
Scalable Automatic Service Composition using Genetic

Algorithms

Pouria Roostaei Ali Mehr

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montréal, Québec, Canada

January 2023

© Pouria Roostaei Ali Mehr, 2023

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Pouria Roostaei Ali Mehr

Entitled: Scalable Automatic Service Composition using Ge-

netic Algorithms

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Denis Pankratov

Examiner
Dr. Denis Pankratov

Examiner
Dr. Nikolaos Tsantalis

Supervisor
Dr. Joey Paquet

Approved by
Chair of Department or Graduate Program Director

Dr. Mourad Debbabi, Dean of
Gina Cody School of Engineering and Computer Science

Abstract

Scalable Automatic Service Composition using Genetic Algorithms

Pouria Roostaei Ali Mehr

A composition of simple web services, each dedicated to performing a specific sub-

task involved, proves to be a more competitive solution than an equivalent atomic

web service for a complex requirement comprised of several sub-tasks. Composite

services have been extensively researched and perfected in many aspects for over

two decades, owing to benefits such as component re-usability, broader options

for composition requesters, and the liberty to specialize for component providers.

However, most studies in this field must acknowledge that each web service has a

limited context in which it can successfully perform its tasks, the boundaries defined

by the internal constraints imposed on the service by its providers. The restricted

context-spaces of all such component services define the contextual boundaries of

the composite service as a whole when used in a composition, making internal

constraints an essential factor in composite service functionality. Due to their limited

exposure, no systems have yet been proposed on the large-scale solution repository

to cater to the specific verification of internal constraints imposed on components

of a composite service. In this thesis, we propose a scalable automatic service

composition capable of not only automatically constructing context-aware composite

web services with internal constraints positioned for optimal resource utilization but

also validating the generated compositions on a large-scale solution repository using

the General Intensional Programming System (GIPSY) as a time- and cost-efficient

simulation/execution environment.

iii

Acknowledgments

First and foremost, I would like to say a special thank you to my supervisor, Dr. Joey

Paquet. His support, guidance and insights in this field have made this an inspiring

experience for me. I would also like to thank him, the university and NSERC for

providing the funding for this research.

I am deeply grateful to Dr. Serguei Mokhov, Dr. Touraj Laleh, and Jyotsana

Gupta not only for their excellent research that serves as the foundation for this

thesis, but also for sharing their invaluable knowledge on a wide range of topics,

simple and complex, that helped me better understand my research problems and

design an effective solution.

I consider myself extremely fortunate to have been a part of a fantastic research

team where there is never a lack of motivation, encouragement, support, and I’d like

to thank everyone involved - Joey, Serguei, Pouria, Vashisht, Rostislav, and Peyman.

I’ve come a long way since the day I first started preparing for graduate program

applications, and the journey, especially the initial steps, would have been much more

difficult and might not have happened at all if it hadn’t been for the selfless help and

encouragement of my old friend, Navid, his lovely wife Golnoush, and my best friends,

Pouyan and Setayesh.

There are no words to express my gratitude and love for my wonderful family.

The unconditional love, unwavering faith, and boundless patience of my parents and

grandmother have shaped me into the person I am today. I dedicate this thesis and

all of my work on this research to them, especially my mother and father, who worked

tirelessly to make my dreams come true. And for Babei, my grandfather who is not

among us but I will be his little son forever.

iv

Contents

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Problem Analysis . 1

1.2 Motivation . 7

1.3 Thesis Contributions . 10

1.4 Thesis Scope . 13

1.5 Research Methodology . 14

1.6 Thesis Outline . 16

1.7 Summary . 16

2 Background 17

2.1 Lucid Programming Language . 17

2.1.1 Intensional Logic . 18

2.1.2 Dataflow Networks . 19

2.1.3 Lucid Program Structure and Execution 21

2.1.4 Objective Lucid . 29

2.2 GIPSY . 36

2.3 Genetic Algorithms . 39

2.4 Related Work . 43

2.5 Summary . 52

v

3 Genetic Service Composition 53

3.1 Composite Service Model . 54

3.2 Genetic Service Composition Model: Concepts 57

3.3 Generic Service Composition Algorithms 59

3.4 Genetic Service Composition Example 64

3.5 Restriction on Service Composition 72

3.6 Service Composition Implementation 73

3.6.1 Assumptions . 73

3.6.2 Validation Checks . 74

3.6.3 Optimizations . 74

3.6.4 Additional Features . 75

3.7 Summary . 77

4 Solution Evaluation 78

4.1 Simulation Settings . 78

4.2 Service Composition Process Evaluation 79

4.2.1 Scalability Evaluation . 80

4.2.2 Effectiveness Evaluation . 91

4.3 Summary . 95

5 Conclusion and Future Work 96

5.1 Conclusion . 96

5.2 Limitations and Future Work . 99

Bibliography 101

vi

List of Figures

1 Web Service Domain Model . 2

2 Shopping Service . 3

3 Constraint-and Context-Aware Composite Web Service example. . . . 5

4 Example of a graph with large fan-out branches. 7

5 Research Methodology . 15

6 Dataflow Graph for the range Program Shown in Listing 2.1 20

7 Range Composite Service . 25

8 Demand Generation and Computation Tree for the range Program . 27

9 Processing of New and Previously-Computed Procedural Demand on

GIPSY . 38

10 Genome (Genotype) . 66

11 Generated Graph (Phenotype) . 67

12 Crossover (Composition Policy) . 67

13 Crossover (Composition Policy) - Phenotype 68

14 Mutation Adoption Policy - Genotype 69

15 Mutation Adoption Policy - Phenotype 69

16 Mutation Adoption Policy - Genotype 70

17 Mutation Adoption Policy - Phenotype 70

18 Shopping Service Solution Plan Set Construction 71

19 GA Graph Represented Using the Plot Graph Tool. 76

20 Time vs. Number of Web Services . 81

21 Memory Heap vs. Number of Web Services 81

22 Time vs. Number of Web Services . 81

vii

23 Memory Heap vs. Number of Web Services 81

24 Time vs. Number of Web Services . 82

25 Memory Heap vs. Number of Web Services 82

26 Time vs. Number of Web Services . 82

27 Memory Heap vs. Number of Web Services 82

28 Time vs. Number of Web Services . 83

29 Memory Heap vs. Number of Web Services 83

30 Time vs. Number of Web Services . 84

31 Memory Heap vs. Number of Web Services 84

32 Time vs. Number of Web Services . 84

33 Memory Heap vs. Number of Web Services 84

34 Time vs. Number of Web Services . 85

35 Memory Heap vs. Number of Web Services 85

36 Time vs. Number of Web Services . 85

37 Memory Heap vs. Number of Web Services 85

38 Time vs. Number of Web Services . 86

39 Memory Heap vs. Number of Web Services 86

40 Time vs. Number of Web Services . 86

41 Memory Heap vs. Number of Web Services 86

42 Time vs. Number of Web Services . 87

43 Memory Heap vs. Number of Web Services 87

44 Time vs. Number of Web Services . 88

45 Memory Heap vs. Number of Web Services 88

46 Time vs. Number of Web Services . 88

47 Memory Heap vs. Number of Web Services 88

48 Time vs. Number of Web Services . 89

49 Memory Heap vs. Number of Web Services 89

50 Time vs. Number of Web Services . 89

51 Memory Heap vs. Number of Web Services 89

52 Time vs. Number of Web Services . 90

viii

53 Memory Heap vs. Number of Web Services 90

54 Time vs. Number of Web Services . 90

55 Memory Heap vs. Number of Web Services 90

ix

List of Tables

1 Extension for Temperature in Expression E 19

2 Intension of Expression E . 19

3 Comparison of Research Works Concerning Internal Constraints (Q1) 47

4 Comparison of Research Works Concerning Genetic Algorithms (Q2) 50

5 Services Available for Composition of Shopping Application 66

6 Statistical Factors for Test 1 . 80

7 Evaluation Summary for Test 1 . 80

8 Statistical Factors for Test 2 . 81

9 Evaluation Summary for Test 2 . 81

10 Statistical Factors for Test 3 . 81

11 Evaluation Summary for Test 3 . 82

12 Statistical Factors for Test 4 . 82

13 Evaluation Summary for Test 4 . 82

14 Statistical Factors for Test 5 . 83

15 Evaluation Summary for Test 5 . 83

16 Statistical Factors for Test 6 . 83

17 Evaluation Summary for Test 6 . 83

18 Statistical Factors for Test 7 . 83

19 Evaluation Summary for Test 7 . 84

20 Statistical Factors for Test 8 . 84

21 Evaluation Summary for Test 8 . 84

22 Statistical Factors for Test 9 . 85

23 Evaluation Summary for Test 9 . 85

x

24 Statistical Factors for Test 10 . 85

25 Evaluation Summary for Test 10 . 86

26 Statistical Factors for Test 11 . 86

27 Evaluation Summary for Test 11 . 86

28 Statistical Factors for Test 12 . 87

29 Evaluation Summary for Test 12 . 87

30 Statistical Factors for Test 13 . 87

31 Evaluation Summary for Test 13 . 87

32 Statistical Factors for Test 14 . 87

33 Evaluation Summary for Test 14 . 88

34 Statistical Factors for Test 15 . 88

35 Evaluation Summary for Test 15 . 88

36 Statistical Factors for Test 16 . 89

37 Evaluation Summary for Test 16 . 89

38 Statistical Factors for Test 17 . 89

39 Evaluation Summary for Test 17 . 90

40 Statistical Factors for Test 18 . 90

41 Evaluation Summary for Test 18 . 90

42 Repository Information . 92

43 FE and GA Results . 92

44 FE Information . 92

45 GA Memory Usage Information . 92

46 Fittest Genome as Solution candidate generated by GA 93

47 Fittest Genome Score versus Generation 94

48 Repository Information . 94

49 FE vs. GA . 94

50 Forward Expansion Memory Usage 94

51 Genetic Algorithm Memory Usage . 94

52 Repository Information . 94

53 Number of Web services time diffrences 95

xi

Chapter 1

Introduction

This chapter begins with a thorough explanation of the problem domain and the

particular issues that this thesis addresses. Then we discuss the contributions and

establish the scope of our research. We conclude by giving a succinct summary of

our research problem and then give an introduction to the chapters that go into more

detail about it.

1.1 Problem Analysis

A web service is a software application accessed through a web programming interface

which can be distributed and identified by a uniform resource identifier (URI) over

the Internet. As the Internet progresses more and more towards cloud computing,

the evolution of web services presents new trends. First, more and more companies

are providing services on the Internet, making the number of available Web services

to increase rapidly. Second, semantic information is introduced to web services to

describe their functionality in a computer-readable way. Finally, when using web

services to build applications, constraints become more important than performance.

Since there are so many potential services on the web, it is difficult for users to identify

and find the right provider quickly. Therefore, a good service discovery technique

is required, and semantic information and service limitations should be considered

during the discovery process [1, 2]. Figure 1 depicts the relationships between the

1

entities involved in the global interpretation of the web service domain, as discussed

here.

Figure 1: Web Service Domain Model

Web services are usually designed to perform straightforward and specific tasks to

ease the discovery process. This simplicity allows the application to reuse it for similar

requests. For example, consider a web service that processes credit card payments.

Such a service accepts credit card information and payment amount as input and

generates payment status (completed/rejected) as output.

In addition, it should facilitate the combination of services with diverse functions

to meet user requests when no single service can satisfy them, which is a huge

advantage. In the previous example, suppose the output parameters of one service

can be used as input parameters of another service. If the service provider uses only

one domain, primarily for providing services, then it cannot respond to the requests

of customers.

In the example of online shopping (similar to the one depicted in Figure 2), if a

web service creates more complex requirements, such as a catalogue, order, payment

and product delivery before placing the order, the scope of their potential customers

is significantly reduced because such shopping services are only suitable for online

shopping stores. Furthermore, if all its components - catalogue, ordering, payment

2

and shipping - are fully compatible with the customer’s needs, then the shopping

service is appropriate for the customer. However, since the service depends on all

components, the entire service is rejected if it cannot perform even one required task.

For example, if the service requester needs the service to be able to ship products

throughout the North American region, but the service cannot process addresses in

Quebec, the entire shopping service will be rejected if a particular user is from Quebec.

This is why it is often difficult to find a ready-made integrated service on the web

that can meet a complex set of requirements and operational constraints.

Figure 2: Shopping Service

Therefore, to perform such complex tasks, more specific web services (called

component services) are selected for each subtask and combined in a workflow to

form what is known as a composite web service.

In that case, two services can be connected as a new service with input parameters

that are the same as the input parameters of the first single service and output

parameters that are the same as the output parameters of the second single one.

This new service is called a composite service, and the essential services are referred

to as the member services or component services. This raises another critical term,

namely service composition, in the research field of service computing [3].

Automatic web-service composition (AWSC) entails the automated creation of the

ideal combination of already-existing web services to accomplish a general objective.

There has been many different methods for solving AWSC, and most involve mixing

and matching different web service components based on their input, output, and

QoS features.

For composite services to be executed properly, certain restrictions and

preferences, also known as constraints , must be considered. Different kinds of

constraints can be defined, such customer constraints , which are defined as the

3

preferences and restrictions that customers express. In addition, services are subject

to usage limitations and QoS constraints (also known as service constraints) that

their providers set. The set of constraints for a composite service is derived from

the union of all the constraints associated with the services that compose it. When

a composite service is executed, its constraints should be verified to ensure proper

execution. The verification of constraints for a composite service differs from the

constraint verification for a single service. Individual service constraints must only

be verified prior to execution of this particular service. However, as each component

service is executed, constraints applied to a composite service can be verified during

execution. Admittedly, verifying some individual service constraints depends on the

values provided by users or other services during the execution of a composite service.

So most constraints can in fact only be verified at runtime.

Most existing research on composite web service verification/simulation/execution

has focused on validating their Quality of Service (QoS) constraints, functional

requirements, or Linear Temporal Logic (LTL) properties. The emphasis of QoS

constraint verification researchers has been on ensuring that services maintain certain

pre-defined levels of QoS standards, i.e., they provide optimum values for one or more

QoS features such as cost, availability, response-time, and reliability. [4–10]. In the

meantime, the systems proposed for functional requirement verification have been

focused on ensuring that services perform the tasks claimed in their descriptions

[4, 8–14].

For instance, when testing a credit card payment service, such systems would seek

to ensure that given the credit card information and the amount to be paid, the service

would generate a receipt if the card information is valid and the payment amount is

within the credit limit. However, these systems neglect to consider that not all credit

card brands can be processed by a single service, even if the card details are valid

and the credit limit permits the payment. In this case, an error message should be

displayed if the credit card information is provided and the service does not recognise

it. The systems that have been suggested so far do not account for such scenarios.

Because they mainly discussed the quality of performance after execution, which is

4

inappropriate for our research goal. Similarly, LTL-validation solutions ensure that

the components of a composite service are executed in the correct order[9, 15]. In

the case of the online shopping service depicted in Figure 2, for example, an LTL-

verification solution would be primarily concerned with ensuring that the Shipment

service is executed only after the Payment service has successfully completed its

processing.

In the past, we have used the General Intensional Programming System (GIPSY)

[16–18] as a simulation/execution-based environment for verification and validation

of constraint- and context-aware composite web services to cater to the specific

verification and validation of constraints imposed on component atomic services

proposed by Gupta [3] based on the research of Laleh et al. [19–23]. According to

Gupta and Laleh et al research, each element of an execution context is a name-value

pair. Based on this, the execution context of a service is defined as the collection of all

its input parameters and the values assigned to them during the service call. While

the service provider specifies these parameters as part of the service’s definition for

an atomic service, the execution context for a composite service - created in response

to a composition request - is viewed as a collection of the input parameters indicated

as part of the request for execution of the entire composite service, i.e., the input

parameters whose values can be provided by the customer for whom the composite

service is aimed.

Figure 3: Constraint-and Context-Aware Composite Web Service example.

After our investigation of GIPSY as a simulation/execution-based environment for

verification and validation of constraint- and context-aware composite web services

5

[3] on a large scale, the graph grows exponentially in the forward expansion phase,

which turns into another problem in terms of failure to generate any solution for the

user’s request. This problem is very challenging in the following aspects:

The problem itself, as well as our solution, are significant in scale. For instance,

for the constraint-aware Web service selection problem addressed in this thesis, the

challenge is selecting a web service for each task involved in a composite web service

to generate an execution plan for the composite service. If a composite service is

composed of 1000 web services, each with 10 output variables for each web service

(a.k.a. fan-out) leads to a solution space in the range of 101000. Clearly, the

choice of the best web service among so many potential options can easily become

computationally intractable. In this scenario, the experiment on the current version

of the service composition algorithm uses an exponential amount of space as the

parameters increase. This problem leads to failure in the generation of an execution

plan before any one complete solution can be found. Figure 4 depicts a graph with

large fan-out branches as an example.

This research investigates how to use genetic algorithms (GA) to address context

and constraint-aware service composition problems. GAs are inspired by the natural

evolution process and work on natural principles such as inheritance, mutation,

selection, and crossover to generate satisfaction. However, they do not always provide

optimal solutions to optimization and search problems. Nevertheless, GAs have

been successfully applied to complex, large-scale, constrained, and multi-objective

optimization problems in a variety of problem domains (e.g., deep learning [24], QoS-

aware IoT services composition [25], wireless sensor networks [26], and so on). These

positive experiences influenced our decision to use GAs to solve the Constraint-Aware

Web Service Composition problem, frequently described as a complex, large-scale,

constrained, and multi-objective optimization problem.

In order to address the gaps and problem discussed in this section about

web service composition, we propose genetic algorithms for Constraint-Aware Web

Services on large scale solution space using General Intensional Programming System

(GIPSY) in this thesis.

6

Figure 4: Example of a graph with large fan-out branches.

1.2 Motivation

One topic that makes us focus on web services is the high cost of maintaining and

using various web services. For example, Amazon does not have an exclusive need to

use all its web services simultaneously, which can be expensive. However, that means

it can reduce this cost using pre-designed plans. For example, when a user gets to

the payment portal, it can use different options such as PayPal, Visa, MasterCard or

other cards. This feature allows providers to prevent services they do not need and

reduce maintenance costs. This approach reduces the cost of payment and also reduces

the cost of resource consumption. Because of these reasons, it has become popular

among cloud provider companies. For example, AWS Compute Optimizer, Kubecost,

7

Datadog [27–29], suggests the optimal computational resources for workloads to

reduce costs and enhance performance by analyzing historical utilization metrics with

machine learning. Also, the Istio [30] (owned by Google) introduces the practical,

real-life expected usage scenarios for service composition. Istio makes it simple to

build a deployed service network that includes rich routing, load balancing, service-

to-service authentication, monitoring, and more - all without requiring changes to

the application code. Istio aims to provide these advantages with minimal resource

overhead and support large meshes with high request rates while adding minimal

latency. For example, the Istio load tests mesh comprises 1000 services and 2000

sidecars, totalling 70,000 mesh-wide requests per second. The Envoy proxy consumes

0.35 vCPU and 40 MB of memory per 1000 requests per second that pass through

it. The Envoy proxy increases the 90th percentile latency by 2.65 milliseconds.

However, overprovisioning and underprovisioning computing can result in unnecessary

infrastructure costs and poor application performance. However, we restrict the use

of these technologies because of the high price of services and their limitations in

research studies.

So, we understood that the constraint-aware web service composition has become

popular, and according to our study, we supposed that there is much room for

development and research on this issue. The research done by Laleh [19] and followed

by a corresponding execution/simulation implementation by Gupta [3] was a proposed

solution for this problem. However, when we researched their approach, we realised

that there is some significant issue when the problem scaled for a higher number of

services in a composite service.

In the forward expansion phase, the graph grows exponentially, which causes the

failure to generate any solution for the user’s request. To avoid this problem, we

have substituted the global search algorithm (a.k.a. a brute-force method) with a

local search. This research aims not to reach all the answers but at least one answer

according to the technique we use compared to the existing techniques.

A composite web service’s abstract specification indicates that it is a workflow

process. So how can we decide which web service to use to complete each of the tasks

8

in the abstract specification while accommodating constraints imposed on the chosen

web service implementation to verify and validate the correctness of the composite

service?

This problem is a typical combinatorial optimization problem. There

are an exponentially growing number of possible combinations of web service

implementations for a composite web service as the number of tasks included in the

composite service and the number of web service implementations for each task rise.

Therefore, finding an optimal solution and execution plan for a composite service

is challenging. It may also be very challenging to develop a feasible solution due

to the complex restrictions on inter-service dependencies. Finding a feasible and

satisfactory solution requires web service selection and algorithms. However, this

solution might not be the best for the composite service in a reasonable time. This

leads us to the first goal of our research: “Formally define the new concept

of operational service composition mechanism and use it to formalize the

problem of constraint-aware service composition”. For this thesis, we assume

service requesters have constraints and object to the internal constraints imposed on

their requested composite services.

