, one agent moves to

u23 and we obtain the configuration [C2]. In the other two cases, one agent moves to

vertex u3, and thus we obtain the configuration [C3]. So, we are done in all cases.

C5 Configuration [u1i , u
2
1, u

2
2, u

3]: In G0, if there are no length-2 paths from source to any

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 138

agent, then any path from u0 must go through u23; If vertex u23 has an available edge

to some agent, this agent will move to u23 and we would obtain the configuration

[C2]. Otherwise u23 has an available edge to some empty vertex u1j ̸= u1i which is

connected to some vertex occupied by an agent. Thus, this agent moves to u1j , and

we obtain the configuration [C3].

We have shown one agent can reach the source within a constant number of steps and

obtain the message. Now, there are two source agents and three ignorant agents. The

two source agents can place themselves at distance two in G (this is always possible in

at most 2 steps). Assume without loss of generality, that the two sources are at vertices

[000] and [011] as in Figure 5.4(b). There are exactly two vertices ([110] and [101]) that are

at distance 2 from both the sources. If the ignorant agents occupy these two vertices,

then in any spanning tree chosen by the adversary, at least one of the ignorant agents

would be at distance two from a source agent. And in fact, it is easy to see that either

the three ignorant agents occupy all three adjacent vertices of one of the two sources

(which means that in the next step at least one more agent will meet a source), or three

ignorant agents occupy two adjacent vertices of each source. In the last case (due to

connectedness) at least two of the ignorant agents will occupy the two vertices ([110] and

[101]) in the next step. Finally, if only one of the ignorant agents occupies one of the

vertices ([110] and [101]), then in the next step this agent can move from that vertex and

therefore we obtain the previous configuration (i.e., where three ignorant agents occupy

two adjacent vertices of each source). Thus eventually at least two of the ignorant agents

will occupy the two vertices ([110] and [101]) and in the next round, at least one more

ignorant agent will meet a source and therefore we will have 3 source agents.

Note that the case of 3 sources and 2 ignorant agents is analogous to the case of 2 sources

and 3 ignorant agents, while the case of one ignorant agent and four sources, is analogous

to the initial situation with one source and four ignorant agents. So, using the same

strategies as above eventually all agents will obtain the message and broadcasting is

solved.

For hypercubes of higher dimensions d ≥ 4, we do not have any general strategy for solv-

ing the problem as the adversary has too many possible ways of choosing the available

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 5. Broadcasting 139

subgraph. However, the lower bound of k = n/2− 1 agents from Theorem 5.4 still holds

and we have the upper bound of k = n− 2 (from Observation 1).

5.6 Discussion

In this chapter, we studied the problem of broadcast for mobile agents moving in con-

stantly connected dynamic networks. The main objective is to understand how many

agents are necessary and sufficient to allow broadcast to be solved in various topologies.

It turns out that for sparse topologies such as rings and cactus graphs, the number of

agents needed for solving the broadcast problem can be independent of the network size

n, while for denser graphs including grids, hypercubes, as well as the complete graph,

Θ(n) agents are needed. This preliminary investigation on broadcast in dynamic graphs

opensmany new research directions. For both grids and hypercubes, we have large gaps

between the lower bounds of (n− 2
√
n) and (n/2− 1) respectively, and the upper bound

of (n− 2). It seems that solving the problem in grids requires more agents than in hyper-

cubes, since grid networks contain more redundant edges. However, the lower bound

on hypercubes shows that the number of agents needed can sometimes be much more

than the number of redundant edges in the network. This is in contrast to the cops and

robbers problem where the number of cops needed is roughly equal to the number of

redundant edges in the underlying graph [5]. In the future, we would like to study the

differences between various problems in thismodel and try to adapt techniques used for

broadcast, to solve other problems in dynamic networks. Moreover it would be nice to

classify various problems according to the resources needed for solving them under the

adversarial model studied in this paper. Another possible direction of research would

be to replace the strong assumption of global visibility with some weaker assumptions

about the agent’s capabilities that still suffices to solve broadcast in this model.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

140

6 Discussion

To sumup the results presented herewe give a summary of each chapter respectively. In

