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”.. when a Mathematical Reasoning can be had it’s as great a folly to make

use of any other, as to grope for a thing in the dark, when you have a Candle

standing by you.”

Of the Laws of Chance, John Arbuthnot (1662)
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Abstract

In this work, we tackle the problem of providing an algorithm for incrementally

enumerating bitriangles in large bipartite Networks. A bipartite network is

a graph with two disjoint vertex sets where edges only connect vertices from

different sets. In bipartite graphs, the bitriangle is considered the smallest

unit of cohesion. For this kind of networks, counting bitriangles is extremely

useful for conducting social analysis and computing metrics such as clustering

coefficient. This is why lately there has been efforts in developing efficient al-

gorithms for counting bitriangles. However, there are cases in which knowing

structural information of bitriangles in a bipartite network is required; e.g. in

disorder/disease gene association networks where it is important to know the

gene causing the disease. In general, specific information about bitriangles is

useful for any problem requiring linking data in bipartite networks. Depend-

ing on the size of the graph, enumerating bitriangles could be a high-resource

consuming task and an ”all-or-nothing” computation model might not deliver

any result at all. To be concrete, in this work we propose, implement and

empirically evaluate an algorithm for enumerating bitriangles incrementally

according to some specific criteria. Additionally, we provide a correctness

proof of the algorithm. Our proposal is based on the Dynamic Pipeline com-

putational model that nicely supports the pay-as-you-go approach. In this

way users are able to receive results and conduct analysis as long as they

have computational resources at their disposal. This solution could be ex-

tremely useful and powerful for real networks and scenarios like expressed

before. Apart from this main contribution, we develop a Dynamic Pipeline

Framework in (parallel) Haskell. In fact, the implementation of our algorithm

relies upon this framework. Finally, we conduct, analyze and report experi-

ments against large bipartite networks having up to 350 millions of bitriangles.

Obtained results satisfy our expectations. To assess the incremental delivery

of results we measure the Diefficiency metrics, i.e. the continuous efficiency

of the implementation of the algorithm for generating incremental results.



Chapter 1

Introduction

In many real-world applications, the relationships among two different types

of entities can be modeled by means of bipartite graphs. This is a graph in

which the set of vertices is formed by the union of two disjoint sets of vertices

corresponding to the two different types of entities in the relationship. In this

kind of bipartite graph or network, edges only connect vertices from each one of

the different entities or vertices. In the literature, we can find many examples

of bipartite networks (also called affiliation networks or two-mode networks) in

different domains. Just for mentioning some few examples we have phenotype-

disease gene associations network (diseasome bipartite network) [1], drugs-side

effects network [2], customer–product network, author-paper network, the

Netflix subscribers-TV shows etc.

In general, the majority of metrics used for analyzing unipartite graphs, for

instance, clustering coefficient, social analysis, or triangle-based community

computation [3–5] are based on computing the number of triangles in the net-

work. One of the most common techniques to analyze bipartite networks, i.e.

to compute graph parameters as clustering coefficient, etc., is to transform

them into classical unipartite graphs by means of a method called projec-

tion. However, the projection of the bipartite graph distorts the relationships

represented in the original networks. Among other problems caused by trans-

forming bipartite networks to unipartite ones, there is the upgrowth of the

number of links and hence the distortion of some properties of the original

graph such as the number of triangles, the density, etc. (see [6] for more de-

tails). In particular, this problem impacts the in-memory manipulation of the

graph and distorts the link prediction for bipartite networks.

2
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Discarding the transformation of bipartite graphs into unipartite graphs, in a

bipartite graph, there are no triangles as classically defined for graphs. Thus,

since computing and using triangles do not fit well for the case of bipartite

graphs, Opsahl [7] proposes to use another locality graph pattern or motif,

the bitriangle or 6-cycle, i.e. a cycle with three vertices from one type of

vertices and three vertices from the other type of vertices, as the smallest unit

of cohesion of a bipartite graph. In his work, Opsahl argues that bitriangles

in bipartite graphs capture the idea of the triadic closure in unipartite graphs.

Yang et al. [8] study the problem of counting bitriangles and, propose and

analyze, different algorithms to do it. In particular, they propose an algorithm

for local counting bitriangles. This is, counting bitriangles in a bipartite graph

in which a given vertex/edge occurs.

For example, in [9] the link prediction problem in a social network is stated

as, given a snapshot of a social graph, inferring which new interactions among

its members are likely to occur in the near future. In that work, authors

develop approaches to link prediction based on measures of the ”proximity”

of nodes in a network. In [10] the local link prediction problem is addressed

for the specific case of bipartite graph. In this work, according to the way

in which the network is analyzed, the authors described the link prediction

problem twofold, the local link prediction problem and the latent link predic-

tion problem. The local link prediction problem only considers the immediate

neighborhood –in particular, the triangle model – of vertices. On the contrary,

in the latent link prediction problem, the whole model of the network is used.

Local link prediction in bipartite networks can be revisited using a bitriangle

model approach. Link prediction problem considers evolving networks. How-

ever, depending on the nature of the addressed problem, counting bitriangles

in a (possibly persistent) bipartite graph is not enough to establish underlying

relationships among its vertices. This happens because establishing these rela-

tionships could require knowing specific structural details. We mean that not

only the number of bitriangles is important but which are these bitriangles.

This is, problems that require the enumeration of bitriangles in a bipartite

graph. For example, in the diseasome bipartite network presented [1] two dis-

orders are connected if there is a gene that is implicated in both. In order to

make decisions, a scientist not only could need to know how many bitriangles

are in that graph but –an even more specific question– given a disorder which

genes are involved (connected) to it. Another example could be when consid-

ering the Netflix subscribers -TV Shows bipartite network where two vertices
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are connected if a subscriber watches or follows a TV show. Knowing which

bitriangles containing a specific TV Show could help to make decisions about

finishing or creating new seasons of that TV Show.

Depending on the size of the considered bipartite graph, enumerating bitrian-

gles can be a high resource-consuming process and an ”all-or-nothing” com-

putation approach can lead to a timeout or memory stuck. This is why,

for overcoming this problem, instead of considering a classical enumerating

algorithm where computation produces ”all-or-nothing” results, an iterative

”pay-as-you-go” approach [11] can be followed. From our point of view, this

means that bitriangles can be incrementally emitted as results. Users contin-

uously receive answers from the algorithm as long as the provided resources

support the computation.

In this work we tackled the problem of providing and implementing an Algo-

rithm for Incrementally Enumerating Bitriangles in Large Bipartite Network

(IEBT). The algorithm must emit results in an incremental way because we

want the user to be able to obtain bitriangles as they are computed. Effective

streaming processing of large amounts of data has been studied for several

years [12–14] as a key factor providing fast and incremental results in big data

algorithmic problems. One of the most explored techniques, regardless of the

approach, is the exploitation of parallel techniques to take advantage of the

available computational power as much as possible. In this regard, the Dy-

namic Pipeline Paradigm (DPP) [15] has lately emerged as one of the models

that exploit data streaming processing using a dynamic pipeline parallelism

approach [14]. This computational model relies on a functional approach,

where the building blocks are functional stages to construct pipelines that

dynamically enlarge and shrink depending on incoming data. Besides, the

implementation of an algorithm according to the DPP is suitable to generate

incremental results. We believe that DPP is a proper computational model

for solving the IEBT. Moreover, since DPP is focused on dynamic functional

units, it encourages us to use Haskell Programming Language, a purely func-

tional programming language where functions are first class citizens, for im-

plementing IEBT under the DPP.
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1.1 Problem Statement

A bitriangle in a bipartite graph is defined as a 6-cycle with three vertices

from one type of vertex set and three vertices from the other type of vertex

set. We can also say that it is formed by two connected wedges closed by an

additional wedge [8]. An example of what it is a Bitriangle (BT) and what it

is not, can be seen in Figure 1.1a and Figure 1.1b.

u1 u2 u3

l1 l2 l3

(a) Example of BT in a BG

u1 u2 u3

l1 l2 l3

(b) Not a BT in a BG

Figure 1.1: Example of BT in BG. In the left figure we see a bitriangle
well formed by 3 wedges. In the right image the figure does not form a

bitriangle because l2 is only connected with u3 breaking the cycle

Enumerating all the possible BT is computationally hard. However, as we have

stated before, most frequently only partial results are needed. In that sense,

we can provide a query-oriented algorithm to search all the BT that matches

some query criteria and that incrementally deliver results to the user. In this

work, we propose and implement an Algorithm for Incrementally Enumerating

Bitriangles in Large Bipartite Network.

1.2 Proposed Solution

The solution proposed in this work is to implement an Algorithm for Incre-

mentally Enumerating Bitriangles in Large Bipartite Network using Dynamic

Pipeline Paradigm implemented in Haskell Programming Language (Haskell).

In order to achieve that goal, we first conduct a proof of concept to assess the

feasibility of using Haskell for implementing an algorithm with the DPP. In

that assessment, we work on solving the problem of Weak Connected Com-

ponents (WCC) of a graph. Then, we develop a Dynamic Pipeline Frame-

work (DPF) written in Haskell Programming Language that could help to

implement any algorithm using DPP. Following that, we provide the formal

definition of IEBT using DPP, in a pseudo-code format an its correctness
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proof. Finally, we provide the implementation of the algorithm, called DPBT

in Haskell (DP-BT-Haskell), using the DPF.

1.3 Contribution

The main contribution of this work is to implement, formalize and empirically

evaluate a Algorithm for Incrementally Enumerating Bitriangles in Large Bi-

partite Network using Dynamic Pipeline Paradigm written in Haskell. We

believe that this implementation is a step forward in the field, and we think

our approach opens new research lines and improvements to be addressed in

the future.

In order to assess the feasibility of DPP implemented in Haskell, we made

a proof of concept solving Weak Connected Components problem of a graph

using DPP with Haskell. We have also empirically evaluated this implemen-

tation with interesting results that we are going to cover in chapter 4.

Finally, and as a result of the proof of concept work, is the development

and publication of a Haskell framework called dynamic-pipeline [16]. The

framework was published on The Haskell Package Repository (Hackage) [17]

on 2021 June 17th in its first version, providing to Haskell community the

ability to build algorithms using DPP. This is a novel contribution since it is

the first library published on Haskell that implements DPP.

To summarize, our contributions are:

• We introduce, implement and empirically evaluate an Algorithm for In-

crementally Enumerating Bitriangles in Large Bipartite Network under

the Dynamic Pipeline Paradigm.

• We conduct a proof of concept to assess the use of Haskell Program-

ming Language as an implementation language for Dynamic Pipeline

Paradigm solving the Weak Connected Components problem.

• We develop a Dynamic Pipeline Framework (DPF) in (parallel) Haskell

to implement any algorithm using Dynamic Pipeline Paradigm.
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1.4 Document Overview

The document is organized as follows. In chapter 2 we present and describe

the preliminary concepts needed to support this work such as Streaming Pro-

cessing, Dynamic Pipeline Paradigm, and Streaming processing related to

Haskell and Diefficiency Metrics. Following that, in chapter 3 we describe

some work done in related fields like subgraph enumeration problems, using

other streaming models to compute subgraphs, counting bitriangles in bipar-

tite graphs, and pay-as-you-go model. Additionally, in chapter 4 we present

and describe a proof of concept that we conducted for verifying the suitabil-

ity of Haskell as an implementation language for DPP. Continuing with that,

in chapter 5 we deeply describe the Dynamic Pipeline Framework written in

Haskell, its architectural design, and the techniques used for conducting this

implementation. After that chapter, we finally arrive at chapter 6 where we

focus on the main problem of this work, where we provide the pseudo-code

of the algorithm for incrementally enumerating bitriangles in large bipartite

networks We also present the correctness proof of that algorithm as well as the

Haskell implementation using the framework defined in the previous chapter.

In chapter 7 we describe the experimental analysis conducted to assert our

assumptions and answer our research questions. Finally, at the end of the

document in chapter 8, we present the conclusions obtained after conducting

this work, as well as the future work and limitations that we observe.

1.5 Chapter Summary

In this chapter, we have presented the motivation of this work, as well as the

problem statement related to that motivation and the proposed solution to

that problem. Additionally, we provide a document overview to facilitate the

reader’s review.



Chapter 2

Preliminaries

Before moving forward with the core of the research, we describe the funda-

mental concepts that support the different parts of our study. That is Stream

Processing in general, Dynamic Pipeline Paradigm and, Streaming Processing

in the context of Haskell.

2.1 Streaming Processing

The development of Streaming Processing techniques have potentiated areas

as massive data processing for data mining algorithms, big data analysis, IoT

applications, etc. Data Streaming (DS) has been studied using different ap-

proaches [12–14] allowing to process a large amount of data efficiently with

an intensive level of parallelization. We can distinguished two different par-

allelization streaming computational models: Data Parallelism (DAP) and

Pipeline Parallelism (PP).

Data Parallelism (DAP) The data is split and processed in parallel and,

the computations that perform some action over that subset of data do not

have any dependency with other parallel computation. A common model that

has been proved successful over the last decade is MapReduce (MR) [18].

Different frameworks or tools like Hadoop [19], Spark [20], etc., support this

computational model efficiently. One of the main advantages of this kind

of model is the ability to implement stateless algorithms. Data can be split

8
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and treated in different threads or processors without the need for contextual

information. On the other hand, when there is a need to be aware of the

context, parallelization is penalized, each computational step should be fully

calculated before proceeding with the others. For example, this is the case of

reduce operation on many of the above-mentioned frameworks or tools.

Pipeline Parallelism (PP) It break the computation in a series of se-

quential stage, where each stage takes the result of the previous stage as an

input and downstream its results to the next. Each pipeline Stage is paral-

lelized and, it could potentially exist one stage per data item of the stream.

The communication between stages takes place through some means, typi-

cally channels. One of the main advantages of this model is that the stages

are non-blocking, meaning that there is no need to wait to process all data to

run the next stage. This kind of paradigm enables computational algorithms

that can generate incremental results, preventing the user waits until the end

of the whole data stream processing to get a result. On the other hand, the

disadvantage over DAP is that although pipeline stages are parallelized, some

intensive computation in one stage might delay processing the next stage be-

cause of its sequential dependency nature. Therefore, the user must be sure

each stage runs extremely fast computations on it.

The nature of our problem requieres that results are output incrementally, i.e.

Bitriangles are emitted incrementally. Additionally, data need to be aware of

the context to compute the BTs. Considering the stream processing models

presented above, we have chosen PP. We think it is the model that better fits

the requirements of the enumerating incrementally bitriangles problem. We

are going to see in the next section what is the specific PP computation model

used for that purpose.

2.2 Dynamic Pipeline Paradigm

The Dynamic Pipeline Paradigm (DPP) [15] is a PP computational model

based on a one-dimensional and unidirectional chain of stages connected by

means of channels synchronized by data availability. This chain of stages is a

computational structure called Dynamic Pipeline (DP). A DP stretches and

shrinks depending on the spawning and the lifetime of its stages, respectively.
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Modeling an algorithmic solution as a DP corresponds to define a dynamic

computational structure in terms of four kinds of stages: Source (Sr), Genera-

tor (G), Sink (Sk) and Filter (F) stages. In particular, the specific behavior of

each stage to solve a particular problem must be defined as well as the num-

ber and the type of channels connecting them. Channels are unidirectional

according to the flow of the data. The Generator stage is in charge of spawn-

ing Filter stage instances. This particular behavior of the Generator gives the

elastic capacity to DPs. Filter stage instances are stateful operators in the

sense described in [21]. This is, Filter instances have a state. The deployment

of a DP consists in setting up the initial configuration depicted in Figure 2.1.

Sr G Sk

F

Figure 2.1: Initial configuration of a Dy-
namic Pipeline. An initial DP consists of
three stages: Sr, G together its filter pa-
rameter F, and Sk. These stages are con-
nected through its channels –represented
by right arrows– as shown in this figure.

The activation of a DP starts when a

stream of data items arrives at the

initial configuration of the DP. In

particular, when a data stream ar-

rives to the Source stage. During

the execution, the Generator stage

spawns Filter stage instances accord-

ing to incoming data and the Gen-

erator defined behavior. This evolu-

tion is illustrated in Figure 2.2. If the

data stream is bounded, the compu-

tation finishes when the lifetime of all the stages of DP has finished. Other-

wise, if the stream data is unbounded, the DP remains active and incremental

results are output.

Sr F F G

F

Sk

Figure 2.2: Evolution of a DP. After creating some filter instances
(shadow Filter squares) of the filter parameter (light Filter square) in the

Generator, the DP has stretched.

2.3 Streaming in Haskell Language

Streaming computational models have been implemented in Haskell Program-

ming Language during the last 10 years. One of the first libraries in the

ecosystem was conduit [22] in 2011. After that, several efforts on improving
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streaming processing on the language has been made not only at abstrac-

tion level for the user but as well as performance execution improvements like

pipes [23] and streamly [24] lately. Moreover, there is an empirical compari-

son between those three, where a benchmark analysis has been conducted [25].

Although most of those libraries offer the ability to implement DAP and PP,

none of them provide clear abstractions to create DPP models because the

setup of the stages should be provided beforehand. In the context of this work,

we have done a proof of concept at the beginning, but it was not possible to

adapt any of those libraries to implement properly DPP. The closest we have

been to implement DPP with some of those libraries was when we explored

streamly. In this case, there is a foldrS combinator that could have been

proper to the purpose of generating a dynamic pipeline of stages based on

the data flow, but it was not possible to manipulate the channels between the

stages to control the flow of the data. It is important to remark that, even

though, the library streamly implements channels, they are hidden from the

end-user and, there is not a clear way to manipulate them.

To the best of our knowledge no similar library under the DPP approach has

been written in Haskell Programming Language. One important motivation to

develop our own framework is that we not only wanted to satisfy our research

needs but, as a novel contribution, we wanted to deliver a DPF to the Haskell

community as well. We hope this contribution encourages and helps writing

algorithms under the Dynamic Pipeline Paradigm.

2.4 Diefficiency Metrics

In proof of concept in chapter 4 and in this work on the empirical analysis

chapter 7, we use two important metrics to measure the diefficiency, i.e. con-

tinuous efficiency of a program to generate incremental results. The metrics to

measure diefficiency are Diefficiency Metric dief@t (dief@t) and Diefficiency

Metric dief@k (dief@k) [26]. The metric dief@t measures the continuous

efficiency during the first t time units of execution regarding the results gen-

erated by the program. The higher value of the dief@t metric, the better the

continuous behavior. The metric dief@k measures the continuous efficiency

while producing the first k answers regarding the results generated by DP-BT-

Haskell. The lower the value of the dief@k metric, the better the continuous
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behavior. Both metrics have been measured using diefpy Tool (diefpy) [27]

and traces obtained by the execution of the experiment scenarios (Traces ex-

amples are provided in section A.3). Apart from this, diefpy generates two

different kind of plots. On the one hand, a bi-dimensional plot containing all

the (x, y) points taken from traces like Source Code A.21, where each x is the t

time where the answer was generated and the y is the generated answer num-

ber. This plot is useful to have a visual view of the continuous behavior. On

the other hand, a radial plot contains the visual comparison of dief@t metric

with respects to other non-continuos metrics such as i) Completeness (Comp)

which is the total number of answers produced by the scenario, ii) Time for

the first tuple (TFFT) which measure the elapsed time spent by the scenario

to produce the first answer, iii) Execution Time (ET) which measures the

elapsed time spent by the scenario to complete the execution of a query and,

iv) Throughput (T) which measure the number of total answers produced by

the scenario after evaluating a query divided by its execution time ET .

2.5 Chapter Summary

In this chapter, we have presented the preliminary work that has been done on

the related areas that affect our research objective. First, we have shown the

different stream processing computational models. Then, we have described

the DPP. After that, we have presented the available tools and libraries for

stream processing in Haskell. Finally, we have presented a brief description of

the diefficiency metrics, which are the principal metrics that we use to conduct

experimental analysis in both, proof of concept and the algorithm of this work

itself.



Chapter 3

Related Work

Having the fact that a BT is a subgraph, at the beginning of this chapter,

we explore some works related to the subgraph enumeration problem. In the

case of BT in BG, we describe a recent work, that has been conducted in BT

counting problem. Finally, we describe some related research that has been

done lately regarding pay-as-you-go model.

3.1 Subgraph Enumeration

Enumerating subgraphs using Map-Reduce. This work has been pre-

sented by Afrati et al. [12] for solving the subgraph enumeration problem

using a single round map-reduce. The problem presented in this work is to

enumerate all instances of a given subgraph (sample graph) in a large graph

using a single map-reduce round. In that work, all the examples are con-

ducted with the smallest subgraph known for unipartite graphs, this is the

triangle. The solution proposed is presented as a special case of computing

a multiway join but improving complexity reducing the communication cost

and computational cost. To achieving this, the authors present an improve-

ment over the Partition Algorithm of Suri and Vassilvitskii [28] replicating all

edges the same number of times reducing the communication cost to concil-

iate duplicated triangles. Regarding the computation cost, an improvement

over the multiway-join algorithm is proposed using an ordering of the buckets

node. The main advantage of this work is the use of a stream parallelization

model like Map-Reduce, bringing the choice to exploit parallel and distributed

13
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computation to gain efficiency. The use of Map-Reduce combined with the

improvements proposed by the authors of this work [12] reduce even more

the processing time for the enumeration. One of the limitations is the use

of a streaming model like Map-Reduce. Although it is a parallel and dis-

tributed model, incremental results are not possible until all the reducers are

calculated. Computation can be done in parallel, however the production of

subgraphs is restricted by the reducers limiting the capability of delivering re-

sults incrementally. The other limitation is the adjustment of computational

resources, which in this work is done statically beforehand. Partitioning is

done by the number of nodes and edges which is known in advance. As we

have stated in chapter 1, DPP overcome both of these limitations by pro-

viding a Dynamic Pipeline parallelization model, where the resources can be

adjusted dynamically, and results are generated incrementally as soon as they

are computed.