After the composition engine has assembled a suitable composite, it must subject

the service to some basic behavioural competency tests, such as the ones listed below,

before it can be proposed to the service requester as a viable solution:

• Component services should generate outputs following their interfaces and

accept inputs (whether generated by the user or other component services in

the composition).

• The values of the requested outputs for a valid set of user inputs fed to the

composite service should fall within the expected range. This is how component

services should work together cohesively as a single unit.

• Internal restrictions should be properly enforced where applicable. For example,

when a contextual value is discovered to violate a restriction, the composite

service’s execution should be prevented.

9

The second goal of this thesis is: “To scale the solution scope for the

execution context of services and the restrictions/constraints imposed on

them to generate at least one solution, if possible, to any valid composition

request”. This study aims to determine efficiency of the proposed algorithm on large

scale solution space. Different test instances are built based on the statistical factors

to examine effect of scalability parameters . Finally, the new genetic algorithm was

tested on these test instances to provide precise results about the algorithm’s strengths

and weaknesses.

Hence, the third goal of our research is: “To enable our verification system

to simulate and execute context- and constraint-aware composite web

services for large scale studies”. As stated in Section 1.1, there is a system

for verifying and validating internally-constrained composite web services. Moreover,

the proposed algorithm resolved the mentioned problem and prevented the whole

simulation/execution from failing during web services composition phase.

1.3 Thesis Contributions

In order to achieve the objectives listed in Section 1.2, we principally want to

contribute the following knowledge to the study of web service composition and

verification:

1. A generic optimized operational constraint-aware service composition

mechanism: Only a few research teams have sufficiently investigated the

composition of internally-constrained services, as mentioned in Section 1.1.

This thesis is based on the research of Laleh et al. [19–23] and following

execution/simulation by Gupta [3] because they not only offer a formal model

for composite services that are aware of constraints but also incorporate a

novel constraint-adjustment method into their service composition. As a result,

we proposed a genetic algorithm to solve and improve their research methods’

limitations and problems on large-scale context/constraint-aware composite

services using gipsy studies.

10

As our first contribution, we design the genetic algorithm for web service

composition which helps to optimize search space to minimize the processing

effort spent on generating composite service and unnecessary validation

checks, and prevent errors caused by memory leaks. These optimizations

are represented in the implementation of our algorithm, which we designed

as an independent and generic application with an extensible multi-modal

input system capable of composing constraint-aware solutions for any valid

composition request and set of available atomic services. Chapter 3 contains

complete details on this contribution and the necessary explanation of the

relevant features of Laleh’s research.

2. A dataflow execution model that is inherently concurrent and is

designed for use with constraint-aware composite services: As stated

in Section 1.1, we used GIPSY as composite web services simulation and

execution environment. It is necessary to convert composite services intended

for GIPSY execution into Lucid programs because GIPSY is a system

exclusively used for the compilation and execution of Lucid programs.

Furthermore, programs written in Lucid are fundamentally formalized textual

representations of dataflow networks because it is a dataflow programming

language. Consequently, a Lucid program is transformed into a virtual dataflow

network of parallel-processing components called filters when executed. For

example, if a Lucid program were to stand in for a constraint-aware composite

service, its corresponding dataflow network would be composed of concurrently

executing component service filters encased in wrappers that served as internal-

constraint-verification layers. This concurrency, which is an inherent property

of the Lucid execution model and does not require the programmer to

launch, synchronize, or manage threads, eliminates the possibility of thread-

mismanagement-related errors.

For this reason, as our second contribution, we converted the web service

composition generated by proposed algorithm to be consumable by Gupta’s

11

simulation/execution of constraint-aware composite services.

3. GIPSY is a composite service verification system that is efficient,

aware of its context and constraints, and based on simulation and

execution on large scale datasets: There are several advantages to utilizing

a Lucid/GIPSY combination solution to simulate and execute composite

web services. As an intensional programming language, Lucid, unlike other

existing composition/verification systems, allows for the effortless incorporation

of contextual elements into its programs, while its "whenever" construct

enables the clear and straightforward definition of service constraints. At

the same time, GIPSY, which is an execution environment for Lucid, is

conveniently transforming the programmatic version of a composite service into

a context- and constraint-aware dataflow network of component services. These

component services have an inherent concurrency and a virtual nature, which

results in a minimal and efficient consumption of resources (see Contribution

2). Additionally, GIPSY’s deductive, demand-driven approach to execution,

along with its warehouse unit that is capable of storing and being queried for

execution results paired with the specific context in which they were achieved,

significantly reduces the overall amount of time, effort, and cost spent on the

simulation and execution of composite service composites. In addition, in

Section 1.1, we discuss the need for simulation and execution capabilities in

a verification system for composite web services and note that Gupta’s research

[3] is the only one to offer a dual-mode system for constraint-aware services,

lacking in large-scale datasets. A Lucid dialect comprised of Java and Lucid

constructs, makes it possible to simulate (using Java methods to emulate service

definitions) and execute (by replacing mock definitions with links to actual

service implementations) composite services without difficulty within the same

system.

As a result, as our third contribution, we used the Lucid/GIPSY system

as a composite service verification solution capable of testing whether the

12

internal constraints placed on component services are correctly verified at their

optimal locations within a composition plan as defined by genetic algorithm

(discussed in Chapter 3). Furthermore, it provides composite service execution

statistics to ensure no demands are generated for component services guarded

by internal constraints that fail verification and ensures results for duplicate

demands are fetched from the GIPSY warehouse instead of being computed

each time explicitly and assesses the improvement in simulation/execution time

and cost efficiency. In addition, we investigate those aspects of the GIPSY

architecture that are pertinent to its use as a verification system, present

a comprehensive analysis of the solution’s background, including all related

concepts, and examine the advantages of employing the proposed solution

in greater depth. Chapter 2, Chapter 3, and Chapter 4 contain in-depth

discussions of this contribution and its limitations and evaluation.

1.4 Thesis Scope

The main goal of this thesis is to present a scalable system for verifying and validating

context- and internal-constraint-aware composite web services. Since this subject has

not been addressed in any prior research, it was our obligation to investigate all of

its complexities and include strategies for handling them in our suggested solution.

However, it would have been challenging to handle a wide range of criteria in sufficient

depth given the time and resources we had at our disposal, and this could have

led to an insufficient overall solution. As a result, for this thesis, we decided to

concentrate on achieving a restricted but clearly defined set of goals to the best of

our abilities, as mentioned in Section 1.2. The following concerns or features of web

service composition and verification are outside the scope of this thesis:

• In this research, we do not evaluate the QoS as our computational factor (details

about fitness function discussed in Chapter 3), and the main focus is on the

proposed evaluation method for internal constraints of web services and their

dependencies.

13

• Although Laleh’s research offers an algorithm for all possible solutions inside the

dataset, our experiments show that the algorithm was not able to produce any

plans in some requests on large-scale datasets. Therefore, our primary focus is

to generate at least one solution to overcome this failure. However, this method

can only determine the number of generated solutions. Thus, generating the

total solutions inside the dataset is unnecessary but might need to be discovered.

• The chromosomes’ length is fixed and will be initialized at the initialization

phase based on the dataset’s statistical information. Therefore, dynamic length

has not been used in this algorithm due to the difficulty of evaluating each

population.

• Our proposed genetic algorithm is not parallel, Although it can provide

considerable gains in scalability and performance.

1.5 Research Methodology

As shown in Figure 5, our standard operating procedure for validating composite web

services that are aware of their contexts from within their environments is shown

here. The procedure is as follows:

• A composition request specifying the inputs provided by and outputs required

by the service requester, as well as a set of atomic services (with or without

internal constraints) available for assembly into a workflow, are fed to our

genetic composition service composition mechanism (see Contribution 1).

• The composition application generates one or more constraint-aware composite

services as probable solutions to the given composition problem based on the

problem’s validity and solvability using the available atomic services. The

requester is notified of invalid or unsolvable problems.

• Then, if any genetic composite services are made for the request, they can all

be sent to our service translator application, which turns them into equivalent

14

Figure 5: Research Methodology

Objective Lucid programs that GIPSY can run.

• The Java definitions of the component services that comprise an Objective Lucid

program can be generated by the translator to emulate the behaviour described

by their corresponding descriptions, or they can be sourced from their providers.

15

1.6 Thesis Outline

The following chapters’ objectives are summarised below:

Chapter 2 provides a comprehensive discussion of all pertinent aspects of

the Lucid/GIPSY verification system necessary for thoroughly comprehending the

proposed solution. It also examines other related research conducted in the field and

compares it to the methodology described in this thesis.

Chapter 3 describes the genetic service composition model and method on which

this thesis is based. It also describes the composition application’s architecture, usage,

and other distinguishing characteristics.

Chapter 4 describes the tests performed to evaluate our proposed verification

solution on large-scale datasets (focusing on service composition and translation

units). The results and inferences are drawn from them.

Chapter 5 concludes the thesis by arguing that we have in fact met all the

objectives that were stated in this chapter. We also identify the solution’s limitations

and improvements that must be addressed in future works.

1.7 Summary

We still find a gap in the verification and validation of context- and internal-

constraint-aware composite web services on large-scale datasets, despite the significant

amount of research that has been carried out up to this point in the field of web service

composition. To address this deficiency, we propose a simulation/execution-based

solution to the verification problem using a combination of Lucid and GIPSY. In

this chapter, we have identified our specific research objectives and the methodology

to achieve them. In the following chapter, we explore the unique features of the

Lucid/GIPSY system and compare it to other related research works to facilitate a

better understanding of our proposed solution and support our rationale for employing

it for context and internal-constraint-aware composite service validation.

16

Chapter 2

Background

For a simulation/execution-based verification system for context- and internal-

constraint-aware composite web services, we suggest using a Lucid/GIPSY

combination in Chapter 1. This chapter explains the fundamental concepts,

characteristics, and architectural features of the GIPSY environment and the Lucid

programming language that are crucial to fully comprehend our proposed solution.

Additionally, it is accountable for the solution having an advantage over the other

studies carried out up to this point in composite web service verification, simulation,

and execution. As in this thesis we propose to use Genetic Algorithms (GA) to solve

the scalability problem of the service composition algorithm proposed by Laleh and

implemented by Gupta, we also introduce here the notions of GA involved in our

solution.

2.1 Lucid Programming Language

The distinctive program structure, programming constructs, and execution model

of the intensional [31] and dataflow [32] programming language Lucid make it an

ideal choice for effectively representing and executing constraint- and context-aware

composite web services. This section begins with definitions of the fundamental

concepts underlying these distinguishing features of Lucid, followed by an explanation

of the features and the composite web service domain’s advantages.

17

2.1.1 Intensional Logic

Intensional programming stems from intensional logic, a mathematics subfield that

describes entities whose evaluation changes depending on the context in which

they are evaluated [33, 34]. It was developed as a method for formally describing

the meaning of natural languages, considering that a sentence can be interpreted

differently depending on the context in which it is used, the audience for whom it is

intended and so on. In other words, a sentence can have a different meaning depending

on the context in which it is used, making it a context-dependent entity. Consider

the following expression as an example:

E: The temperature is below the freezing point.

Suppose we do not specify the precise date on which the temperature is referred

to in the expression is recorded as well as the specific city. In that case, the

meaning of the preceding expression will continue to be ambiguous. Therefore,

interpreting expression E requires knowledge of the Date and City factors. In the

intensional branch of mathematical logic, these variables that affect the interpretation

or evaluation of an expression are known as dimensions. Depending on the type of

information it represents, a dimension can assume a variety of different values (see

Table 2 for sample dimension values). When each of an expression’s dimension names

is paired with one of its possible values, the resulting set of dimension names and

values is called a context or possible world in which the expression can be evaluated.

The context-space for an expression is a collection of the different possible worlds in

which the expression can be evaluated (possibly leading to a unique result in each

of them). A context space can be described as one-dimensional or multi-dimensional

depending on its number of dimensions; in theory, it is even possible for a context

space to have an infinite number of dimensions. The intension of an expression refers

to the relationship between the contexts of an expression and its calculated values.

The extension of an expression refers to the set of all specific values of an expression’s

intension that correspond to any particular context.

Using the terminology introduced in the previous paragraph, we can deduce that

18

Table 1: Extension for Temperature in Expression E

Date
City Montreal Toronto Ottawa ...

01/01/2022 −10 −5 0 ...
02/01/2022 −9 −5 −1 ...
03/01/2022 −7 −4 −2 ...

...

Table 2: Intension of Expression E

Date
City Montreal Toronto Ottawa ...

01/01/2022 true true false ...
02/01/2022 true true true ...
03/01/2022 true true true ...

...

the meaning of expression E is a function in (D × C) → B where D and C are

the sets of values that can be assigned to the Date and City dimensions, and B is

the set of boolean values that can be attained for each combination of Date-City

values. Table 3 contains a sample mapping of this function (i.e., E’s extension). E’s

extension is determined by the extension of the temperature records for each given

city on each respective date (presented in Table 2). In this instance, the context

for the first recorded temperature would be: {Date : 01/01/2022, City : Montreal}

whereas the extension of temperature in that context would be −10, and the extension

of expression E would be true. These contexts listed in the two tables would comprise

the two-dimensional context space for both temperature and expression E.

2.1.2 Dataflow Networks

The dataflow execution model is the foundation of the generally accepted semantic

model that is used to describe Lucid programs. This means that when a Lucid

program is being run, it is interpreted as a dataflow network. In order to gain

an understanding of this execution model, it is necessary to have a comprehensive

understanding of dataflow networks in general. Channels serve as the connecting links

19

in a dataflow network, which consists of filters. When data flows through a network,

it passes through a series of filters, each representing a processing unit representing a

function that can transform the data elements from one form to another, from input

to output. The term "channel" or "transition" is used throughout the network to

refer to a stream that connects two filters and acts as a conduit for transferring data

elements from one filter to another. The primary advantage of a dataflow network

is its inherent concurrency, which enables its components to perform computations

concurrently. In addition, each of these components is a black box, which means that

it does not interact with any of the other components in the network other than when

it receives inputs from those components or sends outputs to those components. Each

filter’s inner processing is completely concealed and shielded from the side effects of

other filters. Consequently, this makes it possible for the functions to keep their

referential transparency, which means they can guarantee that the values of their

outputs are entirely dependent on the values of their inputs. This implies that for a

given set of inputs, a filter produces the same output each time they are processed,

regardless of its previous results or the state of the other filters in the network [32,35].

Figure 6: Dataflow Graph for the range Program Shown in Listing 2.1

Consider, for instance, the network of dataflow depicted in Figure 4. The objective

of the network is to compute the range (i.e., the difference between the maximum

20

and minimum) of the three input numbers, num1, num2, and num3. In the network,

each maximum and minimum filter has three entry points (one for each of the

three input nodes) and one exit point (where the calculated output is put into the

data stream going to the difference filter). On the other hand, the difference filter

only has two entry points (one for each of the other filters) and one exit point,

which sends the final result to the network’s output node. The result computation

begins as soon as all data elements are made available at the various input points

of a filter. Because all necessary inputs for the maximum and minimum filters are

simultaneously available, the two filters can operate concurrently and independently.

The difference filter can receive tokens at its input points simultaneously or at

different times, depending on the rate at which these filters compute their respective

results [35]. The results, however, are guaranteed to be the same regardless of

the order in which the two filters complete their processing due to the referential

transparency property. A dataflow network allows its filters to work simultaneously

and asynchronously. However, it still produces the same results for any given set of

inputs as its sequential equivalent. In other words, it combines the best parts of both

sequential and concurrent computations.

2.1.3 Lucid Program Structure and Execution

Since Lucid is a functional programming language, every Lucid program is an

expression of one or more literals, variables, operators, and/or functions. Therefore,

each Lucid program also includes definitions of all the constituent variables and

functions as expressions, with further definitions for each component. Evaluating

the primary expression of these programs is the aim of running them. This requires

evaluating each of its constituent identifiers, which in turn depends on evaluating

each of its constituents, and so forth. However, unlike other functional programming

languages, Lucid evaluates each statement in a specific context that may have many

dimensions and produce a different answer in each possible context (as explained in

Section 2.1.1). As an intensional language, Lucid not only provides the operators

and @ for directly extracting values from and declaring values for the contextual

21

dimensions but also allows for precise and succinct definitions of each contextual

dimension as any of its regular variables. Most popular imperative languages

must rely on time-consuming extensional branching to analyze such phrases in

all potential situations. Additionally, variable and function declarations can have

context-dependent conditions imposed on them using Lucid’s whenever operator,

allowing them only to be evaluated when the conditions pass [31,32,34].

Consider the Lucid program presented in Listing 2.1 as an example [3]. Calculating

the range of three numbers is the purpose of the program. Its primary expression is,

therefore, a variable called range (defined later in the program) whose value depends

on the values of the three numbers in question. As a result, it is evaluated in a three-

dimensional context, with each dimension, g_num1, g_num2 and g_num3, standing

for one of the three numbers. The range expression may evaluate to a different value

at each point of reference in this context space. The @ operator must be utilized to

compute it at a particular moment in time or to determine a particular range. The

@ operator’s responsibility is to return the value of its first argument, the expression,

at the location and in the suitable dimension(s) defined by its second parameter, the

precise point of context [31]. The range’s value is returned in line 1 of the example

based on the definition of the range at a point of reference where the three numbers or

dimensions are, in order, 110, 12 and 14. The where clause linked to an expression in

a Lucid program specifies all the definitions related to it, starting with the dimensions

that specify its context.

22

Listing 2.1: Lucid Program to Calculate Range of Three Numbers
1 range @.g_num1 10 @.g_num2 12 @.g_num3 14
2 where
3 dimension g_num1, g_num2, g_num3;
4
5 range = difference (#.l_max, #.l_min)
6 @.l_max max
7 @.l_min min
8 where
9 dimension l_max, l_min;

10 difference (x, y) = x − y;
11 end;
12
13 max = maximum (#.l_num1, #.l_num2, #.l_num3)
14 wvr c_max
15 @.l_num1 #.g_num1
16 @.l_num2 #.g_num2
17 @.l_num3 #.g_num3
18 where
19 dimension l_num1, l_num2, l_num3;
20 c_max = #.l_num1 >= 0 and #.l_num2 >= 0 and #.l_num3 >= 0;
21 maximum(x, y, z) = greater(x, greater(y, z));
22 greater(a, b) = if a > b then a else b fi ;
23 end;
24
25 min = minimum (#.l_num1, #.l_num2, #.l_num3)
26 wvr c_min
27 @.l_num1 #.g_num1
28 @.l_num2 #.g_num2
29 @.l_num3 #.g_num3
30 where
31 dimension l_num1, l_num2, l_num3;
32 c_min = #.l_num1 >= 0 and #.l_num2 >= 0 and #.l_num3 >= 0;
33 minimum(x, y, z) = lesser(x, lesser (y, z));
34 lesser (a, b) = if a < b then a else b fi ;
35 end;
36 end

Each of these dimensions is specified using a dimension clause at the top of the where

clause’s body, indicating that it is a brand-new dimension that will only be used

inside the where clause enclosed in [31]. According to the location at which it is

declared, a dimension may have a global or local scope. For example, the dimensions

g_num1, g_num2 and g_num3 are stated in the outermost where clause (line 3)

and consequently have a global scope, as indicated by the ’g’ prefix. However, as their

prefix "l" indicates, the dimensions l max and l min (line 9) can only be used within

the local scope of the difference function and not outside of it. The definitions of the

23

relevant constraints, variables, and functions follow the declaration of the dimensions

in the where clause of an expression. Lines 5 and 6 define the difference function,

which defines the range variable. Lines 6 and 7 evaluate the function in a two-

dimensional context, defined by the dimensions l max and l min. The difference

function, which creates the range variable, is defined on lines 5 and 6. The two-

dimensional context, represented by the dimensions l max and l min, is evaluated in

lines 6 and 7. The # operator, which is in charge of returning the current value of

the dimension specified as its argument, is used by the function’s input parameters to

extract their values from its contextual dimensions [31]. The function’s dimensions, in

turn, get their values from later-defined variables (max and min) in lines 13-23 and 25-

35 of the program. After its dimensions declaration, the difference function is where

clause (line 10) defines the calculation it will perform. With two key exceptions,

the variable range definition is the same for the max and min variables that are

discussed in this definition. First, the global dimensions, g_num1 (10), g_num2

(12) and g_num3 (14), are obtained instead of being used to compute the values of

the local dimensions, l num1, l num2, and l num3, of the maximum and minimum

functions. Second, the wvr operator - an alternative form of whenever - is used to

provide the limitations that apply to these functions. These functions, which make

up the operator’s first argument, are only computed if the constraints, which make up

the second argument (lines 14 and 26) [31], evaluate to be true. In order to maintain

a clear and consistent program structure, all the constraints placed on a function

(maximum or minimum) have been specified as part of its where clause (lines 20 and

32) and their result has been represented as a variable (c max or c min) to serve

as the second argument to the wvr operator. Lucid also offers the or operator to

indicate optionality in conditional expressions, even though this example uses the

and logical operator to combine numerous conditions. These conditional expressions

are evaluated in a particular context, which may be specified as a part of a where

clause associated with them, just like the functions they constrain.