Chapter 3 we studied the problem of gathering under two visibility models, specifically,

the global and local visibility models. In the global visibility model we have shown that

two agents cannot achieve rendezvous in the presence of a malicious agent. Moreover,

we present an algorithm for three ormore agents that can achieve gathering. In the local

visibility the impossibility result still holds, and we provide two algorithms that use fun-

damentally different techniques. The algorithms are for four and three or more agents

respectively. All results except the algorithm for three or more agents in the local visibil-

ity model have been published in [34]. In Chapter 4 we have shown that nine agents are

not enough to decontaminate an oriented and labeled ring, while on the case of a syn-

chronous ring without sense of direction eleven agents are not enough to achieve the

decontamination of the ring. We present and give proof of correctness of an algorithm

with twelve agents that are able to decontaminate the synchronous unoriented ring in

O(n2 + L) time units. In the oriented case we can achieve decontamination of the ring

with ten agents in O(n) time units. All results from this chapter have been published in

[56]. Finally, in Chapter 5 we provide lower and upper bounds on the number of igno-

rant agents needed in order for a source agent to be able to broadcast some message for

different network topologies from those that are sparser to those that are denser. Es-

sentially, in sparse network topologies such as rinds and cactus graphs, the number of

agents needed for solving the broadcast problem is independent of the network size n,

while for denser graphs including grids, hypercubes, as well as the complete graph, Θ(n)

agents are needed. Specifically, for the ring network, if the size is at least 5 then broad-

cast can be solved with at least 2 ignorant agents in O(n) steps. If the size is less than 5

then broadcast can be solved with at least 1 ignorant agent in at most 2 steps. In the case

of the cactus network if there are no cycles of size at least 5 (large cycles), and there are

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 6. Discussion 141

only cycles of size less than 5 (small cycles), then broadcast is solvable, inO(n) steps, with

a number of ignorant agents at least the number of small cycles in the network. If there

are also large cycles then in O(n) steps broadcast is solvable with a number of ignorant

agents which is at least the sum of the number of small and large cycles plus one. In the

case of a 2 × L grid network, we need at least L ignorant agents, in the case of a clique

at least n − 2 agents are needed to solve broadcast in O(n) steps, and in the case of the

hyper cube network we need at least n/2 agents if the dimension is 3. In general for any

dimension larger than 2 we have a lower bound on the number of agents of n/2− 1.

Problem Context Agents Complexity

Gathering
global vis. k < 3 impossibility
local vis. k ≥ 3 O(n)

Black virus
decontamination

oriented ring k ≥ 10 O(n)

unoriented ring any k anonymous impossibility
unoriented ring k ≥ 12 O(n2 + L)

with advice O(logL) k ≥ 6 O(n)

Broadcasting ring n ≥ 5 k ≥ 2 O(n)

ring n < 5 k ≥ 1 2
cactus c2 = 0 k ≥ c1 O(n)

cactus c2 > 0 k ≥ c1 + c2 + 1 O(n)

grid 2× L k ≥ L O(n)

gridW × L k < (L− 1)(W − 1) impossibility
clique k ≥ n− 2 O(n)

hypercube Hd k < n/2− 1 impossibility
hypercube H3 k ≥ 4 O(1)

Table 6.1: Final results.

In conclusion wewanted to study problems in a distributed environment keeping all the

advantages of a distributed context. For example, a road network where each driver has

the role of a mobile agent is by nature distributed. Moreover, each driver, depending on

the context, competes or cooperates with the other drivers in order to reach her destina-

tion faster. In such an environment having a central authority that decides who moves

to where can be rather costly, the communications will be flooded and cramped, and

we might not want that central authority due to the single point of failure, or because

distributed decisions look to be more just.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