Distributed subgraph matching on timely dataflow This work has

been presented by Lai et al. [29] for solving the subgraph matching problem

in large graphs using a distributed computational model. The main con-

tribution of this work is the optimization of four strategies algorithms use

on Timely dataflow system [30]. The underlying idea of the proposed algo-

rithm is performing a random partition of the vertices using hashing, where

the vertices hashed neighbors are placed on the same partition. Query ver-

tices are attributes, and results are relational tables, enabling the subgraph

matching problem to be expressed with natural joins, where the solution is

to find the optimal distributed join plan. The join algorithms improved are

BinJoin, WOptJoin and ShrCube using the following optimizations techniques:

Batching,TrIndexing and Compression. In the case of Batching, the opti-

mization relies on processing in batch mode the partial results that match a

subset of vertices in a way that each partial result can be batched in a single

task to process against the whole result. TrIndexing or Triangle Indexing

precomputes triangles of a data graph and indices to prune unfeasible results

beforehand. Finally, Compression maintains intermediate results, matched

vertices, in a compressed form. The compression form is an array without

unfolding each element with its respective matching pair, reducing commu-

nication and maintenance. The results exposed on the empirical analysis in

this work show a suitable level of efficiency but, it depends on the machine
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characteristics and the topologies of the analyzed graphs. One of the most in-

teresting contributions of this work that we have adapted in our solution is the

use of Compression technique. In our description of the bitriangle enumer-

ation algorithm, described in chapter 6, we define intermediate objects such

as aggregated wedges, aggregated double-wedges, and aggregated bitriangles.

Those intermediate structures help us to build and store bitriangles in a com-

pressed representation in order to use less memory footprint and computation

time.

motif-paths. Xiaodong Li et al. [31], present an algorithm for calculating

the shortest motif-paths. A motif-path is a concatenation –a path– of two or

more motifs, where a motif is a small graph with few nodes, considered as a

fundamental unit of a graph. In their work, authors bring light to the com-

putation of the shortest motif-paths between two nodes is a very useful tool

to link prediction. They propose an incremental search in an algorithm called

Incremental Motif-path Search (IMS Search). The idea of this algorithm starts

similarly to other shortest path search algorithms. Giving a source vertex s

find the shortest path to a target vertex t. The sketch of the algorithm pro-

ceeds in the following manner: motif-instances are discovered around some

seed. Then, motif-paths can be constructed based on those instances. We

use this approach of seeds –vertices and edges in our case– for optimizing the

representation of the building blocks and the discovery of bitriangles. Ad-

ditionally, we think this kind of problem is suitable to be implemented with

Dynamic Pipeline Paradigm. In effect, using DPP it is possibly to build a

dynamic pipeline where each motif-instance corresponds to one filter. There-

fore, we could eliminate repeated motif-instances and wrong path detection

by the disposition of the filters and the communication between them.

3.2 Bitriangle Counting in Bipartite Graphs

The problem of Counting BT has been addressed in the work of Yang et

al. [8] where they present several polly-time algorithms to solve it. Authors

present different approaches to calculate using combinatorial algorithmics the

number of BT in BG. To be concrete, authors present three algorithms to

count all the BT in the graph (Global Counting), and two algorithms to count
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only locally BT (Local Counting): this means that given a vertex or an edge,

the algorithms count only the number of BT in which that vertex or edge is

participating.

In this work, authors based all the algorithms, Global and Local, on using

intermediate small units or graph patterns that could form part of bitriangles.

These small graph patterns are: wedge, wj-unit, super-wedge and swj-unit. In

the case of Global Counting, the best algorithm in terms of time complexity,

is the Ranked Super-wedge based algorithm (RSWJ-Count). It is based on

ranking the vertices by their degree. Exploring higher degree vertices first

allows to detect the ones with more super-wedges, and therefore, count swj-

unit faster by sharing computations.

In regards to Local Counting, the work presents two algorithms. One algorithm

locally counts BT given a particular vertex, and the other locally counts BT

given a particular edge. In both cases, the algorithms use the same swj-unit

small unit for counting the bitriangles that are presented in Global Counting.

The difference with the swj-unit based algorithm for counting globally, is that

instead of traversing all the vertices or edges to count the swj-unit, it explores

swj-unit locally based on the given vertex or edge. The main advantage of

doing Local Counting is the ability to reduce processing time when the user

does not need to analyze the whole network but just a part of it. The principal

limitation of Local Counting, apart from sharing the same limitation of Global

Counting regarding incremental results, is that it does not have the possibility

to reuse previous calculations if several vertices or edges searches are requested.

In this case, the algorithm needs to be recalculated locally for every edge or

vertex request.

In this work, we have adapted the idea of using small units or structures of

the graph to find a bigger structure like bitriangle. However, although we

use the concept of wedge as well, the rest of the small units or structures we

have defined are different. Additionally, as said before, following the Lai et

al. approach, these structures are represented in a compressed way.
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3.3 Pay-as-you-go Model

As we have described in chapter 1, the pay-as-you-go computational model

focuses on incrementally deliver results on high resource-consumer processes.

pay-as-you-go model [32] plays a fundamental role in applications that needs

to process large amount of data, where the user does not need to obtain all the

results but a fraction of them to start making decisions and doing analysis.

At the same time, the user is able to administrate the resources he/she can

afford. The more resources the user can afford, the more data or faster results

he/she will obtain.

Fact-Checking Nguyen et al. [32] have conducted a study with primary

focus on pay-as-you-go model, where they use incremental quality estimation

to provide fact-checking over World Wide Web documents. The work contin-

uously improves the credibility assessment of documents in the database and,

users may then examine that information to decide whether to stop or re-

sume validation. Having into consideration the results on this work, we think

that a pay-as-you-go model can be described properly using Dynamic Pipeline

Paradigm. In effect, one of the intrinsic features of DPP is the capability of

adjusting the computational resources to the incoming data.

3.4 Chapter Summary

In this chapter, we have presented all the work that is related to our research.

First, we have shown all the details of the most recent work regarding subgraph

enumeration problem. After that, we analyze the latest and most important

work on counting Bitriangle in Bipartite Graph. Then, we have also explored,

what is the latest research and explorations in the use of pay-as-you-go mod-

els.



Chapter 4

Proof of concept: Weakly

Connected Components of a

Graph

One of the biggest challenges of implementing a Dynamic Pipeline is to find

a programming language with a proper set of tools supporting both of the

primary features of the DPP: i) parallel processing and ii) strong theoretical

foundations to manage computations as first-class citizens. Haskell is a stat-

ically typed pure functional language designed on strong theoretical founda-

tions where computations are primary entities. This pure functional language

has evolved from its birth in 1987 and nowadays provides a powerful set of

tools for writing multithreading and parallel programs with optimal perfor-

mance [33, 34].

In the context of this research, we first assessed the suitability of Haskell Pro-

gramming Language to implement a Dynamic Pipeline. To be concrete, we

conducted a proof of concept implementing a Dynamic Pipeline in Haskell for

solving a particular and very relevant problem as the computation/enumeration

of the Weakly Connected Components of a graph. In particular, the main ob-

jective of our proof of concept was to study the critical features required in

Haskell for a DPF implementation, the real possibilities of emitting incremen-

tally results, and the performance of such kinds of implementations. Indeed,

we explored the basis of an implementation of a DPF in a pure (parallel)

functional language as Haskell. This is, we determined the particular features

(i.e., versions and libraries) that will allow for an efficient implementation of a

18
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DPF. Moreover, we conducted an empirical evaluation to analyze the perfor-

mance of the Dynamic Pipeline implemented in Haskell for enumerating WCC

with special attention to the emission of results, i.e. WCC, incrementally. In

this chapter, we focus on the presentation of our algorithm for enumerating

WCC using Haskell as well as the results obtained in the empirical evaluation

of its implementation. Almost all the content of this chapter is published in

[35]. The details of the specific requirements of the Haskell system according

to the results of the proof of concept will be presented in chapter 5.

4.1 DPWCC Algorithm

Let us consider the problem of computing/enumerating the (weak) connected

components of a graph G using DPP. A connected component of a graph is a

subgraph in which any two vertices are connected by paths.

1 2 3 4

56

Figure 4.1: Example of a graph
with two weakly connected com-

ponents: {1, 2} and {3, 4, 5, 6}

Thus, finding connected components of an

undirected graph implies obtaining the min-

imal partition of the set of nodes induced

by the relationship connected, i.e., there is a

path between each pair of nodes. An example

of that graph can be seen in Figure 4.1. The

input of the Dynamic Pipeline for computing

the WCC of a graph, DPWCC, is a sequence of

edges ending with eof1. The connected com-

ponents are output as soon as they are computed, i.e., they are produced

incrementally. Roughly speaking the idea of the algorithm is that the weakly

connected components are built in two phases. In the first phase filter in-

stance stages receive the edges of the input graph and create sets of connected

vertices. During the second phase, these filter instances construct maximal

subsets of connected vertices, i.e. the vertices corresponding to (weakly) con-

nected components. DPWCC is defined in terms of the behavior of its four kinds

stages: Source (SrWCC), Generator (GWCC), Sink (SkWCC), and Filter(FWCC)

stages. Additionally, the channels connecting these stages must be defined. In

DPWCC, stages are connected linearly and unidirectionally through the chan-

nels ICE and ICset(V). Channel ICE carries edges while channel ICset(V) conveys

sets of connected vertices. Both channels end by the eof mark. The behavior

1Note that there are neither isolated vertices nor loops in the source graph G.
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of FWCC is given by a sequence of two actors (scripts). Each actor corresponds

to a phase of the algorithm. In what follows, we denote these actors by actor1

and actor2, respectively. The script actor1 keeps a set of connected vertices

(CV ) in the state of the FWCC instance. When an edge e arrives, if an end-

point of e is present in the state, then the other endpoint of e is added to

CV . Edges without incident endpoints are passed to the next stage. When

eof arrives at channel ICE, it is passed to the next stage, and the script actor2

starts its execution. If script actor2 receives a set of connected vertices CV in

ICset(V), it determines if the intersection between CV and the nodes in its state

is not empty. If so, it adds the nodes in CV to its state. Otherwise, the CV

is passed to the next stage. Whenever eof is received, actor2 passes–through

ICset(V)– the set of vertices in its state and the eof mark to the next stage; then,

it dies. The behavior of SrWCC corresponds to the identity transformation over

the data stream of edges. As edges arrive, they are passed through ICE to the

next stage. When receiving eof on ICE, this mark is put on both channels.

Then, SrWCC dies.

Let us describe this behavior with the example of the graph shown in Fig-

ure 4.1.

eof (3, 4) (4, 5) (3, 6) (1, 2) SrWCC GWCC SkWCC

FWCC

Figure 4.2: DPWCC Initial setup. Stages Source, Generator, and Sink
are represented by the squares labeled by SrWCC, GWCC and SkWCC, respec-
tively. The square FWCC corresponding to the Filter stage template is the
parameter of GWCC. Arrows ⇒ between represents the connection of stages
through two channels, ICE, and ICset(V). The arrow → represents the chan-
nel ICset(V) connecting the stages GWCC and SkWCC. The arrow =⇒ stands
for I/O data flow. Finally, the input stream comes between the dotted lines
on the left and the WCC computed incrementally will be placed between

the solid lines on the right.

Figure 4.2 depicts the initial configuration of DPWCC. The interaction of

DPWCC with the ”external” world is done through the stages SrWCC and SkWCC.

Indeed, once activated the initial DPWCC, the input stream – consisting of a

sequence containing all the edges in the graph in Figure 4.1 – feeds SrWCC

while SkWCC emits incrementally the resulting weakly connected components.

In what follows Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7

depict the evolution of the DPWCC.
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eof (3, 4) (4, 5) (3, 6) SrWCC GWCC SkWCC

FWCC
(1, 2)

(a) The edge (1, 2) is arriving to GWCC.

eof (3, 4) (4, 5) SrWCC {1, 2}

F{1,2}

GWCC

FWCC

SkWCC

(3, 6)

(b) When the edge (1, 2) arrives to GWCC, it spawns a new instance of FWCC before GWCC.
Filter instance F{1,2} is connected to GWCC through channels ICE and ICset(V). The state of
the new filter instance F{1,2} is initialized with the set of vertices {1, 2}. The edge (3, 6)

arrives to the new filter instance F{1,2}.

Figure 4.3: Evolution of the DPWCC: First state

eof (3, 4) SrWCC {1, 2}

F{1,2}

GWCC

FWCC

SkWCC

(4, 5) (3, 6)

(a) None of the vertices in the edge (3, 6) is in the set of vertices {1, 2} in the state of
F{1,2}, hence it is passed through ICE to GWCC.

eof SrWCC {1, 2}

F{1,2}

{3, 6}

F{3,6}

GWCC

FWCC

SkWCC

(3, 4) (4, 5)

(b) When the edge (3, 6) arrives to GWCC, it spawns the filter instance F{3,6} between F{1,2}
and GWCC. Filter instance F{1,2} is connected to the new filter instance F{3,6} and this one
is connected to GWCC through channels ICE and ICset(V). The state of the new filter instance
F{3,6} is initialized with the set of vertices {3, 6}. The edge (3, 4) arrives to F{1,2} and

SrWCC is fed with the mark eof. Edges (3, 4) and (4, 5) remain passing through ICE.

Figure 4.4: Evolution of the DPWCC: Second state

It is importat to highlight that during the states shown in Figure 4.3a, Fig-

ure 4.3b, Figure 4.4a, Figure 4.4b and Figure 4.5a the only actor executed in
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{1, 2}

F{1,2}

{3, 6}

F{3,6}

GWCC

FWCC

SkWCC

eof

eof

(3, 4) (4, 5)

(a) SrWCC fed both, ICE and ICset(V), channels with the mark eof received from the input
stream in previous state and then, it died. The edge (4, 5) is arriving to GWCC and the edge

(3, 4) is arriving to F{3,6}.

{3, 4, 6}

F{3,6}

{4, 5}

F{4,5}

GWCC

FWCC

SkWCC

eof

eof {1, 2}

(b) When the edge (4, 5) arrives to GWCC, it spawns the filter instance F{4,5} between F{3,6}
and GWCC. Filter instance F{3,6} is connected to the new filter instance F{4,5} and this one is
connected to GWCC through channels ICE and ICset(V). Since the edge (3, 4) arrived to F{3,6}
at the same time and vertex 3 belongs to the set of connected vertices of the filter F{3,6},
the vertex 4 is added to the state of F{3,6}. Now, the state of F{3,6} is the connected set
of vertices {3, 4, 6}. When the mark eof arrives to the first filter instance, F{1,2}, through
ICset(V), this stage passes its partial set of connected vertices, {1, 2}, through ICset(V) and
dies. This action will activate actor2 in next filter instances to start building maximal
connected components. In this example, the state in F{3,6}, {3, 4, 6}, and the arriving set
{1, 2} do not intersect and, hence, both sets of vertices, {1, 2} and {3, 4, 6} will be passed

to the next filter instance through ICset(V).

Figure 4.5: Evolution of the DPWCC: Third state

{4, 5}

F{4,5}

GWCC

FWCC

SkWCC

eof

eof {1, 2} {3, 4, 6}

(a) The set of connected vertices {3, 4, 6} is arriving to F{4,5}. The mark eof continues
passing to next stages through the channel ICE.

{3, 4, 5, 6}

F{4,5}

GWCC

FWCC

SkWCC
eof {1, 2}

eof

(b) Since the intersection of the set of connected vertices {3, 4, 6} arrived to F{4,5} and its
state is not empty, this state is enlarged to be {3, 4, 5, 6}. The set of connected vertices

{1, 2} is arriving to F{4,5}

Figure 4.6: Evolution of the DPWCC: Fourth state
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{3, 4, 5, 6}

F{4,5}

SkWCC
eof {1, 2}

(a) F{4,5} has passed the set of connected vertices {1, 2} and it is arriving to SkWCC. The
mark eof is arriving to F{4,5} through ICset(V).

SkWCC {1, 2}
eof {3, 4, 5, 6}

(b) Since the mark eof arrived to F{4,5} through ICset(V), it passes its state, the set {3, 4, 5, 6}
through ICset(V) to next stages and died. The set of connected vertices {1, 2} arrived to
SkWCC and this implies that {1, 2} is a maximal set of connected vertices, i.e. a connected
component of the input graph. Hence, SkWCC output this first weakly connected component.

SkWCC {3, 4, 5, 6} {1, 2}
eof

(c) Finally, the set of connected vertices {3, 4, 5, 6} arrived to SkWCC and was output as
a new weakly connected component. Besides, the mark eof also arrived to SkWCC through

ICset(V) and thus, it dies.

{3, 4, 5, 6} {1, 2}

(d) The weakly connected component of in the graph Figure 4.1 such as they have been
emitted by DPWCC.

Figure 4.7: Last states in the evolution of the DPWCC

any filter instance is actor1 (constructing sets of connected vertices). After-

wards, although actor1 can continue being executed in some filter instances,

there are some instances that start executing actor2 (constructing sets of max-

imal connected vertices). This is shown from Figure 4.5a to Figure 4.7a.
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4.2 Empirical Evaluation

For the empirical evaluation we consider the following research questions:

RQ1) Does DPWCC in Haskell support the dynamic parallelization level that

DPWCC requires? RQ2) Is DPWCC in Haskell competitive compared with de-

fault implementations on base libraries for the same problem? RQ3) Does

DPWCC in Haskell handle memory efficiently?

We have conducted different kinds of experiments to test our assumptions and

verify the correctness of the implementation. First, we have performed an Im-

plementation Analysis in which we have selected some graphs from Stanford

Network Data Set Collection (SNAP) [36] and analyze how the implementa-

tion behaves under real-world graphs if it timeouts or not and if it is producing

correct results in terms of the amount of WCC that we know beforehand. We

have also tested the implementation doing a Benchmark Analysis where we fo-

cus on two different types of benchmarks. On the one hand, using criterion

library [37], we have evaluated a benchmark between our solution and WCC

algorithm implemented in containers Haskell library [38] using Data.Graph.

On the other hand, we have compared if the results are being generated in-

crementally in both cases and how that is done during the pipeline execution

time. This last analysis has been conducted using diefpy tool [26, 27]. Fi-

nally, we have executed a Performance Analysis in which we have to gather

profiling data from Glasgow Haskell Compiler (GHC) for one of the real-world

graphs to measure how the program performs regarding multithreading and

memory allocation.

Implementation analysis The following represents the execution for run-

ning these graphs on our DPP implementation.

Network Exec Param MUT Time GC Time Total Time

Enron Emails +RTS -N4 -s 2.797s 0.942s 3.746s

Astro Physics Coll Net +RTS -N4 -s 2.607s 1.392s 4.014s

Google Web Graph +RTS -N8 -s 137.127s 218.913s 356.058s

Table 4.1: This table shows the GHC execution time measurement of
selected networks. Column Exec Param describe the runtime flags provided
to the running program. MUT Time is the time in seconds the program
was executing computations (a.k.a. program time). GC Time is garbage

collector time. Total time is the sum of MUT + GC time.
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It is important to point out that since the first two networks are smaller in

the number of edges compared with web-Google, executing those with 8 cores

as the -N parameters indicates does not affect the final speed-up since GHC is

not distributing threads on extra cores because it handles the load with 4 cores

only. As we can see in Table 4.1, we are obtaining remarkable execution times

for the first two graphs, and it seems not to be the case for web-Google due

to the topology of the graph; it is denser in terms of connected components

than the others.

Benchmark Analysis Regarding mean execution times for each implemen-

tation on each case measure by criterion library [37], we can display the

following results:

Network DP-WCC-Haskell Haskell containers Speed-up

Enron Emails 4.68s 6.46s 1.38

Astro Physics Coll Net 4.98s 6.95s 1.39

Google Web Graph 386s 106s 0.27

Table 4.2: Mean execution time of each network running under
criterion library comparing both implementations in Haskell: DP-WCC-
Haskell and containers lib. criterion runs 1000 times each implemen-
tations and takes mean execution times of each. Speed-up column shows

the ratio between Haskell containers and DP-WCC-Haskell

These results allow for answering Question [Q2], where we have seen that the

graph topology is affecting the performance and the parallelization, penalizing

DPWCC in Haskell (DP-WCC-Haskell) for this particular case. In this bench-

mark, the solution against a non-parallel containers Data.Graph confirms

the hypothesis.

Diefficency metrics The definition of this metric has been discussed on

section 2.4. Some considerations are needed before starting to analyze the

data gathered with diefpy Tool (diefpy) tool. Firstly, the tool is plotting

the results according to the traces generated by the implementation, both DP-

WCC-Haskell and Haskell containers. By the nature of DPP model, we can

gather or register that timestamps as long as the model is generating results.

In the case of Haskell containers, this is not possible since it calculates WCC

at once. This is not an issue and we still can check at what point in time all
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WCC in Haskell containers are generated. In those cases, we are going to

see a straight vertical line.

It is important to remark that we needed to scale the timestamps because

we have taken the time in nanoseconds. After all, the incremental generation

between one WCC and the other is very small but significant enough to be

taken into consideration. Thus, if we left the time scale in integer milliseconds,

microseconds, or nanoseconds integer part, it cannot be appreciated. In case

of escalation, we are discounting the nanosecond integer of the first generated

results resulting in a time scale that starts close to 0. This does not mean

that the first result is generated at 0 time, but we are discarding the previous

time to focus on how the results are incrementally generated.