However, in the provided example, the constraints and the related functions are

part of the same context; thus, the where clause for the conditions is unnecessary.

24

Figure 7: Range Composite Service

After describing the program’s essential operation, syntax, and structure, as shown

in Listing 2.1, we will now go over the program’s distinctive features. The program

also uses the contextual values of the functions maximum, minimum, and difference

as arguments or inputs to the appropriate functions, meaning that the values of

these inputs are determined by the situation in which the function is evaluated. The

outcomes of specific computations are then used as the values for the contextual

aspects. In other words, contrary to custom, the contextual dimension of a function

in the supplied program refers to the object that provides context and input to the

function and the computed data. However, one of the goals of this thesis is to express

composite web services as Lucid programs; thus, we give this specific example here

since it demonstrates the approach we employ. Figure 7 shows a rough illustration

of a composite service in charge of computing the range of three values. While the

range determined by the program serves as the composite service’s clients’ expected

result, the three numbers in question serve as the inputs that they can offer. While

the conditions attached to each function, difference, maximum, and minimum, using

the wvr operator, serve as internal service constraints, they also serve as components

of the composite service (shown as circles in Figure 7). The constraints are depicted

as diamonds in Figure 7. It is interesting to note that the constraint diamonds

and service circles are shown in Figure 7 perform tasks that are similar to those

25

performed by the input/pre-condition place circles and transition bars that typically

constitute Petri net graphs [7, 14, 36–39], even though we do not use Petri nets to

represent composite web services in this research. We define a service’s contextual

dimensions, whether atomic or composite, as the set of all its input parameters.

Using the same definition, the three numbers that are input to the composite service

and its maximum and minimum components serve as the contextual dimensions for

the range variable, maximum function, and minimum function in the corresponding

Lucid program. In contrast, their values are used as arguments for the maximum

and minimum functions. The same holds true for the difference function, whose

dimensions match those of the inputs to the different services and whose values serve

as arguments to the function. While the difference service draws its input values

from the outputs of other component services, the maximum and minimum services,

on the other hand, receive their input values directly from the customer. Thus, the

services that give the difference service’s inputs must first be executed, and their

outputs must then be computed before the input values for the different services can

be computed. Lines 6 and 7 of the provided Lucid program depict this predecessor-

successor relationship between component services. Here, the contextual values for

the different functions are variables that evaluate the outcomes of calculations made

by the maximum and minimum functions.

Lucid uses a demand-driven, lazy method evaluation to perform the computations

necessary for program execution. A Lucid program is an expression that includes

definitions of the identifiers that make up that expression, as was previously stated.

The values of each of this primary expression’s components must be known to

evaluate it. Examining the expressions that define these constituents, as well as

those that define their constituents, will result in the same results. When such an

expression needs to be evaluated, the eductive model of computation creates a demand

or request for the value of each of its component identifiers in the current context.

The eduction engine examines the defining expression for each of these demands

to determine its corresponding identifier before generating demands for each of the

expression’s components, which may result in the development of additional demands.

26

Figure 8: Demand Generation and Computation Tree for the range Program

Essentially, for each identifier appearing in the primary expression of a Lucid program,

a tree-like structure (illustrated in Figure 8) is constructed incrementally, where each

node is an identifier-demand whose children are the demands generated for evaluating

the identifier’s defining expression. Each branch in this tree continues to grow from

the top to the bottom (as shown in red in Figure 8) until its lowest node/demand

evaluates to an actual value. The node’s parent in the branch receives this value after

that (indicated in green in Figure 8). The definition of the identifier is applied to

them, and its value is computed and propagated higher up the tree once an identifier-

demand node has received the values of all of its child nodes similarly. This process

of generation, propagation and consumption of demands and their computed values

continues until all the identifiers for the primary expression are evaluated, and its value

can be computed, thereby achieving the program’s goal. The education model’s frugal

approach to computation, which only generates a demand for a value if and when

necessary for the computation of another demanded value, is a significant advantage.

Non-essential values are never used to compute results. Such a strategy optimizes the

time needed to run a Lucid program while simultaneously saving execution resources

[18,31].

27

The dataflow execution mechanism of Lucid is another feature that increases its

run-time effectiveness. A Lucid program is a textual representation of a dataflow

network, and when it is executed, it turns into that network, as was discussed

in Section 2.1.2. A filter in a related dataflow network can be used to represent

each definition in a Lucid program, doing the computation that the definition itself

specifies. While the internal input-output relationships among defining expressions

take the form of the network’s channels, the external inputs given to and the

outputs generated by the program serve as the network’s respective inputs and

outputs. Consider Listing 2.1’s range program and Figure 6’s dataflow network as

an illustration. Only the three main defining functions of the program—maximum,

minimum, and difference—have been depicted as filters in the dataflow graph for

clarity and simplicity. Similar graphs, made up of filters that represent their respective

definitions, can be created separately for each of these functions, though, in order to

illustrate how they each work more fully. Considering the structure of the range

program, its corresponding dataflow graph, and the composite service (illustrated

in Figure 7) that it roughly represents, it is evident that while the dataflow graph

represents the range composite service as a whole, each of its constituent filters

represents one of its components in the current example. Additionally, each filter

in a dataflow network can work concurrently with other filters, as we already know.

Translating a composite service into a Lucid program makes it possible to achieve

parallel operation of its component services, reducing the time required for the service

to complete its processing. Furthermore, Lucid’s inherent concurrency of operation

prevents the possibility of complex problems, which are frequently known to result

from improper thread management because it requires no additional programming

effort to create or maintain numerous threads. Lucid, in other words, offers a way to

increase the effectiveness of composite service execution through intrinsic concurrency

without subjecting it to the dangers of subpar multi-threading [32,35].

28

2.1.4 Objective Lucid

Several different Lucid dialects have developed since the language’s creation in 1974

[32], each with its unique traits. One of these variants, GLU (Granular Lucid), used

the intensional language Lucid to specify the parallel structure of an application

and the imperative language C to specify the application’s functions. This allowed

programmers to benefit from both the simplicity of programming in mainstream

languages and the effectiveness of intensional dataflow languages [40,41]. This hybrid

language employs C to define the actions carried out by each of these filters, while

Lucid is used to declaring the filters and linking channels that make up the dataflow

network equivalent of a program. Objective Lucid, another Lucid dialect based on the

same hybrid paradigm, replaces C with Java as its imperative component, enabling

its imperative segment to control Java objects as first-class values and use Java’s

dot-notation to modify the objects’ members [42,43]. To simulate and run composite

web services on GIPSY in our research, we model them using Objective Lucid (the

rationale for which is discussed later in this section). Each Objective Lucid program

consists of two code segments: one in Java and denoted by a #JAVA tag, and the

other in Lucid and denoted by a #OBJECTIVELUCID tag. For instance, take

a look at the Objective Lucid translation of the pure (Indexical) Lucid program

in Listing 2.1, which calculates the range of three values displayed in Listing 2.2.

Three key differences exist between this Objective Lucid program’s Lucid segment

and its Indexical Lucid counterpart. First, Objective Lucid replaces the declarative

definitions of the difference of the functions, maximum, and minimum

Listing 2.2: Objective Lucid Program to Calculate Range of Three Numbers
1 #JAVA
2 public class ReqComp
3 {
4 private int diff ;
5
6 public ReqComp(int diff)
7 {
8 this . diff = diff ;
9 }

10 }
11

29

12 public class Difference
13 {
14 private int x;
15 private int y;
16 private int diff ;
17
18 public Difference(int x, int y)
19 {
20 this .x = x;
21 this .y = y;
22 diff = 0;
23 }
24
25 public void process()
26 {
27 diff = x − y;
28 }
29 }
30
31 public Difference calcDiff (int x, int y)
32 {
33 Difference oDifference = new Difference(x, y);
34 oDifference .process() ;
35 return oDifference ;
36 }
37
38 public class Maximum
39 {
40 private int x;
41 private int y;
42 private int z;
43 private int max;
44
45 public Maximum(int x, int y, int z)
46 {
47 this .x = x;
48 this .y = y;
49 this .z = z;
50 max = 0;
51 }
52
53 public void process()
54 {
55 max = x;
56 if (max < y)
57 max = y;
58 if (max < z)
59 max = z;
60 }
61 }

30

62
63 public Maximum calcMax(int x, int y, int z)
64 {
65 Maximum oMaximum = new Maximum(x, y, z);
66 oMaximum.process();
67 return oMaximum;
68 }
69
70 public class Minimum
71 {
72 private int x;
73 private int y;
74 private int z;
75 private int min;
76
77 public Minimum(int x, int y, int z)
78 {
79 this .x = x;
80 this .y = y;
81 this .z = z;
82 min = 0;
83 }
84
85 public void process()
86 {
87 min = x;
88 if (min > y)
89 min = y;
90 if (min > z)
91 min = z;
92 }
93 }
94
95 public Minimum calcMin(int x, int y, int z)
96 {
97 Minimum oMinimum = new Minimum(x, y, z);
98 oMinimum.process();
99 return oMinimum;

100 }
101
102 #OBJECTIVELUCID
103 oRange @.g_num1 10 @.g_num2 12 @.g_num3 14
104 where
105 dimension g_num1, g_num2, g_num3;
106
107 oRange = ReqComp(#.l_diff)
108 @.l_diff oDifference . diff
109 where
110 dimension l_diff;
111

31

112 oDifference = calcDiff(#.l_max, #.l_min)
113 @.l_max oMaximum.max
114 @.l_min oMinimum.min
115 where
116 dimension l_max, l_min;
117 end;
118
119 oMaximum = calcMax (#.l_num1, #.l_num2, #.l_num3)
120 wvr c_max
121 @.l_num1 #.g_num1
122 @.l_num2 #.g_num2
123 @.l_num3 #.g_num3
124 where
125 dimension l_num1, l_num2, l_num3;
126 c_max = #.l_num1 >= 0 and #.l_num2 >= 0 and #.l_num3 >= 0;
127 end;
128
129 oMinimum = calcMin (#.l_num1, #.l_num2, #.l_num3)
130 wvr c_min
131 @.l_num1 #.g_num1
132 @.l_num2 #.g_num2
133 @.l_num3 #.g_num3
134 where
135 dimension l_num1, l_num2, l_num3;
136 c_min = #.l_num1 >= 0 and #.l_num2 >= 0 and #.l_num3 >= 0;
137 end;
138 end;
139 end

with procedural definitions of the respective Java methods calcDiff (lines 31–36),

calcMax (lines 63–68), and calcMin (lines 95–100), which can be called from the

Lucid segment using regular method call statements (lines 112, 119 and 129).

Furthermore, unlike their declarative equivalents, which only return simple variables,

these procedural functions may additionally return Java objects (such as oDifference,

oMaximum, and oMinimum), which may include one or more data members and/or

member functions of various data/return kinds. The dot operator on the relevant

object can be used to access each of these members within the Lucid segment.

For instance, the function calcDiff in the provided Objective Lucid example first

creates an object oDifference of the class Difference (line 33), then calls its member

function process (line 34) to compute the difference between its two arguments and

saves the result in oDifference’s data member diff (lines 25–28), before returning the

object (line 35). After that, in the Lucid segment, the object oDifference (line 108)

32

returned by calcDiff is accessed to obtain the computed difference value (line 112).

The computation and access of the program’s maximum and minimum values work

the same way. Third, the final output of the Indexical Lucid program is a simple

variable called range, which holds the return value of the difference function. The

final output of the Objective Lucid program is an object called oRange, which is

made by calling the ReqComp function Object() [native code] and has a single data

member called diff. In this program, diff is responsible for holding the return value

of the difference function. Additionally, as is clear from the program, the value of

oRange depends solely on ReqComp, which depends on the functions that compute

the difference, maximum, and minimum values. As a result, in the Objective Lucid

program, these functions have been shifted from the global scope (such as in the

Indexical Lucid program) to the local scope specified by ReqComp’s where clause.

The goal of using Objective Lucid and the specific language structures covered in

the above sentence is to create a comprehensive and understandable representation of

context- and constraint-aware composite services that may be emulated or performed

on GIPSY. It becomes required for composite services intended to be executed on

GIPSY first to be translated into some Lucid dialect because GIPSY is dedicated

to the compilation and execution of Lucid applications. This dialect must possess

some particular properties in order to be able to represent all the necessary features

of the composite service model that we use (discussed in Chapter 3). Based on what

we know about Lucid variants, we can conclude that only Objective Lucid can do

this (without introducing superfluous characteristics). We justify this decision by

discussing the requirements and the Objective Lucid constructs that help meet them:

1. Requirement: Parameters that serve as inputs to a service (whether atomic

or composite) or on which constraints are imposed must be permitted to serve

as contextual dimensions while keeping the capacity to be defined, computed,

and utilized as regular variables.

Solution: As shown in Section 2.1.3, Indexical Lucid permits the definition

of service inputs and constraint features as contextual dimensions using the

33

dimension clause and the @ operator. The same is true for the Lucid portion

of a similar Objective Lucid software. In addition, in the Java portion of

the program, service inputs can be given and processed as regular function

arguments and as data members of objects within their respective service

definitions. In the meantime, constraint features can be used as regular

variables in the conditional statements that define these service constraints

in Lucid. For example, inputs max and min to the different components of

the range composite service (illustrated in Figure 7) are defined as both inputs

and dimensions, l max and l min, for its corresponding function calcDiff in

Listing 2.2 (lines 112 - 117), while being processed as regular variables as part of

their service definition in the Java segment (lines 12 - 36). Similarly, the values

of lnum1, lnum2, and lnum3, which serve as shared contextual dimensions for

function calcMax and constraint cmax (lines 121 - 123 and 125), are utilized as

convenient components of the constraint’s specification (line 126) in the Lucid

portion of the program.

2. Requirement: It should be permitted for services (whether atomic or

composite) to accept multiple input parameters and generate multiple output

parameters. The input values are extracted from the context. The output values

should then be applied to the context upon output. In addition, the outputs of

a component service should be passable as inputs to other components within

the same composition.

Solution: As mentioned in Section 2.1.3, each component service of

composition is represented as a function in an Indexical Lucid program and,

consequently, in the Lucid portion of an Objective Lucid program. In the event

that a service generates multiple outputs, Objective Lucid permits them to

be composed into a Java object and returns from the service’s Java segment

definition to the Lucid segment. The dot operator can then be used to access

individual output parameters (or data members) from these objects and pass

them as inputs or arguments to other service definitions or functions in the Lucid

34

segment. Consider the call to the ReqComp function Object() { [native code]

} in Listing 2.2 as an example (line 107). Even though it seems unnecessary

in the given example where the range composite service is expected to produce

only one output parameter, if a composite service produces more than one

output parameter, outputs (possibly from different component services) can be

passed as arguments to this function Object() { [native code] }, put together as

data members of a Java object (such as oRange), and returned as the program

output.

3. Requirement: A service should only be permitted to operate if all its

constraints evaluate to be true.

Solution: As described in Section 2.1.3, the wvr (or whenever) operator

provided by Lucid permits constraints to be set on expressions, including those

representing web services. Such phrases are computed, i.e., the services are

executed if and only if the requirements imposed upon them are true. In

order for the function calcMax to be evaluated in Listing 2.2 (line 119), the

conditions (line 126) that specify its constraint variable c_max (line 120) must

first evaluate to true.

4. Requirement: In a program representing a composition, the simulated

implementation of its component services should be easily embeddable and,

if necessary, replaceable with links to real services to facilitate a seamless

transformation of service simulation into execution.

Solution: In Objective Lucid, the declarative descriptions of functions

representing component services in an Indexical Lucid counterpart of a

composite service are replaced with procedural function definitions written

in Java — a popular imperative programming language. When compared to

Lucid, programmers who are more familiar with Java can write placeholder

implementations of component services and even reuse code that may already

be available for simulation purposes much more quickly. In addition, Java

[44] makes it simple to replace the simulation code of a service with an

35

implementation that summons the basic online service, hence reducing the work

required to transition between simulation and execution of service compositions.

We have to make this work for any Java program (pre-existing). The solution

is to create a worker function wrapper calls the main function of a pre-existing

Java implementation for a service.

2.2 GIPSY

The General Intensional Programming System (GIPSY) is a platform for

programming in several languages and a demand-driven distributed execution

environment for all Lucid dialects [18]. It is a continuing effort aimed at evaluating the

capabilities of the intensional programming model as implemented in the most recent

Lucid versions in many domains. GIPSY’s architecture is composed of three tiers

or independent processing units: the Demand Generator Tier (DGT), the Demand

Worker Tier (DWT), and the Demand Store Tier (DST). Each tier is responsible for

executing a distinct set of tasks as part of a program’s execution process. All these

levels (whether implemented on the same or different computers) must interact and

collaborate for this process to be completed, working together to achieve a common

objective. Computers that register to host one or more of these tiers are referred to

as GIPSY nodes, while a collection of interconnected GIPSY tiers deployed on these

nodes and executing GIPSY programs is referred to as a GIPSY instance. Through

the generation, dissemination, and consumption of demands, a GIPSY instance’s tiers

can communicate. The operational manner of the GIPSY Multi-Tier Architecture

is entirely demand-driven. As stated in Section 2.1.3, a demand in the eductive

computing paradigm is a request for the value of a program identifier in a specific

evaluation context. While intensional demands are generated for evaluating Lucid

identifiers, procedural demands are generated for procedure identifiers by demand

generator tier (DGT), i.e., procedural function calls embedded in a hybrid Lucid

program.

The declarative specification of every Lucid identifier that appears in a program

36

is handled by this tier, which traverses the abstract syntax tree (AST) representation

produced by the GIPSY compiler, the General Intensional Programming Compiler

(GIPC). The DGT generates an intensional demand for each ID and sends it to the

Demand Store Tier. The DST, also called the warehouse, is in charge of storing

computed demands and their results in a way that does not change. It also serves

as an asynchronous communication middleware between tiers to process migrating

requests and computed values. When a new demand is received from a tier, the DST

searches its records to determine if the demand’s value has already been computed. If

the value is located, it is returned to the requested tier; otherwise, the demand remains

in the warehouse until a tier capable of computing it becomes available. If the value

of an intensional demand is not already in the DST, it can be picked up by the same

DGT that made it or by a different DGT, if one is available to be further processed.

Once computed, the resulting value of the demand is conveyed to the warehouse so

that it may be saved for future reference, hence improving processing performance

by eliminating the need to recompute the value of every demand whenever it is

eventually re-generated after being processed. In the event that the demand was

remotely processed by a DGT different from the one that created it, the DST delivers

its computed value (after being logged) to the original tier. Figure 8 demonstrates

that the computation of demands may depend on the values of other identifiers. In

such a case, the DGT processing this demand generates additional requests for these

constituent identifiers and sends them to the DST for computation using the same

procedure as was used to evaluate the initial demand. In such a case, the DGT

processing this demand generates additional requests for these constituent identifiers

and sends them to the DST for computation using the same procedure as was used

to evaluate the initial demand. Once these values have been calculated, they are sent

to this DGT. This DGT then uses them to determine the original demand and sends

the result back to the warehouse for storage.

A DGT generates a procedural demand when traversing the AST of a Lucid

identifier and encountering a procedural, functional call node. In contrast to

intensional demands, a procedural demand can only be processed by a Demand

37

Figure 9: Processing of New and Previously-Computed Procedural Demand on
GIPSY

Worker Tier, i.e., only a DWT can pick it for computation as it waits in the DST

(if its resulting value is not already in the warehouse), execute the corresponding

procedure written in an imperative language, and send the result back to the DST.

The DST initially maintains this procedural demand and its computed value for

future reference in the same manner as intensional demands and then migrates the

value back to the DGT that originated the demand. Figure 9 depicts the activities

and processes conducted by the DGT, DST, and DWT during the computation of a

new (i.e., not previously computed) procedural demand D. When the same demand

is produced again, and its result is already in the warehouse, avoiding the need for

recalculation.

38

2.3 Genetic Algorithms

This section provides an overview of genetic algorithms as we shall use them in our

solution. It clarifies the terminologies used throughout the thesis and explains how a

typical genetic algorithm operates. In addition, it explains some of the more complex

aspects of genetic algorithms. These characteristics include constraint handling

techniques, strategies for multiple tasking and conflicting problems, and cooperative

co-evolution models, all of which are required for resolving context- and constraint-

aware composite service challenges.

Genetic algorithms (GAs) [45] are search methods originally designed by John

Holland and based on the concepts of natural selection, a biological process in which

fitter individuals are more likely to prevail in a competitive environment. GAs

are typically employed to generate acceptable solutions to optimization problems

whose search space cannot be traversed efficiently using conventional optimization

techniques, such as gradient descent or heuristic-based techniques. It has been

demonstrated that genetic algorithms are an efficient and effective method for tackling

certain types of search and optimization issues. Furthermore, genetic algorithms have

been used successfully to solve problems in many different areas, such as scheduling

[46], neural networks [47], face recognition [48], and other NP-complete problems.