Chapter 6. Discussion 142

The second point in our research was that if we fix the distributed environment with all

the advantages and disadvantages that come with it, how much fault tolerant can such

an environment be. How far can we go in terms of hostile entities and still be able to

solve problems in such aggressive and hostile environments. In the problems of gath-

ering and black virus decontamination, we followed the strategy of keeping the hostile

entity the same and changing the model a little in order to find howmany resources are

needed that can be used to solve the problem. We found that each particular problem

can actually be solved with very little resources at hand. In the broadcast problem we

followed a different approach, we kept the model the same in all cases and changed only

the network topology. In the ring topology we found that the resources needed to solve

the problem is constant and do not depend on the size of the network. In the cactus

the resources depend on the number of structural elements, on the general grid it looks

like the resources needed are very close to the size of the grid, as well as in the case of

a complete graph. In the general case of a hypercube network the resources are very

dependent on the size and thus on the dimension, but we wanted to see if and how we

could solve the problem and we studied the case of the cube specifically. Finally, we can

actually solve most of those problems having only very little resources even if there is

a hostile behaviour. The next steps on our research would be to consider more general

and arbitrary topologies or make the environment even more hostile, in order to study

where is the point from which we cannot solve those problems.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

143

Bibliography

[1] BD Acharya and MK Gill. On the index of gracefulness of a graph and the graceful-

ness of two-dimensional square lattice graphs. Indian J. Math, 23(81-94):14, 1981.

[2] N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile

robots. SIAM J. on Computing, 36(1):56–82, 2006.

[3] Modhawi Alotaibi. Black virus disinfection in chordal rings. Master’s thesis, Uni-

versité d’Ottawa/University of Ottawa, 2014.

[4] Balasingham Balamohan, Paola Flocchini, Ali Miri, and Nicola Santoro. Time op-

timal algorithms for black hole search in rings. Discrete Mathematics, Algorithms

and Applications, 3(04):457–471, 2011.

[5] Stefan Balev, Juan Luis Jiménez Laredo, Ioannis Lamprou, Yoann Pigné, and Eric

Sanlaville. Cops and robbers on dynamic graphs: Offline and online case. In Proc.

Structural Information and Communication Complexity - 27th International Collo-

quium, SIROCCO 2020, volume 12156 of Lecture Notes in Computer Science, pages

203–219. Springer, 2020.

[6] E. Bampas, N. Leonardos, E. Markou, A. Pagourtzis, and M. Petrolia. Improved peri-

odic data retrieval in asynchronous rings with a faulty host. Theoretical Computer

Science, 608:231–254, 2015.

[7] Eduardo Mesa Barrameda, Shantanu Das, and Nicola Santoro. Deployment of asyn-

chronous robotic sensors in unknown orthogonal environments. In International

Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks

and Distributed Robotics, pages 125–140. Springer, 2008.

[8] L. Barriere, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by

mobile agents. In Proc. of 14th ACM Symp. on Parallel Algorithms and Architectures,

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 144

pages 200–209, 2002.

[9] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and elec-

tion of mobile agents: Impact of sense of direction. Theory of Computing Systems,

44(3):143–162, 2007.

[10] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Capture of an

intruder by mobile agents. In Proceedings of the fourteenth annual ACM symposium

on Parallel algorithms and architectures, pages 200–209. ACM, 2002.

[11] Lali Barriere, Paola Flocchini, Eduardo Mesa-Barrameda, and Nicola Santoro. Uni-

form scattering of autonomous mobile robots in a grid. International Journal of

Foundations of Computer Science, 22(03):679–697, 2011.

[12] Lélia Blin, Pierre Fraigniaud, Nicolas Nisse, and Sandrine Vial. Distributed chasing

of network intruders. Theoretical Computer Science, 399(1-2):12–37, 2008.

[13] Z. Bouzid, S. Das, and S. Tixeuil. Gathering ofmobile robots toleratingmultiple crash

faults. In ICDCS 2013, pages 337–346, 2013.

[14] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mobile-agent coordina-

tion models for internet applications. Computer, 33(2):82–89, 2000.

[15] J Cai, P Flocchini, and Nicola Santoro. Decontamination of an arbitrary network

from multiple black viruses. In 32nd International Conference on Computers and

Their Applications, (CATA), pages 231–237, 2017.

[16] Jie Cai, Paola Flocchini, and Nicola Santoro. Decontaminating a network from a

black virus. International Journal of Networking and Computing, 4(1):151–173, 2014.

[17] Jie Cai, Paola Flocchini, and Nicola Santoro. Black virus decontamination in ar-

bitrary networks. In New Contributions in Information Systems and Technologies,

pages 991–1000. Springer, 2015.

