5,612 research outputs found

    Scalable and Fault Tolerant Group Key Management

    Get PDF
    To address the group key management problem for modern networks this research proposes a lightweight group key management protocol with a gossip-based dissemination routine. Experiments show that by slightly increasing workload for the key update mechanism, this protocol is superior to currently available tree-based protocols with respect to reliability and fault tolerance, while remaining scalable to large groups. Java simulations show that the protocol efficiently distributes keys to large groups in the midst of up to 35 percent node failure rates. In addition, it eliminates the need for logical key hierarchy while preserving an overall reduction in rekey messages to rekey a group. The protocol provides a simple “pull” mechanism to ensure perfect rekeys in spite of the primary rekey mechanism’s probabilistic guarantees, without burdening key distribution facilities. Parameters for overlay management and gossip are improved to minimize rekey message traffic while remaining tolerant to node failure

    Efficient Information Dissemination in Vehicular Networks with Privacy Protection

    Get PDF
    Vehicular ad hoc network (VANET) is a key component of intelligent transportation System (ITS). In VANETs, vehicles and roadside units exchange information for the purpose of navigation, safe driving, entertainment and so on. The high mobility of vehicles makes efficient and private communications in VANETs a big challenge. Improving the performance of information dissemination while protecting data privacy is studied in this research. Meet-Table based information dissemination method is first proposed, so as to improve the information dissemination, and to efficiently distribute information via utilizing roadside units, Cloud Computing, and Fog Computing. A clustering algorithm is proposed as well, to improve the stability for self-organized cluster-based dissemination in VANETs on highways. Then, fuzzy neural networks are used to improve the stability and security of routing protocols, AODV, and design a novel protocol, GSS-AODV. To further protect data privacy, a multi-antenna based information protection approach for vehicle-to-vehicle(V2V) communications is also proposed

    Intrusion Tolerant Routing Protocols for Wireless Sensor Networks

    Get PDF
    This MSc thesis is focused in the study, solution proposal and experimental evaluation of security solutions for Wireless Sensor Networks (WSNs). The objectives are centered on intrusion tolerant routing services, adapted for the characteristics and requirements of WSN nodes and operation behavior. The main contribution addresses the establishment of pro-active intrusion tolerance properties at the network level, as security mechanisms for the proposal of a reliable and secure routing protocol. Those properties and mechanisms will augment a secure communication base layer supported by light-weigh cryptography methods, to improve the global network resilience capabilities against possible intrusion-attacks on the WSN nodes. Adapting to WSN characteristics, the design of the intended security services also pushes complexity away from resource-poor sensor nodes towards resource-rich and trustable base stations. The devised solution will construct, securely and efficiently, a secure tree-structured routing service for data-dissemination in large scale deployed WSNs. The purpose is to tolerate the damage caused by adversaries modeled according with the Dolev-Yao threat model and ISO X.800 attack typology and framework, or intruders that can compromise maliciously the deployed sensor nodes, injecting, modifying, or blocking packets, jeopardizing the correct behavior of internal network routing processing and topology management. The proposed enhanced mechanisms, as well as the design and implementation of a new intrusiontolerant routing protocol for a large scale WSN are evaluated by simulation. For this purpose, the evaluation is based on a rich simulation environment, modeling networks from hundreds to tens of thousands of wireless sensors, analyzing different dimensions: connectivity conditions, degree-distribution patterns, latency and average short-paths, clustering, reliability metrics and energy cost

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Experimental evaluation of CAM and DENM messaging services in vehicular communications

    Get PDF
    The Cooperative Awareness Basic Service and Decentralized Environmental Notification Basic Service have been standardized by the European Telecommunications Standards Institute (ETSI) to support vehicular safety and traffic efficiency applications needing continuous status information about surrounding vehicles and asynchronous notification of events, respectively. These standard specifications detail not only the packet formats for both the Cooperative Awareness Message (CAM) and Decentralized Environmental Notification Message (DENM), but also the general message dissemination rules. These basic services, also known as facilities, have been developed as part of a set of standards in which both ISO and ETSI describe the Reference Communication Architecture for future Intelligent Transportation Systems (ITS). By using a communications stack that instantiates this reference architecture, this paper puts in practice the usage of both facilities in a real vehicular scenario. This research work details implementation decisions and evaluates the performance of CAM and DENM facilities through a experimental testbed deployed in a semi-urban environment that uses IEEE 802.11p (ETSI G5-compliant), which is a WiFi-like communication technology conceived for vehicular communications. On the one hand, this validation considers the development of two ITS applications using CAM and DENM functionalities for tracking vehicles and disseminating traffic incidences. In this case, CAM and DENM have demonstrated to be able to offer all the necessary functionality for the study case. On the other hand, both facilities have been also validated in a extensive testing campaign in order to analyze the influence in CAM and DENM performance of aspects such as vehicle speed, signal quality or message dissemination rules. In these tests, the line of sight, equipment installation point and hardware capabilities, have been found as key variables in the network performance, while the vehicle speed has implied a slight impact.This work has been sponsored by the European Seventh Framework Program, through the ITSSv6 (contract 270519), FOTsis (contract 270447) and GEN6 (contract 297239) projects, and the Ministry of Science and Innovation, through the Walkie-Talkie project (TIN2011-27543-C03)