The idea behind GAs is to take the successful optimization strategies that nature

uses, called Darwinian Evolution, and change them so that they can be used in

mathematical optimization theory to find the global optimum in a given phase space.

A GA operates on a specific population. Each member of the population represents

a potential solution to the optimization problem. Individuals are evaluated based on

their fitness. The fitness level represents a population member’s ability to tackle

the optimization challenge. Typically, a GA begins with the creation of a random

population. Then, the genetic operators of selection, crossover, and mutation cause

a transition from one population to the next, resulting in the evolution of the

population. Finally, the fittest individuals will be determined by a selection procedure

be selected for the next population. Crossover involves exchanging genetic material

39

Algorithm 1 A classic genetic algorithm
1: INITIALISE population with random candidate solutions
2: EVALUATE each candidate solution
3: while termination condition is not true do
4: SELECT individuals for the next generation
5: CROSSOVER pairs of parents
6: MUTATE the resulting offspring
7: EVALUATE each candidate solution
8: end while

between two individuals to produce two new individuals. In addition, the genetic

material of an individual can be arbitrarily altered through the process of mutation.

Eventually, the genetic operators are applied to the population members until a

satisfactory solution to the optimization problem is found. Typically, the solution is

attained when a predetermined stopping condition is met, such as when a particular

number of generations are reached, when the degree of diversity of people between

generations is decided upon, or when a predetermined fitness value is reached. There

may be better solutions than the result, but the algorithm can be calibrated to

produce a realistic solution that meets specific criteria consistently. Algorithm 1

displays the pseudocode for a classical genetic algorithm.

A GA typically consists of some components: Genome Encoding, Fitness Function,

Population, Parent Selection pocess, genetic operators such as Crossover and

Mutation, and Elitism are the fundamental components. Below is a description of

these components:

Genome Encoding: A GA operates directly on a coding space that can be

comprehended by the algorithm instead of a problem-solving solution space. Genome

Encoding converts a solution into a code that the GA can interpret. Genome Encoding

connects the "real world" to the "GA world", establishing a link between the original

problem context and the problem-solving area where evolution occurs [49]. An

individual (or chromosome) is a unique solution that contains "genetic" information

used by the GA. A chromosome comprises genes, each representing a single factor for

a controlling factor. Depending on the nature of the challenge, the chromosomal

representation could be encoded differently. A bit string encoding [50] is the

40

traditional method due to its simplicity and traceability. Nonetheless, a string-

based representation may give challenges and perhaps unnatural hurdles to specific

optimization tasks, such as the graph colouring problem [?]. Therefore, other encoding

strategies, including real number representation [51], order-based representation

[50] for bin-patching and graph colouring, embedded lists for factory scheduling

difficulties, variable element lists [52] for semiconductor designing, and even LISP

S-expressions [53], have been investigated.

Fitness Function: The primary mechanism for determining each chromosome’s

condition is provided by a problem’s objective function. This crucial piece connects

the GA and the system. A fitness function is a specific objective function that specifies

a chromosome’s quality in a GA so that it can be compared to all other candidate

chromosomes and ranked accordingly. As a result, a better generation will be created

by allowing suitable candidate chromosomes to breed and combine their datasets via

various methods.

Population: In each generation, the population is a subset of solutions. Also, It

is referred to as a collection of chromosomes. Therefore, several considerations must

be made when working with the GA population:

• Maintaining the population’s diversity is necessary to prevent an untimely

convergence.

• A significant population can cause a GA to slow down, but a small population

may not provide a sufficient mating pool. Consequently, the appropriate

population size must be determined through trial and error.

It has been noticed that the entire population should not be initialized with

a heuristic, as this can lead to a population with identical solutions and little

variability.It has been observed experimentally that random solutions move the

population to its optimal state. Therefore, with heuristic initialization, we seed

the population with a few reasonable solutions and then fill in the rest with

random solutions instead of populating the entire population with solutions based

on heuristics.

41

Parent Selection Mechanism: A fraction of the current population is chosen

to breed a new generation throughout each succeeding generation. Most of the time,

individual solutions are chosen based on how fit they are. Solutions that are fitter

(as measured by a fitness function) are more likely to be chosen. Selecting the

best solutions is prioritized in some selection methods, which rate each solution’s

fitness. Other methods, which may take a long time, only rate a random sample of

the population. The rank-based selection, the proportional selection (for example,

a roulette wheel selection is a typical proportional selection), and the tournament

selection are all common ways to choose a parent [54].

Crossover: The crossover process is recombining two parent chromosomes to

produce a new offspring chromosome. Crossover is based on the idea that by

mating two individuals with distinct but desirable characteristics, we can produce

offspring that combines these traits. The exchange of genetic material between

homologous chromosomes is comparable to reproduction and biological crossover.

One-point crossovers, two-point crossovers, and uniform crossovers are all common

crossovers [55]. Additionally, we may design a specific crossover operator by

incorporating domain expertise for a particular situation.

Mutation: Mutation is a genetic operator that modifies the starting state of

one or more gene values on a chromosome. This can lead to adding utterly new

gene values to the gene pool. The genetic algorithm can find a previously impossible

solution with these updated gene values. The mutation is essential to genetic search

because it prevents populations from stagnating at local optimums. Evolutionary

mutation occurs according to a user-defined mutation probability. This probability

should typically be set to a low value (0.01 is a good first choice). The search will

revert to a random, primitive state if it is too high.

Elitism: Elitism is the selection of superior individuals or, more precisely, the

selection of superior individuals with a preference. Elitism is essential because it

permits solutions to improve over time.

42

2.4 Related Work

The primary purpose of this thesis is to develop a simulation- and execution-based

verification solution for context- and internal-constraint-aware composite web services

on large datasets. Specifically, the objective is to test the scalability of the best

simulation- and execution-based verification solution we have found so far and resolve

its issues and improve limitations. Consequently, our review of the existing literature

on composite web services was centred on answering the two questions listed below:

Q1 Is there any research that proposes a method for verifying the internal

constraints imposed on composite web services? If there are, do any of their

strategies have flaws that our method can compensate for?

Q2 What kind of solutions using Genetic Algorithms exist, in general, for the

composition of web services? When compared to our solution, do they have

any similarities or differences that we should be aware of?

In this section, we examine the findings of our review procedure, which help us

answer the questions mentioned earlier.

The answer to Q1 begins with a discussion on the research works that have been

done up to this point on the composition of internally-constrained web services. In

[56], Wang et al. admit that the majority of web services can only function correctly

inside a specific environment whose boundaries are specified by the constraints

imposed on them by their providers, which we refer to as internal service constraints,

and that these constraints have an immediate effect on the compositions that employ

them as components. They describe how a composite service can fail during execution

if one or more restrictions imposed on its component services are not satisfied,

although all input values comply with the requisite input types. The authors offer a

graph-based approach coupled with unique preprocessing techniques for constraint-

aware web service design to prevent such failures. Each component service in these

compositions may be substituted by a branched combination of services, each capable

of doing the same task but under different restrictions (i.e. in different contexts). The

43

execution context determines which service from each group is invoked at runtime.

Although this method expands the contextual range of a composite service, it does

not ensure coverage of the entire context space, which is entirely dependent on the

combined contextual range of the available services for composition. As a result, these

composite services still risk failing during execution due to a constraint violation if

the input values do not match the combined contextual scope of their component

service alternatives. Similarly, Laleh et al. [19–23] conducted comparative research.

This work provides graph-based planning algorithms for the automated construction

of internally limited web services based on their input-output links. The article

proposes a unique method for moving the constraints in each composition plan to

the earliest possible place at which they can be checked correctly to decrease the

number of component service rollbacks resulting from a constraint-verification failure

during the execution of a composite service. Once all constraint-aware composition

plans for a given composition request have been developed, according to the study,

they can be integrated to build a larger package, including multiple possible solutions

for the same composition request. In the event that the internal constraints of one

plan fail verification in a specific execution context, the plan can be rolled back, and

the next plan in the set can be chosen for execution. Although this method expands

the contextual scope of the composition solution while minimizing the danger of

failure due to constraint violation (similar to [56]), it does not eliminate the risk

of runtime failures. As a result, a verification system is required for detecting the

scenarios or regions of execution context space in which a composite service could

fail and validating that it behaves as expected within its appropriate contextual

boundaries so that unexpected post-deployment failures and their resulting damages

(as discussed in Section 1.1) can be avoided or, at the very least, prepared for.

Petri nets for the composition of internally-constrained web services allow for some

simulation-based verification. Cheng, Liu, Zhou, Zeng, and Yla-Jaaski [36],present an

automatic composition method for internally- constrained fuzzy semantic web services

utilizing Fuzzy Predicate Petri Nets (FPPN), where fuzzy semantics (or fuzziness)

refers to syntactic and semantic representations involving fuzzy variables and fuzzy

44

membership functions. A composition request from the user is taken in this technique,

and its elements are described as a set of facts (user-provided inputs), rules (user-

imposed behavioural constraints), and a goal statement (user-expected outputs) in the

form of Horn clauses. The Horn clauses are then subjected to a T-invariant analysis

technique to create a collection of internally-constrained component services that can

satisfy the user’s fuzzy input/output and behavioural constraint needs by ensuring

that the services’ internal constraints do not conflict with the requester constraints.

The T-invariants are then represented as an FPPN (a fuzzy extension to the usual

predicate/transition nets) and examined to guarantee that the composite service is

entirely free of deadlocks. Finally, the reachability graph of Petri nets is utilized to

identify the execution order of the composite service’s components. The QoS value of

the composite service can be calculated and used to select the optimal composition

among all those generated for a given request based on this sequence and the QoS

parameter of each component service. Modelling composite services using Logical

Petri Nets (LPNs), a high-level abstraction of Petri nets with inhibitor arcs, is a

comparative approach to constraint-aware web service composition presented by Zhu

and Du in [7]. Following this methodology, the input/output requirements derived

from a composition request are translated into input parameters required by and

output parameters generated by the accessible composition services. In the meantime,

the user’s behavioural and qualitative constraint requirements are formalized as

logical expressions to safeguard the inputs and outputs of the resultant Petri net’s

transitions. During composition, only those atomic services are selected that meet

not only the input/output needs of the user but also display internal behavioural

limitations that align with the requester’s constraints. It is common knowledge

that Petri nets can simulate the behaviour of the systems they represent, and some

online tools assist users in observing this simulated behaviour [37, 38], although the

two studies above primarily focus on composition and not verification of services.

Consequently, utilizing the models above for simulation-based testing of internal and

user-constraint-aware composite services may be viable. Petri nets are incapable

of executing real services and cannot be utilized for execution-based verification of

45

composite services, which must confirm that a service’s actual behaviour matches its

description.

Wang and Yu [13] present another simulation-based verification technique for

composite web services. According to this technique, the OWL-S process definition

of the composite service to be tested is first transformed into a finite state program

written in an executable subset of Projection Temporal Logic known as object-

oriented MSVL (PTL). The features that must be validated are described as

Propositional Projection Temporal Logic (PPTL) formulae - a specification language

for defining desirable properties. The object-oriented MSVL interpreter then executes

the composite service program with the desired property formulas to determine if

the service meets the properties. As an object-oriented language, MSVL facilitates

the development of more structured and comprehensible applications, lowering

potential errors. In addition, it permits the representation of numerous composition

constructions, such as Split, Join, Any-Order, If-Then-Else and Iterate. However,

this technique (like Petri nets) cannot execute real services to analyze their actual

behaviour. Moreover, other than noting that the components of a composite service

may be subject to specific pre-conditions, the authors do not mention verification of

internal service limitations, leaving open the question of whether or not this system

is relevant to our research.

In [4], Aggarwal, Verma, Miller, and Milnor suggest an alternative strategy for the

constraint-driven composition of web services. Using a composition framework called

METEOR-S (Managing End-to-End OpeRations for Semantic Web Services), this

method allows the parts of an abstract process (a composite service) to be connected

to concrete web services based on business and process constraints. This creates

an executable process. This research uses BPEL4WS (Business Process Execution

Language for Web Services) to create the abstract process. Then, it augments

the process activities with service templates that define functional semantics and

QoS specifications to aid the constraint analyzer and execution engine modules of

METEOR-S in matching concrete services to abstract placeholders. In addition,

this study proposes the usage of semantically annotated WSDL service descriptions

46

Table 3: Comparison of Research Works Concerning Internal Constraints (Q1)
Authors & Year Approach/Model/ Automated Internal Constraint Simulation-based Execution-based
Citations Tool Composition Modeling Verification Verification
Aggarwal et al. 2004 METEOR-S framework + + − +

[4]
Zhu and Du 2010 Logical Petri Net + + + −
[7]
Wang et al. 2014 Graph-search-based
[56] internal-constraint-aware + + − −

composition
Cheng et al. 2015 Fuzzy Predicate Petri + + + −
[36] Net
Wang and Yu 2015 MSVL-PPTL − + + −
[13] verification
Laleh et al. 2016-18 Planning-graph-based
[19–23] internal-constraint-aware + + − −

composition
Gupta 2019 Constraint-adjustment for
[3] context/constraint-aware

using GIPSY + + + +

(+) Support, (-) No Support.

stored in an upgraded UDDI registry with the METEOR-S discovery engine module’s

interface to enable METEOR-S to locate relevant concrete services for matching.

Finally, the QoS standards of a group of found prospective candidates for a process

are used to select the ideal service. After the development, annotation, discovery,

and composition steps have been completed, and the BPEL4WS web process can be

executed on the BPWS4J engine. Unlike those previously discussed, this approach

produces constraint-aware composite services that can be used to test the actual

behaviour of real services. However, it needs the human construction of an abstract

process, which becomes increasingly unfeasible as the composite service’s complexity

develops. In addition, this solution only supports execution-based verification of

composite services; simulation-based testing is not possible.

In contrast, the Lucid/GIPSY combination that Gupta [3] suggested in their

research work can employ either technique with equal ease, expanding the verification

process’s scope and, thus, increasing its dependability. In addition, a component of

their solution is an improved version of the automated composition method defined

by Laleh et al. [19–23], which incorporates a unique constraint-adjustment feature

for reducing the rollback effort caused by runtime constraint-verification failures,

47

thereby enhancing the overall efficiency of their simulation/execution process. Based

on the study conducted to date, it can be concluded that only Gupta’s solution [3]

for verifying the internal limitations placed on composite services relies on simulation

and execution. As the best solution, we tested scalability by running a large dataset

on Gupta’s simulation/execution [3]. We found some limitations and failures in

generating a graph plan during our experiments. For example, the graph grows

exponentially in the forward expansion phase, which turns into another problem in

terms of failure to generate any solution for the user’s request. Our motivation is to

propose a solution to overcome this challenge, and we selected a genetic algorithm to

generate a graph plan on large-scale datasets.

In order to answer Q2, we look at various scalable methods presented so far

for different parts of composite web services. Although these solutions are not

concerned with verifying internal service limits, contrasting them with our validation

system allows for a more thorough analysis of its strengths and limitations. Using

a Genetic algorithm (GA), the obstacle in the service composition optimization

process is efficiently overcome. Canfora et al. [57] studied a genetic algorithm-based

technique for resolving QoS-aware web service composition. Later, other researchers

[58–61] enhanced this methodology. Yu and Lin [62] propose two models and two

algorithms for this problem: 1) a combinatorial model and 2) a graph model. They

provide a comparison of the four methods as well as usage settings. Schuller et

al. [63, 64] examined this issue’s unstructured orchestration patterns and stochastic

QoS factors. Alrifai et al. [65] utilized skyline technology as a preprocessing step

to exclude uninteresting candidates from the search space, hence decreasing the

needed selection time. The authors use mixed integer programming to find the

optimal decomposition of global QoS requirements into local QoS constraints and

local selection to identify the best services that satisfy these local constraints for each

abstract assignment [66]. X. Sun and J. Zhao also investigates the decomposition-

based technique with global QoS guarantees [67]. Klein et al. [68] suggested a network-

aware methodology to differentiate the cloud QoS of services from the network QoS.

The selection technique based on this model is utilized to identify compositions

48

with reduced latency. Wada et al. [69] suggested a system for optimizing service

level agreement (SLA)-aware service composition termed E3. It can address several

SLAs concurrently and efficiently produce a set of Pareto solutions by utilizing

a multiobjective GA to maximize the entire QoS utility. Some services may be

reconfigured and offer various QoS compromises. Ma et al. [70] addressed the problems

of reconfigurable service modelling and effective service composition decision-making.

Leitner et al. [71] investigated how to determine the ideal set of adjustments to reduce

the total cost of SLA breaches, while Wang et al. [72] suggested a restriction-aware

service composition technique based on the notions of service intension and service

extension. As previously stated, approaches in the preceding category lack selection

flexibility since they restrict candidates to only those concrete examples that have

the functions provided in the composite service as a single abstract service. Lecue

and Mehandjiev [73] attempted to broaden the selection scope by relaxing functional

semantic matching, and they used a genetic algorithm to optimize QoS along with

the global semantic matching degree.

Therefore, the additional gain in selection scope comes at the expense of semantic

similarity. Some researchers consider all services to be stateless and arrange them

in a dependency tree based on semantic inputs and outputs. The process plans

of composite services are then automatically constructed by locating paths in this

graph and selecting the path with the optimal QoS [74–78]. Utilized technologies

for optimal path search include the worklist algorithm from [76] and the iterative

deepening depth-first search from [78]. These methods dynamically generate process

plans; as a result, their selection scope of service instances for service composition

can be expansive. Nevertheless, most of them handle QoS and aggregation functions

more simply and do not support QoS constraints from end to end. Moreover, when

generating a specific path, only local optimization is applied if numerous candidates

for specific functionality exist. Yilmaz et al. [79] presented an enhanced GA to

address service composition with minimal global QoS and to enhance scalability.

Using a backtracking-based approach and an extended genetic algorithm, Quanwang

et al. [80] established a unique QoS-aware web service design method that optimizes

49

Table 4: Comparison of Research Works Concerning Genetic Algorithms (Q2)
Authors & Year Approach/Model/ Automated Internal Constraint Scalability
Citations Tool Composition Modeling
Yilmaz et al. 2014 Enhanced GA + − +

[79]
Kumar et al. 2018 Multi-Tenant Cloud Service + − +

[83] Composition using GA
Kashyap et al. 2020 Service Composition
[84] in IoT using + − −

using GA
Hussain et al. 2022 A multi-objective
[46] quantum-inspired + − +

genetic algorithm
Sefati et. al 2022 Adaptive Penalty + − +

[85] Function in GA

(+) Support, (-) No Support.

the overall QoS values. Ludwig [81] suggested a method based on clonal selection to

solve workflow service selection with high-quality solutions.

Single-point crossover and mutation are the basis for all of these techniques. In

addition, these strategies proposed adjustments to the crossover operator and parental

chromosome selection to circumvent local optima. However, chromosomes become

extremely lengthy if the number of abstract services and candidate services for each

abstract service increases. Consequently, the GA technique leads to poor readability

of the chromosome, crossover, and mutation, and it cannot forecast information on

the semantics of services. Additionally, it leads to a low convergence rate and a low

premature rate in local optima [82].

Genetic algorithms often use crossover and mutation operators to develop

offspring (solutions) from the selected parents without considering search space global

information utilizing the location information of the solutions obtained thus far.

EA/G, unlike genetic algorithms, generates children using a probability mechanism

that ensures the distribution of promising solutions in each generation from which

offspring are sampled. Instead of directly utilizing the position values, EA/G changes

the probability values for each generation based on global statistical information

acquired from the population’s members. To tackle the complementing aspect of

GAs and EDAs (estimation of distribution algorithms), Zhang et al. [86] introduced

a unique evolutionary algorithm with guided mutation (EA/G) that uses local

50

knowledge of the solutions (like GAs) and global information about the search

space (EDAs) when generating offsprings (solutions). EA/G employs a mutation

operator known as a guided mutation, in which an offspring is created by integrating

global statistical information about the search space with local information about

the parent solution. These studies check for component ordering, deadlock, live-

lock, reachability, and QoS properties. On the other hand, we are interested in

validating the internal constraints that service providers put on their services. Kumar

et al. [83] modeled service composition as an evolutionary optimization problem with

a novel encoding representation and fitness evaluation technique. If changes occur

during the execution of a composite service (e.g., partner service failure, uncertain

request burden, QoS fluctuation, and environmental changes, etc.), the middleware

is able to proactively recompose the tenant-required QoS-ensuring service execution

plan. Kashyap et al [84], objective is to reduce service cost, execution time, and

reliability while selecting candidates to do each service configuration activity. The

empirical evaluation of the implemented algorithms on the real-world application data

set demonstrated that the solutions generated by GA are more eloquent than those

generated by PSO. Hussain et. al [46] showed the multi-objective Quantum-inspired

Genetic Algorithm (MQGA) that can be used with quantum computing to reduce the

time it takes to make something and the amount of energy it uses while still meeting

the deadline. Sefati et. al [85], in the circumstances involving the development of

larger services with higher functionalities, GA employs the penalty technique. In this

study, GA uses the penalty of violation dependency and incompatibility constraints;

however, this does not imply that the approach in cases of violation dependency and

incompatibility constraints is discarded entirely. Instead, the GA chooses the right

services based on user requirements. The ABC algorithm then assesses the services

chosen by GA and merges them if suitable.