[18] Jie Cai, Paola Flocchini, and Nicola Santoro. Distributed black virus decontamina-

tion and rooted acyclic orientations. In Computer and Information Technology; Ubiq-

uitous Computing and Communications; Dependable, Autonomic and Secure Comput-

ing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE Inter-

national Conference on, pages 1681–1688. IEEE, 2015.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 145

[19] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs

and dynamic networks. International Journal of Parallel, Emergent and Distributed

Systems, 27(5):387–408, 2012.

[20] J. Chalopin, Y. Dieudonne, A. Labourel, and A. Pelc. Rendezvous in networks in spite

of delay faults. Distributed Computing, 29:187–205, 2016.

[21] J. Chalopin, E. Godard, Y. Métivier, and R. Ossamy. Mobile agent algorithms versus

message passing algorithms. In Proc. of Principles of Distributed Systems, LNCS 4305,

pages 187–201, 2006.

[22] M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio

networks. J. Algorithms, 43(2):177–189, 2002.

[23] H. Chuangpishit, J. Czyzowicz, E. Kranakis, and D. Krizanc. Rendezvous on a line by

location-aware robots despite the presence of byzantine faults. In ALGOSENSORS

2017, pages 70–83, 2017.

[24] Colin Cooper, Ralf Klasing, and Tomasz Radzik. Locating and repairing faults in a

network with mobile agents. Theoretical Computer Science, 411(14-15):1638–1647,

2010.

[25] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In

International Symposium on Distributed Computing, pages 148–162. Springer, 2010.

[26] J. Czyzowicz, K. Diks, J. Moussi, and W. Rytter. Energy-optimal broadcast and ex-

ploration in a tree using mobile agents. Theoretical Computer Science, 795:362–374,

2019.

[27] J. Czyzowicz, R. Killick, E. Kranakis, D. Krizanc, and O. Morale-Ponce. Gathering in

the plane of location-aware robots in the presence of spies. In SIROCCO 2018, 2018.

[28] Jurek Czyzowicz, Dariusz Kowalski, Euripides Markou, and Andrzej Pelc. Search-

ing for a black hole in synchronous tree networks. Combinatorics, Probability and

Computing, 16(4):595–619, 2007.

[29] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of un-

known graphs by multiple agents. Theoretical Computer Science, 385(1-3):34–48,

2007.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 146

[30] S. Das, P. Flocchini, A. Nayak, and N. Santoro. Effective elections for anonymous

mobile agents. In Proc. of 17th Int. Symp. on Algorithms and Computation, pages

732–743, 2006.

[31] S. Das, P. Flocchini, N. Santoro, and M. Yamashita. Fault-tolerant simulation of

message-passing algorithms by mobile agents. In Proc. of 14th Int. Colloquium on

Structural Information and Communication Complexity, LNCS 4474, pages 289–303,

2007.

[32] S. Das, R. Focardi, F.L. Luccio, E. Markou, D. Moro, and M. Squarcina. Gathering of

robots in a ring with mobile faults. In 17th Italian Conference on Theoretical Com-

puter Science (ICTCS 2016), Lecce, Italy, pages 122–135. CEUR, Vol 1720, September

7-9, 2016.

[33] S Das, R. Focardi, F.L. Luccio, E. Markou, and M. Squarcina. Gathering of robots

in a ring with mobile faults. Theoretical Computer Science, 2018. In press https:

//doi.org/10.1016/j.tcs.2018.05.002.

[34] S. Das, N. Giachoudis, F. L. Luccio, and E. Markou. Gathering of robots in a grid with

mobile faults. In 45th International Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM 2019), volume 11376 of LNCS, pages 164–178.

Springer, 2019.

[35] S. Das, F.L. Luccio, and E. Markou. Mobile agents rendezvous in spite of a malicious

agent. In ALGOSENSORS 2015, LNCS 9536, pages 211–224, 2015.

[36] Shantanu Das, Dariusz Dereniowski, and Christina Karousatou. Collaborative ex-

ploration of trees by energy-constrained mobile robots. Theory of Computing Sys-

tems, 62(5):1223–1240, 2018.

