2,352 research outputs found

    Testing Consensus Implementations Using Communication Closure

    Get PDF

    An Exploratory Study of Field Failures

    Get PDF
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    An Exploratory Study of Field Failures

    Full text link
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    Distributed Learning with Infinitely Many Hypotheses

    Full text link
    We consider a distributed learning setup where a network of agents sequentially access realizations of a set of random variables with unknown distributions. The network objective is to find a parametrized distribution that best describes their joint observations in the sense of the Kullback-Leibler divergence. Apart from recent efforts in the literature, we analyze the case of countably many hypotheses and the case of a continuum of hypotheses. We provide non-asymptotic bounds for the concentration rate of the agents' beliefs around the correct hypothesis in terms of the number of agents, the network parameters, and the learning abilities of the agents. Additionally, we provide a novel motivation for a general set of distributed Non-Bayesian update rules as instances of the distributed stochastic mirror descent algorithm.Comment: Submitted to CDC201

    A software architecture for consensus based replication

    Get PDF
    Orientador: Luiz Eduardo BuzatoTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Esta tese explora uma das ferramentas fundamentais para construção de sistemas distribuídos: a replicação de componentes de software. Especificamente, procuramos resolver o problema de como simplificar a construção de aplicações replicadas que combinem alto grau de disponibilidade e desempenho. Como ferramenta principal para alcançar o objetivo deste trabalho de pesquisa desenvolvemos Treplica, uma biblioteca de replicação voltada para construção de aplicações distribuídas, porém com semântica de aplicações centralizadas. Treplica apresenta ao programador uma interface simples baseada em uma especificação orientada a objetos de replicação ativa. A conclusão que defendemos nesta tese é que é possível desenvolver um suporte modular e de uso simples para replicação que exibe alto desempenho, baixa latência e que permite recuperação eficiente em caso de falhas. Acreditamos que a arquitetura de software proposta tem aplicabilidade em qualquer sistema distribuído, mas é de especial interesse para sistemas que não são distribuídos pela ausência de uma forma simples, eficiente e confiável de replicá-losAbstract: This thesis explores one of the fundamental tools for the construction of distributed systems: the replication of software components. Specifically, we attempted to solve the problem of simplifying the construction of high-performance and high-availability replicated applications. We have developed Treplica, a replication library, as the main tool to reach this research objective. Treplica allows the construction of distributed applications that behave as centralized applications, presenting the programmer a simple interface based on an object-oriented specification for active replication. The conclusion we reach in this thesis is that it is possible to create a modular and simple to use support for replication, providing high performance, low latency and fast recovery in the presence of failures. We believe our proposed software architecture is applicable to any distributed system, but it is particularly interesting to systems that remain centralized due to the lack of a simple, efficient and reliable replication mechanismDoutoradoSistemas de ComputaçãoDoutor em Ciência da Computaçã
    corecore