(a) email-Enron dief@t (b) ca-AstroPh dief@t (c) web-Google dief@t

Figure 4.8: This plots are showing the dief@t on the three networks com-
paring both Haskell implementations DP-WCC-Haskell and containers

lib. Red lines indicates containers Haskell dief@t metric. Yellow points
indicates DP-WCC-Haskell dief@t metric

Based on the results shown in Figure 4.8 and Figure 4.9 above, all the so-

lutions in DP-WCC-Haskell indicates continuous behavior, but there is some

difference that we would like to remark. In the case of email-Enron and ca-

AstroPh graphs as we can see in Figure 4.8a and Figure 4.8b, there seems

to be a more incremental generation of results. This behavior is measured

with the values of Diefficiency Metric dief@t. ca-AstroPh as it can be seen

in Figure 4.8b, is even more incremental, and it is showing a clear separation

between some results and others. The web-Google network, which is shown

in Figure 4.8c, is a little more linear, and that is because all the results are

being generated with very little difference in time between them. Having the

biggest WCC at the end of web-Google DPP algorithm it is retaining results

until the biggest WCC can be solved, which takes longer.
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(a) email-Enron dief@t (b) ca-AstroPh dief@t (c) web-Google dief@t

Figure 4.9: Radial plot shows how the different metrics provided by
diefpy tool such as T, TFFT, dief@t, ET and Comp are related each
other for each Haskell implementation: DP-WCC-Haskell and containers.
Red area indicates containers Haskell dief@t metric. Yellow area indi-

cates DP-WCC-Haskell dief@t metric

Multithreading For analyzing parallelization and multithreading we have

used ThreadScope [39] which allows us to see how the parallelization is taking

place on GHC at a fine grained level and how the threads are distributed

throughout the different cores requested with the -N execution ghc-option

flag. The distribution of the load is more intensive at the end of the execution,

where actor2 filter stage of the algorithm is taking place and different filters

are reaching execution of that second actor. We can appreciate how many

threads are being spawned and by the tool and if they are evenly distributed

among cores.

Figure 4.10 zooms in on ThreadScope output in a particular moment, ap-

proximately in the middle of the execution. The numbers inside green bars

represent the number of threads that are being executed on that particular

core (horizontal line) at that execution slot. Thus, the number of threads

varies among slot execution times, because as it is already known, GHC im-

plements Preemptive Scheduling [40]. It can be appreciated in Figure 4.10 our

first assumption that the load is evenly distributed because the mean number

of executing threads per core is 571.

Memory allocation Another important aspect in our case is how the mem-

ory is being managed to avoid memory leaks or other non-desired behavior

that increases memory allocation during the execution time. This is even

more important in the particular implementation of WCC using DPP model



Chapter 4 Proof of concept: Weakly Connected Components of a Graph 28

Figure 4.10: Threadscope Image of Zoomed Fraction of 10 nanoseconds.
Upper green area shows the amount of core used during that fraction of
time. The lower are where it shows four separated green bars describe the
behavior on each core. The number inside the green bar show the amount
of threads running on that core at that moment. Finally orange bars are

GC time.

because it requires to maintain the set of connected components in memory

throughout the execution of the program or at least until we can output the

calculated WCC if we reach to the last Filter and we know that this WCC

cannot be enlarged anymore. In order to verify this, we measure memory

allocation with eventlog2html [41] which converts generated profiling memory

eventlog files into graphical HTML representation.

As we can see in Figure 4.11, DP-WCC-Haskell does efficient work on allo-

cating memory since we are not using more than 57 MB of memory during

the whole execution of the program. On the other hand, if we analyze how

the memory is allocated during the execution of the program, it can also be

appreciated that most of the memory is allocated at the beginning of the

program and steadily decrease over time, with a small peak at the end that

does not overpass even half of the initial peak of 57 MB. The explanation

for this behavior is quite straightforward because, in the beginning, we are

reading from the file and transforming a ByteString buffer to (Int, Int)

edges. This is seen in the image in which the dark blue that is on top of the

area is ByteString allocation. Light blue is allocation of Maybe a type which

is the type that is returned by the Channels because it can contain a value or

not. Data value Nothing is indicating end of the Channel. Another important
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Figure 4.11: This plot is showing the accumulated memory allocation
size of each Haskell Data Type throughout the execution of the program.
The dark blue area shows the ARR WORDS data type which is String values.
There are many of them because all that it comes from a file is in String

format and need to be converted to the proper Data type. Rest of the
light blue areas belong to ByteString which is the format treated in the
input file as well, and Maybe type which is the type of data transfer between

channels.

aspect is the green area which represents IntSet allocation, which in the case

of our program is the data structure that we use to gather the set of vertices

that represents a WCC. This means that the amount of memory used for

gathering the WCC itself is minimum, and it is decreasing over time, which

is another empirical indication that we are incrementally releasing results to

the user. It can be seen as well that as long the green area reduces the lighter

blue (MUT ARR PTRS CLEAN [42]) increases at the same time indicating that

the computations for the output (releasing results) is taking place. Finally,

according to what we have stated above, we can answer the question [Q3],

showing that not only the memory management was efficient, but at the same

time, the memory was not leaking or increasing across the running execution

program.

The empirical evaluation of the DP-WCC-Haskell implementation to compute

weakly connected components of a graph, evidence suitability, and robustness

to provide a Dynamic Pipeline Framework in that language. Measuring using
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metrics reveals some advantageous capability of DPWCC implementation to

deliver incremental results compared with default containers library imple-

mentation. Regarding the main aspects where DPP is strong, i.e., pipeline

parallelism and time processing, the DPWCC performance shows that Haskell

can deal with the requirements for the WCC problem without penalizing nei-

ther execution time nor memory allocation. In particular, the DPWCC im-

plementation outperforms in those cases where the topology of the graph is

sparse and where the number of vertices in the largest WCC is not big enough.

To conclude, the proof of concept has gathered enough evidence to show that

the implementation of Dynamic Pipeline in Haskell Programming Language

is feasible. This fact opens a wide range of algorithms to be explored using

the Dynamic Pipeline Paradigm, supported by purely functional programming

language.

4.3 Chapter Summary

In this chapter, we have presented a proof of concept that allows us to as-

sess the feasibility of implementing DPP using Haskell. The obtained results

gave us insights about how to proceed for implementing a first version of a

DPF using (parallel) Haskell and, afterward, to implement an algorithm for

enumerating incrementally the bitriangles of a bipartite graph based on the

DPP.



Chapter 5

Dynamic Pipeline Framework in

Haskell

The design and implementation of Haskell Dynamic Pipeline Framework (DPF-

Haskell) is a fundamental piece of the present work. A Dynamic Pipeline

Framework written in Haskell Programming Language which allow Haskell

users to implement any suitable algorithm for Dynamic Pipeline Paradigm.

During the process of conducting this research, we have implemented DPF-

Haskell [16] and publishes it into The Haskell Package Repository [17]. In this

chapter, we describe the design and implementation details of DPF-Haskell.

5.1 Framework Design

5.1.1 Background

A suitable framework should provide the user the right level of abstraction that

removes and hides underlying complexity, allowing the developer to focus on

the problem that needs to be solved. There are several design approximations

to implement a framework: i) Configuration Based where the user only focuses

on completing a specific configuration either on a file or a database or both.

Once this configuration is completed, the user provides it to the framework’s

runtime system in order to execute the program. An example of this could

be WordPress [43], ii) Convention over Configuration (CoC) where the user

writes his code and definition following certain patterns in naming or source

31
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code location. Using the source code and content-specific information, the

framework interprets the execution flow that needs to be executed. This

technique has been deeply explored in the last 10 years. One of the first

framework that introduce this design paradigm was Ruby on Rails [44]. Other

examples are Spring Boot and Cake PHP for example [45, 46], iii) Application

Programing Interface (API) where the framework or library provides a certain

amount of functionality implemented in terms of functions or interfaces, and

the user needs to compose those functions or implement those abstractions to

achieve the desired results. This has been the traditional design paradigm for

building any library or framework, and finally iv) Domain-specific Language

(DSL) [47] where the framework or library provides a new language that

represents the domain problem, encoding the solution in terms of that DSL

language. An example of this type of design is Hibernate Query Language [48]

.

There exists two types of Domain-specific Languages [49]: External Domain-

specific Language (DSL) and Embedded Domain-specific Language (EDSL).

The purpose of DSL, is to create a completely new language with its own

semantic, syntax, and interpreter. DSLs are not general-purpose languages,

because as their name indicates, they are domain-specific. EDSL are syntac-

tically embedded in the host language of the library, and the user writes in

that host language, but restricted by the EDSL abstractions. DPF-Haskell

follows a EDSL approach taking advantage of the strong type Haskell system

providing correctness at type-level [50].

5.1.2 Architectural Design

In this section we focus on the architectural design of the DPF-Haskell using

a EDSL approach. We have built a framework that contains three important

components: DSL, IDL and RS.

In Figure 5.1 we can appreciate the different components mentioned before

that are the grey boxes.

DSL The user interacts with the DSL component where defines how the

DPP flow should be. Defining the flow consists on to provide a type-level

specification about the channels that communicate each stage of the pipeline,
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Figure 5.1: This diagram shows the architectural design of DPF-Haskell.
DPF-Haskell is a DSL which is built on three main components: DSL,
IDL and RS. In the DSL we can see how the user can compose the main
stages of the DPP. IDL is showing how the frameworks is helping the user
to transform that definition into real function or computations. Finally
RS execute all that definition plus functions. Execution layer indicates an

example of a DPP running after being executed.

as well as the data types those channels carry. For example, in the case of

chapter 4 that we develop the WCC algorithm, the user knows stages Sr,

G, and Sk need to be connected with two channels. One of those channels is

carrying the edges – Edge data type – and the other the accumulated connected

components – ConnectedComp data type –.
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IDL Based on the definition provided in the DSL, the user interacts with

the IDL to build the functions with the algorithms needed for each stage: Sr,

G, Sk, F, and actors.

RS RS is fed with the DPP definition and the functions implementations to

finally execute the program.

5.2 Implementation

In this section, we describe the implementation details of each architectural

layer: DSL, IDL and RS. As we have explained in section 1.3, this library was

published on Hackage [16], the source code is open and can be found on this

Github Repository [51].

5.2.1 DSL Grammar

In order to provide correctness verification at compilation level, we define a

Context-Free Grammar (CFG) that generates a DPP DSL language. CFG

enables the user to define a DPP at type-level.

Definition 5.1 (DSL CFG). Lets Gdsl = (N,Σ, DB, P ) be a Context-Free

Grammar, such that N is the set of non-terminal symbols, Σ the set of ter-

minal symbols, DP ∈ N is the start symbol and P are the generation rules.

Figure 5.2 shows the formal definition of the grammar.
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N = {DP, Sr, Sk, G, Fb, CH,CHs},

Σ = {Source, Generator, Sink, FeedbackChannel, Type, Eof, :=>, :<+>},

P = {

DP → Sr :=> G :=> Sk | Sr :=> G :=> Fb :=> Sk,

Sr → Source CHs,

G→ Generator CHs,

Sk → Sink,

Fb → FeedbackChannelCH,

CHs → Channel CH,

CH → Type :<+> CH | Eof}

Figure 5.2: This is the Context-Free Grammar defined for the DSL. In
the first box we can see N which is the set of non-terminals symbols of the
Grammar. Σ which is the set of the terminal symbols and P the production

rules of the grammar.

For encoding Gdsl on the Haskell, we use an Index type [52] to keep track, at

type-level, of the extra information required by the DPP definition such as

channels and data types the channels carry.

1 data Source (a :: Type)

2 data Generator (a :: Type)

3 data Sink

4 data Eof

5 data Channel (a :: Type)

6 data FeedbackChannel (a :: Type)

Source Code 5.1: This code is showing most of the data types that rep-
resent the same terminal symbols Σ ∈ Gdsl. Those types that are indexed
by another kind Type, allows to store information at type-level needed for

interpret the DSL

In Source Code 5.1, there is an Index type for each element of Σ encoded in

Haskell Types. The highlighted lines in Source Code 5.1 shows the terminal

symbols Σ that are not indexed, because neither Sink nor Eof are carrying
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extra type-level information. In the case of Sink, since it is the last stage that

does not connect further with any other stage, we do not need to indicate

any channel information. Eof it is just a terminal type to disambiguate the

Channel (a :: Type) subtree for the full parser tree. Channel can carry

any type because it needs to be polymorphic to support a different number of

channels and data types.

1 data chann1 :<+> chann2 = chann1 :<+> chann2

2 deriving (Typeable, Eq, Show, Functor, Traversable, Foldable, Bounded)

3 infixr 5 :<+>

4

5 data a :=> b = a :=> b

6 deriving (Typeable, Eq, Show, Functor, Traversable, Foldable, Bounded)

7 infixr 5 :=>

Source Code 5.2: Special terminal symbols {:<+>, :=>} ∈ Σ. This ter-
minal symbols allows to index two types in order to combine several of

them and build a chain of stages (:=>) and a set of channels (:<+>).

There are two important terminal symbols in Σ: :=> and :<+>. In Source

Code 5.2, the definition shows how :=> and :<+> can combine 2 (two) types.

The propose of writing :=> and :<+> as types is to have a syntactic sugar

type combinator for writing the DSL according to the CFG. Apart from that,

they are different because two distinguishable terminal symbols Σ are needed

to separate the encoding of the pipeline stage (Sr, G, Sk) from the encoding of

channel composition in the same stage, as we can appreciate in Definition 5.1.

Now, we can start defining our pipelines at type-level. For example, if we

want to generate a DPP that eliminates duplicated elements in a stream, we

know that we only need one channel connecting the stages that carries out

the type of the element, in this case, Int (see Source Code 5.3).

1 type DPExample = Source (Channel (Int :<+> Eof))

2 :=> Generator (Channel (Int :<+> Eof))

3 :=> Sink

Source Code 5.3: This example shows the DSL encoding in DPP of
repeated elements problems
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5.2.2 DSL Validation

The language generated by the grammar needs to be validated to avoid errors

or provide an incorrect DPP definition. Fortunately, Haskell provides several

Type-level techniques [53] which allows to verify properties of programs before

running them, preventing the users to introduce bugs, reducing errors. This

verification done by the compiler establish a Curry-Howard Isomorphism [50],

i.e. Propositions as Types - Programs as Proof. It is important to remark

here that Haskell is not a theorem prover System like Coq [54], but some

verifications, as we present in this work, can be done with GHC to ensure

correctness on programs. Although Haskell provides tools to build advanced

type-level verifications, all these techniques require the addition of Haskell

Language Extensions.

Once we have the encoded DPP problem in the DSL grammar – see sub-

section 5.2.1 –, we can proceed on validating that encoded grammar. The

implementation of the validation of the DSL CFG at type-level, has been

done using Associated Type Families [55].
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1 type family And (a :: Bool) (b :: Bool) :: Bool where

2 And 'True 'True = 'True
3 And a b = 'False
4

5

6 type family IsDP (dpDefinition :: k) :: Bool where

7 IsDP (Source (Channel inToGen) :=> Generator (Channel genToOut) :=>

Sink)↪→

8 = And (IsDP (Source (Channel inToGen))) (IsDP (Generator (Channel

genToOut)))↪→

9 IsDP ( Source (Channel inToGen) :=> Generator (Channel genToOut) :=>

FeedbackChannel toSource :=> Sink)↪→

10 = And (IsDP (Source (Channel inToGen))) (IsDP (Generator (Channel

genToOut)))↪→

11 IsDP (Source (Channel (a :<+> more)))

12 = IsDP (Source (Channel more))

13 IsDP (Source (Channel Eof)) = 'True
14 IsDP (Generator (Channel (a :<+> more))) = IsDP (Generator (Channel

more))↪→

15 IsDP (Generator (Channel a)) = 'True
16 IsDP x = 'False
17

18 type family ValidDP (a :: Bool) :: Constraint where

19 ValidDP 'True = ()

20 ValidDP 'False = TypeError

21 ( 'Text "Invalid Semantic for Building DP Program"

22 ':$$: 'Text "Language Grammar:"

23 ':$$: 'Text "DP -> Source CHANS :=> Generator

CHANS :=> Sink"↪→

24 ':$$: 'Text "DP -> Source CHANS :=> Generator

CHANS :=> FEEDBACK :=> Sink"↪→

25 ':$$: 'Text "CHANS -> Channel CH"

26 ':$$: 'Text "FEEDBACK -> FeedbackChannel CH"

27 ':$$: 'Text "CH -> Type :<+> CH | Eof"

28 ':$$: 'Text "Example: 'Source (Channel (Int :<+>

Int)) :=> Generator (Channel (Int :<+> Int)) :=>

Sink'"
↪→

↪→

29 )

Source Code 5.4: Type Families And, IsDP and ValidDP which allows
to perform a type-level validation over a DSL CFG definition.

In Source Code 5.4, there are 3(three) Type families that helps to validate the

DSL CFG. IsDP associated type family is checking the production rules P of

the grammar defined in Figure 5.2, returning a promoted data type [56] (not

a boolean value) 'True in case the production rule matches all the generated
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language, or 'False otherwise. ValidDP is taking the result of IsDP type

application, associating 'True promoted boolean type to empty () constraint.

An empty constraint is an indication of nothing to be restricted, meaning that

if ValidDP is used as a constraint, and it is fully applied to (), it will give

the compiler the evidence that there is no error at type-level. ValidDP is also

associating 'False to a custom TypeError which will appear at compilation

time if the DPP DSL definition fully applies to that.

1 mkDP :: forall dpDefinition filterState filterParam st.

2 ( ValidDP (IsDP dpDefinition)

3 , DPConstraint dpDefinition filterState st filterParam)

4 => Stage (WithSource dpDefinition (DP st))

5 -> GeneratorStage dpDefinition filterState filterParam st

6 -> Stage (WithSink dpDefinition (DP st))

7 -> DP st ()

8 mkDP = ...

9

10 someFunc = mkDP @DPExample ...

Source Code 5.5: Definition of mkDP function of the Framework which
uses type-level validation of the grammar ValidDP (IsValid Type). Last
line of the code is showing that using that function will compile-time check

the definition of DPExample type.

5.2.3 Interpreter of DSL (IDL)

IDL component takes the DPP definition made on with DSL component to

interpret and generate the function definitions that the user needs to fill in

for solving a specific problem. In section 2.2, we have described what the

user needs to provide in a DPP algorithm: Sr, G, Sk, and the F with the

non-empty set of Actors. The IDL generates the function definitions with

an empty implementation to be completed by the user, ensuring that those

functions will give ”Proof” – in terms of Curry-Howard Correspondence [50]

– of the ”Propositions” defined on the DSL.

Similar techniques that we used on subsection 5.2.2 are also used here. On the

first hand, we use Type-level Defunctionalization [57, 58] to let the compiler

generates the signatures of the required functions. On the other hand, we

use Term-level Defunctionalization to interpret those functions. Moreover,
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Indexed Types [52] and Heterogeneous List [59] are used to keep track of the

dynamic number and polymorphic types of the functions parameters.

1 withSource :: forall (dpDefinition :: Type) st. WithSource dpDefinition (DP

st)↪→

2 -> Stage (WithSource dpDefinition (DP st))

3 withSource = mkStage' @(WithSource dpDefinition (DP st))

4

5 withGenerator :: forall (dpDefinition :: Type) (filter :: Type) st.

WithGenerator dpDefinition filter (DP st)↪→

6 -> Stage (WithGenerator dpDefinition filter (DP st))

7 withGenerator = mkStage' @(WithGenerator dpDefinition filter (DP st))

8

9 withSink :: forall (dpDefinition :: Type) st. WithSink dpDefinition (DP st)

10 -> Stage (WithSink dpDefinition (DP st))

11 withSink = mkStage' @(WithSink dpDefinition (DP st))

Source Code 5.6: This code is showing the different interpreters combi-
nators to help the user to generate the functions of the principal stages of

DPP

In Source Code 5.6 we can appreciate the different combinators of the IDL

that helps the user of the framework to interpret the DSL to generate the

function definitions. Stage data type will be cover in Source Code 5.8,

but it is a wrapper type of a pipeline stage – minimal unit of execution

–, containing the function to be executed – here is the use Term-level De-

functionalization –. withSource, withGenerator, and withSink are aliases

of the function mkStage' which is the combinator that is applying the As-

sociated Type related to that stage. For example withSource, is equiv-

alent to mkStage' @(WithSource dpDefinition (DP st)). For each As-

sociated Type Family defintion, there exist an equivalent term-level defini-

tion: WithSource type with withSource term , WithGenerator type with

withGenerator term, and WithSink type with withSink term – notice the

capital case letter ”W” indicating the type and not the term –.
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1 type family WithSource (dpDefinition :: Type) (monadicAction :: Type ->

Type) :: Type where↪→

2 WithSource (Source (Channel inToGen) :=> Generator (Channel genToOut) :=>

Sink) monadicAction↪→

3 = WithSource (ChanIn inToGen) monadicAction

4 WithSource (Source (Channel inToGen) :=> Generator (Channel genToOut) :=>

FeedbackChannel toSource :=> Sink) monadicAction↪→

5 = WithSource (ChanOutIn toSource inToGen) monadicAction

6 WithSource (ChanIn (dpDefinition :<+> more)) monadicAction

7 = WriteChannel dpDefinition -> WithSource (ChanIn more) monadicAction

8 WithSource (ChanIn Eof) monadicAction

9 = monadicAction ()

10 WithSource (ChanOutIn (dpDefinition :<+> more) ins) monadicAction

11 = ReadChannel dpDefinition -> WithSource (ChanOutIn more ins)

monadicAction↪→

12 WithSource (ChanOutIn Eof ins) monadicAction

13 = WithSource (ChanIn ins) monadicAction

14 WithSource dpDefinition _

15 = TypeError

16 ( 'Text "Invalid Semantic for Source Stage"

17 ':$$: 'Text "in the DP Definition '"
18 ':<>: 'ShowType dpDefinition

19 ':<>: 'Text "'"
20 ':$$: 'Text "Language Grammar:"

21 ':$$: 'Text "DP -> Source CHANS :=> Generator CHANS :=>

Sink"↪→

22 ':$$: 'Text "DP -> Source CHANS :=> Generator CHANS :=>

FEEDBACK :=> Sink"↪→

23 ':$$: 'Text "CHANS -> Channel CH"

24 ':$$: 'Text "FEEDBACK -> FeedbackChannel CH"

25 ':$$: 'Text "CH -> Type :<+> CH | Eof"

26 ':$$: 'Text "Example: 'Source (Channel (Int :<+> Int)) :=>

Generator (Channel (Int :<+> Int)) :=> Sink'"↪→

27 )

Source Code 5.7: An example of the Associated Type Family
WithSource that allows to implement Type-level Defunctionalization tech-

nique that will be the Type-level verification of the term withSource

In Source Code 5.7, in the highlighted lines, it can be seen how Type-level De-

functionalization is being expanded in a signature function definition with the

form WriteChannel a -> ReadChannel b -> ... -> monadicAction () de-

pending on DPP language definition.



