15 research outputs found

    Spectral efficiency improvement of low peak-to-average power ratio complete complementary code division multiple access systems

    Get PDF
    An investigation into the peak-to-average power ratio (PAPR) performance of cyclic rotation complete complementary code division multiple access (CR-CC-CDMA) has been conducted. Additionally, a novel orthogonal signalling technique, referred to as complementary rotation keying (CRK), has been developed for improving the spectral efficiency (SE) of CC-CDMA whilst maintaining a low PAPR. The CRK system is based on the concept of CR of CC codes in order to allow interoperability with CR-CC-CDMA systems. To this end, both systems employ a similar transmitter and receiver structure. The CR-CC-CDMA technique suffers from increased PAPR as SE per user is increased. The CRK system offers an improvement in SE, while maintaining the PAPR of a CC-CDMA system. The bit error rates of both systems were unaffected in a joint system, indicating complete interoperability. This allows dynamic adjustment of the PAPR and SE of any user in the system, with users being able to switch between both systems without causing multi user interference.Dissertation (MEng)--University of Pretoria, 2018.Electrical, Electronic and Computer EngineeringMEn

    More Efficient On-the-Fly Verification Methods of Colored Petri Nets

    Get PDF
    Colored Petri Nets (CP-nets or CPNs) are powerful modeling language for concurrent systems. As for CPNs' model checking, the mainstream method is unfolding that transforms a CPN into an equivalent P/T net. However the equivalent P/T net tends to be too enormous to be handled. As for checking CPN models without unfolding, we present three practical on-the-fly verification methods which are all focused on how to make state space generation more efficient. The first one is a basic one, based on a standard state space generation algorithm, but its efficiency is low. The second one is an overall improvement of the first. The third one sacrifices some applicability for higher efficiency. We implemented the three algorithms and validated great efficiency of latter two algorithms through experimental results

    An improved DC fault protection scheme independent of boundary components for MMC based HVDC grids

    Get PDF
    For Modular Multilevel Converter (MMC) based DC grids, current-limiting reactors (CLRs) are mainly employed to suppress the fault current and provide boundary effects to detect internal faults. Thus, most existing protection schemes are highly dependent on the larger CLRs to guarantee high selectivity. However, in existing MMC based HVDC projects, the size of CLRs is restrained by the cost, weight and system stability under normal state. Thus, boundary protections may fail to detect high-resistance faults and pole-to-ground faults. To overcome these shortcomings, this paper proposes a fast and selective DC fault detection algorithm independent of boundary components. The propagation characteristics of line-mode backward traveling-waves (TW) are analyzed to identify external and internal faults. The polarities of zero-mode backward TWs are employed to select faulted poles. To detect remote faults, a pilot protection scheme based on the directional overcurrent is adopted as the complementary criterion. The detection speed of the proposed protection is fast, with a delay less than 1.1ms. Besides, it is robust to fault resistance and immune to noise. Various simulation results in PSCAD/EMTDC demonstrate that the proposed method is not affected by AC faults, fault distances and fault type

    Modeling Resting-State Functional Networks When the Cortex Falls Asleep: Local and Global Changes

    Get PDF
    The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized” electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep” due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized networ

    Execution/Simulation of Context/Constraint-aware Composite Services using GIPSY

    Get PDF
    For fulfilling a complex requirement comprising of several sub-tasks, a composition of simple web services, each of which is dedicated to performing a specific sub-task involved, proves to be a more competent solution in comparison to an equivalent atomic web service. Owing to advantages such as re-usability of components, broader options for composition requesters and liberty to specialize for component providers, for over two decades now, composite services have been extensively researched to the point of being perfected in many aspects. Yet, most of the studies undertaken in this field fail to acknowledge that every web service has a limited context in which it can successfully perform its tasks, the boundaries of which are defined by the internal constraints placed on the service by its providers. When used as part of a composition, the restricted context-spaces of all such component services together define the contextual boundaries of the composite service as a unit, which makes internal constraints an influential factor for composite service functionality. However, due to the limited exposure received by them, no systems have yet been proposed to cater to the specific verification of internal constraints imposed on components of a composite service. In an attempt to address this gap in service composition research, in this thesis, we propose a multi-faceted solution capable of not only automatically constructing context-aware composite web services with their internal constraints positioned for optimum resource-utilization but also of validating the generated compositions using the General Intensional Programming SYstem (GIPSY) as a time- and cost-efficient simulation/execution environment

    Scalable Automatic Service Composition using Genetic Algorithms

    Get PDF
    A composition of simple web services, each dedicated to performing a specific sub- task involved, proves to be a more competitive solution than an equivalent atomic web service for a complex requirement comprised of several sub-tasks. Composite services have been extensively researched and perfected in many aspects for over two decades, owing to benefits such as component re-usability, broader options for composition requesters, and the liberty to specialize for component providers. However, most studies in this field must acknowledge that each web service has a limited context in which it can successfully perform its tasks, the boundaries defined by the internal constraints imposed on the service by its providers. The restricted context-spaces of all such component services define the contextual boundaries of the composite service as a whole when used in a composition, making internal constraints an essential factor in composite service functionality. Due to their limited exposure, no systems have yet been proposed on the large-scale solution repository to cater to the specific verification of internal constraints imposed on components of a composite service. In this thesis, we propose a scalable automatic service composition capable of not only automatically constructing context-aware composite web services with internal constraints positioned for optimal resource utilization but also validating the generated compositions on a large-scale solution repository using the General Intensional Programming System (GIPSY) as a time- and cost-efficient simulation/execution environment

    A Complete Axiom System for Propositional Interval Temporal Logic with Infinite Time

    Full text link
    Interval Temporal Logic (ITL) is an established temporal formalism for reasoning about time periods. For over 25 years, it has been applied in a number of ways and several ITL variants, axiom systems and tools have been investigated. We solve the longstanding open problem of finding a complete axiom system for basic quantifier-free propositional ITL (PITL) with infinite time for analysing nonterminating computational systems. Our completeness proof uses a reduction to completeness for PITL with finite time and conventional propositional linear-time temporal logic. Unlike completeness proofs of equally expressive logics with nonelementary computational complexity, our semantic approach does not use tableaux, subformula closures or explicit deductions involving encodings of omega automata and nontrivial techniques for complementing them. We believe that our result also provides evidence of the naturalness of interval-based reasoning

    Control of colocated geostationary satellites

    No full text
    Control of the inter-satellite distances within a cluster of colocated satellites located in the same GEO window is examined with regards to the close approaches between pairs of satellites. Firstly, the orbital evolution and station keeping control of a single GEO satellite is examined and a new IBM PC based software program capable of performing both these functions autonomously from initial values of the orbital position and date is detailed and validated. Cluster design ideas are then examined in detail and the propagation software is used to generate data for a cluster of four satellites. Two test cases are examined to quantify the frequency of close approaches between individual satellite pairs, each test case using a different orbital element separation strategy but the same station keeping control scheme. The results of the study are then compared with previous research and discussions are presented on the advantages of each method. Finally, a cluster geometry correction manoeuvre, based on Hill's equations of relative motion, is presented which requires only those thrusters used by typical station keeping. This manoeuvre is integrated into the computer software and the two test cases noted previously are again propagated and the close approach results analysed to demonstrate the reduction in the number of close approaches below 5 km
    corecore