[37] Shantanu Das, Nikos Giachoudis, Flaminia L. Luccio, and Euripides Markou. Broad-

casting with Mobile Agents in Dynamic Networks. In Quentin Bramas, Rotem Osh-

man, and Paolo Romano, editors, 24th International Conference on Principles of Dis-

tributed Systems (OPODIS 2020), volume 184 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 24:1–24:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl–

Leibniz-Zentrum für Informatik.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

https://doi.org/10.1016/j.tcs.2018.05.002
https://doi.org/10.1016/j.tcs.2018.05.002

BIBLIOGRAPHY 147

[38] Dariusz Dereniowski. Connected searching of weighted trees. Theoretical Computer

Science, 412(41):5700–5713, 2011.

[39] Y. Dieudonne, A. Pelc, and D. Peleg. Gathering despite mischief. ACM Transactions

on Algorithms, 11(1):1, 2014.

[40] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous in

a ring in spite of a black hole. In OPODIS 2003, pages 34–46, 2003.

[41] S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole

in an anonymous ring. Algorithmica, 48(1):67–90, 2007.

[42] Stefan Dobrev, Paola Flocchini, Rastislav Královič, andNicola Santoro. Exploring an

unknown dangerous graph using tokens. Theoretical Computer Science, 472:28–45,

2013.

[43] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Searching

for a black hole in arbitrary networks: Optimalmobile agents protocols. Distributed

Computing, 19(1):1–99999, 2006.

[44] A. Ferreira. Building a reference combinatorial model for manets. IEEE Network,

18(5):24–29, 2004.

[45] P. Flocchini, B. Mans, and N. Santoro. Sense of direction: Definitions, properties,

and classes. Networks, 32(3):165–180, 1998.

[46] P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing.

Theoretical Computer Science, 291:29–53, 2003.

[47] P. Flocchini and N. Santoro. Distributed security algorithms for mobile agents. In

J. Cao and S.K. Das, editors,Mobile Agents in Networking and Distributed Computing,

chapter 3, pages 41–70. John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.

[48] Paola Flocchini, Miao JunHuang, and Flaminia L Luccio. Decontamination of hyper-

cubes by mobile agents. Networks: An International Journal, 52(3):167–178, 2008.

[49] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed computing by

mobile entities. Current Research in Moving and Computing, 11340, 2019.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 148

[50] Paola Flocchini, Alessandro Roncato, and Nicola Santoro. Backward consistency

and sense of direction in advanced distributed systems. SIAM Journal on Computing,

32(2):281–306, 2003.

[51] Fedor V Fomin, Dimitrios M Thilikos, and Ioan Todinca. Connected graph searching

in outerplanar graphs. Electronic Notes in Discrete Mathematics, 22(213-216):7th,

2005.

[52] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.

Networks, 48:166–177, 2006.

[53] L. Gasieniec. Deterministic Broadcasting in RadioNetworks, pages 233–235. Springer

US, Boston, MA, 2008.

[54] L. Gasieniec and A. Pelc. Adaptive broadcasting with faulty nodes. Parallel Comput-

ing, 22(6):903–912, 1996.

[55] L. Gasieniec and A. Pelc. Broadcasting with linearly bounded transmission faults.

Discrete Applied Mathematics, 83(1-3):121–133, 1998.

[56] Nikos Giachoudis, Maria Kokkou, and Euripides Markou. Black virus decontami-

nation of synchronous ring networks by initially scattered mobile agents. In In-

ternational Colloquium on Structural Information and Communication Complexity

SIROCCO 2020, pages 220–236. Springer, 2020.

[57] F. Harary and G. Gupta. Dynamic graph models. Mathematical and Computer Mod-

elling, 25(7):79–88, 1997.

[58] FrankHarary, JohnP.Hayes, andHorng-JyhWu. A survey of the theory of hypercube

graphs. Computers & Mathematics with Applications, 15(4):277–289, 1988.

[59] Tien-Ruey Hsiang, Esther M Arkin, Michael A Bender, Sándor P Fekete, and

Joseph SBMitchell. Algorithms for rapidly dispersing robot swarms in unknown en-

vironments. In Algorithmic Foundations of Robotics V, pages 77–93. Springer, 2004.