Chapter 5 Dynamic Pipeline Framework in Haskell 42

1 data Stage a where

2 Stage :: Proxy a -> a -> Stage a

3

4 mkStage' :: forall a. a -> Stage a

5 mkStage' = Stage (Proxy @a)

Source Code 5.8: Stage data type for implementing Term-level Defunc-
tionalization providing evidence to the Type-Level Associated types

In Source Code 5.8, Stage data type uses a Proxy phantom type. This

phantom type allow Stage to index the type definition generated by a. For

example, in Source Code 5.6, when withSource interpreter is applied to

WithSource dpDefinition, the compiler is provided with dpDefinition DSL

type, it expands the function signature belonging to that DPP definition inside

the Stage.

Generator and Filter According to DPP definition in section 2.2, G has

a F template in order to know how to dynamically interpose a new F during

the runtime execution of the program. Let’s first study F Data Type in the

context of the framework.

1 newtype Actor dpDefinition filterState filterParam monadicAction =

2 Actor { unActor :: MonadState filterState monadicAction => Stage

(WithFilter dpDefinition filterParam monadicAction) }↪→

3

4 newtype Filter dpDefinition filterState filterParam st =

5 Filter { unFilter :: NonEmpty (Actor dpDefinition filterState

filterParam (StateT filterState (DP st))) }↪→

6 deriving Generic

Source Code 5.9: This code shows the definition of the Filter data
type which contains a non-empty set of Actor. The Actor data type is an
Stage in the Context of the MonadState to allow keeping a local memory

in the execution context of the filter.

In Source Code 5.9 the definition of the Filter data type contains a non-

empty set of Actor. An Actor is a Stage, because an actor is the minimal unit

of execution of a filter. A Filter has a NonEmpty Actor – Non-empty List –

because a filter is built by a sequence of actors calls. Moreover, Actor Stage is
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defunctionalized with WithFilter Associated Type Family. Filter runs in an

explicit StateT monadic context. This is because the F instance should have

an state, according to DPP definition in section 2.2. For example, in the case

of DPWCC, as we have seen in chapter 4, F keeps an updated list of connected

components that updates as long as it receives more edges that are connected

with the current list of vertices. Actor data type – see Source Code 5.9 –,

is constrained by MonadState which is in the same execution context of the

whole NonEmpty Actor list of the Filter. This means the StateT is executed

for each Actor of that filter, sharing the same state between them.

1 mkFilter :: forall dpDefinition filterState filterParam st. WithFilter

dpDefinition filterParam (StateT filterState (DP st))↪→

2 -> Filter dpDefinition filterState filterParam st

3 mkFilter = Filter . single

4

5 single :: forall dpDefinition filterState filterParam st. WithFilter

dpDefinition filterParam (StateT filterState (DP st))↪→

6 -> NonEmpty (Actor dpDefinition filterState filterParam (StateT

filterState (DP st)))↪→

7 single = one . actor

8

9 actor :: forall dpDefinition filterState filterParam st. WithFilter

dpDefinition filterParam (StateT filterState (DP st))↪→

10 -> Actor dpDefinition filterState filterParam (StateT filterState (DP

st))↪→

11 actor = Actor . mkStage' @(WithFilter dpDefinition filterParam (StateT

filterState (DP st)))↪→

12

13 (|>>>) :: forall dpDefinition filterState filterParam st. Actor

dpDefinition filterState filterParam (StateT filterState (DP st))↪→

14 -> Filter dpDefinition filterState filterParam st

15 -> Filter dpDefinition filterState filterParam st

16 (|>>>) a f = f & _Wrapped' %~ (a <|)

17 infixr 5 |>>>

18

19 (|>>) :: forall dpDefinition filterState filterParam st. Actor dpDefinition

filterState filterParam (StateT filterState (DP st))↪→

20 -> Actor dpDefinition filterState filterParam (StateT filterState (DP

st))↪→

21 -> Filter dpDefinition filterState filterParam st

22 (|>>) a1 a2 = Filter (a1 <|one a2)

23 infixr 5 |>>

Source Code 5.10: Combinators and small constructor to enable building
actors and filter.



Chapter 5 Dynamic Pipeline Framework in Haskell 44

Finally, in Source Code 5.10, some combinators and smart constructors are

provided in the framework to enable the construction of Filter and Actor.

mkFilter is a smart constructor for Filter Data Constructor. single wraps

one actor inside a Filter. actor is a smart constructor for Actor Data

Constructor. (|>>>) is an appending combinator of an Actor to a Filter.

(|>>>) also ensures actor execution order, i.e. the latest actor added is the

latest to be executed.

1 data GeneratorStage dpDefinition filterState filterParam st =

GeneratorStage↪→

2 { _gsGenerator :: Stage (WithGenerator dpDefinition (Filter

dpDefinition filterState filterParam st) (DP st))↪→

3 , _gsFilterTemplate :: Filter dpDefinition filterState filterParam st

4 }

Source Code 5.11: Generator Data type which contains the Stage code
of the generator itself, and the Filter template that it can be spawned by

the Generator.

In Source Code 5.11, G contains a F template and its own stage behavior.

Generator data type has a field with the Filter template that could be

spawned by the algorithm defined by the user according to the data received

from its input channels. Generator has also another field with the behavior

of the G – a Stage –.

5.2.4 Runtime System (RS)

The RS can be divided into two parts: the mechanism to generate stages

dynamically in runtime, and the execution entry point of the DPP. Regarding

execution entry point, all the stages that we have seen in previous sections

are the pieces needed to build an executable DP st a monad. This executable

monad has an existential type similar to ST monad to not escape out from the

context on different stages. Once the dynamic pipeline starts to execute, the

core of the framework dynamically generates stages between G and previous

stages, according to the user definition, i.e. an anamorphism [60] that creates

F instances until some condition is met.
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1 unfoldF :: forall dpDefinition readElem st filterState filterParam l.

SpawnFilterConstraint dpDefinition readElem st filterState filterParam

l

↪→

↪→

2 => UnFoldFilter dpDefinition readElem st filterState filterParam l

3 -> DP st (HList l)

4 unfoldF = loopSpawn

5

6 where

7 loopSpawn uf@UnFoldFilter{..} =

8 maybe (pure _ufRsChannels) (loopSpawn <=< doOnElem uf) =<< DP (pull

_ufReadChannel)↪→

9

10 doOnElem uf@UnFoldFilter{..} elem' = do

11 _ufOnElem elem'
12 if _ufSpawnIf elem'
13 then do

14 (reads', writes' :: HList l3) <- getFilterChannels <$> DP

(makeChansF @(ChansFilter dpDefinition))↪→

15 let hlist = elem' .*. _ufReadChannel .*. (_ufRsChannels

`hAppendList` writes')↪→

16 void $ runFilter _ufFilter (_ufInitState elem') hlist

(_ufReadChannel .*. (_ufRsChannels `hAppendList` writes'))↪→

17 return $ uf { _ufReadChannel = hHead reads', _ufRsChannels = hTail

reads' }↪→

18 else return uf

Source Code 5.12: unfolF is the anamorphism combinator to spawn
new Filter types between the Generator and previous stages.

In Source Code 5.12, it is presented how is the anamorphism mechanims that

generates dynamic stages between G and the previous stages. That anamor-

phism is implemented with the function unfoldF. That function receives an

UnFoldFilter Data type, which contains the recipe for controlling that un-

fold recursive call. In line 12, _ufSpawnIf field of UnFoldFilter, indicates

when to stop the recursion. Inside the conditional, in line 14, new channels

are created for the new filter to be spawned. Those new channels connect the

new filter with the previous stages and with Generator. After that, in line

16 runFilter starts the monadic computation, spawning the filter stage with

its actors. Finally, the new list of channels are returned for the next recursive

step to allow further channel connections.
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1 mkUnfoldFilter :: (readElem -> Bool)

2 -> (readElem -> DP st ())

3 -> Filter dpDefinition filterState filterParam st

4 -> (readElem -> filterState)

5 -> ReadChannel readElem

6 -> HList l

7 -> UnFoldFilter dpDefinition readElem st filterState filterParam l

8

9

10 mkUnfoldFilterForAll' :: (readElem -> DP st ())

11 -> Filter dpDefinition filterState filterParam st

12 -> (readElem -> filterState)

13 -> ReadChannel readElem

14 -> HList l

15 -> UnFoldFilter dpDefinition readElem st filterState

filterParam l↪→

16

17 mkUnfoldFilterForAll :: Filter dpDefinition filterState filterParam st

18 -> (readElem -> filterState)

19 -> ReadChannel readElem

20 -> HList l

21 -> UnFoldFilter dpDefinition readElem st filterState

filterParam l↪→

Source Code 5.13: Combinators for building UnfoldFilter types indi-
cating the type of the unfold that the user want to achieve.

Several smart constructors are also provided for building UnfoldFilter Data

Type. In Source Code 5.13 the first combinator is the default smart con-

structor. i) First field (readElem -> Bool) indicate if the a new filter should

be spawn or not. ii) Second field (readElem -> DP st ()) is a monadic

optional computation to do when received a new element, for example log-

ging. iii) Third field Filter data type to be spawned. iv) Fourth field

(readElem -> filterState) is initialization of the Filter State. v) Fifth

field (ReadChannel readElem) that feeds the filter instance. vi) Last field is

the Heterogeneous List with the rest of the channels to connect with other

stages. . The combinator mkUnfoldFilterForAll is an smart constructor of

UnfoldFilter that allows to spawn a new filter for each element received in

the G.
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5.3 Libraries and Tools

5.3.1 Parallelization

One of the most important components of the implementation is the selec-

tion of concurrency libraries to support an intensive parallelization workload.

Parallelization techniques and tools have been intensively studied and im-

plemented in Haskell [34]. Indeed, it is well known that green threads and

sparks allow spawning thousands to millions of parallel computations. These

parallel computations do not penalize performance when compare with Op-

erative System (OS) level threading [33]. A straightforward assumption to

achieve here, is to use monad-par library [34, 61]. Nevertheless, in this work,

we have discarded the use of sparks [62] because we can achieve the level of

required parallelism spawning green threads only. The next obvious choice is

to use forkIO :: IO () -> IO ThreadId from base library [63]. However,

that would imply handling all the threads lifecycles and errors programmat-

ically without any abstraction to facilitate that complex task. Therefore, we

choose async library [64] which enables to spawn asynchronous computations

[33] on Haskell using green threads, and at the same time, it provides useful

combinators to managing thread terminations and errors.

5.3.2 Channels

We have several techniques to our disposal to communicate between threads or

sparks in Haskell like MVar or concurrent safe mechanisms like Software Trans-

actional Memory (STM) [65]. At the same time, in Haskell library ecosystem,

we dispose of Channels abstractions based on both mentioned communica-

tion techniques. In that sense, for conducting the communication between

dynamic stages and data flowing in a DPP, we have selected unagi-chan li-

brary [66] which provides the following advantages to our solution: Firstly,

MVar channel without using STM reducing overhead. STM is not required

in a DPP because one specific stage which is running in a separated thread,

can only access to its I/O channels for reading/writing accordingly, and those

operations are not concurrently shared by other threads (stages) for the same

channels. Second, non-blocking channels. unagi-chan library contains block-

ing and non-blocking channels for reading. This aspect is key to gain speed
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up on the implementation. Third, the library is optimized for x86 architec-

tures with use of low-level fetch-and-add instructions. Finally, unagi-chan

is 100x faster [67] on Benchmarking compare with STM and default base Chan

implementations.

5.4 Chapter Summary

In this chapter, we have described with a great level of detail how Haskell

Dynamic Pipeline Framework has been conceived from a Design point of view,

as well as all the Haskell data types and language techniques that we use for

that implementation. At the end of the chapter, we have mentioned external

libraries used for the runtime system and the reason for their choice.



Chapter 6

An algorithm for incrementally

enumerating Bitriangles using

DP

In this chapter, we first give the foundation to define and implement an al-

gorithm for incrementally enumerating bitriangles in a large bipartite graph.

Then, we introduce an algorithm based on the DPP. In particular, we present

the pseudo-code of the stages of the proposed DPBT. Finally, we provide a

proof of correctness of our proposal and the main details of the implementation

of the DPBT using the DP-BT-Haskell.

6.1 Preliminaries Definitions

In order to understand how the algorithm works, we need to provide some

basic definitions, and define other small structural units that we use for giving

a solution to the problem. Let’s enumerate all those definitions in the following

paragraphs.

Definition 6.1 (Bipartite Graph). A Bipartite Graph (BG) is an undirected

graph G = (V,E) such that V = (U ∪ L), U ∩ L = ∅ and E ⊆ U × L.

Additionally, without loss of generality, we assume that U ⊆ N and L ⊆ N.

Consequently, (U,<) and (L,<) are strict total orders. We can see an example

of a BG in Figure 6.1.

49
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1 3 5 7 9 11

a b c d e

Figure 6.1: A bipartite graph in which five bitriangles can be enumerated

Identifying the different bitriangles in the graph in Figure 6.1 can be done

manually. In what follows, we use this graph to illustrate the new definitions.

This small example allows us to realize that identifying and listing bitriangles

in large graphs is a challenging task.

Definition 6.2 (Bitriangle). Let the triples µ = (u1, u2, u3) and ` = (l1, l2, l3)

on U and L, respectively, i.e. {u1, u2, u3} ⊆ U , {l1, l2, l3} ⊆ L. The 6-

cycle (u1, l1, u2, l3, u3, l2, u1) is a Bitriangle (BT) in G, denoted by BT µ` =

BT
(u1,u2,u3)
(l1,l2,l3)

.

1 3 5

a b c

(a) BT (1, a, 3, c, 5, b, 1)

1 7 5

a b c

(b) BT (1, a, 7, c, 5, b, 1)

Figure 6.2: Bitriangles of the triple (a, b, c) combined with vertices from
U {1, 3, 5, 7} of Figure 6.1. In this case two bitriangles have been built from

the Figure 6.6

A bitriangle (u1, l1, u2, l3, u3, l2, u1) admits different ways of traversing it de-

pending on the vertex where the traversal starts. This fact gives rise to dif-

ferent feasible permutations of its representation as a 6-cycle. For example in

the Figure 6.2 the bitriangle (1, a, 3, c, 5, b, 1), can also be traverse using the

permutations (a, 1, b, 5, c, 3, a), (5, c, 3, a, 1, b, 5), . . . , and so on. Notice that

all these feasible permutations guarantee the bitriangle condition of vertices

intercalation from U and L.

Definition 6.3 (Wedge (WG)). A Wedge (WG) in G is a triple (u1, l, u2),

{u1, u2} ⊆ U , l ∈ L and {(u1, l), (u2, l)} ⊆ E. The vertex l is the middle

vertex of the wedge.

With this definition in place, we can now define an aggregated wedge, which

is a compressed form of all the wedges having l ∈ L as a middle vertex.
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Definition 6.4 (Aggregated Wedge (AW)). An Aggregated Wedge (AW) is a

pair 〈l,Wl〉, where l ∈ L, Wl ⊆ U and for all u ∈ Wl, the edge (u, l) ∈ E.

1 3 7

a

(a) This is the AW
〈a, {1, 3, 7}〉, the compact

representation of wedges

1 5

b

(b) This is the AW
〈b, {1, 5}〉, the compact

representation of wedges

1 3 5 7 9

c

(c) This is the AW
〈c, {1, 3, 5, 7, 9}〉, the
compact representation of

wedges

Figure 6.3: Aggregated Wedge of nodes a, b, c of Figure 6.1

In Figure 6.3, we are only enumerating the first three lower layer vertices

AW. Next, we define a more refined structure that will allow us to enrich the

AW in order to lead us to a BT. That intermediate structure is an aggregated

double-wedge. For defining ADW we first need another structure called double-

wedge. Intuitively, a double-wedge, is similar to a WG and AW but relating

two vertices in the lower layer L.

Definition 6.5 (Double-wedge (DW)). A Double-wedge (DW) in G is a path

of length 4 (u1, l1, u2, l2, u3) where {u1, u2, u3} ⊆ U and {l1, l2} ⊆ L. Vertices

l1 and l2 are the middle vertices of DW.

u1 u2 u3

ll lu

(a) A double-wedge (u1, ll, u2, lu, u3)

u1 u3

lm

(b) A connector wedge (u1, lm, u3) with mid-
dle vertex lm

u1 u2 u3

ll lm lu

(c) A bitriangle formed by double-wedge (u1, ll, u2, lu, u3) and connector wedge (u1, lm, u3)

Figure 6.4: Example on how to build a bitriangle from a double-wege plus
a wedge connector

In Figure 6.4 the wedge (u1, lm, u3), is called the connector wedge. This connec-

tor wedge together with the double-wedge (u1, ll, u2, lu, u3) form a a bitriangle.
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Definition 6.6 (Aggregated double-wedge (ADW)). Let Ul = 〈I, J,K〉 be a

triplet such that I ⊆ U, J ⊆ U and K ⊆ U , where I, J and K are disjoint sets.

An Aggregated double-wedge (ADW) is a pair 〈(l1, l2), Ul〉, where {l1, l2} ⊆ L

and for all ui ∈ I, uj ∈ J and uk ∈ K, {(ui, l1), (uj, l1), (uj, l2), (uk, l2)} ∈ E.

1 3 7 5 9

a c

J K

Figure 6.5: Aggregated double-wedge 〈(a, c), 〈∅, {1, 3, 7}, {5, 9}〉〉 of Fig-
ure 6.1. Upper layer nodes 1, 3, 7 and 5, 9 are enclosed in a square indicating
the set that they belong to. Remember in Definition 6.6 we are forming
three sets Ul = 〈I, J,K〉. I = ∅ in this case because they should be disjoint

sets and a and c share the same upper layer nodes in J .

In Figure 6.5 we can see the ADW built by a and c where, according to

Definition 6.6, a = l1 and c = l2. The last aggregated structure that enable

the algorithm to build a BT is the Aggregated Bitriangle. Intuitively, this

intermediate structure is an aggregation of a ADW with another new AW

related with the former structure.

Definition 6.7 (Aggregated wedge BT-Connector (AW-BT)). Let 〈(l1, l2), Ul〉
be an ADW, where {l1, l2} ⊆ L and Ul = 〈I, J,K〉. An AW 〈l,Wl〉 is an

Aggregated wedge BT-Connector (AW-BT) if and only if l > l1 and l < l2 and

Wl ∩ (I ∪ J) 6= ∅ and Wl ∩ (K ∪ J) 6= ∅

Definition 6.8 (Aggregated Bitriangle (ABT)). Let Ûl = 〈I, J,K〉, such that

I ⊆ U, J ⊆ U,K ⊆ U . An Aggregated Bitriangle (ABT) is a pair 〈`, Ûl〉,
where ` = (l1, l2, l3) is a triple on L, l1 < l2 < l3 and for all 〈I, J,K〉 and for

all µ = (ui, uj, uk) such that ui ∈ I, uj ∈ J, uk ∈ K, BT µ` ∈ BT.

As we can see in Figure 6.6, we have all the structures at our disposal to build

a BT. In Figure 6.2, the two possible BT can be extracted from the ABT

presented in Figure 6.6 are (1, a, 3, c, 5, b, 1) and (1, a, 7, c, 5, b, 1).

IEBT will allow to enumerate BT according to some locality criteria. In this

regards, we next define the query operators to be used for that purpose.

Definition 6.9 (Query Operator (QO)). a Query Operator Q is a value from

the sum type P(U +L)+P(E) producing as a result a possible set of BT that

include any of the vertices or edges given in Q.
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1 1 3 7 1 5

a b c

I J K

Figure 6.6: Aggregated wedge BT-Connector 〈b, {1, 5}〉 connects to Ag-
gregated double-wedge 〈(a, c), 〈∅, {1, 3, 7}, {5, 9}〉〉 of Figure 6.1, construct-
ing the Aggregated Bitriangle 〈(a, b, c), 〈{1}, {1, 3, 7}, {1, 5}〉〉. Note that
Û(a,b,c) = {I, J,K} does not contains disjoint sets according to Defini-

tion 6.8.

In Table 6.1, we present a summary of the notation used in this chapter.