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Cache Invalidation Strategies for Internet-based Vehicular Ad Hoc Networks

    Get PDF
    Internet-based vehicular ad hoc network (Ivanet) is an emerging technique that combines a wired Internet and a vehicular ad hoc network (Vanet) for developing an ubiquitous communication infrastructure and improving universal information and service accessibility. A key design optimization technique in Ivanets is to cache the frequently accessed data items in a local storage of vehicles. Since vehicles are not critically limited by the storage/memory space and power consumption, selecting proper data items for caching is not very critical. Rather, an important design issue is how to keep the cached copies valid when the original data items are updated. This is essential to provide fast access to valid data for fast moving vehicles. In this paper, we propose a cooperative cache invalidation (CCI) scheme and its enhancement (ECCI) that take advantage of the underlying location management scheme to reduce the number of broadcast operations and the corresponding query delay. We develop an analytical model for CCI and ECCI techniques for fasthand estimate of performance trends and critical design parameters. Then, we modify two prior cache invalidation techniques to work in Ivanets: a poll-each-read (PER) scheme, and an extended asynchronous (EAS) scheme. We compare the performance of four cache invalidation schemes as a function of query interval, cache update interval, and data size through extensive simulation. Our simulation results indicate that the proposed schemes can reduce the query delay up to 69% and increase the cache hit rate up to 57%, and have the lowest communication overhead compared to the prior PER and EAS schemes

    Time- and Computation-Efficient Data Localization at Vehicular Networks\u27 Edge

    Get PDF
    As Vehicular Networks rely increasingly on sensed data to enhance functionality and safety, efficient and distributed data analysis is needed to effectively leverage new technologies in real-world applications. Considering the tens of GBs per hour sensed by modern connected vehicles, traditional analysis, based on global data accumulation, can rapidly exhaust the capacity of the underlying network, becoming increasingly costly, slow, or even infeasible. Employing the edge processing paradigm, which aims at alleviating this drawback by leveraging vehicles\u27 computational power, we are the first to study how to localize, efficiently and distributively, relevant data in a vehicular fleet for analysis applications. This is achieved by appropriate methods to spread requests across the fleet, while efficiently balancing the time needed to identify relevant vehicles, and the computational overhead induced on the Vehicular Network. We evaluate our techniques using two large sets of real-world data in a realistic environment where vehicles join or leave the fleet during the distributed data localization process. As we show, our algorithms are both efficient and configurable, outperforming the baseline algorithms by up to a 40 7 speedup while reducing computational overhead by up to 3 7 , while providing good estimates for the fraction of vehicles with relevant data and fairly spreading the workload over the fleet. All code as well as detailed instructions are available at https://github.com/dcs-chalmers/dataloc_vn

    Cache Invalidation Strategies for Internet-based Vehicular Ad Hoc Networks

    Get PDF
    Internet-based vehicular ad hoc network (Ivanet) is an emerging technique that combines a wired Internet and a vehicular ad hoc network (Vanet) for developing an ubiquitous communication infrastructure and improving universal information and service accessibility. A key design optimization technique in Ivanets is to cache the frequently accessed data items in a local storage of vehicles. Since vehicles are not critically limited by the storage/memory space and power consumption, selecting proper data items for caching is not very critical. Rather, an important design issue is how to keep the cached copies valid when the original data items are updated. This is essential to provide fast access to valid data for fast moving vehicles. In this paper, we propose a cooperative cache invalidation (CCI) scheme and its enhancement (ECCI) that take advantage of the underlying location management scheme to reduce the number of broadcast operations and the corresponding query delay. We develop an analytical model for CCI and ECCI techniques for fasthand estimate of performance trends and critical design parameters. Then, we modify two prior cache invalidation techniques to work in Ivanets: a poll-each-read (PER) scheme, and an extended asynchronous (EAS) scheme. We compare the performance of four cache invalidation schemes as a function of query interval, cache update interval, and data size through extensive simulation. Our simulation results indicate that the proposed schemes can reduce the query delay up to 69% and increase the cache hit rate up to 57%, and have the lowest communication overhead compared to the prior PER and EAS schemes
    • …
    corecore