We proposed an innovative genetic approach for context/constraint-aware

composite services for large repositories of component services. Our proposed

method demonstrates the highest performance in terms of feasibility, scalability, and

optimality solution for large component service repositories, as determined by an

51

empirical evaluation.

2.5 Summary

The Lucid/GIPSY system’s capacity to simulate and execute composite services

with equal ease and an automated composition approach with its special constraint-

adjustment technique. The inherent concurrency of Lucid’s dataflow execution model.

GIPSY can store execution results for their context in its warehouse for future

reference. In addition, we utilized Gupta’s [3] extensible and modular translation

framework, which possesses all of the qualities that separate the system described in

this dissertation from prior composite service verification methods. In this chapter,

we analyzed the unique characteristics of Lucid and GIPSY in depth and compared

our suggested solution to other comparable research undertaken in the field to date

in order to acquire a comprehensive knowledge of its strengths and limitations. With

this knowledge as a starting point, we will look at our research methodology in more

depth in the next chapter.

52

Chapter 3

Genetic Service Composition

As was discussed in Contribution 3 (Section 1.3), the primary objective of this

thesis is to optimize the simulation and execution of composite web services with

internal constraints on large-scale datasets. However, to accomplish this objective,

it is necessary first to construct such services based on a composition request and

a set of services available for composition. This is an essential prerequisite for the

simulation and execution (Section 1.5). In this thesis, the Execution/Simulation

of Context/Constraint-aware Composite Services using GIPSY was borrowed from

the research by Laleh et al. [19–23] and Gupta [3], and our novel genetic service

composition technique was applied to it to facilitate service discovery. Service

discovery is about proposing a specific set of services that satisfies a demand, which

is exactly what the GA algorithm does. However, this service discovery is only used

to narrow-down the size of possible services for service composition. This chapter

discusses this unique composition methodology, the structure of the genetic composite

services that it generates, the additions and modifications that we make to complete

and optimize this technique, and the specific features that we introduce during its

re-implementation to transform it into an independent, flexible, and maintainable

application.

53

3.1 Composite Service Model

Understanding the basic entities and concepts involved in the service composition

methodology is crucial. In order to comprehend these concepts we borrowed some

definitions from Laleh’s research. In this section, we present the formal definitions

provided by Laleh in [19] for such entities and concepts.

Definition 1. A Service is a tuple S = ⟨I, O, C,E,QoS⟩ where:

• I is the collection of ontology types corresponding to the service’s input

parameters.

• O is the collection of ontology types that represents the service’s output

parameters.

• C is the collection of constraint expressions that represent limitations on service

capabilities.

• E is the collection of ontology types that represent parameters whose values are

modified by the service’s execution.

• QoS is the collection of quality parameters for a given service.

For instance, the components of the Shipment service W509 that are presented in

Table 6 could be expressed as follows:

• I = {var17}

• O = {var2}

• C = {var17 = Quebec}

• E = {var2}

• QoS = {}

54

Within the scope of this thesis, we do not consider the QoS features. Consequently, in

our implementation of the Service entity, we include a placeholder for QoS parameters;

this is done solely to complete the Service structure, which will be needed to verify

QoS constraints in the future. Presently, we are only concerned with the constraints

imposed on services by their providers, known as internal constraints. Despite the

fact that we already defined these constraints in Section 1.1, we now give a more

formal definition for them that is based on Laleh’s general definition of constraints.

Definition 2. An Internal Constraint is an expression that is either true or false

when evaluated. We restrict ourselves to expressions of the form:

⟨feature⟩ ⟨operator⟩ ⟨literalValue⟩, for simplicity, in which:

• The term ⟨feature⟩ represents a service input parameter, which is an ontology

type.

• The term ⟨operator⟩ denotes operators such as =, <,>,≤,≥.

• The term ⟨literalValue⟩ refers to a single value or a collection of values that

have the same data type as the expression feature.

For instance, the internal constraint that was placed on the credit card brand input

parameter of the Shipment service W508 that was listed in Table 5 would be expressed

as var17 = Quebec.

As described in the Section 1.5 on research methods, a composition request

specifying the user’s requirements is also required to initiate automated service

composition. The following describes this composition request:

Definition 3. A Service Composition Request is represented by the tuple R =

⟨I, O,QoS,C⟩ in which:

• I is the collection of ontology types that represents the customer’s input.

• O is the collection of ontology types that represents the customer’s desired

output.

55

• QoS is the collection of quality parameters expected by the customer from a

service.

• C is the collection of constrains imposed by the service requester.

Elements of a request to compose the services shown in Table 5 to build a web-based

online shopping service, the one in Figure 2 might be similar to this:

• I = {var1}

• O = {var2}

• QoS = {}

• C = {}

Our current implementation of a composition request model does not process the

requester’s quality of service (QoS) and constraint requirements because, for this

thesis, we only consider internal constraints. Currently, they are only included to

make the composition model comprehensive. The composition approach used by

Gupta generates a set of one or more solution plans in response to a composition

request. These solution plans are workflows of component services that can produce

the requested output by processing the given input while verifying the internal

constraints placed on their components. These plans are known as constraint-aware

plans and are characterized by the following definition:

Definition 4. A Constraint-Aware Plan is a directed graph that is derived from

the search graph is what is known as a constraint-aware plan. Each node is a service-

node ⟨CS, service⟩, that uses initial parameters (R.I). Then, the objective parameters

are generated by sequentially applying the services of each node (R.O).

In the preceding definition, search graph refers to the graph of search nodes created

during the composition process’s genetic algorithm stage. This graph acts as

a repository for all possible solution plans that can be used to fulfil a specific

composition request (explained further in Section 3.3). In a constraint-aware plan, the

56

set of all service constraints that must be verified before a service can be executed is

referred to as CS for each service-node ⟨CS, service⟩. The input parameters specified

as a part of the composition request R are denoted by the notation R.I. In contrast,

the output parameters requested are denoted by the notation R.O.

Definition 5. In a constraint-aware plan, the predecessor set of a service-node

represents the set of service nodes that must be executed prior to the execution of the

service node.

For the Shipment service W508, for example, the predecessor set would be as follows:

predecessors(W508) = {W590,W904}

3.2 Genetic Service Composition Model: Concepts

It is essential to comprehend the fundamental entities and concepts involved in genetic

methodology. We provided some definitions from our research in order to comprehend

these concepts.

Definition 6. A set of web services (nodes in our graph) known as genes

characterizes an individual solution. In this study, we defined a gene as a web service

from the available web services inside the repository.

Definition 7. A genome (or chromosome) is a single solution that contains genetic

information utilized by the GA. A genome comprises genes, each representing a single

controlling factor represented by the GA. In our model, a genome is a set of web

services.

Definition 8. The particular arrangement of genes in a solution is a genotype. In

our model, the solutions in the computation space are represented and organized so

that a computing system can easily understand and manipulate genotypes.

Definition 9. The genetic algorithms simulate the survival of the fittest among

genomes of successive generations. The fitness function determines an individual’s

ability to advantageously compete with other individuals in the population.

57

Definition 10. A phenotype is a representation of a composite service in the real-

world solution space in which solutions are represented and executed as they are in

actual situations. Therefore, it can help us to visualize our graph plan and eventually

observe their behavior at runtime.

Definition 11. In uniform crossover, each gene (web service) is randomly selected

from among the corresponding genes of the parent chromosomes and flipped before they

are inherited by the offspring.

Definition 12. In single point crossover, on the parent genome, a crossover point

is chosen. All genes beyond that point are exchanged between the two parent genomes.

Positional bias distinguishes genes.

Definition 13. Each gene has a set of constraints corresponding to the all variable

inputs of the web service assigned to it, known as gene constraints.

Definition 14. If all gene constraints of a gene can match with the prdSet, then we

mark this gene as a composite gene, and it will be added it to the planning graph.

Definition 15. If all gene constraints of a gene can not match with the prdSet, then

we mark this gene as a non composite gene, and it won’t be added it to the planning

graph.

Definition 16. This technique employs a penalty function that reduces the fitness of

infeasible solutions. The fitness decreases proportionally to the number of constraints

that have been violated. In this manner, infeasible solutions will have a lower chance

of surviving during evolution.

Definition 17. In a K-way tournament selection, k individuals are selected, and

a tournament is held between them. Then, only the healthiest candidate is selected

and passed on to the next generation. In this manner, many tournaments are held,

and the final candidates for the next generation are chosen. It also has a selection

pressure parameter, a probabilistic measure of a candidate’s likelihood of participating

in a tournament. When the tournament size increases, weak candidates have a lower

chance of being chosen because they must compete with a stronger candidate.

58

Definition 18. There is a connection between two web services if there is any

relation between their input(s) and output(s).

3.3 Generic Service Composition Algorithms

The problem posed in Section 3.1 is fundamentally an optimization problem with

constraints. Genetic Algorithms were utilized in order to overcome these problems.

However, genetic Algorithms are only able to solve optimization problems that do not

have any constraints attached to them. To handle constraints, they can incorporate

some constraint handling methods, such as penalty function, which are introduced

in Chapter 2 in detail. For this thesis, we used genetic algorithm to manage

constraints on inter-service dependence and conflict by employing penalty function as

our evaluator algorithm. This section presents and describes this algorithm alongside

the others.

Algorithm 2 drives the service composition process, calling upon the other

algorithms as necessary. It includes two major steps: (1) Genetic Algorithm is

responsible for building a search graph based on a particular composition request and

available services (line 2), (2) a constructPlan Algorithm 9 for building for translating

solution plans into constraint-aware plans (line 3). The algorithm fails if it cannot

make a plan that takes constraints into account for the given composition request.

Algorithm 3 is in charge of making a search graph for the composition request it

is given (R) using Genetic Algorithms. Similar to Algorithm 1, a penalty-based GA

follows the same phases. Genetic encoding, genetic operators, and a fitness function

are the fundamental components of the penalty-based GA. Specifically, the fitness

function of the penalty GA includes a penalty strategy that violates constraints on

inter-service dependence and conflict (line 3 and line 14).

Algorithm 4 is accountable for the initialization procedure. Initialize an empty

array of length equal to length of genome and perform a random assignment from

SR as candidate gene. A web service instance is chosen randomly from the SR

candidates and bound to the first gene. This procedure repeats until the final gene

59

Algorithm 2 ServiceComposition
Input: R (composition request), SR (set of available services).
Output: plans (a set of constraint-aware plans, or failure).
1: plans = ∅
2: searchGraph = GeneticAlgorithm(R, SR)
3: plan = constructP lan(searchGraph)
4: if (plans ̸= ∅) then
5: return cnstr_plans
6: else
7: return failure
8: end if

Algorithm 3 GeneticAlgorithm
Input: R (composition request), SR (set of available services)
Output: population (search graph generated by genetic algorithm, or failure).
1: searchGraph = null; population = null;
2: population = Initialization(SR)
3: fitness_function = FitnessFunction(population)
4: while terminationcondition is not true do
5: for start from elitismOffset to population.size do
6: parents = TournamentSelection(population)
7: offsprings = Crossover(parents)
8: population.saveGenomes(offsprings))
9: end for

10: for start from elitismOffset to population.size do
11: offsprings = Mutation(offsprings)
12: population.saveGenomes(offsprings))
13: end for
14: population = Evaluator(population)
15: end while
16: if population is not null then
17: return population
18: end if
19: return failure

has been assigned.

Algorithm 5 is responsible for selecting a service from a population of available

web services. For tournament selection, a small number of genomes are chosen

randomly from the population and put through several tournaments. Then, these

chosen candidates are given to the next generation. Finally, in a K-way tournament

selection, k participants are chosen to compete in a tournament. Only the fittest

60

Algorithm 4 Initialization
Input: SR (set of available services).
Output: population (a set of constraint-aware plans, or failure).
1: population = Population(populationSize)
2: for i = 0 to defualtPopulationSize do
3: genome = newGenome()
4: randomly select a web service from SR and save it on genome
5: population.addGenome(genome)
6: end for
7: return population

Algorithm 5 tournamentSelection
Input: population (current population), N (size of tournament).
Output: selection (fittest genome among selection).
1: t_population = Population(N, intialize=false)
2: for i = 0 to N do
3: randomly select a genome from population and save it on t_population
4: end for
5: selection = t_population.getFittest()
6: return selection

candidate is passed on to the following generation. In this way, many tournaments

like this take place, and the best candidates are chosen to move on to the next

generation.

Algorithm 6 is the crossover algorithm. Two genomes are chosen randomly from

the Tournament Selection to cross over to make better children. For a genome with

length n, there are n-1 splitting points. However, selecting some as splitting points

will result in genome composition genes after crossover; consequently, the composition

instance genes should not be split in a genome. To overcome this problem, in this

algorithm, we designed the three policies as follows:

• Non-Composite Policy: If parents do not have any composite gene or,

in other words, any genes in our genome that have all their inputs will not

match with prdSet, which means there is no connection among shared input-

output nodes. Then, Uniform Crossover will apply to this policy. Each

gene is randomly chosen from among the corresponding genes of the parent

chromosomes.

61

Algorithm 6 Crossover
Input: Genomes (selected genomes as parents for mating).
Output: genomes (mutated genomes as offsprings).
1: if (policy is ‘non-composition’ then
2: crossover_point = randomly select a split point from Genomes
3: genomes = Swap(Genomes, crossover_point)
4: else if policy is ‘composition’ then
5: crossover_point = keep composition and randomly select a split point from

other genes in Genomes
6: genomes = Swap(Genomes, crossover_point)
7: else if policy is ‘refusal’ then
8: continue
9: end if

10: return genomes

Algorithm 7 Mutation
Input: G (Genome).
Output: genome (mutated).
1: genome = randomly select a service instance from G and mark its gene
2: let i be the position of the marked gene
3: let c be a new candidate randomly got from same type selected
4: if policy is ‘adoption’ then
5: bind c to the selected gene and unmark the corresponding genes
6: else if policy is ‘replace’ then
7: replace c to the selected gene and unmark the corresponding gene
8: else if policy is ‘refusal’ then
9: continue

10: end if
11: return genome

• Composite Policy: If the genomes have a composite gene or, in other words,

if all input of the single web services matches with the prdSet, then we will keep

these genomes inside these parents in order to expand our graph and then Single

Point Crossover will apply to this policy. A split point on the non-composite

genes of the parent genome is chosen randomly. Then, the two parent organisms

exchange all subsequent data in the non-composite genes.

• Refusal Policy: If all genes are composite ones or the genome is selected as the

solution candidate, we skip the crossover operation because a solution found.

62

Algorithm 8 FitnessFunction
Input: G (Genome); GW (generation number).
Output: fitness (The fitness value for genome).
1: for each gene inside G; i index of gene do
2: if gene contains invalid constraint then
3: return MIN_V ALUE
4: else
5: fitness =

∑︂
CSi − CWi ∗ n_gen ∗ p_w

6: end if
7: end for
8: return fitness

Algorithm 7 represents the mutation algorithm. The next generation of a

population is kept genetically diverse through mutation. In this algorithm, we

designed the three policies as follows:

• Adoption Policy: If the genome is not a candidate solution and there are any

composite genes inside the genome, we randomly select one gene and replace it

with a random web service from SR.

• Replace Policy: If all genes inside the genome are composite genes and the

genome is not the candidate solution, then we will randomly select one gene

and replace it with the random web service from SR. In this policy, we must

update prdSet after mutation because the connection might not be available in

the list.

• Refusal Policy: If the genome is selected as the solution candidate, we skip

the mutation operation because a solution was found.

Algorithm 8 represents the Fitness Function, a type of objective function that

specifies the quality of a solution (that is, a chromosome) in a GA, allowing any

chromosome to be ranked against any other candidate chromosome. It is also used

to evaluate how well the model solution performs. The fitness of a composite service

instance is dependent on its connection weight and the number of constraints that are

met. The evolution toward constraint satisfaction is driven by the penalty method.

The penalty is defined in line 5, and when the constraint is violated, it adds weight

63

to the total constraints. Then, the fitness function is defined as the weighted sum

of the connections (CSi) and the penalty of a number of involved constraints in

prdSet (CWi), where the penalty weight (p_w) increases as the number of generations

(n_gen) increases. Thus, in early generations, genomes that violate the constraints

but have high utility values are still considered, whereas, in later generations, genomes

that violate the constraints are severely punished. CSi represent composite gene

weight, or in other words, if the prdSet is a provider list, then all node inputs are

satisfied as a consumer. If the gene is marked as the composite instance, then the

score value of the genome will be increased. Also, If the connection is available among

genes inside a genome, then the composite genes’ outputs will be added to the prdSet

list. So this list for each genome will be updated until the prdSet satisfies R.O. Then,

if the R.O are available in the prdSet, the genome is probably a candidate solution in

this graph, and the fitness score increases the significant growth.

Algorithm 9 represents the Construct Plan process. It uses Gupta’s service

composition layered based approach. It includes four major steps: (1) forward

expansion is responsible for building a search graph based on a given composition

request and available services. (2) using backward search to extract solution plan

sets from the search, (3) plan construction is responsible for removing unnecessary

services from solution plan sets and organizing the remaining services into workflows

or solution plans, (4) construction of constraint-aware plans to turn solution plans

into constraint-aware plans with their constraint verification points moved to the

best places. The algorithm fails if no constraint-aware plans can be generated for the

specified composition request [3].

3.4 Genetic Service Composition Example

This section explains the step-by-step generation of constraint-aware plans for a given

composition request and repository of available services through an example. For

example, consider the following composition request (R) for the creation of an online

shopping service similar to the one represented in Figure 2:

64

Algorithm 9 ConstructPlan
Input: R (composition request), SR (final population which contains a candidate

solution genome), R.O, R.I.
Output: plans (a set of constraint-aware plans, or failure).
1: serviceSet = ∅; plans = ∅
2: searchGraph = ForwardExpansion(R, SR)
3: repeat
4: l = maximum layer index in the search graph
5: ServiceSet = all services in layer l of the search graph
6: serviceSet = BackwardSearch(searchGraph, ServiceSet, ∅, l)
7: plan = constructP lan(serviceSet)
8: if (plan /∈ plans) then
9: plans = plans ∪ plan

10: end if
11: until (no more plan can be added to the plans)
12: if (plans ̸= ∅) then
13: for (each plan ∈ plans) do
14: for (each service ∈ plan) do
15: serviceNode.service = service
16: serviceNode.Cs = service.C
17: cnstrAwareP lan = cnstrAwareP lan ∪ serviceNode
18: end for
19: cnstrAwareP lan = adjustConstraint(cnstrAwareP lan)
20: cnstr_plans = cnstr_plans ∪ cnstrAwareP lan
21: end for
22: return cnstr_plans
23: else
24: return failure
25: end if

• R.I = {var1}

• R.O = {var2}

• R.QoS = {}

• R.C = {}

Table 5 provides information on the composition’s available services (i.e., the

repository’s SR). The prdSet is initially created with the beginning parameters (R.I).

Then, it gradually adds new connection genes as a result of the services provided by

each genome that is added to the graph until it eventually reaches the state where

65

Table 5: Services Available for Composition of Shopping Application
Service Type Input Sample Input Output Sample Output Internal Constraints

Parameters Values Parameters Values
W904 Catalog var1 Book var43 ct-212 C904 = ∅
W648 Catalog var1 Book var47 ct-765 C648 = ∅
W840 Order var48 ct-543 var50 od-543 C840 = ∅
W952 Order/Payment var31 Bit Coin var37 od-987 C952=var31=Bit Coin
W224 Payment var18 American Express var33 Complete C224=var18=American Express
W193 Payment var43 Master var16 Complete C193=var43=Master
W933 Order/Payment var16 Master var37 Complete C933=var16=Master
W590 Order/Payment var43 Visa var17 Complete C590=var43=Visa
W629 Order/Payment var43 American Express var46 Complete C629=var43=American Express
W356 Order var47 ct-126 var4 Confirmed C356 = ∅
W29 Shipment var13 Brasil var32 Confirmed C29=var13=Brasil
W488 Shipment var38 Ontario var36 Confirmed C488=var38=Ontario
W813 Shipment var27 New York var32 Confirmed C813=var27=New York
W508 Shipment var17 Quebec var2 Confirmed C508=var17=Quebec
W683 Payment var4 Ali Pay var45 Confirmed C683=var4=Ali Pay

it has all of the goal parameters. Our genetic encoding scheme aims to find solution

and generate graph. Genomes represent graph connectivity linearly. (see Figure 10 as

Genotype). In this example, we present our genetic encoding by representing one of

the possible solutions generated by the genetic algorithm (The fittest genome of the

last generation). Then we will explain our genetic operators: crossover and mutation.