Notation Meaning
G = ((U ∪ L), E) a bipartite graph

n,m the number of vertices and edges in G, resp.
(u, l) an edge between vertices u and l

(u1, l, u2) a wedge with middle vertex l
〈l,Wl〉 an AW
AW the set of all the possible AW in G

(u1, l1, u2, l2, u3) a DW with middle vertices l1 and l2
〈(l1, l2), Ul〉 an ADW

DW the set of all the possible ADW in G
dw Subset of DW, such that dw ⊆ DW〈

(l1, l2, l3), Ûl

〉
an ABT

AT the set of all the possible ABT in G
at Subset of AT, such that at ⊆ AT

BT
(u1,u2,u3)
(l1,l2,l3)

the BT u1, l1, u2, l3, u3, l2, u1
BT the set of all the possible BT in G
bt Subset of BT, such that bt ⊆ BT
P Parts of set

Table 6.1: This table summarizes all the different object definitions that
we have detailed in section 6.1. The first column describe the formal term
used in the definitions on section 6.1. The second column summarize the

meaning of each term
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6.2 Algorithm Sketch

The algorithm for enumerating incrementally bitriangles in a large bipartite

graph consists in two main phases. During the first phase, the bipartite net-

work is received by the DPBT as a stream of edges and a graph index structure

is created. This graph index is represented by the different structures stored

along the filters stages of the DPBT. This first phase is in charge of con-

structing the compressed structures double wedge, aggregated double-wedge,

and finally aggregated bitriangles. The second phase is a querying phase. Dur-

ing the querying phase local queries can be submitted to the DPBT. When a

query arrives to the DPBT, the enumeration incremental of bitriangles process

–according to the criteria in the submitted queries– is launched. In this phase,

enumerated bitriangles are extracted from the different aggregated bitriangles

occurring in the graph index, i.e. the aggregated bitriangles stored in filter

stages. More concretely, the Dynamic Pipeline Algorithm for Enumerating

Bitriangles (DPBT) is defined in terms of the behavior of its four kinds stages:

Source (SrBT), Generator (GBT), Sink (SkBT), and Filter(FBT) stages. The

algorithm considers a Bitriangle as a convenient composition of three wedges

as we can see the example in Figure 1.1a. In order to reduce memory foot-

print, the algorithm aggregates results, i.e. the set of wedges having the same

middle vertex is represented as a pair 〈l,Wl〉 where l is the middle vertex and

Wl is the set of adjacent vertices of l called Aggregated Wedge (AW) (see

Definition 6.4). The algorithm first collects AW for every vertex in the L

set of the graph. Afterwards it constructs Aggregated double-wedge (ADW)

for every pair of distinct vertices, Finally constructs ABT for selected triples

of vertices. The following Table 6.2 describes the different channels that are

connecting the stages in DPBT.

The setup of DPBT can be appreciated in Figure 6.7. SrBT reads from input

stream all (u, l) ∈ E and transfers to the following stage each (u, l) using CE.

For every (u, l) that arrives to GBT, a new FBT instance with parameter l ∈ L is

spawn. FBT contains four actors. First, actor1 receives from ICE the edges and

builds aggregated wedges, when there are no more edges it downstreams it to

it’s neighbour FBT using OCW1. Then actor2 receives from ICW1 aggregated

wedges from previous FBT, downstream to next FBT and GBT using OCW1 and

at the same time use its information to see if it can build an aggregated double-

wedge. If an aggregated double-wedge could be constructed, it will be stored
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Channel Meaning
C = 〈IC,OC〉 A Channel pair that connects input and output channel
OC Set of Output Channels
CE Channel of e ∈ E
ICE Input Channels carrying e ∈ E
OCE Output Channels carrying e ∈ E
CWl1 Channel of AW
ICWl1 Input Channels carrying AW
OCWl1 Output Channels carrying AW
CWl2 Channel of AW
ICWl2 Input Channels carrying AW
OCWl2 Output Channels carrying AW
CQ Channel of QO
ICQ Input Channels carrying QO
OCQ Output Channels carrying QO
CBT Channel of BT
ICBT Input Channels carrying BT
OCBT Output Channels carrying BT

Table 6.2: Summary of Channels used in DP-BT-Haskell. The subindex
on the Channel name indicates the element type this channel is carrying,
either producing or consuming. Channels prefixed with C are a generic form
of denominating a channel independently of it is a producing or consuming.
Channels prefixed with IC are Input Channels or Consumers. Channels

prefixed with OC are Output Channels or Producers.

in the filter state. The need of bypassing all the aggregated wedges up to GBT

is for retro feeding all the pipeline with all the aggregated wedges a second

time, in order to find an Aggregated wedge BT-Connector (AW-BT) as we

defined in Definition 6.7. From retro feeding channel ICW2, actor3 receives all

the AW and builds ABT storing them in ST . Q Commands are downstream

from SrBT to actor4 using channel ICQ. actor4 receives all the commands, and

for each of them, if there is match according to Definition 6.9, it enumerates

those BT extracted from ST and downstream to SkBT through OCBT .

6.3 Dynamic Pipeline for Enumerating Bitri-

angles

In this section, we present all the pseudo-code definitions of each of the stages

described in section 6.2. In spite of this work has been implemented using
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SrBT

eof . . . (u, l)

eof . . . {u1, . . . , ln}

GBT SkBT

FBT

Filter

CE

CWl2

CBT

Figure 6.7: Example of an initial setup of DPBT. The text between
dotted lines indicates the incoming data from an external source such as a
file, socket, or any other. There are two incoming sources because one of
them is carrying the edges and the other the commands QO. Thick black
double lines at the most right indicate the output targe that can be file,
socket, screen, or any other. There is no data there because it is the initial
step of DP-BT-Haskell. At this initial step only SrBT, GBT, and SkBT are

set up with initial channels.

Haskell, and in particular DPF-Haskell, the pseudo-code algorithms presented

here are language independent. Before starting with the details, we introduce

in Table 6.3 auxiliary functions that we use in the pseudo-code to help under-

standing better the desired behavior of the algorithm.

Function Meaning
spawn(F, l, ST ) Spawn new filter instance with parameters F , l ∈ L

and ST as the State of the Filter
killFilter Kill this filter instance because PostCondition is not

satisfied
filterIsDead State after calling killFilter on filter. Indicates if

Filter is die or not. If it is dead, this filter instance
does not participate anymore in the pipeline streaming
processor

getState Get Current State ST for Filter Instance
updateState(ST ) Update Current State ST for Filter Instance
push(v, OCx) push some value v to some Output Channel OCx
matchQ(Q,BT ) Check if a QO Q produces BT

Table 6.3: This table shows some auxiliary functions that are used to
help understanding the pseudo-code general behavior. Depending on the
language implementation chosen these functions might not exists at all, but
we generalize here in order to describe a pseudo-code language-independent.
For example in our Haskell implementation there is not killFilter because

functions in Haskell clean after execution finish automatically by GHC
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[A1]: Source (SrBT): It process all the edges from the file or input channel
IOE and send to the following stages. It also receives from ICWl2 all the
feedback AW that is sending back the GBT. At the end it process also from
other File or Input stream the Query Command Q to be sent to th filters

Input Data : IOE: File or Input Stream with Set of Edges E
Input Commands: IOQ: File or Input Stream with Query Operator Q
Input Channels : IC = 〈ICWl2〉
Output Channels : OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉

1 forall (u, l) ∈ IOE do // Edges to Generator/Filter

2 push((u, l), OCE)
3 end
4 forall 〈l,Wl〉 ∈ ICWl2 do // Feedback from Generator to Filter

5 push(〈l,Wl〉 , OCWl2)
6 end
7 forall Q ∈ IOQ do // Send Query Commands

8 push(Q,OCQ)
9 end

Source SrBT In algorithm [A1] we can see in line 2 how the edges arriving

from the input stream of the graph are downstream to the pipeline. Another

important part as well is line 5, the SrBT is retro feed with AW stream that is

generated during pipeline execution. This is important to finally build the BT

as we have describe in section 6.2. Finally, line 8 shows how all the queries

are downstream as well.

[A2]: Generator (GBT): For each edge (u, l) it receives from previous
stage, it spawn a new filter using l as parameter of the Filter and {u}
as the state. It also receives all the AW that previous filters built and
sends back to SrBT. Finally it sends to the SkBT the BT matched by filters
according to Command Query Q

Parameter : F
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCWl2, OCBT 〉

1 forall (u, l) ∈ ICE do
2 spawn(F, l, 〈l, {u}〉)
3 end
4 forall 〈l,Wl〉 ∈ ICWl1 do // Feedback channel to retrofit Source

5 push(〈l,Wl〉 , OCWl2)
6 end

7 forall BT
(u1,u2,u3)
(l1,l2,l3)

∈ ICBT do

8 push(BT
(u1,u2,u3)
(l1,l2,l3)

, OCBT )

9 end
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SrBT

eof . . . (u, l)

eof . . . {u1, . . . , ln}

〈l, {u}〉

Fl

GBT SkBT

FBT

Filter

CE

CWl1

CWl2

CQ

CBT

CE

CWl1

CWl2

CQ

CBT

CWl2

CBT

Figure 6.8: This is the evolving state of the DPBT shows in Figure 6.7.
This image is showing what happen when a FBT is spawned. We can see
how all the channels are set up in the middle of the spawned FBT and also

between FBT and GBT.

Generator GBT GBT also have three main loops. In line 2 it receives each

edge (u, l) not consumed by any already spawn FBT, and spawns a new FBT

using l ∈ L as filter parameter and initializing ST = 〈l, {u}〉 as it can be

seen in Figure 6.8. Spawn assumes that, the implementation will connect the

channels to keep the downstream correct. Defines all the input channels of

GBT as input channels of the newly spawn FBT and set FBT’s output channels

as GBT input channels. In line 5 we can see how the algorithm is receiving and

retro feeding SrBT with all the AW produced by the FBT . This also assumes

that OCW2 in GBT is connected with ICW2 in SrBT. Finally, line 8 sends all

the results that Q matches in the different filters to SkBT.

[A3]: Sink (SkBT): It receives BT from GBT and send to the File or Output
Stream
Output : IOBT : File or Output Stream with BT
Input Channels: IC = 〈ICBT 〉

1 forall BT
(u1,u2,u3)
(l1,l2,l3)

∈ ICBT do // Read Results and put in IOBT

2 put(BT
(u1,u2,u3)
(l1,l2,l3)

, IOBT )

3 end

Sink SkBT In algorithm [A3] shows a simple stage that receives all results

and sends them to some output handler (file, standard output, etc.).
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[A4]: Filter (FBT): Call sequentially to all the actors in this filter

Filter Parameter : l ∈ L
Filter State : ST = AW + P(DW) + P(AT)
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉

1 def filter():
2 actor1()
3 actor2()
4 actor3()
5 actor4()

6 end

Filter FBT In algorithm [A4] we can see the simple call sequence over all

the actor functions of the filter template. The values stored in the state of the

filter with parameter l are of the sum type ST = AW + P(DW) + P(AT).

[A5]: Actor1 (actor1): Build a set of aggregated wedges. This is, Wl ⊆ U
adjacent to l Filter parameter. For each received edge (u′, l′) which l 6= l′

by pass the edge to next filters. It updates the State of the filter with Wl

if it could build a Wl with more than 1 vertex in U .
Parameter : l ∈ L
ST : 〈l,Wl〉
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉
Post-Cond : |Wl| > 1 ∨ filterIsDead

1 def actor1():
2 〈l,Wl〉 ← getState

3 forall (u′, l′) ∈ ICE do
4 if l = l′ then
5 Wl ← Wl ∪ {u′}
6 else
7 push((u′, l′), OCE)
8 end

9 end
10 if |Wl| > 1 then
11 updateState(〈l,Wl〉)
12 push(〈l,Wl〉 , OCWl1)

13 else
14 killFilter

15 end

16 end
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Filter-actor1 actor1 receives all edges not consumed by previous FBT. If the

received edge (u′, l′) is incident to l i.e. l = l′, then u′ will be added to the

list of AW. Otherwise the edge is downstream to the next stage. In line 11

the state is updated and AW downstream, if and only if at least 1 wedge

was collected. Otherwise, the filter is marked as dead using the killFilter

function.

Filter-actor2 In algorithm [A6] ADW is built. Following that idea and ac-

cording to the Definition 6.6, this algorithm will collect all the AW from

previous filters if an only if the condition in line 6 is met. Note that the two

AW, Wl and W ′
l have different vertices from the set L. Wl intersection check

is mandatory since if AW are disjoint, we cannot aggregate them. After this

checking from line 13 to line 15, the algorithm builds three disjoint Sets to

separate upper edges in three subsets; those which are incident only of l and

l′ which are I and K and those that are shared by both lower layer vertices.

This can be appreciated in Figure 6.5. Once ADW is built ST = dw updating

the state for the next actor3.

Filter-actor3 actor3 focuses on treating elements from feedback channel ICW2

which is going to downstream all the AW of all filters. This is because in or-

der to build ABT finding all the possibles AW-BT. This is what is doing

algorithm [A7] according to definition Definition 6.7 and Definition 6.8. If

that can be achieved, algorithm sets ST = at and actor4 can be executed.

Filter-actor4 Once the execution reaches actor4, it is ready for processing Q

Query Operator. Since we have a compressed representation of BT, which is a

similar idea exposed here [29], we need to enumerate incrementally all the BT

present in the compressed format and filter the ones that match the command.

The matches proceeds in the following manner. Given a ABT with the form〈
`, Ûl

〉
, such that ` = (l1, l2, l3) and Ûl = 〈I, J,K〉, where I ⊆ U, J ⊆ U,K ⊆

U , if the QO contains a command with vertices, those vertices are searched

in ` and Ûl. There are two posibilities. On the first case, if any of those

vertices that belongs to Q matches `, then forall ui ∈ I, uj ∈ J, uk ∈ K where

ui 6= uj 6= uk, a BT is built using a 6-cycle (ui, l1, uj, l3, uk, l2, ui) path. On

the second case, if any of those vertices that belongs to Q matches on some

vertex in Ûl, build only the BT in which 6-cycle (ui, l1, uj, l3, uk, l2, ui) path
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[A6]: Actor2 (actor2): Receiving all aggregated wedges from previ-
ous filters, build a set of all possible aggregated double-wedges dw =
{〈(l, l′), Ul〉}, dw ⊆ DW, which first component l is smallest between the
Parameter of the Filter and the vertices from the incoming wedges. At the
end, it updates the State of the filter with dw if dw 6= ∅
Parameter : l ∈ L
ST : 〈l,Wl〉
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉
Pre-Cond : Wl ⊆ U, |Wl| > 1
Post-Cond : |dw| ≥ 1 ∨ filterIsDead

1 def actor2():
2 〈l,Wl〉 ← getState

3 forall 〈l′,W ′
l 〉 ∈ ICWl1 do

4 // Send Wedge from previous filters to next one

push(〈l′,Wl〉 , OCWl1)
5 dw← ∅
6 if W ′

l ∩Wl 6= ∅ then
7 (ll, lu)← (arg minl,l′ , arg maxl,l′)

8 if l < l′ then
9 (Wll ,Wlu)← (Wl,W

′
l )

10 else
11 (Wll ,Wlu)← (W ′

l ,Wl)
12 end
13 I ← Wll \Wlu

14 J ← Wll ∩Wlu

15 K ← Wlu \Wll

16 Ul ← 〈I, J,K〉
17 dw← dw ∪ {〈(ll, lu), Ul〉}
18 end

19 end
20 if dw = ∅ then
21 killFilter

22 else
23 updateState(dw)
24 end

25 end

contains that vertex in Q. Using the same construction process a BT is built

if QO contains a command with edges and any of those edges matches with

any of the possible BT 6-cycle path.
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[A7]: Actor3 (actor3): Receiving all aggregated wedges that came from
feedback channel, build a Set of all possible Aggregated bitriangles at =
{〈(ll, lm, lu), Ul〉}, at ⊆ AT, , such that l = ll ∨ l = lu, where l is the Filter
Parameter and lm is the middle vertex of the incoming wedge. At the end,
it updates the State of the filter with at if at 6= ∅
Parameter : l ∈ L
ST : dw ⊆ DW
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉
Pre-Cond : |dw| ≥ 1
Post-Cond : |at| ≥ 1 ∨ filterIsDead

1 def actor3():
2 dw← getState

3 at← ∅
4 forall 〈l′,Wl〉 ∈ ICWl2 do
5 // By pass to be used by following Filters

push(〈l′,Wl〉 , OCWl2)
6 // For each double wedge in State

7 foreach 〈(ll, lu), 〈I, J,K〉〉 ∈ dw, ll < l′ ∧ lu > l′ do
8 I ′ ← I ∪ J
9 K ′ ← K ∪ J

10 if Wl ∩ I ′ 6= ∅ ∧Wl ∩K ′ 6= ∅ then
11 I ′ ← I ′ ∩Wl

12 K ′ ← K ′ ∩Wl

13 Ûl ← 〈I ′, J,K ′〉
14 at← at ∪

{〈
(ll, l

′, lu), Ûl

〉}
15 end

16 end

17 end
18 if at = ∅ then
19 killFilter

20 else
21 updateState(at)
22 end

23 end

The following pseudo-code definitions on algorithm [A9] and algorithm [A10]

are auxiliary functions that are called from actor4 if Q pattern match either

with P(U + L) or P(E).
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[A8]: Actor4 (actor4): Receives all the Query Operator Q that arrives
from channel ICQ. For each QO Q it builds the bitriangles from at ⊆ at
according to the query, and downstream to channel OCBT to be processed
by the Sink

Parameter : l ∈ L
ST : at ⊆ AT
Input Channels : IC = 〈ICE, ICWl1, ICWl2, ICQ, ICBT 〉
Output Channels: OC = 〈OCE, OCWl1, OCWl2, OCQ, OCBT 〉
Pre-Cond : |at| ≥ 1

1 def actor4():
2 at← getState

3 forall Q ∈ ICQ do
4 foreach 〈(ll, lm, lu), 〈I, J,K〉〉 ∈ at do
5 switch Q do
6 case P(U + L) do
7 if

P(U +L)∩{ll, lm, lu} 6= ∅∨P(U +L)∩ (I ∪J ∪K) 6= ∅
then

8 bt←
buildBtVertex(〈(ll, lm, lu), 〈I, J,K〉〉),P(U + L))

9 forall BT
(u1,u2,u3)
(l1,l2,l3)

∈ bt do

10 push(BT
(u1,u2,u3)
(l1,l2,l3)

, OCBT )

11 end

12 end

13 end
14 case P(E) do
15 foreach (u, l) ∈ P(E) do
16 if (l = ll ∨ l = lm ∨ l = lu) ∧ u ∈ (I ∪ J ∪K) then
17 bt← buildBtEdge(〈(ll, lm, lu), 〈I, J,K〉〉), (u, l))
18 forall BT

(u1,u2,u3)
(l1,l2,l3)

∈ bt do

19 push(BT
(u1,u2,u3)
(l1,l2,l3)

, OCBT )

20 end

21 end

22 end

23 end

24 end

25 end

26 end

27 end
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[A9]: Function buildBtVertex: Given a Set of Vertex in P(U+L), if any
of those vertices matches with some vertex in the parameter of the function
〈(ll, lm, lu), 〈I, J,K〉〉, build the set of bitriangles that matches that query

Input : 〈(ll, lm, lu), 〈I, J,K〉〉 ∈ at, at ⊆ AT
Input : P(U + L)
Output: bt ⊆ BT or ∅ if cannot build any bt

1 def buildBtVertex(〈(ll, lm, lu), 〈I, J,K〉〉, P(U + L)):
2 bt← ∅
3 if P(U + L) ∩ {ll, lm, lu} then
4 // If it is in lower i need to build all for this lower

triplet

5 foreach i ∈ I do
6 foreach j ∈ J, j 6= i do
7 foreach k ∈ K, k 6= i ∧ k 6= j do

8 bt← bt ∪ {BT (i,j,k)
(ll,lm,lu)

}
9 end

10 end

11 end

12 else
13 // Otherwise just build those that are in the this

upper v
14 foreach i ∈ I do
15 foreach j ∈ J, j 6= i do
16 foreach k ∈ K, k 6= i∧ k 6= j ∧ (P(U +L)∩ {i, j, k} 6= ∅ do

17 bt← bt ∪ {BT (i,j,k)
(ll,lm,lu)

}
18 end

19 end

20 end

21 end
22 return bt

23 end
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[A10]: Function buildBtEdge: Given a Set of Edges in P(E), if any
of those edges matches with some edge in the parameter of the function
〈(ll, lm, lu), 〈I, J,K〉〉, build the set of bitriangles that matches that query

Input : 〈(ll, lm, lu), 〈I, J,K〉〉 ∈ at, at ⊆ AT
Input : (u, l)
Output: bt ⊆ BT or ∅ if cannot build any bt

1 def buildBtEdge(〈(ll, lm, lu), 〈I, J,K〉〉, P(U + L)):
2 bt← ∅
3 foreach i ∈ I do
4 foreach j ∈ J, j 6= i do
5 foreach

k ∈ K, k 6= i ∧ k 6= j ∧ hasEdge((u, l), (ll, lm, lu), (i, j, k)) do

6 bt← bt ∪ {BT (i,j,k)
(ll,lm,lu)

}
7 end

8 end

9 end
10 return bt

11 end
12 def hasEdge((u, l), (ll, lm, lu), (i, j, k)):
13 if (u, l) = (ll, i) ∨ (u, l) = (ll, j) ∨ (u, l) = (lu, j) ∨ (u, l) =

(lu, k) ∨ (u, l) = (lm, i) ∨ (u, l) = (lm, k) then
14 return True
15 end
16 else
17 return False
18 end

19 end
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6.4 Correctness of the Algorithm

Given a bipartite graph G we prove the algorithm enumerates all the bitri-

angles in G without duplicating them. First, we prove that if BT
{u1,u2,u3}
{l1,l2,l3} =

(u1, l1, u2, l3, u3, l2, u1) is a bitriangle occurring in G, then only one of the fea-

sible permutations of this 6-cycle is contained in an aggregated bitriangle of

AT (Theorem 6.10). Second, we prove that all the bitriangles occuring in G

are contained in an aggregate bitriangles of AT (Theorem 6.11).

Theorem 6.10 (Uniqueness). Given a bipartite graph G = ((U ∪ L), E),

∀bt ∈ BT IEBT stores bt in an at ∈ AT only once.