[60] D. Ilcinkas and A.M.Wade. Exploration of the t-interval-connected dynamic graphs:

the case of the ring. Theory of Computing Systems, 62(5):1144–1160, 2018.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 149

[61] R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation re-

sults for black hole search in arbitrary graphs. TCS, 384(2-3):201–221, 2007.

[62] Maria Kokkou. Distributed computing - fault tolerant distributed algorithms. Bach-

elor’s Thesis, University of Thessaly, 2019.

[63] E. Kranakis, D. Krizanc, and E. Markou. The Mobile Agent Rendezvous Problem in

the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool

Publishers, 2010.

[64] F. Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks.

In Proceedings of the 42nd Symposium on Theory of Computing (STOC), pages 513–

522, 2010.

[65] J. Lin, A. S. Morse, and B. D. O. Anderson. The Multi-Agent Rendezvous Problem. An

Extended Summary. Cooperative Control, 309:451–454, 2004.

[66] Yichao Lin. Decontamination from black viruses using parallel strategies. Master’s

thesis, Université d’Ottawa/University of Ottawa, 2018.

[67] Flaminia L. Luccio. Contiguous searchproblem in sierpinski graphs. Theory Comput.

Syst., 44(2):186–204, 2009.

[68] N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

[69] Euripides Markou, Evangelos Kranakis, Aris Pagourtzis, and Danny

Krizanc. Αλγοριθμική θεωρία κατανεμημένων υπολογισμών. [ηλεκτρ. βιβλ.].

Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών, 2015.

[70] Euripides Markou and Wei Shi. Dangerous graphs. In Distributed Computing by

Mobile Entities, pages 455–515. Springer, 2019.

[71] Nicolas Nisse. Connected graph searching in chordal graphs. Discrete AppliedMath-

ematics, 157(12):2603–2610, 2009.

[72] Nicola Santoro. Design and Analysis of Distributed Algorithms. Wiley-Blackwell,

2006.

[73] CL. E. Shannon. Presentation of a maze-solving machine. In Proc. of 8th Conf. of the

Josiah Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

BIBLIOGRAPHY 150

[74] Richard J Trudeau. Introduction to graph theory. Courier Corporation, 2013.

[75] Eric WWeisstein. Grid graph. https://mathworld. wolfram. com/, 2001.

[76] Eric WWeisstein. Minimum vertex cut. https://mathworld. wolfram. com/, 2001.

[77] Eric WWeisstein. Vertex cut. https://mathworld. wolfram. com/, 2001.

[78] Douglas BrentWest et al. Introduction to graph theory, volume 2. Prentice hall Upper

Saddle River, 2001.

[79] Yukiko Yamauchi, Tomoko Izumi, and Sayaka Kamei. Mobile agent rendezvous on

a probabilistic edge evolving ring. In ICNC, pages 103–112, 2012.

Institutional Repository - Library & Information Centre - University of Thessaly
21/05/2022 08:58:14 EEST - 137.108.70.13

	Abstract
	Περίληψη
	Acknowledgements
	Introduction
	Related work

	Preliminaries
	Network
	Network topologies
	Sense of direction
	Time-varying graphs

	Mobile agents
	Communication
	Mobile agent capabilities
	Time

	Adversary
	Problems
	Gathering
	Black virus decontamination
	Broadcasting

	Gathering of Mobile Agents
	Mobile agents with global visibility
	Impossibility result for two honest agents
	Gathering any number of at least 3 agents

	Local visibility
	Gathering any number of at least 4 agents
	Gathering three or more agents

	Discussion

	Black Virus Decontamination
	Decontaminating an oriented ring
	Impossibility results
	An algorithm with ten agents

	Decontaminating an unoriented ring
	Impossibility results
	An algorithm with twelve agents
	An algorithm for six agents provided with an advice

	Discussion

	Broadcasting
	Broadcast model
	Agents
	Adversarial model

	Preliminaries
	Broadcast in sparse graphs
	Broadcast in Grids
	Broadcast in Dense graphs
	Broadcast in Complete graphs
	Broadcast in Hypercubes

	Discussion

	Discussion