Each genome contains a list of connection genes, each referring to the connection of

two node genes. Node genes provide a list of connectable inputs and outputs. Each

connection gene contains information describing the in-node, the out-node, whether

the connection gene is expressed (known as a composite). For example, W193 accepts

var43 (produced by W904) and generates var16 as output. Also, W590 and W93 consume

var43 and generates var17 and var46. Therefore, predecessors = {var1, var43, var17,

var16, var46} within the search graph.

Figure 10: Genome (Genotype)

Figure 11 (Phenotype) displays all such relationships inside the search graph of

the Shopping application. W508 accepts var17 (produced by W590) and produced var2

and along with this, it will be added to prdSet. As prdSet has variable which matches

66

Figure 11: Generated Graph (Phenotype)

with R.O, this genome is probably a solution among all generated populations (we

will check the validation with the constructPlan algorithm in the following steps).

To generate such a solution as a genetic approach, we need to explore how genetic

operators generated this solution. First we start with the crossover operation.

Figure 12: Crossover (Composition Policy)

Consider parent1 and parent2 as two chromosomes selected among the population

by the tournament selection. As we described the crossover algorithm in Figure 12,

the algorithm will select the Composition Policy because we have composite web

services inside the parent1 . So, it will keep the composite nodes as part of the

solution path and select the split point among the non-composite genes randomly.

67

Figure 13: Crossover (Composition Policy) - Phenotype

Then, the newly generated offspring chromosome, as shown in Figure 12, consists of

parent1’s composite genes and the non-composite genes swapped from parent2. After

evaluation at the end of this generation, the fitness function found the new connection

in the offspring genome and marked it as a composite gene. Therefore, as shown in

the Figure 13, the prdSet will be: predecessors = {var1, var43, var17, var16, var46}

within the search graph.

The next step will be mutating the genomes among the population. Suppose

the offspring chromosome, which the crossover algorithm has generated. As the

chromosome has composite genes, the adoption policy applied for this mutation. As

shown in Figure 14, the mutation algorithm replaced one of the non-composite genes

with random web services from SR. This operator allows the search algorithm to

improve its generation and facilitate to reach of the goal. After evaluation at the

end of this generation, the fitness function found the new connection in the mutated

genome and marked it as a composite gene. Therefore, as shown in the Figure 15,

the prdSet will be: predecessors = {var1, var43, var17, var16, var46, var37} within

68

Figure 14: Mutation Adoption Policy - Genotype

Figure 15: Mutation Adoption Policy - Phenotype

the search graph. We consider this mutated chromosome as elitism genome and we

save it for the next genration.

In the next generation, this genome as elitism has a high probability of selecting as

the candidate for mating with crossover. Then, the genome will pass to the mutation

algorithm. Again, as the chromosome has composite genes, the adoption policy

69

Figure 16: Mutation Adoption Policy - Genotype

Figure 17: Mutation Adoption Policy - Phenotype

applied for this mutation. As shown in Figure 16, the mutation algorithm replaced

a non-composite gene with web services from SR. After evaluation at the end of this

generation, the fitness function found the new connection in the mutated genome and

marked it as a composite gene. This time, the fitness function found var2 in prdSet,

produced by W508. Given that prdSet contains a variable corresponding to R.O,

70

this genome is most likely a solution among all generated populations. Therefore,

as shown in the Figure 17, the prdSet will be: predecessors = {var1, var43, var17,

var16, var46, var37, var2} within the search graph. This search graph is utilized by

the construct plan phase of the composition process to generate service sets that may

be converted into solution plans.

Figure 18: Shopping Service Solution Plan Set Construction

Figure 18 depicts the generation of such plan sets when backtracking begins from

a goal associated with R.O. In the next step, the algorithm looks for web service(s)

inside the genome, which provides W508’s inputs. As W590 accepts var43 (produced by

W904) and generates var17 as output. So it will be added to the plan set. In the next

step, W904accepts var1 and produce var43. So, our solution is validated, and it will be

added to the plan sets. These example strategies can be applied to all genomes, which

are solution candidates after the final generation generated by the genetic algorithm.

71

3.5 Restriction on Service Composition

The planning-graph-based approach to service composition employed by the genetic

algorithm (see Section 3.3) restricts the addition of services to a search graph,

which has a substantial effect on the resulting graph and, consequently, on the final

constraint-aware composition plans. We describe this limitation in this section, along

with its justification and consequences.

A service may only be added to a genome during initialization or genetic operators

(crossover and mutation) if it generates at least one output parameter that does not

already exist in the prdSet at the time the service must be added to the genome. The

justifications for this restriction are outlined below:

• Avoiding numerous similar service instances to reduce execution

effort: Without this restriction, the same service, for instance, W904, is added

multiple times to the same genome when considering a hypothetical search

graph. If this scenario results in a solution plan containing both instances of

W904, resources will be wasted by executing W904 twice to calculate the same

set of parameters.

• Preventing redundant genome construction for the same input:

Without this restriction, each time the repository is searched to find services

for a new connection, the services that were included in the search graph in

a previous iteration will be scored again and deemed eligible to increase their

previously calculated fitness function value. This is merely redundant processing

of services for the same input that has already been added to the prdSet, which

accounts for a significant amount of processing time.

• Preventing the limitless propagation of the genetic operations: In the

absence of this restriction, every eligible service in the service repository will be

lost in every iteration, regardless of whether it is already present in the search

graph. In other words, each iteration will add one or more services to the graph.

As a result, the termination condition of the composition service process will

72

never be met, resulting in the process entering an infinite loop once all possible

component services for a composition request have been added.

3.6 Service Composition Implementation

The service composition algorithms that were presented in the previous section will

be discussed in this section, along with their respective implementations. We need

the composition application to work as a generic (not scenario-specific) tool that can

take any valid composition request and a large-scale service repository and generate

a set of possible constraint-aware solution plans in a format that can be used as

input to Gupta’s composite service translation framework [3]. In addition, our re-

implementation includes some important optimizations implemented at every stage of

the composition process to improve the quality of its products, reduce the processing

work required, and increase its dependability and efficiency. Finally, validation checks,

error logging and handling, an extensible framework for user’s request, storage and

reusing composed services, and a graphical interface have been implemented to make

the composition application more robust, reliable, flexible, and maintainable from

a software engineering standpoint. Section 3.6.2 and Section 3.6.4 describe these

additional features in depth.

3.6.1 Assumptions

Before we can explore the qualities that differentiate our implementation of the service

composition technique from the Laleh and Gupta approach [3], it is necessary to

establish the assumptions upon which this implementation is based explicitly. They

are as follows:

• Since such a solution does not qualify as a composition of (many) services,

any intermediate (search graph, plan set, etc.) or final (constraint-aware plan)

solution generated for a composition problem that consists of only one service

from the service repository is deemed invalid.

73

• All service constraints are expected to be unique during constraint-aware plan

creation. Although the restrictions represented by two unique Constraint

objects (Java class specified in [3]) objects are similar, they are considered

distinct. Therefore, they will be independently validated during the simulation

and execution of composite services. Furthermore, in order to reduce

redundancy, several copies of the same Constraint object cannot be associated

with a single service node.

3.6.2 Validation Checks

As part of our approach, we include all Gupta’s validation checks [3] at critical

points in the composition process. In addition, we perform additional checks on a

composition request received from a user to ensure that it includes all of the essential

information in the anticipated format before enabling any services to be composed to

resolve it. The process is terminated immediately if any of these tests fail. Following

is a list of the significant design characteristics of this class, followed by the respective

additional validation checks:

• Each genome must have a prdSet list with unique dependencies variables. If the

prdSet contains the duplicated variable, they must be removed from the list.

• Solutions to the composition problem at any stage (search graph, plan set, etc.)

that only involve one service must be disregarded as invalid because they do

not satisfy the definition of a composition of services.

3.6.3 Optimizations

We re-implement the service composition algorithms and introduce several changes

that can improve the efficiency, while lowering the processing effort required. This

section describes the optimizations implemented at each stage of the process, their

justification, or, in other words, their influence on the process. This modification is

intended to permit the generation of additional alternative composition solutions.

74

3.6.3.1 Service Composition

Following are distinctions between Service Composition (Algorithm 2) and its

implementation that serve to optimize the implemented process:

• We refactored Gupta’s implementation and added methods which enable

users to generate graphs by the genetic algorithm and then use Gupta’s

composition process to convert it to the layered-based composition services.

This modification makes a new algorithm comparable to the previous method,

which was based on layer-based techniques.

• If the composition process is successful, we can use Gupta’s composition

process to generate layer-based composited services that are consumable by

translation of these services into various practical formats, such as Objective

Lucid programs that can be simulated/executed on GIPSY, if these services are

translated into these formats.

3.6.3.2 Service Composition Driver

The service composition driver is in charge of prompting the user for the inputs

needed to execute the service composition process, activating the various phases

involved in the process in the correct order, and showing the process’s ultimate status

(success/failure) on the console.

• We added the genetic algorithm as an argument on the console, so the user can

run the with/without options as a choice in the start mode.

• Initiate the service composition process, sending the request parameters and

logger objects produced using a genetic approach.

3.6.4 Additional Features

So that our service composition implementation is more flexible and can be used as a

tool or application, we add some features that were not in the original implementation

75

(by Gupta) of the composition algorithms shown in Section 3.3. This section describes

these additional features and the architecture associated with them.

3.6.4.1 Plot Graph Tool

The graph tool module offers a Graph class and some algorithms that work on it.

We used XChart, a lightweight and convenient library for plotting data that reduces

the time required to go from data to chart and removes the guesswork from changing

the chart style [87]. This tool has proven to be very helpful for the visualization

of planning-graph-based service composition. For instance, Figure 19 illustrates a

planning graph generated by this module.

Figure 19: GA Graph Represented Using the Plot Graph Tool.

3.6.4.2 Service Composition Dataset Generator

We developed a tool that generates a service repository based on a specified statistical

distribution of the features of the initial service population. For instance, the following

76

statistical criteria must be considered after a graph is created:

• number of services in the repository and generated graph.

• minimum/maximum/average of inputs/outputs/effects/constraints per service.

• A percentage of variables having constraints.

• number of different variables are used in the entire repository and generated

graph.

This dataset generator has been extensively used in our evaluation process.

3.7 Summary

In this chapter, we described the novel planning-graph-based service composition and

constraint-adjustment method developed by genetic algorithm and the enhancements

we introduce over Gupta and Laleh et al. This enhanced method is utilized in our

study to generate constraint-aware composite services on large-scale repositories that

can be converted into Objective Lucid applications suited for execution on GIPSY.

77

Chapter 4

Solution Evaluation

In Chapter 3, we have described the process of composing constraint- and context-

aware services in response to a composition request using Genetic Algorithms. In this

chapter, an evaluation of this web service composition technique is provided. In this

chapter, we review the tests and analyses conducted on the proposed solution and

the conclusions that can be derived from them to establish whether the solution fully

satisfies the requirements for which it was built.

4.1 Simulation Settings

The experiments were carried out on a personal computer equipped with an Apple

M1 chip, 8GB RAM, macOS Monterey, and Java Standard Edition V1.8.0 to assess

the scalability and effectiveness of the proposed approaches. IntelliJ IDEA enables

real-time monitoring of a process’s performance statistics. We used the Profiler [88],

which measures resource consumption, identifies resource-related bottlenecks, and

determines how certain events impact program performance. The following metrics

are available:

• CPU: The amount of CPU use by the selected process. Each procedure has a

unique figure.

• Heap memory: The amount of memory currently being used and the

78

maximum heap size. When new objects of reference types are allocated, the

heap size grows, and it shrinks when they are garbage-collected. The -Xmx

option specifies the maximum heap size.

• Threads: the total number of threads (including daemon threads). The

number after the slash represents the maximum number of threads since the

process began.

• Non-heap memory: This type of memory is used to store JVM objects and

structures that are required for the JVM to function. The first value is the

current memory value, and the second is the maximum value since the charts

began.

4.2 Service Composition Process Evaluation

As mentioned in Section 1.2, the primary objective of this thesis is to build

an operational service composition mechanism capable of generating one or more

constraint- and context-aware composite services as solutions to a valid composition

problem based on the services available for usage as components during composition

on a large-scale repository. In this section, we describe the evaluation technique used

to confirm that this application satisfies all of its functional requirements, i.e., that it

meets the first objective of our thesis. As described in Chapter 3, our technique for

composing services consists of multiple phases: initialization, tournament selection,

cross over, mutation, evaluation, and service composition. Each of these steps must

satisfy a set of precise parameters and exhibit certain features during its processing

to achieve its intended purpose. As part of our evaluation methodology, we compile

detailed lists of all such distinguishing qualities and test each stage individually. The

entire process guarantees that all requirements are met. While we recognize that

scenario-based testing is not absolute proof of the absence of faulty behaviour and that

its effectiveness is contingent on the thoroughness with which test cases are designed,

the complexities of our composition process and time limitation prevent us from

79

preparing a full-fledged mathematical proof evaluating each constituent operation

and possible scenario. By using a diligent and methodical approach to the design

and execution of test cases, however, we make every effort to ensure that all critical

aspects of the composition process are adequately tested.

4.2.1 Scalability Evaluation

Scalability is one of the primary challenges for constraint-aware web service

composition. This experiment was designed to test the scalability of the solution

space by measuring the computation time and space required by each algorithm to

find at least one solution. We designed eighteen tests for the evaluation of scalability

in the solution space. So each test has statistical factors based on our repository

generator shown in below tables. The factors include:

• The number of services in the repository

• The minimum/maximum inputs/outputs per service

• The percentage of variables having constraints

• The number of different variables used in the entire repository

The required computation time, space, the number of solutions and the success of

service composition of the GA-based method(the results are an average of three times

run for each test) and forward expansion are shown in the below tables.

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 10 50%

Table 6: Statistical Factors for Test 1
Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 109 326 1 1 1 15 15 Successful Successful
100 511 416 4 1 4 255 15 Successful Successful
1000 1573 432 52 9 19 413 28 Successful Successful
10000 7248 1845 12 1 4 1437 80 Successful Successful

Table 7: Evaluation Summary for Test 1

80

Figure 20: Time vs.
Number of Web Services

Figure 21: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 10 100%

Table 8: Statistical Factors for Test 2

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 112 341 1 1 1 15 15 Successful Successful
100 412 442 7 1 3 210 15 Successful Successful
1000 - 594 - 1 5 1787 42 Failed Successful
10000 - 1877 - 1 7 1787 90 Failed Successful

Table 9: Evaluation Summary for Test 2

Figure 22: Time vs.
Number of Web Services

Figure 23: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 20 50%

Table 10: Statistical Factors for Test 3

81

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 94 321 1 1 1 15 15 Successful Successful
100 498 463 5 1 3 80 28 Successful Successful
1000 - 764 - 11 16 1787 52 Failed Successful
10000 - 1764 - 14 32 1787 100 Failed Successful

Table 11: Evaluation Summary for Test 3

Figure 24: Time vs.
Number of Web Services

Figure 25: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 20 100%

Table 12: Statistical Factors for Test 4

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 91 373 1 1 1 15 15 Successful Successful
100 410 527 5 1 5 72 28 Successful Successful
1000 - 641 - 1 3 1787 60 Failed Successful
10000 - 978 - 1 5 1787 90 Failed Successful

Table 13: Evaluation Summary for Test 4

Figure 26: Time vs.
Number of Web Services

Figure 27: Memory Heap vs.
Number of Web Services

82

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 50 50%

Table 14: Statistical Factors for Test 5
Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 109 402 1 1 1 15 15 Successful Successful
100 399 452 6 2 6 80 28 Successful Successful
1000 - 676 - 14 18 1787 58 Failed Successful
10000 - 1079 - 1 1 1787 96 Failed Successful

Table 15: Evaluation Summary for Test 5

Figure 28: Time vs.
Number of Web Services

Figure 29: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 1 1 1 50 100%

Table 16: Statistical Factors for Test 6
Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 99 412 1 1 1 15 15 Successful Successful
100 431 502 8 3 4 64 30 Successful Successful
1000 - 622 - 10 12 1787 60 Failed Successful
10000 - 1644 - 22 32 1787 100 Failed Successful

Table 17: Evaluation Summary for Test 6

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 10 50%

Table 18: Statistical Factors for Test 7

83

Figure 30: Time vs.
Number of Web Services

Figure 31: Memory Heap vs.
Number of Web Services

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 100 326 1 1 1 15 15 Successful Successful
100 418 461 10 1 5 78 32 Successful Successful
1000 - 665 - 1 10 1787 57 Failed Successful
10000 - 1316 - 16 31 1787 94 Failed Successful

Table 19: Evaluation Summary for Test 7

Figure 32: Time vs.
Number of Web Services

Figure 33: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 10 100%

Table 20: Statistical Factors for Test 8

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 112 344 1 1 1 15 15 Successful Successful
100 464 455 11 4 8 57 31 Successful Successful
1000 - 666 - 8 13 1787 65 Failed Successful
10000 - 1419 - 19 46 1787 94 Failed Successful

Table 21: Evaluation Summary for Test 8

84

Figure 34: Time vs.
Number of Web Services

Figure 35: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 20 50%

Table 22: Statistical Factors for Test 9

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 106 368 1 1 1 15 15 Successful Successful
100 132 514 9 3 5 54 28 Successful Successful
1000 - 638 - 6 14 1787 63 Failed Successful
10000 - 1493 - 15 27 1787 99 Failed Successful

Table 23: Evaluation Summary for Test 9

Figure 36: Time vs.
Number of Web Services

Figure 37: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 20 100%

Table 24: Statistical Factors for Test 10

85

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 97 732 1 1 1 15 15 Successful Successful
100 124 642 5 1 5 52 28 Successful Successful
1000 - 748 - 1 12 1787 62 Failed Successful
10000 - 1695 - 1 23 1787 96 Failed Successful

Table 25: Evaluation Summary for Test 10

Figure 38: Time vs.
Number of Web Services

Figure 39: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 50 50%

Table 26: Statistical Factors for Test 11

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 119 688 1 1 1 15 15 Successful Successful
100 154 724 5 1 3 72 44 Successful Successful
1000 - 748 - 1 4 1787 78 Failed Successful
10000 - 1471 - 1 3 1787 124 Failed Successful

Table 27: Evaluation Summary for Test 11

Figure 40: Time vs.
Number of Web Services

Figure 41: Memory Heap vs.
Number of Web Services

86

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 5 1 5 50 100%

Table 28: Statistical Factors for Test 12

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
10 115 758 1 1 1 15 15 Successful Successful
100 161 774 7 1 3 75 48 Successful Successful
1000 - 782 - 1 5 1787 81 Failed Successful
10000 - 1778 - 1 4 1787 132 Failed Successful

Table 29: Evaluation Summary for Test 12

Figure 42: Time vs.
Number of Web Services

Figure 43: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 10 50%

Table 30: Statistical Factors for Test 13

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 774 - 1 5 1787 42 Failed Successful
1000 - 812 - 1 4 1787 86 Failed Successful
10000 - 1552 - 1 1 1787 142 Failed Successful

Table 31: Evaluation Summary for Test 13

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 10 100%

Table 32: Statistical Factors for Test 14

87

Figure 44: Time vs.
Number of Web Services

Figure 45: Memory Heap vs.
Number of Web Services

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 722 - 1 4 1787 45 Failed Successful
1000 - 743 - 1 9 1787 76 Failed Successful
10000 - 1615 - 1 3 1787 132 Failed Successful

Table 33: Evaluation Summary for Test 14

Figure 46: Time vs.
Number of Web Services

Figure 47: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 20 50%

Table 34: Statistical Factors for Test 15

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 727 - 1 12 1787 42 Failed Successful
1000 - 834 - 1 6 1787 84 Failed Successful
10000 - 1676 - 1 8 1787 146 Failed Successful

Table 35: Evaluation Summary for Test 15

88

Figure 48: Time vs.
Number of Web Services

Figure 49: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 20 100%

Table 36: Statistical Factors for Test 16

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 712 - 1 6 1787 52 Failed Successful
1000 - 855 - 1 10 1787 99 Failed Successful
10000 - 1596 - 1 24 1787 224 Failed Successful

Table 37: Evaluation Summary for Test 16

Figure 50: Time vs.
Number of Web Services

Figure 51: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 50 50%

Table 38: Statistical Factors for Test 17

89

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 746 - 1 6 1787 41 Failed Successful
1000 - 861 - 1 9 1787 86 Failed Successful
10000 - 1745 - 1 15 1787 252 Failed Successful

Table 39: Evaluation Summary for Test 17

Figure 52: Time vs.
Number of Web Services

Figure 53: Memory Heap vs.
Number of Web Services

Min- Max - Min- Max- Number of Percentage of Variables
Input Input Output Output Variables Used Having Constraints
1 10 1 10 50 100%

Table 40: Statistical Factors for Test 18

Number of Time - Avg Time - Solution(s) - Solution(s) - Solution(s) - Max Memory Max Memory Service Service
Web Services FE(ms) GA(ms) FE GA - Min GA - Max Heap(MB) - Heap(MB) - Composition - Composition -

FE GA FE GA
100 - 812 - 1 8 1787 46 Failed Successful
1000 - 910 - 1 19 1787 99 Failed Successful
10000 - 1832 - 1 14 1787 310 Failed Successful

Table 41: Evaluation Summary for Test 18

Figure 54: Time vs.
Number of Web Services

Figure 55: Memory Heap vs.
Number of Web Services

90

The GA-based method works the same way when we scale the solution in the

number of variables used or the percentage of variables having constraints. That the

amount of time it takes increases slightly with the number of web services in the

repository. The forward expansion algorithm, in contrast, demands more time and

space as all factors increase. The forward expansion technique is deterministic and

brute-force, but the GA-based method is nondeterministic and heuristic. As a result,

the GA-based method performed substantially better in terms of computation time

and space when scaling in solution space than the forward expansion methodology.