Proof. Let bt ∈ BT, bt = (u1, l1, u2, l3, u3, l2, u1). Let us suppose that IEBT

stores two different feasible permutations of bt, bt1 = (u′1, l
′
1, u

′
2, l

′
3, u

′
3, l

′
2, u

′
1)

and bt2 = (u′′1, l
′′
1 , u

′′
2, l

′′
3 , u

′′
3, l

′′
2 , u

′′
1) in some aggregated bitriangles. By Defi-

nition 6.8 and actor3 line 7, l′1 < l′2 < l′3 and l′′1 < l′′2 < l′′3 . The fact that

bt1 6= bt2 implies that (l′1, l
′
2, l

′
3) 6= (l′′1 , l

′′
2 , l

′′
3). This means that (l′1, l

′
2, l

′
3) is a

permutation of (l′′1 , l
′′
2 , l

′′
3) (and viceversa). Thus, because of the strict order

defined on L, just one, either l′1 < l′2 < l′3 or l′′1 < l′′2 < l′′3 holds. Therefore,

only one of the triples (l′1, l
′
2, l

′
3) or (l′′1 , l

′′
2 , l

′′
3) is used in lines 7–16 in actor3 to

include bt = (u1, l1, u2, l3, u3, l2, u1) in an aggregated bitriangle

Theorem 6.11. Given a bipartite graph G, if the bitriangle bt = (u1, l1, u2, l3,

u3, l2, u1) ∈ BT, then bt can be enumerated.

Proof. We proceed in a constructive way. Let bt = (u1, l1, u2, l3, u3, l2, u1) ∈
BT. When actor1 running in a filter SF with parameter l1, Fl1 , ends reading

all the edges, the state of Fl1 = 〈l1,Wl1〉 and {u1, u2} ⊆ Wl1 . Similarly, when

actor1 running in filter Fl3 ends reading all the edges, Fl3 = 〈l3,Wl3〉 and

{u2, u3} ⊆ Wl3 . This is, wedges (u1, l1, u2) and (u2, l3, u3) are stored in the

aggregated wedges (states) of Fl1 and Fl3 , respectively. When running actor2 in

filter Fl1 or in filter Fl3 , in lines 7-12 the pair (ll, lu) ≡ (arg minl1,l3 , arg maxl1,l3)

is added to dw. This is, the double wedge (u1, ll, u2, lu, u3) is stored either,

in the state Fl1 or the state of Fl3 . When running actor3, in filter Fl1 or in

filter Fl3 , actor3 receives in ICWl2, line 4, the connector wedge (l2,Wl2) from

the incoming aggregated BT-connector. In lines 7-16, if the condition in line

10 holds, i.e. non empty intersection, since edges (u1, l2) and (u3, l2) are in

E, {u1, u3} ⊆ Wl2 . Therefore, actor3 adds bt to the aggregated bitriangle of
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the filter. This is, the permutation (u1, ll, u2, lu, u3, l2, u1) of the bitriangle bt

is stored in at and therefore it can be listed by actor4

6.5 DP-BT-Haskell implementation

As we have seen in the previous chapter 5, first we need to define the DPBT

using the DSL.

1 type DPBT = Source (Channel (Edge :<+> W :<+> Q :<+> BT :<+>

BTResult :<+> W :<+> Eof))↪→

2 :=> Generator (Channel (Edge :<+> W :<+> Q :<+> BT :<+>

BTResult :<+> Eof))↪→

3 :=> FeedbackChannel (W :<+> Eof)

4 :=> Sink

Source Code 6.14: [BTriangle.hs] Enconding of DP-BT-Haskell

In Source Code 6.14 can be appreciated the use of feedback channel in the

highlighted line. Automatically DP-BT-Haskell is going to connect this with

the SrBT.

SrBT, SkBT,GBT are not going to be covered because they are straightforward

to follow from the code. The most sofisticated part of the algorithm, as we

have seen in section 6.3, relies on actor filter.

In Source Code 6.15 actor1 source code can be appreciated. Since all the actors

are inside the same filter context, all of them have access to read and write

channels of all the filters. That explains the number of parameters which is

generated by the IDL. The first highlighted line is the catamorphism (foldM_)

of the ICE channel, which corresponds to line 5. At the last highlighted line

the code is downstream the aggregated wedge collected in this filter.

In Source Code 6.16, the interesting part of actor2 is the construction of dw.

That is done by the function buildDW and buildDW' which are building the

three subsets required to create aggregated double-wedges dw.

actor3 in Source Code 6.17, shows the process of collecting aggregated bitrian-

gles at. In highlighted lines on Source Code 6.17 we can see the algorithm to
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1 actor1 :: Edge

2 -> ReadChannel (UpperVertex, LowerVertex)

3 -> ReadChannel W

4 -> ReadChannel Q

5 -> ReadChannel BT

6 -> ReadChannel BTResult

7 -> ReadChannel W

8 -> WriteChannel (UpperVertex, LowerVertex)

9 -> WriteChannel W

10 -> WriteChannel Q

11 -> WriteChannel BT

12 -> WriteChannel BTResult

13 -> WriteChannel W

14 -> StateT FilterState (DP st) ()

15 actor1 (_, l) redges _ _ _ _ _ we ww1 _ _ _ _ = do

16 foldM_ redges $ \e@(u', l') -> do

17 e `seq` if l' == l then modify $ flip modifyWState u' else push e

we↪→

18 finish we

19 state' <- get

20 case state' of

21 Adj w@(W _ ws) -> when (IS.size ws > 1) $ push w ww1

22 _ -> pure ()

Source Code 6.15: [BTriangle.hs] actor1

detect when the AW received in the feedback channel are AW-BT according

to Definition 6.7.

actor4 in Source Code 6.18 shows the pattern match done over the query Q

sum type and the construction of the final BT to be downstream to the SkBT.

Finally, definition of filterBTByEdge and filterBTByVertex can be seen

in Source Code 6.19 and differs from the pseudo-code presented in algo-

rithm [A10] and algorithm [A9] because it is using Haskell specific combi-

nators and for-comprehension lists to take advantage of the non-strictness of

the language as well as some concurrency primitives.
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1 actor2 :: Edge

2 -> ReadChannel (UpperVertex, LowerVertex)

3 -> ReadChannel W

4 -> ReadChannel Q

5 -> ReadChannel BT

6 -> ReadChannel BTResult

7 -> ReadChannel W

8 -> WriteChannel (UpperVertex, LowerVertex)

9 -> WriteChannel W

10 -> WriteChannel Q

11 -> WriteChannel BT

12 -> WriteChannel BTResult

13 -> WriteChannel W

14 -> StateT FilterState (DP st) ()

15 actor2 (_, l) _ rw1 _ _ _ _ _ ww1 _ _ _ _ = do

16 state' <- get

17 case state' of

18 Adj (W _ w_t) -> do

19 modify $ const $ DoubleWedges mempty

20 foldM_ rw1 $ \w@(W l' w_t') -> do

21 push w ww1

22 buildDW w_t w_t' l l'

23 finish ww1

24 _ -> pure ()

25

26 buildDW :: IntSet -> IntSet -> LowerVertex -> LowerVertex -> StateT

FilterState (DP st) ()↪→

27 buildDW w_t w_t' l l' =

28 let pair = Pair (min l l') (max l l')

29 paramBuild = if l < l' then (w_t, w_t') else (w_t', w_t)

30 ut = uncurry buildDW' paramBuild

31 in if (IS.size w_t > 1) && l /= l' && not (IS.null (IS.intersection

w_t w_t')) && not (nullUT ut)↪→

32 then modify $ flip modifyDWState (DW pair ut)

33 else pure ()

34

35 buildDW' :: IntSet -> IntSet -> UT

36 buildDW' !w_t !w_t' = (w_t IS.\\ w_t', IS.intersection w_t w_t',

w_t' IS.\\ w_t)↪→

Source Code 6.16: [BTriangle.hs] actor2
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1 actor3 :: Edge

2 -> ReadChannel (UpperVertex, LowerVertex)

3 -> ReadChannel W

4 -> ReadChannel Q

5 -> ReadChannel BT

6 -> ReadChannel BTResult

7 -> ReadChannel W

8 -> WriteChannel (UpperVertex, LowerVertex)

9 -> WriteChannel W

10 -> WriteChannel Q

11 -> WriteChannel BT

12 -> WriteChannel BTResult

13 -> WriteChannel W

14 -> StateT FilterState (DP st) ()

15 actor3 (_, l) _ _ _ _ _ rfb _ _ _ _ _ wfb = do

16 state' <- get

17 case state' of

18 DoubleWedges dwtt -> do

19 modify $ const $ BiTriangles mempty

20 foldM_ rfb $ \w@(W l' w_t') -> do

21 push w wfb

22 when (hasDW dwtt) $ do

23 let (DWTT dtlist) = dwtt

24 forM_ dtlist $ \(DW (Pair l_l l_u) ut) ->

25 let triple = Triplet l_l l' l_u

26 result =

27 if l' < l_u && l' > l_l then filterUt w_t' ut else

Nothing↪→

28 in maybe (pure ()) (modify . flip modifyBTState . BT

triple) result↪→

29 finish wfb

30 _ -> pure ()

31

32 filterUt :: IntSet -> UT -> Maybe UT

33 filterUt wt (si, sj, sk) =

34 let si' = IS.filter (`IS.member` wt) si

35 sj' = IS.filter (`IS.member` wt) sj

36 sk' = IS.filter (`IS.member` wt) sk

37 sij' = si' `IS.union` sj'

38 sjk' = sk' `IS.union` sj'

39 wtInSome = not (IS.null sij' || IS.null sjk')

40 in if wtInSome then Just (sij', sj, sjk') else Nothing

Source Code 6.17: [BTriangle.hs] actor3
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1 actor4 :: Edge

2 -> ReadChannel (UpperVertex, LowerVertex)

3 -> ReadChannel W

4 -> ReadChannel Q

5 -> ReadChannel BT

6 -> ReadChannel BTResult

7 -> ReadChannel W

8 -> WriteChannel (UpperVertex, LowerVertex)

9 -> WriteChannel W

10 -> WriteChannel Q

11 -> WriteChannel BT

12 -> WriteChannel BTResult

13 -> WriteChannel W

14 -> StateT FilterState (DP st) ()

15 actor4 (_, l) _ _ query _ rbtr _ _ _ wq _ wbtr _ = do

16 state' <- get

17 case state' of

18 BiTriangles bttt -> do

19 rbtr |=> wbtr

20 foldM_ query $ \e -> do

21 push e wq

22 unless (hasNotBT bttt) $ sendBts bttt e wbtr

23 _ -> pure ()

24

25 sendBts :: MonadIO m => BTTT -> Q -> WriteChannel BTResult -> m ()

26 sendBts (BTTT bttt) q@(Q c _ _) wbtr = case c of

27 ByVertex vx -> forM_ bttt (\bt -> filterBTByVertex bt vx (flip

push wbtr . RBT q))↪→

28 ByEdge edges -> forM_ bttt (\bt -> filterBTByEdge bt edges (flip

push wbtr . RBT q))↪→

29 AllBT -> forM_ bttt (R.mapM_ (flip push wbtr . RBT q) .

buildBT)↪→

30 Count -> forM_ bttt (flip push wbtr . RC q . R.length .

buildBT)↪→

31 _ -> pure ()

Source Code 6.18: [BTriangle.hs] actor4
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1 filterBTByVertex :: MonadIO m => BT -> IntSet -> ((Int, Int, Int,

Int, Int, Int, Int) -> IO ()) -> m ()↪→

2 filterBTByVertex bt vertices f =

3 if inLower bt vertices then

4 liftIO

5 . mapConcurrently_ f

6 . buildBT

7 $ bt

8 else

9 if inUpper bt vertices

10 then buildBT' bt vertices f

11 else pure ()

12

13 filterBTByEdge :: MonadIO m => BT -> Set Edge -> ((Int, Int, Int,

Int, Int, Int, Int) -> IO ()) -> m ()↪→

14 filterBTByEdge bt edges f =

15 when (getAny $ foldMap (`hasEdge` bt) edges)

16 $ liftIO . mapConcurrently_ f . R.filter (isInSetEdge edges) .

buildBT $ bt↪→

Source Code 6.19: [Edges.hs] filterBTByVertex and filterBTByEdge

6.6 Chapter Summary

In this chapter we first introduced some basic definitions. These definitions are

the foundation to represent the graph index created from the input bipartite

graph and to define the IEBT algorithm. Second, we presented a general view

of the algorithm. Third, we deeply described the definitions of the stages

of the DPBT. Then, we provided a correctness proof of the IEBT algorithm.

Finally, we give the main details of the implementation of the IEBT algorithm

using DPF-Haskell.



Chapter 7

Empirical Evaluation

This chapter reports on the experimental study conducted to assess the effi-

ciency of DP-BT-Haskell. This study aims at answering the research questions

that emerged from the motivation of this work.

The fundamental part of this work focuses on incremental enumeration BT

in BG. In spite of this, there are other important areas for doing empirical

analysis such as memory consumption, thread scheduling, and execution time.

Regarding that, we have asked ourselves the following research questions that

guide the empirical evaluation analysis, and we try to answer them with the

conducted experiments: RQ1) Does DP-BT-Haskell generate incremental re-

sults regardless of the size of the graph? RQ2) Does the type of query Q

impact on the execution of DP-BT-Haskell? RQ3) How effectively DP-BT-

Haskell implements a pay-as-you-go model? RQ4) Does DP-BT-Haskell han-

dle memory and threads efficiently?

7.1 Experiments Configuration

We have conducted different kinds of experiments to answer our research

questions and verify the behavior of the approach in various benchmarks.

i) Continuous behavior Analysis : using dief@t and dief@k [26] to assess the

continuous behavior capabilities of the implemented algorithm (generation of

incremental results). We run this experiment only once for each scenario

per network (see subsection 7.1.3). ii) Benchmark Analysis : to identify how

73
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the behavior of DP-BT-Haskell varies depending on the type of query com-

mand defined in Definition 6.9. This experiment have been conducted with

criterion [37] which runs each scenario 1000 times for each network. iii) Fi-

nally, we have executed a Performance Analysis in which we have to gather

profiling data from Glasgow Haskell Compiler (GHC) for one of the graphs,

to measure how the program performs regarding multithreading and mem-

ory allocation. This experiment has been run only once for memory analysis

and once for multi-threading analysis. On each case we selected the biggest

network and most time consuming scenario according to the results of the

Benchmark Analysis. In the following subsections, we detail the different as-

pects of the configuration such as hardware, Haskell compilation flags, metrics,

and benchmark to conduct these experiments.

7.1.1 Benchmark

The experiments have been evaluated over the networks that composed the

benchmark Konect Networks [68]. Specifically, the networks used in the liter-

ature have been selected [69–72].

Network |U | |L| |E| Wedges #BT
Dbpedia 18422 168338 233286 1.45× 108 3.62× 108

Moreno Crime 829 551 1476 4816 211
Opsahl UC Forum 899 522 33720 174069 2.2× 107

Wang Amazon 26112 799 29062 3.4× 106 110269

Table 7.1: This table shows the different networks used in the experi-
ments. We provide some metrics of the networks used in order to under-
stand a little more about the topology of each BG. In particular, we are
showing in the last column 2 metrics that are important and could affect

results which are a number of wedges and bitriangles

The criteria for selecting those networks have followed the idea of conducting

the analysis on one of the big networks [69] used on the BT counting work [8].

The rest of the networks, from the same data source [68], have been selected

randomly but taking into consideration different sizes and topologies.
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7.1.2 Metrics

This section describes the different metrics that we have gathered during the

experimental analysis, as well as the tools used to obtain those metrics.

dief@t and dief@k The definition of this metric has been discussed on

section 2.4, although we provide here a quick reminder. dief@t measures

the continuous efficiency during the first t time units of execution regarding

the results generated by DP-BT-Haskell. Time t in our experiments represents

the number of nanoseconds elapsed to deliver that result from the moment the

DP-BT-Haskell finishes the execution of actor3 and it started executing actor4,

so actor4 is able to start processing commands. A higher value of dief@t

indicates better continuous behavior. Therefore, time 0 is equal to the start of

actor4 execution. dief@k measures the continuous efficiency while producing

the first k answers regarding the results generated by DP-BT-Haskell. A lower

value of dief@k indicates better continuous behavior.

Average Running Time The average of the total running time of 1000

resamples using criterion tool [37]. In each sample, the running time is

measure from the beginning of the execution of the program until when the

last answer is produced.

Total Running Time Total running time of one execution set over each

experimental setup and benchmark. The total running time is measured from

the beginning of the execution of the program until the end, i.e., the last

answer is produced. This is provided by default in Haskell by enabling flag -s

in the execution command-line argument.

GHC productivity Measures the proportion of Mutator (MUT) execution

time vs. Garbage Collection (GC) time. In Haskell Programming Language

Mutator is the acronym of a thread evaluating an Haskell expression – running

computations of our program –. GC time is the amount of time that Garbage

Collector is running. The closest the value to 100%, the better because it

indicates that the program was executing all the time without being paused

for running Garbage Collector. This is provided by default in Haskell by

enabling flag -s in the execution command-line argument.
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Distribution of Threads per Core It measures the number of threads

per processor on each time slot of execution. This metric is gathered by

TreadScope [39] tool.

Distribution of Allocated Memory per Data Type It measures the

amount of allocated memory per Haskell Data Type. This metric is gathered

by eventlog2html [41] tool.

7.1.3 Scenarios

An experimental scenario is a specific configuration of the Query Operator

that we have defined in Definition 6.9. That means, that for each network

that we run an experiment with a different configuration of the QO to obtain

different results.

Definition 7.1 (Incidence Level). Let G be a Bipartite Graph. Let v be a

vertex such that v ∈ V of G. Let e be an edge such that e ∈ E of G. A low,

medium, or high incidence level for vertices is defined as following: Low A

vertex v has low incidence if its degree is less than 1% of |V |, Medium A

vertex v has medium incidence if its degree is between 1%− 25% of |V |, and

High A vertex v has high incidence if its degree is more than 25% of |V | A

low, medium, or high incidence level for edges is defined as following: Low A

edge e = (u, l) has low incidence if any of its vertices u or l has degree less

than 1% of |V |, Medium A edge e = (u, l) has medium incidence if any of its

vertices u or l has degree between 1%−25% of |V |, and High A edge e = (u, l)

has high incidence if any of its vertices u or l has degree more than 25% of |V |

Having the previous Definition 7.1, we define the following scenarios to conduct

all the experiments regardless of the network.

Selection of values for QO The selection of values, either vertices V or

edges E, has been done pseudo-randomly, i.e., given Definition 7.1 the next

steps were followed: i) Sort the vertices by its degree. ii) Randomly select

following a uniform distribution, a vertex or edge depending on the scenario,

from the subset of vertices or edges that fulfill the Definition 7.1. iii) Execution

of a sample of experiments to check if that selections provides results or not.

If not, the test case is eliminated.
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Scenario ID Name Search by
E-H Edge High edge with high incidence
E-L Edge Low edge with low incidence
E-M Edge Medium edge with medium incidence
VL-H l ∈ L High vertex in lower layer with high incidence
VL-L l ∈ L Low vertex in lower layer with low incidence
VL-M l ∈ L Medium vertex in lower layer with medium incidence
VU-H u ∈ U High vertex in upper layer with high incidence
VU-L u ∈ U Low vertex in upper layer with low incidence
VU-M u ∈ U Medium vertex in upper layer with medium incidence

Table 7.2: The first column of the table is an identifier to be reference in
the rest of the section. E and V indicate if the QO scenario contains edge
or vertex query, respectively. V L or V U indicates if those vertices belongs
to L (lower layer) or U upper layer. After the − symbol, the letters L,M,H

indicate the incidence level defined in Definition 7.1

7.1.4 Implementation

Hardware Platform All the experiments have been executed in the HPC

Cluster at UPC. The nodes’ architecture running in the cluster is x86 64

bits with a 24-Core Intel(R) Xeon(R) CPU X5650 processor of 2.67 GHz.

Regarding memory, the allocated nodes have been requested from 40GB up

to 120GB of RAM for the biggest Dbpedia Network (Dbpedia) graph. These

machines also have 256 KB of L2 cache memory, and 12 MB of L3 cache.

Haskell Setup The implementation uses GHC 8.10.4 plus the following

set of Haskell libraries: dyanmic-pipeline 0.3.2.0 [16], bytestring 0.10.12.0

[73], containers 0.6.2.1 [38], relude 1.0.0.1 [74] andunagi-chan 0.4.1.3 [66] .

The relude library is utilized because Prelude was disabled from the project

with the language extension NoImplicitPrelude [75]. We have compiled our

program using stack version 2.5.1 [76] with the following command and option

flags1: stack build --ghc-options "-threaded -O3 -rtsopts -with-rtsopts=-N".

Flag threaded indicates GHC to compile the program with thread support

enable. -O3 is the highest optimization level for the compiler. Regarding

-with-rtsopts=-N, it allows us to change dynamically on each runtime exe-

cution command, the number of processors, and other execution flags that we

will explain in section 7.1.4.

1For more information about package.yaml or cabal file, please check
https://github.com/jproyo/upc-miri-tfm/tree/main/bt-graph-dp
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Optimal Execution Parameters GHC enables different flags parameters

to speed up the execution. Unfortunately there is no recipe to tune those

parameters in the correct way and each program needs to be analyzed to take

advantage of GHC capabilities.2 The most important parameters to be tuned

are memory and the number of processors. In the case of the number of pro-

cessors, we have run all the experiments between 6 and 12 cores. The detail

of each run can be found in Table 7.3. Setting up memory allocation is not a

straightforward task, because the combination of two parameters needs to be

considered. -A flag which indicates the allocation area for the garbage collec-

tor, which is fixed and never resized, and -H which is the heap size. We used

the tool ghc-gc-tune [77] to find the best combination of those parameters;

it implements a heuristic algorithm that tries different setups until it finds an

suboptimal combination for memory allocation. Suboptimal combination here

refers to find the fastest total execution time with the less amount of allocated

memory, as it can be seen in Figure 7.1. We have run DP-BT-Haskell with

that tool, obtaining the following result that can be appreciated in Figure 7.1

In Figure 7.1 we can appreciate that the tool runs sereval times the same

program with different configurations on flags -A and -H until if it finds a

minimum. The dark blue shows the better performance where the curve find

its minimum execution time. This indicates two possible suboptimal setup,

either when -A is equal to -H, or either when -A is 1
4

of the -H. For all our

experiments we have selected the first option which -A is equal to -H, because

choosing any of the two best combinations provides the same results as it can

be seen in Figure 7.1. It is important to remind the reader that ghc-gc-tune

[77] uses an heuristic algorithm, providing suboptimal results.

7.2 Experimental Results

7.2.1 E1: Continuous behavior Analysis

Goal In this experiment, we assess the ability of DP-BT-Haskell to generate

results incrementally. In order to do that, we use the diefpy Tool Tool [27]

2For the sake of reproducibility, the execution parameters details are explained in Ap-
pendix A.2
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Figure 7.1: This figure shows the results obtained after running DP-
BT-Haskell with the ghc-gc-tune tool in order to find the suboptimal
configuration for Memory allocation. y axis shows the total execution time,
x axis is the -A configuration flag and z axis is the -H configuration flag.

which implements Diefficiency Metric [26] measurement analysis. This exper-

iment allows us to answer research questions [R1] and [R3] defined in Research

Questions 7.

Procedure We execute this experiment for each of the networks described

in subsection 7.1.1 and for each scenario described in subsection 7.1.3. This

experiment has been executed five times on each case until we found the proper

vertex or edges in the selection described in section 7.1.3. The criteria followed

by the selection of the vertices or edges are detailed in section 7.1.3. The metric

Diefficiency Metric dief@t –described in section 2.4– is used to measure the

continuous behavior of the proposed approach in a given time frame. Table 7.3

depicts the different configurations evaluated in this experiment. The timeout

for all the configuration scenarios setups that appears in Table 7.3 have been

set in 48 hours.
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Network Scenario ID Exec Flags Query

Dbpedia

E-H +RTS -A5G -N8 -c -H5G -RTS by-edge (921, 4)

E-L +RTS -A5G -N8 -c -H5G -RTS by-edge (383, 397)

E-M +RTS -A5G -N8 -c -H5G -RTS by-edge (540, 60)

VL-H +RTS -A5G -N8 -c -H5G -RTS by-vertex 9

VL-L +RTS -A5G -N8 -c -H5G -RTS by-vertex 809

VL-M +RTS -A5G -N8 -c -H5G -RTS by-vertex 511

VU-H +RTS -A5G -N8 -c -H5G -RTS by-vertex 921

VU-L +RTS -A5G -N8 -c -H5G -RTS by-vertex 93

VU-M +RTS -A5G -N8 -c -H5G -RTS by-vertex 540

Moreno Crime

E-H +RTS -A5G -N6 -c -H5G -RTS by-edge (413, 419)

E-L +RTS -A5G -N6 -c -H5G -RTS by-edge (361, 19)

E-M +RTS -A5G -N6 -c -H5G -RTS by-edge (531, 196)

VL-H +RTS -A5G -N6 -c -H5G -RTS by-vertex 95

VL-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 187

VL-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 97

VU-H +RTS -A5G -N8 -c -H5G -RTS by-vertex 2

VU-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 793

VU-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 533

Opsahl UC Forum

E-H +RTS -A5G -N6 -c -H5G -RTS by-edge (213, 33)

E-L +RTS -A5G -N6 -c -H5G -RTS by-edge (398, 10)

E-M +RTS -A5G -N6 -c -H5G -RTS by-edge (129, 171)

VL-H +RTS -A5G -N6 -c -H5G -RTS by-vertex 289

VL-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 258

VL-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 433

VU-H +RTS -A5G -N8 -c -H5G -RTS by-vertex 395

VU-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 390

VU-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 207

Wang Amazon

E-H +RTS -A5G -N6 -c -H5G -RTS by-edge (839, 9)

E-L +RTS -A5G -N6 -c -H5G -RTS by-edge (10987, 36)

E-M +RTS -A5G -N6 -c -H5G -RTS by-edge (19630, 84)

VL-H +RTS -A5G -N6 -c -H5G -RTS by-vertex 124

VL-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 321

VL-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 64

VU-H +RTS -A5G -N8 -c -H5G -RTS by-vertex 1727

VU-L +RTS -A5G -N6 -c -H5G -RTS by-vertex 9970

VU-M +RTS -A5G -N6 -c -H5G -RTS by-vertex 73

Table 7.3: This table shows all the different experiments setups conducted
for E1. Execution flags are the Runtime execution flags which needs to be
set on the execution command as it is detailed in section A.2. On the
last column we can see for each scenario, the query command executed for
BT enumeration (see Definition 6.9). The timeout configured for all this

experiments setup were 48 hours
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Observed Results As observed in the results above in Figure 7.2a, Fig-

ure 7.2b, Figure 7.2c and Figure 7.2d in all the networks and experiments

setups, BT are incrementally enumerated and delivered.

(a) dief@t metric results after running
all experiment scenarios described in Ta-
ble 7.3 on the DBpedia network. Each
color represents one scenario. In the fig-
ure it is shown how VL-H scenario (dark
green line) seems to show more continu-
ous behavior compared with the rest be-

cause of the level of incidence

(b) dief@t metric results after running
all experiment scenarios described in Ta-
ble 7.3 on Moreno Crime network. Each
color represents one scenario. The same
that is exhibit in dbpedia, we can see here
how VL-H seems continuously delivering
results although with some gaps between

some t

(c) dief@t metric results after running
all experiment scenarios described in Ta-
ble 7.3 on Opsahl UC Forum network.
Each color represents one scenario. In
this case VU-H with orange line is show-
ing more continuous behavior. Green
darks seems to move towards the end of
the time but is not growing vertical which

is the amount of answers produced.

(d) dief@t metric results after running
all experiment scenarios described in Ta-
ble 7.3 on Wang Amazon network. Each
color represents one scenario. Although
all shows a good level of continuous be-
havior, also VL-M is the one with most

continuous behavior in terms of t

Figure 7.2: These figures show dief@t observed results after running all
the scenarios described in Table 7.3 for each network. y axis represents
the number of Answers produced and x axis is the t time of the dief@t

metric describe in section 2.4. For example in Figure 7.2a we can see that
dark green color shows VL-H scenario on DBpedia network. The more
data points distributed throughout the x axis, the higher, the continuous

behavior.
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The continuous behavior can be appreciated in Figure 7.2 having the fact that

any of those points draw a straight vertical line. If that were the case, the

plot would have indicated that all the generated answers are being produced

at the same t time.

On the one hand, we observe higher dief@t values in Table 7.4 for all the

networks with more bitriangles (see Table 7.1) in the nine scenarios indicat-

ing continuous behavior. As we have describe in section 2.4 a dief@t with

higher values indicates better continuous behavior. Therefore, from observed

values we can state that 100% of the experimented scenarios are generating

continuous answers provided by DP-BT-Haskell. On the other hand, we also

observe from the blue light highlighted values in Table 7.4, how the results

obtained in experiments VU-H for Opshal with 1.99 × 1012, E-H for Moreno

with 9.85× 103, VL-H for dbpedia with 1.81× 1014 and VL-H for Wang Ama-

zon with 2.24× 107 (see Table 7.2), are more continuous compare to the rest

of the experiments setups. It can also be observed from results in Table 7.4

that in most of the scenarios and networks, vertices and edges higher inci-

dence scenarios are reporting more continuous behavior compared with the

other scenarios, highlighted in cells with light blue color. There are some in-

teresting cases that are being reported as well which are the cells highlighted

in yellow light color. In those cases, for example in Wang Amazon, VU-H is

supposed to have the highest dief@t value with respect to VU-L and VU-M

of the same network. However, we can appreciate that VU-M is reporting

slightly higher dief@t value for Wang Amazon compare with VU-H. The

same behavior can be appreciated in the rest of the network for some specific

scenarios highlighted in yellow light color.

Regarding dief@k values reported in Table 7.4, we can appreciate that in

networks with small number of bitriangles like Wang Amazon and Moreno

Crime, dief@k values are low indicating continuous behavior as well. In the

case of Wang Amazon lowest value of dief@k is in VL-M scenario. Moreno

Crime are reporting all dief@k with same value 0. In the case of Dbpedia the

lowest dief@k value is VL-H, which matches with the highest dief@t values

of the same scenario and network. Finally, Opsahl UC Forum is reporting the

lowest dief@k value in VL-M with 1.05× 105 but the difference with the rest

of scenarios is not significant.

Another plots that diefpy tool provides are shown in Figure 7.3a, Figure 7.3b,

Figure 7.3c and Figure 7.3d. Here we can observe how all the networks under
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Network Scenario ID dief@t Metric dief@k Metric

Moreno Crime

VU-H 6.05× 102 0.00
VL-L 2.10× 102 0.00
VL-H 7.95× 103 0.00
VL-M 1.01× 103 0.00
E-L 5.40× 102 0.00
E-M 2.37× 103 0.00
VU-L 2.71× 102 0.00
VU-M 5.89× 103 0.00
E-H 9.85× 103 0.00

Dbpedia

VU-H 3.32× 1013 1.97× 105

VL-L 1.62× 1010 3.65× 106

VL-H 1.81× 1014 2.34× 104

VL-M 4.07× 1012 4.41× 105

E-L 3.33× 1011 2.90× 105

E-M 1.68× 1012 4.99× 105

VU-L 2.74× 1013 3.60× 105

VU-M 8.80× 1013 1.48× 105

E-H 1.75× 1013 3.28× 105

Opsahl UC Forum

VU-H 1.99× 1012 1.27× 105

VL-L 2.17× 109 4.92× 105

VL-H 6.44× 1011 1.90× 105

VL-M 1.30× 1011 1.05× 105

E-L 1.71× 1011 1.11× 105

E-M 7.09× 1010 1.20× 105

VU-L 1.58× 1010 1.18× 105

VU-M 5.93× 1011 1.06× 105

E-H 1.02× 1011 2.93× 105

Wang Amazon

VU-H 1.50× 107 43.6
VL-L 3.90× 105 41.0
VL-H 2.24× 107 63.1
VL-M 4.74× 106 34.5
E-L 3.55× 106 46.2
E-M 1.61× 106 41.2
VU-L 3.41× 105 51.4
VU-M 1.83× 107 2.48× 103

E-H 8.06× 106 42.3

Table 7.4: This table shows all the dief@t and dief@k values for all
the experiments setups conducted for E1. Higher values of dief@t indi-
cates better continuous behavior. Lower values of dief@k indicates better
continuous behavior. Highlighted blue lines indicates scenarios that are
behaving according to the incidence level. Yellow highlighted lines are sce-
narios that reports values lower than expected according to incidence level.

For experiment reference setup see Table 7.3
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(a) dief@t metric results in radial plot
after running all experiment scenarios de-
scribed in Table 7.3 on DBpedia network.
Each color represents one scenario. An
important thing to remark here is that
Comp was only completed with 100% by
scenario VL-H as it is shown the dark
green section. The same happen with

dief@t which is as well at 100%

(b) dief@t metric results in radial plot
after running all experiment scenarios de-
scribed in Table 7.3 on Moreno Crime
network. Each color represents one sce-
nario. Here we can observe the same as
dbpedia radial plot. The only scenario
that completes and shows dief@t both
at 100% is VL-H. Also E-H has the bet-

ter T

(c) dief@t metric results in radial plot
after running all experiment scenarios de-
scribed in Table 7.3 on Opsahl UC Forum
network. Each color represents one sce-
nario. In this case VU-H has the better
Comp and T with a 100%, but the only

showing a 100% in dief@t is VL-H

(d) dief@t metric results in radial plot
after running all experiment scenarios de-
scribed in Table 7.3 on Wang Amazon
network. Each color represents one sce-
nario. For this case Comp, T and dief@t

with 100% is also for VL-H scenario.

Figure 7.3: Radial plots show how the different dimensions values pro-
vided by diefpy tool such as T, TFFT, dief@t, ET and Comp are related
each other for each experimental case. These figures show radial plot ob-
served results after running all the scenarios described in Table 7.3 for each

network. dief@t is described in section 2.4.
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the VL-H scenario cover dief@t metrics with the dark green area, which indi-

cates that it is continuously delivering results for each network. The rest of the

data setup experiments indicates that the level of throughput, completeness,

and execution time is less than Diefficiency Metric dief@t, and the results

can be delivered faster without appreciating continuous behavior properly in

the plot. These radial plots obtained from dief@t shows how ET, TFFT,

Comp, T and dief@t measured by diefpy tool, relate each other in the same

setup. For our case analysis, the higher the area that is cover in Diefficiency

Metric dief@t the better, indicating a high level of continuous behavior.

7.2.2 E2: Benchmark Analysis

Goal Regarding benchmarking, we aim at answering research question [R2]

and assess the impact of the type of command queryQ on the BT enumeration.

The results of this evaluation will also provide evidence to answer [R3] since

we have provided evidence with the benchmarking that the execution time

varies depending on the command query q proving that we are effectively

implemented a pay-as-you-go model.

Procedure This experiment measures Average Running Time and Total

Running Time as described in subsection 7.1.2. For gathering Average Run-

ning Time, the experiment scenarios described in Table 7.5 were conducted;

the Dbpedia network was not considered, but the criterion [37] benchmark

tool were followed. The command run for criterion benchmark analysis is

stack exec benchmark.

Furthermore, Total Running Time is gathered with the time measured after

running all the scenarios described in Table 7.3. Also the timeout configured

for all the scenarios in Table 7.5 have been setup in 48 hours.

Observed Results As it can be seen in Figure 7.4, yellow bars are all the

experiments related to Lower Layer vertices, blue bars are related to Upper

Layer, and red bars are the experiments related to edge search. The longest

bars are from network opsahl-ucforum, which we already know by Table 7.1 it

is the biggest of the four networks in terms of the number of BT and wedges.

So, it needs to enumerate more BT.
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Network Scenario ID Query

Moreno Crime

E-H by-edge (413, 419)

E-L by-edge (361, 19)

E-M by-edge (531, 196)

VL-H by-vertex 95

VL-L by-vertex 187

VL-M by-vertex 97

VU-H by-vertex 2

VU-L by-vertex 793

VU-M by-vertex 533

Opsahl UC Forum

E-H by-edge (213, 33)

E-L by-edge (398, 10)

E-M by-edge (129, 171)

VL-H by-vertex 289

VL-L by-vertex 258

VL-M by-vertex 433

VU-H by-vertex 395

VU-L by-vertex 390

VU-M by-vertex 207

Wang Amazon

E-H by-edge (839, 9)

E-L by-edge (10987, 36)

E-M by-edge (19630, 84)

VL-H by-vertex 124

VL-L by-vertex 321

VL-M by-vertex 64

VU-H by-vertex 1727

VU-L by-vertex 9970

VU-M by-vertex 73

Table 7.5: This table shows all the different experiments setups that we
have conducted for E2. Execution command is the same for each experi-
ment because it is handled by criterion tool. On the last column we can
see for each scenario the query command executed for BT enumeration (see
Definition 6.9), although the output is not used in this case, because we
focus on average running time. The timeout configured for all this setups

were 48 hours.
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Figure 7.4: This plot depicts the results after running criterion the
tool over the experimental setup described in Table 7.5. Yellow bars are
the experiments over Opsahl UC Forum network. Blue light bars represents
the experiments on Moreno Crime network, and red bars on Wang Amazon

In Table 7.6 we can see both the Average Execution Time and the Standard

deviation of that average. As we can see and according to this data, all the

scenarios with higher incidence are taking longer time in executing compared

with the rest of the scenarios for the same network. Average Execution Time

for Moreno Crime network is reporting 723, 745 and 655 milliseconds average

execution time for high incidence (see subsection 7.1.3), compared with lower

and medium incidence. The same behavior is shown for Wang Amazon which

high incidence scenarios report 10.2 and 8.16 seconds on VL-H and VU-H

respectively. Moreover, Opsahl UC Forum reports VL-H and VU-H with 70.8

and 138 seconds of average running time which is higher than other scenarios

with lower incidence. The only cases that this behavior do not hold is for E-H

in both Wang Amazon and Opsahl UC Forum networks. E-L scenario shows

the highest value for both networks with 6.4 and 41.9 seconds respectively.

Regarding Figure 7.5 which is showing the Total Running Time, it is observed

with the red bars that Dbpedia was the one which took more time in all

scenarios. We can also see in Figure 7.5 that scenario E-H took 8756 seconds

in Dbpedia network compare with the E-L and E-M, which took 596 seconds

and 577 seconds, respectively. Also, in Figure 7.5, we can see that Opsahl
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Network Scenario ID Average Execution Time Standard deviation

Moreno Crime

VL-L 656 ms 13.0 ms
VL-M 669 ms 18.7 ms
VL-H 723 ms 72.2 ms
VU-L 695 ms 16.2 ms
VU-M 726 ms 14.0 ms
VU-H 745 ms 19.6 ms
E-L 694 ms 4.7 ms
E-M 655 ms 14.9 ms
E-H 655 ms 21.1 ms

Opsahl UC Forum

VL-L 5.6 s 940 ms
VL-M 18.1 s 5.03 s
VL-H 70.8 s 2.03 s
VU-L 8.12 s 2.43 s
VU-M 108 s 13.7 s
VU-H 138 s 8.19 s
E-L 41.9 s 2.87 s
E-M 26.7 s 5.63 s
E-H 26.2 s 4.05 s

Wang Amazon

VL-L 6.5 s 1.05 s
VL-M 5.91 s 994 ms
VL-H 10.2 s 2.66 s
VU-L 8.12 s 2.43 s
VU-M 7.04 s 739 ms
VU-H 8.16 s 3.25 s
E-L 6.4 s 1.08 s
E-M 5.71 s 863 ms
E-H 5.91 s 1.04 s

Table 7.6: This tables shows a detailed reported data of all the average
execution time of all the networks and all scenarios except Dbpedia net-
works. It is also show the standard deviation of all average execution time.
The measurement unit indicated in the table are: s for seconds, and ms for
milliseconds. Highlighted blue lines indicates scenarios that are behaving
according to the incidence level. Yellow highlighted lines are scenarios that

reports values lower than expected according to incidence level.

UC Forum took 1660 seconds for VL-H scenario, 11 seconds for VL-L, and 22

seconds for VL-M, also showing the same behavior as Dbpedia. Moreover, in

Figure 7.5 it can also be appreciated how Wang Amazon network and Moreno

Crime are showing the same behavior for VL-H, VL-L, and VL-M scenarios,

where Wang Amazon networks report 21, 8 and 8 seconds, respectively and

Moreno Crime 3, 3 and 2 seconds. The same behavior repeats for all networks

and all scenarios, indicating that the experiments with higher incidence take

more time to finalize the execution compared to the experiments with lower

incidence. This means that the type of query command Q impacts on the

execution of the program; the higher the incidence, the more bitriangles to be

enumerated and the longest the program will take to finish.
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Figure 7.5: This plot shows all the experiment scenarios run in Table 7.3
and the comparison of the Total running execution time for each case. y
axis shows the total time in ln scale and x axis is each Scenario ID describe

in Table 7.2

7.2.3 E3: Performance Analysis

Goal In this experiment, we take measurements on one network, to gather

data about the use of memory allocation and threads on GHC during the

execution of DP-BT-Haskell.

Procedure This experiment gathers three metrics describe in subsection 7.1.2:

GHC Productivity, Distribution of Threads per Core and Distribution of Allo-

cated Memory per Data Type. Using ThreadScope [39] tool we measure GHC

Productivity, Distribution of Threads per Core, and using eventlog2html [41]

tool, we measure Distribution of Allocated Memory per Data Type. For both

cases, we have run these tools using Dbpedia network only and VU-L scenario.

The query command executed was by-vertex 93 and we setup a timeout of

24 hours. This is because both tools enable profiling flags at compilation level

on GHC, penalizing performance.

As observed in Table 7.7, although we have selected the biggest network, we

are only running the tools to gather data using VU-L, which enumerate less

BT. Therefore, this allows for the retrieval of profiling information, such as

multithreading details and memory allocation.
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Tool Exec Flags
ThreadScope +RTS -A10G -H10G -c -N8 -l -s -RTS

eventlog2html +RTS -A10G -H10G -c -N8 -l -s -RTS

Table 7.7: This table shows the experiments scenario run for each of the
tools. Notice the increase of -A and -H to support more memory allocation

due to the profiling analysis

Observed Results We can divide the analysis of this section into two:

memory consumption and multithreading.

Multithreading Regarding multithreading, we have gathered multithread-

ing metrics of different time slots of the total execution time of Moreno Crime

network run. We could not analyze bigger networks due to the huge amount

of data gathered that make the program timeout for this experiment. The

timeout on this case was set on 24 hours and the program timed out running

out of memory. As we can see in the overview, execution in Figure 7.6 all the

cores (8) are running Mutator time in threads almost during the whole execu-

tion of the program. Running Mutator most of the execution of the program,

also indicates that there are few GC pauses, and running time is overtaken

by MUT time and not GC. In fact, GHC productivity on this run indicated

99.8%.

ThreadScope [39] output allows us to zoom in different portions of the execu-

tion time to analyze the results better. If we zoom in on the execution threads

at the beginning and at the end, we are going to see that there is a moment

when only one core is executing. At the middle of the execution, we are seeing

more processing distributing evenly among cores with less use GC and higher

MUT time.