For example, the Figure 20 shows time consumption for both methods when we

gradually increased the number of web services from 10 to 10000 with min/max

input/output set to 1, the number of variables used set to 10, and the percentage of

having constraints set to 50%. Figure 21 illustrates max memory heap consumption

for both methods when we gradually increased the number of web services from 10

to 10,000 with min/max input/output set to 1, the number of variables used set to

10, and the percentage of having constraints set to 50%. These results indicate that

the GA-based method can be utilized for real-time or dynamic large-scale service

composition. However, the forward expansion methodology can only be used when

the solution size is very small.

4.2.2 Effectiveness Evaluation

The GA approach was compared with the forward expansion approach, which only

marked solution genome instances as candidates instead of generating all possible

plans. To this end, let us examine the generated plans that each approach obtained.

As the number of web services and the variables used becomes larger, i.e., more fan-

out instances are available in the generated graph. Therefore, the forward expansion

algorithm searches using a brute-force approach to generate all possible solutions

based on nodes with massive fan-out, and the graph grows wider. The corresponding

repository factors are shown in Table 42. The result data for the forward expansion

algorithm are shown in Table 44. As var2 was requested as output in Listing 4.1 and

var1 was provided as output, as a result, as depicted in Table 44, the computation

91

Listing 4.1: Configuration Request
1 <?xml version="1.0" encoding="UTF−8" standalone="no"?>
2 <requestconfig>
3 <inputs value="string : var1"/>
4 <outputs value="string : var2"/>
5 <qos value="COST"/>
6 <constraints value="COST | < | 100"/>
7 <storecsflag value="N"/>
8 </requestconfig>

time and space became so large. This exponential growth caused the application to

be faced with an out-of-memory error and could not find any solution.

Number of Min- Max - Min- Max- Number of Percentage of Variables
Web Services Input Input Output Output Variables Used Having Constraints
1000 1 5 1 5 10 50%

Table 42: Repository Information

Method Service Min - Max - Avg Time Number of
Composition Solutions Solutions (ms) Nodes

Forward Expansion Failed - - - -
Genetic Algorithm Successful 1 10 655 20

Table 43: FE and GA Results

Time(ms) CPU Memory Heap(MB) Threads Non Heap Memory(MB)
1000 40% 284 10 17
2000 49% 433 11 18
3000 86% 1486 11 18
4000 81% 1787 11 18

Table 44: FE Information

Time(ms) CPU Memory Heap(MB) Threads Non Heap Memory(MB)
500 20% 57 10 17

Table 45: GA Memory Usage Information

In contrast, we experimented on the same repository, and our proposed GA

algorithm found a candidate solution. Table 46 demonstrates the fittest genome,

which is the solution candidate generated by GA. Table 47 shows the statical

information of each generation through building graph by GA. As var2 was requested

as output in Listing 4.1 and var1 was provided as output, the solution candidate

converted to the layered based constructed plan as depicted in Listing 4.2.

92

Service Input Parameters Output Parameters
1 W31 var1 var47
2 W882 var47 var2
3 W146 var1 var40
4 W653 var42 var5
5 W332 var20 var16
6 W634 var14 var13
7 W354 var35 var31
8 W15 var47 var4
9 W571 var29 var46
10 W778 var39 var21
11 W694 var36 var30
12 W798 var44 var36
13 W813 var27 var32
14 W952 var31 var37
15 W802 var7 var45
16 W554 var11 var1
17 W14 var9 var16
18 W418 var50 var38
19 W683 var4 var45
20 W903 var3 var16

Table 46: Fittest Genome as Solution candidate generated by GA

Listing 4.2: Constructed Plan (in Layer-Based)
1 Plan 1:
2 Layer 0: {} [] W31 {W882}
3 Layer 1: {W31} [] W882 {}

Table 44 shows that the forward expansion algorithm’s memory usage rises

exponentially, which is why the application could not generate any solution. The

forward expansion algorithm is deterministic and brute-force, whereas the GA-

based method is nondeterministic and heuristic. As a result, the GA-based method

outperformed the forward expansion algorithm in terms of computation time and

space. Table 43 provided the comparative results for both methods. Next, let us

examine the question of how many feasible solutions from composite web services

93

Generations Fitness Score
10 960
20 1920
30 2160
40 6180
50 8200
60 9160
70 9880
80 9880
90 9880
100 9880

Table 47: Fittest Genome Score versus Generation

generated by a genetic algorithm can be found when the forward expansion can

generate total solutions on the same request configuration and repository.

Number of Min- Max - Min- Max- Number of Percentage of Variables
Web Services Input Input Output Output Variables Used Having Constraints
1000 1 1 1 1 10 50%

Table 48: Repository Information

Method Service Min - Max - Avg Time Number of
Composition Solutions Solutions (ms) Nodes

Forward Expansion Successful 52 52 1573 194
Genetic Algorithm Successful 9 19 432 14

Table 49: FE vs. GA

Time(ms) CPU Memory Heap(MB) Threads Non Heap Memory(MB)
400 25% 20 10 12
800 45% 413 10 17
1200 40% 397 10 17

Table 50: Forward Expansion Memory Usage

Time(ms) CPU Memory Heap(MB) Threads Non Heap Memory(MB)
400 41% 28 10 17

Table 51: Genetic Algorithm Memory Usage

Number of Min- Max - Min- Max- Number of Percentage of Variables
Web Services Input Input Output Output Variables Used Having Constraints
1000000 1 1000 1 1000 50% 1000

Table 52: Repository Information

94

Method Service Min - Max - Avg Time Number of
Composition Solutions Solutions (ms) Nodes

Forward Expension Failed - - - -
Genetic Algorithm Partial-Solution - - - -

Table 53: Number of Web services time diffrences

To this end, we experimented on the repository with Table 48 statistical

information and based on the Listing 4.1 request configuration. Table 49 provided the

comparative results for both methods. Next, let us examine if the factors increased

significantly and how each algorithm behaves in our tests. As Table 52 and Table 53

presented, the forward expansion failed to generate any plan, and GA generated a

partial solution, which means that the final generation might have part of the solution

but can not find a solution.

4.3 Summary

As mentioned in Section 4.2, the activities to be completed to achieve the objectives

of this thesis (as specified in Section 1.2) are structured as a systematic process

(described in Section 1.5) targeted at generating context- and constraint-aware

composite services on a large-scale repository. The steps of this approach, which

pertain to the development of composite services on a large-scale repository, have been

successfully completed as part of this study. Furthermore, components of our overall

verification system responsible for these duties have been planned and implemented,

explained in Chapter 3 and thoroughly reviewed in Section 4.2, and determined to be

capable of achieving all of their design goals (See https://github.com/GIPSY-dev/

ServiceCompositionRepo for the implementation of the solution and the results of

the tests). In this thesis, we propose a GA approach for generating context- and

constraint-aware composite services on a large-scale repository, based on all the ideas

presented thus far and our time, scope, and resource constraints. We accomplished

the objectives of this thesis to the best of our abilities at the time by describing

the development of all the necessary components that comprise it and demonstrating

through a careful evaluation technique that they meet all of their requirements.

95

https://github.com/GIPSY-dev/ServiceCompositionRepo
https://github.com/GIPSY-dev/ServiceCompositionRepo

Chapter 5

Conclusion and Future Work

In this final chapter, we give an overview of all the discussions made so far in this

thesis. Then, we describe the limitations we found in our suggested solution during

this research and how we intend to address each of them in future work.

5.1 Conclusion

Composite web services have been extensively researched over the last two decades due

to benefits such as clarity of structure, re-usability of components, broader options for

users, and the freedom to specialize for providers. Nonetheless, based on a thorough

review of the literature on the studies conducted in the field thus far (as presented

in Section 2.4), we conclude that no web service has the universal aptitude and has

mainly been overlooked in all existing research. Most of these studies need to consider

that each service can only do its job well within certain limits. These limits are

set by the service providers themselves and are called internal constraints. Internal

constraints impact the functionality of a composite service because, when used as a

component, the restricted context spaces of all such component services define the

contextual boundaries of the composite service cohesively. However, to our knowledge,

only Gupta’s systems [3] cater to the specific verification and validation of internal

constraints imposed on components of a composite service. This is due to the limited

exposure this aspect of web service composition has received (discussed elaborately in

96

Section 1.1 and Section 2.4). In addition, we investigated the scalability of the solution

space in this specific research, and we found some limitations when the complexity of

the solution space increased. As the parameters of the current version of the service

composition algorithm are increased, the experiment uses up an exponential amount

of space. This issue causes failure to generate an execution plan before any complete

solution can be found. This is because this algorithm generates the graph using a

brute force method. The brute force approach ensures that all solutions are found

by listing all possible candidate solutions to the user’s request. This method for

solving a problem relies more on compromising the computing power of a computer

system than on a well-designed algorithm. So on a large-scale repository with the

high complexity of the solution space factors, based on our experiments in Chapter 4,

this method is inefficient. In an attempt to address these gaps and problems related

to web service composition, we defined three goals in Section 1.2 for this thesis.

Our first goal was “To formally define and apply the new operational

service composition mechanism to the problem of constraint-aware service

composition”. we propose a genetic algorithm for generating constraint- and context-

aware composite web services in this thesis. The service composition methodology

used in this thesis has been characterized as a collection of algorithms, which has a

particular objective that must be met by carrying out a specific set of steps. These

tests have been designed based on thoroughly examining the concepts and models for

generation of constraint- and context-aware composite web services. In Section 4.2.2,

we showed that our GA approach could successfully generate the constraint- and

context-aware composite web service, and we illustrated its plan graph.

Then, our second goal was “ To scale the solution scope for the execution

context of services and the restrictions/constraints imposed on them

so that, if possible, one solution to any valid composition request is

generated”. In Section 4.2.1, we experimented the computation time, space, the

number of solutions, and success of service composition using the GA-based method

(the results were an average of three runs for each test) and forward expansion to

compare the result of both approaches to meet our second goal. When we scale the

97

solution in terms of the number web services in the repository, the number of variables

used, or the percentage of variables with constraints, the GA-based method works

the same way. The time required increases slightly with the number of web services

in the repository. In contrast, the forward expansion algorithm requires more time

and space as all factors increase. Forward expansion is deterministic and brute-force,

whereas the GA-based method is nondeterministic and heuristic. As a result, when

scaling in solution space, the GA-based method outperformed the forward expansion

methodology regarding computation time and space. These findings suggest that the

GA-based method is suitable for real-time or dynamic large-scale service composition.

On the other hand, the forward expansion methodology can only be used when the

solution size is very small. The experiments showed that our proposed methodology

had successful results during the service composition phase on the large-scale solution

space and can overcome the forward expansion problem.

Our final goal of this thesis was “To allow our verification system to

simulate and execute context- and constraint-aware composite web services

on a large scale”. In Section 4.2.1, we tested Gupta’s verification system to simulate

and execute context- and constraint-aware composite web services with our proposed

methodology on the large-scale solution space. Taking our scope and time limitations

into account, we can conclude that we have been able to effectively evaluate our

composition solutions to the best of our abilities due to the meticulous study that

we have conducted on the composition methodology, and the successful execution of

all the tests that we have performed (refer to Chapter 4 for complete details of the

assessment conducted).

Based on these discussions, we conclude that, given our time, scope, and resource

limitation, we have proposed a scalable automatic service composition using a

genetic algorithm, effectively described the development of all its constituent building

blocks, and successfully demonstrated that they meet all their requirements, thereby

achieving the objectives of this thesis (as defined in Section 1.2) to the best of our

abilities.

98

5.2 Limitations and Future Work

We discovered several features that can be incorporated into our current solution to

make it more comprehensive, maintainable, efficient, robust, reliable, and versatile

but have not been included at this time due to time and scope restrictions. This

section describes all of the features, enhancements, and incomplete tasks that can or

will be integrated into the various units of our proposed solution in future extensions

to this research. The following are the limitations discovered in and future work to

be undertaken for the genetic algorithm stage of the service composition process:

• Advanced optimization techniques, such as NEAT algorithm [89] which can

optimize and evolve neural network structure. With help of Neat Algorithm,

a neural network evolves through a genetic algorithm rather than relying on a

fixed structure. It employs direct encoding, and its representation is slightly

more complex than a simple graph or binary encoding. It can be integrated

into the search graph construction stage to improve the quality of composition

solutions extracted later in the process. This can solve one of the complex

problems of dynamic genetic algorithms, which is using a different genome

length for genetic operators such as crossover and mutation.

• Future work will look into how to optimize the fitness function to generate

more composite services. Furthermore, it will be beneficial to investigate how

to extend other meta-heuristic algorithms to solve the proposed problem and

compare their results with the proposed algorithm.

• Although GA can generate at least one solution, in this approach, we cannot

determine that we generated all possible solutions inside the repository.

Therefore, generating all solutions is out of the scope of this thesis.

• Another research direction is creating a knowledge-based operator [90] to

improve search efficiency further. The knowledge-based genetic algorithm

incorporates domain knowledge into its specialized operators, and some of them

also use a local search technique.

99

• Federated learning [91] is one of the possible domains that can be integrated into

this research topic. Federated learning (also known as collaborative learning) is

a machine learning technique that trains an algorithm without exchanging data

samples across multiple decentralized edge devices or servers holding local data

samples. This approach differs from traditional centralized machine learning

techniques, in which all local datasets are uploaded to a single server, and more

traditional decentralized approaches, which frequently assume that local data

samples are uniformly distributed. So we can consider federated learning to

generate service composition in future studies.

100

Bibliography

[1] Z. Wu, S. Deng, and J. Wu, Service Computing, Concepts, Methods and

Technology. Hangzhou, China: Morgan Kaufmann, Oct. 2014, ISBN: 978-0-

12-802330-3.

[2] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems:

Concepts and Design, 5th ed. Addison-Wesley, 2012, ISBN: 978-0-13-214301-1.

[3] J. Gupta, “Execution/simulation of context/constraint-aware composite services

using gipsy,” Master’s thesis, Department of Computer Science and Software

Engineering, Concordia University, Montreal, Canada.

[4] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint driven web

service composition in METEOR-S,” in IEEE International Conference on

Services Computing, 2004. (SCC 2004). Proceedings. 2004, Sept 2004. doi:

10.1109/SCC.2004.1357986 pp. 23–30.

[5] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivastava, “Adaptation in

web service composition and execution,” in 2006 IEEE International Conference

on Web Services (ICWS’06), Sept 2006. doi: 10.1109/ICWS.2006.22 pp. 549–557.

[6] S. Youcef, M. U. Bhatti, L. Mokdad, and V. Monfort, “Simulation-based

response-time analysis of composite web services,” in 2006 IEEE International

Multitopic Conference, Dec 2006. doi: 10.1109/INMIC.2006.358190 pp. 349–354.

101

http://dx.doi.org/10.1109/SCC.2004.1357986
http://dx.doi.org/10.1109/ICWS.2006.22
http://dx.doi.org/10.1109/INMIC.2006.358190

[7] C. Zhu and Y. Du, “Application of logical petri nets in web service composition,”

in 2010 IEEE International Conference on Mechatronics and Automation, Aug

2010. doi: 10.1109/ICMA.2010.5589966. ISSN 2152-744X pp. 913–918.

[8] M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong, “VeriWS: A tool

for verification of combined functional and non-functional requirements of

web service composition,” in Companion Proceedings of the 36th International

Conference on Software Engineering, ser. ICSE Companion 2014. New York,

NY, USA: ACM, 2014. doi: 10.1145/2591062.2591070. ISBN 978-1-4503-2768-8

pp. 564–567. [Online]. Available: http://doi.acm.org/10.1145/2591062.2591070

[9] K. T. Huynh, T. T. Quan, and T. H. Bui, “Fast and formalized: Heuristics-

based on-the-fly web service composition and verification,” in 2015 2nd National

Foundation for Science and Technology Development Conference on Information

and Computer Science (NICS), Sept 2015. doi: 10.1109/NICS.2015.7302186 pp.

174–179.

[10] V. Shkarupylo, “A simulation-driven approach for composite web services

validation,” in Central European Conference on Information and Intelligent

Systems. Faculty of Organization and Informatics Varazdin, Sept 2016, p. 227.

[11] S. Narayanan and S. A. McIlraith, “Simulation, verification and automated

composition of web services,” in Proceedings of the 11th International Conference

on World Wide Web, ser. WWW ’02. New York, NY, USA: ACM, 2002.

doi: 10.1145/511446.511457. ISBN 1-58113-449-5 pp. 77–88. [Online]. Available:

http://doi.acm.org/10.1145/511446.511457

[12] S. Narayanan and S. McIlraith, “Analysis and simulation of

web services,” Computer Networks, vol. 42, no. 5, pp. 675

– 693, 2003. doi: https://doi.org/10.1016/S1389-1286(03)00228-7 The

Semantic Web: an evolution for a revolution. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1389128603002287

102

http://dx.doi.org/10.1109/ICMA.2010.5589966
http://dx.doi.org/10.1145/2591062.2591070
http://doi.acm.org/10.1145/2591062.2591070
http://dx.doi.org/10.1109/NICS.2015.7302186
http://dx.doi.org/10.1145/511446.511457
http://doi.acm.org/10.1145/511446.511457
http://dx.doi.org/https://doi.org/10.1016/S1389-1286(03)00228-7
http://www.sciencedirect.com/science/article/pii/S1389128603002287

[13] X. Wang and S. Yu, “A novel method for verification of composite web services,”

in 2015 2nd International Conference on Information Science and Control

Engineering, April 2015. doi: 10.1109/ICISCE.2015.17 pp. 37–40.

[14] C. Dechsupa, W. Vatanawood, and A. Thongtak, “Formal verification of web

service orchestration using colored petri net,” in Proceedings of the International

MultiConference of Engineers and Computer Scientists, vol. 1, March 2016.

[15] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web services,” in

Proceedings of the 13th international conference on World Wide Web. ACM,

2004, pp. 621–630.

[16] J. Paquet and P. G. Kropf, “The GIPSY architecture,” in Proceedings of

Distributed Computing on the Web, ser. Lecture Notes in Computer Science,

P. G. Kropf, G. Babin, J. Plaice, and H. Unger, Eds., vol. 1830. Springer Berlin

Heidelberg, 2000. doi: 10.1007/3-540-45111-0_17 pp. 144–153.

[17] J. Paquet and A. H. Wu, “GIPSY – a platform for the investigation on intensional

programming languages,” in Proceedings of the 2005 International Conference on

Programming Languages and Compilers (PLC 2005). CSREA Press, Jun. 2005.

ISBN 1-932415-75-0 pp. 8–14.

[18] J. Paquet, “Distributed eductive execution of hybrid intensional programs,” in

Proceedings of the 33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC’09). IEEE Computer Society, Jul. 2009.

doi: 10.1109/COMPSAC.2009.137. ISBN 978-0-7695-3726-9. ISSN 0730-3157 pp.

218–224.

[19] T. Laleh, “Constraint verification in web service composition,” Ph.D. dissertation,

Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, Feb. 2018.

[20] T. Laleh, J. Paquet, S. Mokhov, and Y. Yan, “Constraint verification failure

recovery in web service composition,” Future Generation Computer Systems,

103

http://dx.doi.org/10.1109/ICISCE.2015.17
http://dx.doi.org/10.1007/3-540-45111-0_17
http://dx.doi.org/10.1109/COMPSAC.2009.137

vol. 89, pp. 387 – 401, 2018. doi: https://doi.org/10.1016/j.future.2018.06.037

http://www.sciencedirect.com/science/article/pii/S0167739X17320629.

[21] ——, “Predictive failure recovery in constraint-aware web service composition,”

in Proceedings of the 7th International Conference on Cloud Computing and

Services Science - Volume 1: CLOSER, INSTICC. SciTePress, 2017. doi:

10.5220/0006313802410252. ISBN 978-989-758-243-1 pp. 241–252.

[22] ——, “Constraint adaptation in web service composition,” in 2017 IEEE

International Conference on Services Computing (SCC), June 2017. doi:

10.1109/SCC.2017.27. ISSN 2474-2473 pp. 156–163.

[23] T. Laleh, J. Paquet, S. A. Mokhov, and Y. Yan, “Efficient constraint verification

in service composition design and execution (short paper),” in CoopIS. Springer,

2016, pp. 445–455.

[24] L. Zhang, H. Dou, H. Wang, Y. Peng, S. Zheng, and C. Zhang, “Neural network

optimized by genetic algorithm for predicting single well production in high

water cut reservoir,” in 2021 3rd International Conference on Intelligent Control,

Measurement and Signal Processing and Intelligent Oil Field (ICMSP), 2021. doi:

10.1109/ICMSP53480.2021.9513395 pp. 297–306.

[25] Z. yi Chai, M. meng Du, and G. zhi Song, “A fast energy-

centered and qos-aware service composition approach for internet

of things,” Applied Soft Computing, vol. 100, p. 106914, 2021.

doi: https://doi.org/10.1016/j.asoc.2020.106914. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S1568494620308528

[26] H. T. Khosrowshahi and M. Shakeri, “Relay node placement for connectivity

restoration in wireless sensor networks using genetic algorithms,” International

Journal of Electronics and Communication Engineering, vol. 12, no. 3, pp. 161–

170, 2018.

104

http://dx.doi.org/https://doi.org/10.1016/j.future.2018.06.037
http://www.sciencedirect.com/science/article/pii/S0167739X17320629
http://dx.doi.org/10.5220/0006313802410252
http://dx.doi.org/10.1109/SCC.2017.27
http://dx.doi.org/10.1109/ICMSP53480.2021.9513395
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106914
https://www.sciencedirect.com/science/article/pii/S1568494620308528
https://www.sciencedirect.com/science/article/pii/S1568494620308528

[27] Amazon, “Aws compute optimizer documentation,” [online], 2022, https://docs.

aws.amazon.com/compute-optimizer/index.html.

[28] kubecost, “Kubecost,” [online], 2022, https://guide.kubecost.com/hc/en-us/

articles/4407595950359.

[29] datadog, “datadog,” [online], 2022, https://www.datadoghq.com/dg/

ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_

medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&

utm_keyword=aws%20cost%20management%20tools&utm_matchtype=

p&utm_campaignid=18599012112&utm_adgroupid=141830245825&

gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_

MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE.

[30] T. I. Authors, “Istio,” [online], 2023. [Online]. Available: https://istio.io/latest/

docs/ops/deployment/performance-and-scalability/

[31] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge,

Multidimensional Programming. London: Oxford University Press, Feb. 1995,

ISBN: 978-0195075977.

[32] W. W. Wadge and E. A. Ashcroft, Lucid, the Dataflow Programming Language.

London: Academic Press, 1985.

[33] P. Rondogiannis and W. W. Wadge, “Intensional programming languages,”

in Proceedings of the First Panhellenic Conference on New Information

Technologies (NIT’98), Athens, Greece, 1998, pp. 85–94.

[34] B. Han, “Towards a multi-tier runtime system for GIPSY,” Master’s thesis,

Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, 2010.

[35] J. Paquet, “Scientific intensional programming,” Ph.D. dissertation, Department

of Computer Science, Quebec City, Canada, 1999.

105

https://docs.aws.amazon.com/compute-optimizer/index.html
https://docs.aws.amazon.com/compute-optimizer/index.html
https://guide.kubecost.com/hc/en-us/articles/4407595950359
https://guide.kubecost.com/hc/en-us/articles/4407595950359
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://www.datadoghq.com/dg/ccm/aws-cloud-cost-management/?utm_source=advertisement&utm_medium=search&utm_campaign=dg-google-cloudcostmgmt-na-aws&utm_keyword=aws%20cost%20management%20tools&utm_matchtype=p&utm_campaignid=18599012112&utm_adgroupid=141830245825&gclid=CjwKCAiAvK2bBhB8EiwAZUbP1OV_kHdOex7kbD_it6_MzRJ4vkJLW8nWIqK1vAIFiD-8LFI4rBbuFxoCo4kQAvD_BwE
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/
https://istio.io/latest/docs/ops/deployment/performance-and-scalability/

[36] J. Cheng, C. Liu, M. Zhou, Q. Zeng, and A. Yla-Jaaski, “Automatic composition

of semantic web services based on fuzzy predicate petri nets,” IEEE Transactions

on Automation Science and Engineering, vol. 12, no. 2, pp. 680–689, April 2015.

doi: 10.1109/TASE.2013.2293879

[37] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci,

R. Post, C. Stehno, and M. Weber, “The petri net markup language: Concepts,

technology, and tools,” in Applications and Theory of Petri Nets 2003, W. M. P.

van der Aalst and E. Best, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2003. ISBN 978-3-540-44919-5 pp. 483–505.

[38] “Pnml.org - PNML reference site,” http://www.pnml.org/, viewed in August

2018.

[39] S. Juan and W. Hao, “Performance analysis for web service composition based

on queueing petri net,” in Software Engineering and Service Science (ICSESS),

2012 IEEE 3rd International Conference on. IEEE, 2012, pp. 501–504.

[40] R. Jagannathan and C. Dodd, “GLU programmer’s guide,” SRI International,

Menlo Park, California, Tech. Rep., 1996.

[41] R. Jagannathan, C. Dodd, and I. Agi, “GLU: A high-level system for granular

data-parallel programming,” in Concurrency: Practice and Experience, vol. 1,

1997, pp. 63–83.

[42] S. A. Mokhov, “Towards hybrid intensional programming with JLucid, Objective

Lucid, and General Imperative Compiler Framework in the GIPSY,” Master’s

thesis, Department of Computer Science and Software Engineering, Concordia

University, Montreal, Canada, Oct. 2005, ISBN 0494102934; online at http://

arxiv.org/abs/0907.2640.

[43] S. Mokhov and J. Paquet, “Objective Lucid – first step in object-oriented

intensional programming in the GIPSY,” in Proceedings of the 2005 International

106

http://dx.doi.org/10.1109/TASE.2013.2293879
http://www.pnml.org/
http://arxiv.org/abs/0907.2640
http://arxiv.org/abs/0907.2640

Conference on Programming Languages and Compilers (PLC 2005). CSREA

Press, Jun. 2005. ISBN 1-932415-75-0 pp. 22–28.

[44] Sun Microsystems, Inc., “The Java web services tutorial (for Java Web Services

Developer’s Pack, v2.0),” [online], Feb. 2006, http://download.oracle.com/docs/

cd/E17802_01/webservices/webservices/docs/2.0/tutorial/doc/.

[45] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, 1st ed. USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

ISBN 0201157675

[46] M. Hussain, L.-F. Wei, F. Abbas, A. Rehman, M. Ali, and

A. Lakhan, “A multi-objective quantum-inspired genetic algorithm for

workflow healthcare application scheduling with hard and soft deadline

constraints in hybrid clouds,” Applied Soft Computing, vol. 128, p. 109440,

2022. doi: https://doi.org/10.1016/j.asoc.2022.109440. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1568494622005610

[47] D. Min, Z. Song, H. Chen, T. Wang, and T. Zhang, “Genetic algorithm optimized

neural network based fuel cell hybrid electric vehicle energy management strategy

under start-stop condition,” Applied Energy, vol. 306, p. 118036, 2022.

[48] A. A. Khan, A. A. Shaikh, Z. A. Shaikh, A. A. Laghari, and S. Karim,

“Ipm-model: Ai and metaheuristic-enabled face recognition using image

partial matching for multimedia forensics investigation with genetic algorithm,”

Multimedia Tools and Applications, pp. 1–17, 2022.

[49] y. Eiben, A. E. and Smith, J. E.", title=ntroduction to Evolutionary

Computing. Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-

05094-1. [Online]. Available: https://doi.org/10.1007/978-3-662-05094-1_1

[50] L. Davis, Handbook of Genetic Algorithms, ser. VNR Computer Library

VNR Computer Library. Van Nostrand Reinhold, 1991. ISBN 9780442001735.

[Online]. Available: https://books.google.ca/books?id=Kl7vAAAAMAAJ

107

http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/2.0/tutorial/doc/
http://download.oracle.com/docs/cd/E17802_01/webservices/webservices/docs/2.0/tutorial/doc/
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2022.109440
https://www.sciencedirect.com/science/article/pii/S1568494622005610
https://doi.org/10.1007/978-3-662-05094-1_1
https://books.google.ca/books?id=Kl7vAAAAMAAJ

[51] C. Z. Janikow and Z. Michalewicz, “An experimental comparison of binary and

floating point representations in genetic algorithms,” in ICGA, 1991.

[52] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs

(2nd, Extended Ed.). Berlin, Heidelberg: Springer-Verlag, 1994. ISBN

3540580905

[53] J. R. Koza, “Evolution and co-evolution of computer programs to control

independently-acting agents,” in n Proceedings of the first international

conference on simulation of adaptive behavior on From animals to animats, 1990.

[54] T. Blickle and L. Thiele, “A mathematical analysis of tournament selection,”

in Proceedings of the 6th International Conference on Genetic Algorithms. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995. ISBN 1558603700

p. 9–16.

[55] W. Banzhaf and C. Reeves, Foundations of Genetic Algorithms, 1st ed. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999. ISBN 1558605592

[56] P. Wang, Z. Ding, C. Jiang, and M. Zhou, “Constraint-aware approach

to web service composition,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 44, no. 6, pp. 770–784, June 2014. doi:

10.1109/TSMC.2013.2280559

[57] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani, “An approach for

qos-aware service composition based on genetic algorithms,” in Proceedings of

the 7th Annual Conference on Genetic and Evolutionary Computation, ser.

GECCO ’05. New York, NY, USA: Association for Computing Machinery,

2005. doi: 10.1145/1068009.1068189. ISBN 1595930108 p. 1069–1075. [Online].

Available: https://doi.org/10.1145/1068009.1068189

[58] Y. Ma and C. Zhang, “Quick convergence of genetic algorithm for

qos-driven web service selection,” Comput. Netw., vol. 52, no. 5, p.

108

http://dx.doi.org/10.1109/TSMC.2013.2280559
http://dx.doi.org/10.1145/1068009.1068189
https://doi.org/10.1145/1068009.1068189

1093–1104, apr 2008. doi: 10.1016/j.comnet.2007.12.003. [Online]. Available:

https://doi.org/10.1016/j.comnet.2007.12.003

[59] Q. Wu, Q. Zhu, and X. Jian, “QoS-Aware Multi-granularity Service

Composition Based on Generalized Component Services, booktitle=Service-

Oriented Computing, year=2013.” Berlin, Heidelberg: Springer Berlin

Heidelberg. ISBN 978-3-642-45005-1 pp. 446–455.

[60] W. Liu, B. Liu, D. Sun, Y. Li, and G. Ma, “Study on multi-task oriented

services composition and optimisation with the ‘multi-composition for each

task’ pattern in cloud manufacturing systems,” International Journal of

Computer Integrated Manufacturing, vol. 26, no. 8, pp. 786–805, 2013. doi:

10.1080/0951192X.2013.766939

[61] Q. Wu, Q. Zhu, X. Jian, and F. Ishikawa, “Broker-based sla-aware composite

service provisioning,” Journal of Systems and Software, vol. 96, pp. 194–

201, 2014. doi: https://doi.org/10.1016/j.jss.2014.06.027. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121214001459

[62] T. Yu and K.-J. Lin, “Service selection algorithms for composing complex services

with multiple qos constraints,” in Service-Oriented Computing - ICSOC 2005,

B. Benatallah, F. Casati, and P. Traverso, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005. ISBN 978-3-540-32294-8 pp. 130–143.

[63] D. Schuller, A. Polyvyanyy, L. García-Bañuelos, and S. Schulte, “Optimization

of complex qos-aware service compositions,” in ICSOC, 2011.

[64] D. Schuller, U. Lampe, J. Eckert, R. Steinmetz, and S. Schulte, “Cost-driven

optimization of complex service-based workflows for stochastic qos parameters,”

06 2012. doi: 10.1109/ICWS.2012.50 pp. 66–73.

[65] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for qos-based

web service composition,” in Proceedings of the 19th International Conference on

World Wide Web. New York, NY, USA: Association for Computing Machinery,

109

http://dx.doi.org/10.1016/j.comnet.2007.12.003
https://doi.org/10.1016/j.comnet.2007.12.003
http://dx.doi.org/10.1080/0951192X.2013.766939
http://dx.doi.org/https://doi.org/10.1016/j.jss.2014.06.027
https://www.sciencedirect.com/science/article/pii/S0164121214001459
http://dx.doi.org/10.1109/ICWS.2012.50

2010. doi: 10.1145/1772690.1772693. ISBN 9781605587998 p. 11–20. [Online].

Available: https://doi.org/10.1145/1772690.1772693

[66] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient web

service composition with end-to-end qos constraints,” ACM Trans. Web,

vol. 6, no. 2, jun 2012. doi: 10.1145/2180861.2180864. [Online]. Available:

https://doi.org/10.1145/2180861.2180864

[67] S. X. Sun and J. Zhao, “A decomposition-based approach for service composition

with global qos guarantees,” Information Sciences, vol. 199, pp. 138–

153, 2012. doi: https://doi.org/10.1016/j.ins.2012.02.061. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0020025512001892

[68] A. Klein, F. Ishikawa, and S. Honiden, “Sanga: A self-adaptive network-aware

approach to service composition,” IEEE Transactions on Services Computing,

vol. 7, no. 3, pp. 452–464, 2014. doi: 10.1109/TSC.2013.2

[69] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “A multiobjective optimization

framework for sla-aware service composition,” IEEE Trans. Service Comput.,

vol. 99, pp. 1–14, 01 2012.

[70] H. Ma, F. Bastani, I.-L. Yen, and H. Mei, “Qos-driven service composition with

reconfigurable services,” IEEE Transactions on Services Computing, vol. 6, no. 1,

pp. 20–34, 2013. doi: 10.1109/TSC.2011.21

[71] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization of service

compositions,” IEEE Transactions on Services Computing, vol. 6, no. 2, pp.

239–251, 2013. doi: 10.1109/TSC.2011.53

[72] P. Wang, Z. Ding, C. Jiang, and M. Zhou, “Constraint-aware approach to web

service composition,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, vol. 44, no. 6, pp. 770–784, 2014. doi: 10.1109/TSMC.2013.2280559

110

http://dx.doi.org/10.1145/1772690.1772693
https://doi.org/10.1145/1772690.1772693
http://dx.doi.org/10.1145/2180861.2180864
https://doi.org/10.1145/2180861.2180864
http://dx.doi.org/https://doi.org/10.1016/j.ins.2012.02.061
https://www.sciencedirect.com/science/article/pii/S0020025512001892
http://dx.doi.org/10.1109/TSC.2013.2
http://dx.doi.org/10.1109/TSC.2011.21
http://dx.doi.org/10.1109/TSC.2011.53
http://dx.doi.org/10.1109/TSMC.2013.2280559

[73] F. Lécué and N. Mehandjiev, “Seeking quality of web service composition in a

semantic dimension,” IEEE Transactions on Knowledge and Data Engineering,

vol. 23, no. 6, pp. 942–959, 2011. doi: 10.1109/TKDE.2010.237

[74] S. A. McIlraith and T. C. Son, “Adapting golog for composition of semantic web

services,” in Proceedings of the Eights International Conference on Principles of

Knowledge Representation and Reasoning. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2002. ISBN 1558605541 p. 482–496.

[75] Y. Yan, B. Xu, Z. Gu, and S. Luo, “A qos-driven approach for semantic service

composition,” 2009 IEEE Conference on Commerce and Enterprise Computing,

pp. 523–526, 2009.

[76] T. W. Wei Jiang, “Qos-aware automatic service composition: A graph view,”

Journal of Computer Science and Technology, vol. 26, no. 5, p. 837, 2011. doi:

10.1007/s11390-011-0183-2

[77] P. Bartalos and M. Bielikova, “Qos aware semantic web service composition

approach considering pre/postconditions,” 07 2010. doi: 10.1109/ICWS.2010.90

pp. 345–352.

[78] F. Wagner, F. Ishikawa, and S. Honiden, “Qos-aware automatic service composi-

tion by applying functional clustering,” 07 2011. doi: 10.1109/ICWS.2011.32 pp.

89–96.

[79] A. E. Yilmaz and P. Karagoz, “Improved genetic algorithm based approach for

qos aware web service composition,” in 2014 IEEE International Conference on

Web Services, 2014. doi: 10.1109/ICWS.2014.72 pp. 463–470.

[80] Q. Wu, F. Ishikawa, Q. Zhu, and D.-H. Shin, “Qos-aware multigranularity service

composition: Modeling and optimization,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 46, no. 11, pp. 1565–1577, 2016. doi:

10.1109/TSMC.2015.2503384

111

http://dx.doi.org/10.1109/TKDE.2010.237
http://dx.doi.org/10.1007/s11390-011-0183-2
http://dx.doi.org/10.1109/ICWS.2010.90
http://dx.doi.org/10.1109/ICWS.2011.32
http://dx.doi.org/10.1109/ICWS.2014.72
http://dx.doi.org/10.1109/TSMC.2015.2503384

[81] S. A. Ludwig, “Clonal selection based genetic algorithm for workflow service

selection,” in 2012 IEEE Congress on Evolutionary Computation, 2012. doi:

10.1109/CEC.2012.6256465 pp. 1–7.

[82] Y. Ma and C. Zhang, “Quick convergence of genetic algorithm for qos-driven

web service selection,” Computer Networks, vol. 52, no. 5, pp. 1093–1104,

2008. doi: https://doi.org/10.1016/j.comnet.2007.12.003. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1389128607003489

[83] S. Kumar, R. Bahsoon, T. Chen, K. Li, and R. Buyya, “Multi-tenant cloud

service composition using evolutionary optimization,” in 2018 IEEE 24th

International Conference on Parallel and Distributed Systems (ICPADS), 2018.

doi: 10.1109/PADSW.2018.8644640 pp. 972–979.

[84] N. Kashyap, A. C. Kumari, and R. Chhikara, “Service composition in iot using

genetic algorithm and particle swarm optimization,” Open Computer Science,

vol. 10, no. 1, pp. 56–64, 2020. doi: doi:10.1515/comp-2020-0011. [Online].

Available: https://doi.org/10.1515/comp-2020-0011

[85] S. S. Sefati and S. Halunga, “A hybrid service selection and composition for

cloud computing using the adaptive penalty function in genetic and artificial bee

colony algorithm,” Sensors, vol. 22, 06 2022. doi: 10.3390/s22134873

[86] Q. Zhang, J. Sun, and E. Tsang, “An evolutionary algorithm with guided

mutation for the maximum clique problem,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 2, pp. 192–200, 2005.

[87] K. Inc., “Xchart, simple java charts,” [online], 2019. [Online]. Available:

https://knowm.org/open-source/xchart/

[88] Jetbrains, “Intellij idea, profilier, cpu and memory live charts,”

[online], 2022. [Online]. Available: https://www.jetbrains.com/help/idea/

cpu-and-memory-live-charts.html

112

http://dx.doi.org/10.1109/CEC.2012.6256465
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2007.12.003
https://www.sciencedirect.com/science/article/pii/S1389128607003489
http://dx.doi.org/10.1109/PADSW.2018.8644640
http://dx.doi.org/doi:10.1515/comp-2020-0011
https://doi.org/10.1515/comp-2020-0011
http://dx.doi.org/10.3390/s22134873
https://knowm.org/open-source/xchart/
https://www.jetbrains.com/help/idea/cpu-and-memory-live-charts.html
https://www.jetbrains.com/help/idea/cpu-and-memory-live-charts.html

[89] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp. 99–127,

2002.

[90] R. Sarkar, D. Barman, and N. Chowdhury, “Domain knowledge

based genetic algorithms for mobile robot path planning having

single and multiple targets,” Journal of King Saud University -

Computer and Information Sciences, vol. 34, no. 7, pp. 4269–4283,

2022. doi: https://doi.org/10.1016/j.jksuci.2020.10.010. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1319157820304900

[91] “Advances and open problems in federated learning,” Foundations and Trends®

in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021. doi: 10.1561/2200000083.

[Online]. Available: http://dx.doi.org/10.1561/2200000083

113

http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2020.10.010
https://www.sciencedirect.com/science/article/pii/S1319157820304900
http://dx.doi.org/10.1561/2200000083
http://dx.doi.org/10.1561/2200000083

114

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Analysis
	Motivation
	Thesis Contributions
	Thesis Scope
	Research Methodology
	Thesis Outline
	Summary

	Background
	Lucid Programming Language
	Intensional Logic
	Dataflow Networks
	Lucid Program Structure and Execution
	Objective Lucid

	GIPSY
	Genetic Algorithms
	Related Work
	Summary

	Genetic Service Composition
	Composite Service Model
	Genetic Service Composition Model: Concepts
	Generic Service Composition Algorithms
	Genetic Service Composition Example
	Restriction on Service Composition
	Service Composition Implementation
	Assumptions
	Validation Checks
	Optimizations
	Service Composition
	Service Composition Driver

	Additional Features
	Plot Graph Tool
	Service Composition Dataset Generator

	Summary

	Solution Evaluation
	Simulation Settings
	Service Composition Process Evaluation
	Scalability Evaluation
	Effectiveness Evaluation

	Summary

	Conclusion and Future Work
	Conclusion
	Limitations and Future Work

	Bibliography
	Appendix