Memory Consumption In the case of memory consumption, we have been

able to measure the memory consumption for the biggest graph, Dbpedia. As

it is known, enabling profiling downgrades the performance of execution time.

Because of that, the program runs out of memory after 24 hs., as we are going

to see in the image. Although this, we have still been able to gather memory

allocation data to conduct the analysis.
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Figure 7.6: This is a general overview of ThreadScope results over the
experiments running. Green bar indicates MUT time. The distribution
between different 8 green bars means that it is executing on the 8 assigned

cores.

(a) [EE] Thread Metrics:
Initial execution

(b) [EE] Thread Metrics:
Middle of execution

(c) [EE] Thread Metrics:
End of execution

Figure 7.7: These plots depict different moments of the execution of the
program after doing a zoom of the images allowing to scale down execution
time view. The left image indicates the beginning of the execution. Middle
image is the middle of the execution and right image is the end of the

execution.

As we can appreciate in Figure 7.8 the darkest blue area belongs to MUT ARR PTRS CLEAN.

These types of objects are pointers to function. It is clear that MUT ARR PTRS CLEAN

is allocating 2G at most, and it is more than the rest of the objects. This also

represents more than 50% of the accumulated memory allocation during the
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Figure 7.8: This plot is showing the accumulated memory allocation size
of each Haskell Data Type throughout the execution of the program.

whole execution time. Below dark blue MUT ARR PTRS CLEAN, there is a lighter

blue area, which represents the allocation of Maybe type. Maybe is the type

that transfers data between stages through channels. It also represents the

25% of the total allocated memory with less than 1G in total. Continue below

Maybe type, it is IntSet data type memory allocation, which is the type for

storing the ADW and ABT as we have described on section 6.1. This is even

lower than the previous one, allocating up to 0.3G of memory that does not

represent more than 7% of the total memory. Alongside this, it is the W type

which is storing AW; it represents 0.5G which is a 10% of the total allocation.

The rest 10% of the total memory is evenly distributed among other data

types that are not part of the specific DPF-Haskell implementation, but from

Haskell in general.
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7.3 Discussion

E1: Continuous behavior section 7.2.1 reports show that continuous be-

havior can be appreciated better in some scenarios and networks than others.

For example, the scenarios containing queries with higher incidence shows

more continuous behavior than the rest as we have seen in Table 7.4. The

reason of higher incidence are more continuous than the rest can be explained

because bitriangles are aggregated based on triple ` = (ll, lm, lu) (see Defini-

tion 6.8). Then, if the requested l ∈ L matches with some of these vertices

in `, all the Ûl cartesian product need to be enumerated in a 6-cycle path

BT (see Definition 6.2). Therefore, if there are a large number of BT be-

cause the incidence level is high, there are more data to be delivered through

channels and more data is arriving to SkBT sooner, incrementally generat-

ing results (see section 6.2). Moreover, the cases that exhibit less continuous

behavior are Wang Amazon and Moreno Crime networks in the majority of

their scenarios. The reason for less continuity behavior on those networks

could be explained by the fact of the topology of both graphs. Wang Ama-

zon and Moreno Crime networks are the smallest of all the graphs used, in

terms of the number of BT as we can see in Table 7.1. Therefore, results are

delivered extremely fast and incremental results only can be appreciated in

the vertices with high incidence. Another interest discussion point that we

can provide based on the results is that there are some scenarios with higher

incidence level that are showing less continuous behavior compared with sce-

narios of the same networks with smaller incidence, as we have discussed in

section 7.2.1. This behavior repeats in all networks with some scenario but

lets take an example, Opsahl UC Forum in Edges Scenarios. In this network

we can see that E-H has dief@t value lower than E-L. The same happens in

Dbpedia and Moreno Crime for VU-H compared with VU-M where VU-H has

smaller dief@t value than VU-M. Also Wang Amazon exhibit the same on

VU-H compared with VU-M. The explanation on why some higher incidence

scenarios reports lower dief@t values compare with smaller incidence, it is

due to the fact of the pseudo-random selection mechanism of the command Q

value (vertex or edge) – as it is commented in section 7.1.3. We have detected

that, even when the pseudo-randomly chosen vertex or edge has a high degree,

it is not a vertex with a high incidence as it should be – not participating in

the majority of bitriangles –, according to the Definition 7.1. In conclusion, we

are able to answer [R1] and asses that we have built an incremental algorithm
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for enumerating Bitriangle. The same conclusion can be obtained regarding

question [R3]. We verify that, depending on the incidence of the vertex or

edge, DP-BT-Haskell is enumerating BT in a continuous manner. This shows

us DP-BT-Haskell effectively implements a pay-as-you-go model.

E2: Benchmark Regarding section 7.2.2 on the one hand, we have noticed

that for the case of edges with high incidence scenarios in both Opshal UC

Forum and Wang Amazon networks, the execution time is not consistent with

what we expected regarding the incidence level. This could be explained by

the pseudo-randomly selection detailed in section 7.1.3 which is outlying the

samples. By outlying we mean that we select randomly from the subset with

higher vertex degree assuming that this will enumerate more bitriangles, but

in the experimentation has been shown it has not. On the other hand, all the

rest of the scenarios reports Average Execution Time according to the level of

incidence of the experiment, the higher the incidence the longest the average

execution time. In what relates to Total Execution time, we have pointed out

that DBpedia network is the one taking longer. This is perfectly explained

by the characteristics and topology of the graph, since it is both the biggest

graph in terms of edges and vertex, and it is the graph which proportionally

has more BT. We can answer the question [R2] because it can clearly be seen

in the benchmark analysis and in Figure 7.5 that as long as the user request

for command queries Q that have more incidence in the graph and participates

in more BT, the execution time increases.

E3: Performance In section 7.2.3 we have noticed the suitable distribution

of threads among cores during the execution time. That exhibits a perfect fit

with the DPP model since at the beginning, it considers all the filters and

starts reading the input file, where there is less distribution of threads among

the core. After that, we can see an even distribution and all cores busy when

DPP executes the filters. Remember that each stage runs on its own thread.

At the end, we observe a reduction in the distribution of the cores, because the

last part of the execution is done by SkBT. Regarding memory allocation, we

have seen that most of the allocation is done by MUT ARR PTRS CLEANER data

type. In Haskell Programming Language MUT is the acronym of a thread

evaluating an Haskell expression. Therefore, having 2G of allocated memory

for MUT ARR PTRS CLEANER type means that there are many pointers allocated
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waiting for evaluating expressions. DP-BT-Haskell implementation explains

this behavior because it is spawning one thread per stage, and in particular,

that means one thread per filter instance as well. In the case of Dbpedia

which contains 168.338 vertices in L according to Table 7.1, in the worst

case DP-BT-Haskell is spawning the same amount of threads for every run

of this network. Since the execution of all these stages will not be released

until it finishes the last actor4 (processing queries), all of them are waiting

for the queries to be processed and executed. Another important part of the

allocated memory as we have seen in subsection 7.2.3 is distributed between

Maybe, IntSet and W data types. This behavior is expected because Maybe

carries data between stages which cannot be avoided due to the DPP model.

Additionally, both IntSet and W are the compressed form DP-BT-Haskell

uses for storing intermediate structures to build BT, as we have described in

section 6.1. One of the proposed solutions for future work is to reduce the

number of FBT for bigger graphs in order to reduce the number of allocated

pointers waiting for commands. Although memory allocation shows a linear

growth in Figure 7.8 for the MUT ARR PTRS CLEANER type in this experiment,

the rest of the memory allocation is not growing linearly, as we can see also

in Figure 7.8. This is a key factor on memory analysis since it is showing

how DPF-Haskell is compressing intermediate objects like AW, ADW, and

ABT without penalizing the rest. In conclusion, we can answer the question

[R4] as we have shown that threads are efficiently handled by Haskell GHC

scheduler supporting the parallelization level that DPP requires. We can also

state that memory management is efficiently handled as well by the analysis

exposed before. Additionally, memory allocation can be also improved by

implementing a better matching algorithm for searching and deliver BT like

for example the ones describe by Lai et al. [29]. It was out of the scope of

this work to solve the efficiency of the queries, as well as the underlying data

structures improvements.

7.4 Chapter Summary

In this chapter, we have explained the experiments conducted in order to

answer our research question. We first started presenting a summary of the

research questions. After that, we have described the experimental configu-

ration. Then, the experimental procedure and results are reported. Finally,
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we have discussed the observed outcomes in terms of the main properties of

our proposed approach. To summarize, the main points observed during the

experimentation are:

• High values of the metric dieft that is indicating the continuous behavior

of DP-BT-Haskell exhibiting its capability of incrementally enumerates

BT.

• Lower values of the metric diefk that is indicating the continuous be-

havior of DP-BT-Haskell exhibiting its capability of incrementally enu-

merates BT.

• High values of the metrics Average Running Time and Total Running

Time for scenarios which enumerates more bitriangles, are suggesting an

effective implementation of a pay-as-you-go model of DP-BT-Haskell.

• Results captured by the ThreadScope tool indicating an even distribu-

tion of the threads among processors, showing efficient use of the parallel

model.

• Results gathered by the eventlog2html tool suggesting that memory

consumption is efficiently handled in the intermediate objects that DPF-

Haskell collects on each filter and transfers between them. A proposal

on how also improve this part was exposed in section 7.3.
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Conclusions and Future Work

In this chapter we present the conclusions of our work. We also present some

observed limitations and improvements to our proposal. Finally, we discuss

some research lines we consider can be follow taking as starting point our

contributions.

8.1 Conclusions

Enumerating bitriangles in large bipartite graphs is a significant problem that

helps to detect important relations between entities in diverse areas. Some

examples are pharmacology research, to establish relations between drugs and

side effects; medicine and biology, to detect how some genes affect specific

diseases; the entertainment industry, to relate user preferences and TV shows,

allowing for certain predictions in that matter, etc. In general, any area

requiring linking data could take advantage of this kind of enumeration of

bitriangles in large bipartite networks.

Besides, introducing algorithms that incrementally deliver results –using a

pay-as-you-go model approach combined with DPP – brings users the pos-

sibility of obtaining results without being exhaustive exploring the solution

space. Moreover, users can obtain results without consuming resources un-

necessarily. We have explored Dynamic Pipeline Paradigm as a model of

computation to solve that problem using the pay-as-you-go approach.

97



Chapter 8 Conclusions and Future Work 98

We have introduced, implemented and empirically evaluated an Algorithm for

Incrementally Enumerating Bitriangles in Large Bipartite Network under the

Dynamic Pipeline Paradigm. To reach the main objective of this work, we

have combined different techniques: (i) the creation of an index graph to sup-

port the querying process based on the representation of compact structures

defined in chapter 6, (ii) the definition and implementation of an algorithm

under the DPP, using parallel Haskell and, (iii) the measuring of the its imple-

mentation using the Diefficiency Metrics. Putting all these features together

gives insights about the high technical level we have dealt with. Finally but

no less important, we implemented and left available for the community a

generic Dynamic Pipeline Framework implemented in Haskell.

We think the design and implementation of algorithms delivering results in-

crementally and the possibility of measuring its continuous efficiency as we

have done for the IEBT, is also a stimulus for tackling some other similar

problems. In the experimental analysis, we showed the continuous behavior

capabilities of the implementation using, Diefficiency Metric dief@t giving

support to our research assumptions and motivations. The designed algorithm

DP-BT-Haskell can process and enumerate large networks like the Dbpedia

Network which contains more than 300 millions of bitriangles.

We have shown that Haskell Programming Language suits well for implement-

ing a dynamic pipeline for solving Algorithm for Incrementally Enumerating

Bitriangles in Large Bipartite Network. After empirically assessing the im-

plementation of the IEBT we think the suitability of the Dynamic Pipeline

Paradigm as an effective computational model for deployment a parallel al-

gorithm for incrementally enumerate Bitriangle in Bipartite Graph has been

demonstrated. In particular, one important motivation to develop our own

framework is that we not only wanted to satisfy our research needs but, as

a novel contribution, we wanted to deliver a DPF to the Haskell community

as well. We hope this contribution encourages and helps writing algorithms

under the Dynamic Pipeline Paradigm.

To finish, we think the achieved results clearly show we have implemented a

suitable Algorithm for Incrementally Enumerating Bitriangles in Large Bipar-

tite Network, opening a wide range of possibilities not only to improve the

existing framework and algorithm but also for tackling, using this approach,

other complex problems.
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8.2 Observed Limitations

We have obtained positive results during the experimental analysis, however

we have detected some weaknesses of the implementation. These weakness

can be addressed in the future to improve the solution. The first limitation,

exposed in chapter 7, is memory consumption efficiency. Although the part

of the memory allocation that belongs purely to the IEBT specificities are

showing an acceptable use of the resources, there is still a problem with the

number of filters that are being spawned and not free by GHC. This is causing

a big increase of MUT ARR PTRS CLEANER object. This limitation imposes that

if we want to handle networks bigger than DBpedia it is necessary to worry

about the amount of memory that we have at our disposal.

Another weakness also related to memory management, is the data structures

used for managing the queries. In the DPF-Haskell implementation of the

pseudo-code algorithm as we have seen on section 6.5 we have been careful

about Haskell techniques and data types used to improve the search perfor-

mance. However, it is important to remark that there are more advanced

techniques to implement this kind of joins and querying process [29]. Finally,

there are currently some limitations on Haskell Dynamic Pipeline Framework

itself, since the threading model we are using is the green threads [62]. This

threading model provided by Haskell has a limitation in the number of threads

that the framework can spawn. There is other threading model also supported

by Haskell, sparks, which potentially allows hundreds of millions of threads.

8.3 Future Work

Regarding complexity of the IEBT, the formal analysis is beyond the scope of

this work. We left the realization of a complete and proper analysis for future

work. In particular, to get a robust complexity analysis of the IEBT must

consider many statistical parameters of the bipartite networks. Additionally,

the parallelism of the implementation imposes the use of specific techniques

for this family of algorithms. This is one of the most challenging task to be

tackled after this work.

From the point of view of our algorithmic contribution under the DPP and

using a pay-as-you-go approach, we think there are two main research lines.
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On the one hand, considering the general problem of discovering motifs, and

some related problems, in large graphs for linking data, it is interesting to

study how the kind of compact representation we use to create a graph index

could improve some similar discovering problems. On the other hand, showing

the effectiveness of implementing graph algorithm under the DPP encourages

the creation of a benchmark for many well-known graph problems. This is now

really feasible since this work provides to the research community availability

of a Dynamic Pipeline Framework.

Regarding implementation issues, the future work is mainly oriented to address

the efficiency and the capability of the system handle bipartite networks larger

than DBpedia. As we have seen in chapter 7, we have detected an increase in

the memory consumption as long as the network grows. Regarding that, we

think it is extremely important to improve this aspect in order to be able to

process huge networks efficiently.

Moreover, we have seen evidence of the previous statement in section 7.2.3,

where it is exhibited that execution of larger graphs requires paying an extra

cost. The selection of appropriate data structures for optimizing handling the

querying answering process over aggregated bitriangles Aggregated Bitriangle

is an issue that needs to be tackled in the future.

Performing indexing over the edges and vertices could lead to significant im-

provements in search, although there is a trade-off in terms of memory allo-

cation, that can be addressed using fast external storage. Another important

aspect to be addressed in the future is to make DPBT in Haskell distributed

and parallel. Distribution of the stages between machines and not only be-

tween threads would enable sharing memory-intensive allocation between ma-

chines and not using a single memory unit for all the threads. We think that

moving from a multithreading model to a distributed model will allow Dy-

namic Pipeline Paradigm to reduce the gap of memory consumption for huge

network instances, as well as distribute the stage according to the amount

of memory required by them. We cannot avoid that there is a trade-off in

terms of transfer data and the delay that this kind of distributed computation

brings in, but since DPBT in Haskell is delivering incremental results in a pay-

as-you-go model, the distribution cost could be amortized. We should also

take into consideration that the speed-up and reliance on network communi-

cation is extremely high nowadays, enabling the exploration of the commented

approach.
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In another aspect of the computational model and more related with the

Haskell Programming Language implementation, there are several improve-

ments to be conducted in the Haskell Dynamic Pipeline Framework as well.

One of those improvements could be to delegate the distribution to other

stream processing systems like Kafka [78] for example and do the parallel

processing of the split data with Haskell Programming Language acting as

a consumer. In addition to that, some other radical improvements can also

be done into Haskell Dynamic Pipeline Framework. From designing more ab-

stractions to help the user to write pipelines with less effort and errors, to

modifying the thread scheduler and memory management in GHC to improve

performance. We can also improve the speed-up in Haskell Dynamic Pipeline

Framework moving some Boxed types to Unboxed types [79] which would

reduce memory footprint.

As we can appreciate, this work gives rise to interesting research lines and

improvements that are worth to be explored.
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Appendix

A.1 Source Code

All the source code of this research project can be found in https://github.

com/jproyo/upc-miri-tfm, and it is publicly available for download. In that

source code there are three folders:

• connected-comp: This contains the Haskell source code done for the

chapter 4 contribution related to Weak Connected Components (WCC)

using DPP.

• bt-graph-dp: This contains the Haskell source code done for the spe-

cific problem of this work which is incremental enumeration of Bitriangle

in Bipartite Graph.

• doc: Contains this document in LaTex format as well as the paper

written for the proof of concept [35].

A.2 Running Experiments

All the scripts and data for running the experiments are under bt-graph-dp/experiments

folder. It is important to mention that we are not including in the source

code distribution the networks themselves because you can search them on

Konect [68] by the reference in this work. We are going to describe how to

run the different experiments exposed on chapter 7.
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E1 In this case we have different experiments setups and we are going to de-

scribe how to run one case only. For example for running the experiment setup

E−H on Dbpedia graph, assuming that you download the graph and call the

file as input.txt and it is inside of folder bt-graph-dp/experiments/diepfy/dbpedia.

>>> cd bt-graph-dp

>>> stack build

>>> stack exec bt-graph-dp -- +RTS -A1G -H1G -N6 -c -RTS -f

./experiments/diepfy/dbpedia/input.txt -c

./experiments/diepfy/dbpedia/c-edge-high.txt -e dbpedia

↪→

↪→

E2 In the case of benchmark analysis it is simple the following command

>>> cd bt-graph-dp

>>> stack build

>>> stack exec benchmark

This is going to left the results in HTML file format under benchmark.

E3 In the case of Memory and Thead Measurement you need to enable

profiling flags.

For Memory

>>> cd bt-graph-dp

>>> stack build --profile

>>> stack exec bt-graph-dp -- +RTS -A10G -H10G -c -N12 -hy

-l-agu -RTS -f ./experiments/diepfy/moreno_crime/input.txt

-c ./experiments/diepfy/moreno_crime/c-edge-high.txt -e

moreno_crime

↪→

↪→

↪→

For ThreadScope

>>> cd bt-graph-dp

>>> stack build --profile

>>> stack exec bt-graph-dp -- +RTS -A10G -H10G -c -N12 -l -s

-RTS -f ./experiments/diepfy/moreno_crime/input.txt -c

./experiments/diepfy/moreno_crime/c-edge-high.txt -e

moreno_crime

↪→

↪→

↪→
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A.3 Diefficiency Metrics - Traces

1 test,approach,tfft,totaltime,comp

2 dbpedia,edge-high,255736.822265625,8485928.7265625,214038

3 dbpedia,edge-low,224763.88452148438,389846.43212890625,3880

4 dbpedia,edge-medium,147658.31372070313,372466.23828125,19534

5 dbpedia,vertex-lower-high,251050.91967773438,86167082.25341797,4143936

6 dbpedia,vertex-lower-low,216835.52563476563,239741.81201171875,188

7 dbpedia,vertex-lower-medium,199219.95922851563,1318776.70703125,47714

8 dbpedia,vertex-upper-high,225575.84912109375,13363175.830078125,419107

9 dbpedia,vertex-upper-low,181239.228515625,3579096.3217773438,324662

10 dbpedia,vertex-upper-medium,250305.59741210938,21314163.650390625,1167826

Source Code A.20: CSV file that contains the metrics for all the scenar-
ios of Dbpedia network that feed diefpy tool in order to obtain Diefficiency
Metrics. This file contains the minimum and maximum t where an answer

was produced for each scenario

1 test,approach,answer,time

2 dbpedia,edge-high,1,255736.822265625

3 dbpedia,edge-high,2,255737.4765625

4 dbpedia,edge-high,3,255737.59545898438

5 ..

6 ..

7 dbpedia,vertex-upper-medium,1167666,21313172.78540039

8 dbpedia,vertex-upper-medium,1167667,21313172.837890625

9 dbpedia,vertex-upper-medium,1167668,21313172.888183594

10 dbpedia,vertex-upper-medium,1167669,21313262.267333984

11 ..

12 ..

Source Code A.21: CSV file that contains all data points where an
answer was generated for all the scenarios of Dbpedia network that feed
diefpy tool in order to obtain Diefficiency Metrics. This file contains the
scenario, the answer number, and the time t where that answer was pro-

duced
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[49] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific lan-

guages: A systematic mapping study. Information and Software Tech-

nology, 71, 11 2015. doi: 10.1016/j.infsof.2015.11.001.

[50] William Alvin Howard. The formulae-as-types notion of construction.

In Haskell Curry, Hindley B., Seldin J. Roger, and P. Jonathan, editors,

To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and

Formalism. Academic Press, 1980.

[51] Juan Pablo Royo Sales. Haskell dynamic pipeline library - github repos-

itory. https://github.com/jproyo/dynamic-pipeline. Accessed:

2021-09-02.

[52] R. Hinze, J. Jeuring, and Andres Löh. Type-indexed data types. In MPC,
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