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The transition from wakefulness to sleep represents the most conspic-
uous change in behavior and the level of consciousness occurring in
the healthy brain. It is accompanied by similarly conspicuous changes
in neural dynamics, traditionally exemplified by the change from “de-
synchronized” electroencephalogram activity in wake to globally syn-
chronized slow wave activity of early sleep. However, unit and local
field recordings indicate that the transition is more gradual than it
might appear: On one hand, local slow waves already appear during
wake; on the other hand, slow sleep waves are only rarely global.
Studies with functional magnetic resonance imaging also reveal
changes in resting-state functional connectivity (FC) between wake
and slow wave sleep. However, it remains unclear how resting-state
networks may change during this transition period. Here, we employ
large-scale modeling of the human cortico-cortical anatomical con-
nectivity to evaluate changes in resting-state FC when the model
“falls asleep” due to the progressive decrease in arousal-promoting
neuromodulation. When cholinergic neuromodulation is parametrically
decreased, local slow waves appear, while the overall organization of
resting-state networks does not change. Furthermore, we show that
these local slow waves are structured macroscopically in networks
that resemble the resting-state networks. In contrast, when the neuro-
modulator decrease further to very low levels, slow waves become
global and resting-state networks merge into a single undifferentiated,
broadly synchronized network.
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Introduction

Falling asleep is a gradual phenomenon that includes major
changes in behavior, a progressive disconnection from the
environment, and marked shifts in the level and content of
consciousness, which can vary from the vivid awareness of
full-fledged wakefulness to the near-annihilation of experience
in early nonrapid eye movement (NREM) sleep (Nir and
Tononi 2010). Corresponding changes in the electroenceph-
alogram (EEG) are well known. During wakefulness, the EEG
is characterized by waves of low amplitude and high fre-
quency. This kind of EEG pattern is also known as desynchro-
nized, which should be taken to indicate merely the absence of
massive, low-frequency synchronization.

Recently, unit and local field recordings have shown that the
transition from wakefulness to slow wave sleep has a marked
local component. Using high-density EEG in humans, it has
been shown that individual slow waves have specific sites of

origin and propagation, and that they rarely involve the entire
cortical mantle but remain more localized (Massimini et al.
2004; Murphy et al. 2009). Moreover, multiunit and local field
potential recordings from up to 10 regions simultaneously
have shown that slow sleep waves, corresponding to synchro-
nous off-periods in neural activity, tend to be local, occurring
in just a few areas at a time, and are only rarely truly global, pri-
marily during deep sleep at the beginning of the night (Nir
et al. 2011). Finally, multiarray recordings in rodents have
shown that off-periods, associated with a slowing of the local
field potential, can appear in individual cortical regions even
during wakefulness. These brief episodes of “local sleep”
occur while the rest of cortex remains active in a typical
waking mode, and the animal’s behavior is one of active
waking with eyes open (Vyazovskiy et al. 2011).

Studies with functional magnetic resonance imaging (fMRI)
also reveal changes in resting-state functional connectivity (FC)
between the awake state and different sleep stages measured
as correlated blood oxygen level-dependent (BOLD) signals
among different brain regions. During wakefulness, spon-
taneous activity (unrelated to specific stimuli or tasks) is highly
structured into specific spatio-temporal patterns, known as
resting-state networks (RSNs; Biswal et al. 1995; Greicius et al.
2003; Fox et al. 2005; Fransson 2005; Raichle and Mintun 2006;
Fox and Raichle 2007; Rogers et al. 2007; Vincent et al. 2007).
More recently, RSNs have also been found and studied with
magnetoencephalography (MEG) in the seminal papers of de
Pasquale et al. (2010, 2012), Mantini et al. (2011), and
Spadone et al. (2012). Initial studies showed that certain RSNs
are largely preserved during light NREM sleep (Horovitz et al.
2008; Larson-Prior et al. 2009). Furthermore, Larson-Prior et al.
(2009) did not detect changes in the default mode network
(DMN) even during deep sleep. However, more recent studies
using simultaneous EEG/fMRI techniques point to substantial
changes in the coupling of cortical areas when subjects enter
deeper stages of sleep (N3; Sämann et al. 2011; Boly et al.
2012; Tagliazucchi et al. 2012). In particular, the seminal work
of Sämann et al. (2011) reported changes in the DMN connec-
tivity and between the DMN and its anticorrelated network
already in sleep stage 1. Specifically, they found that the contri-
butions of the posterior cingulate (PC) to the DMN decrease as
sleep becomes deeper.

Here, we employ a large-scale brain model to evaluate
changes in resting-state FC at the transition between the awake
and sleepingmode, which is achieved bymodeling a progressive
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decrease in arousal-promoting neuromodulators. The main aim
of this paper was to study how the resting-state FC of the cortex
changes with the emergence of slow sleep waves, rather than to
provide a detailed realistic biophysical model of the process of
falling asleep, including its cortical and subcortical cellular com-
ponents. Hence, we capture the overall effects of a progressive
decrease in arousal-promoting neuromodulation by a single par-
ameter, which we take to represent the level of cholinergic
modulation due to the fact that acetylcholine (Ach) levels are se-
lectively reduced during slow wave sleep when compared with
both wakefulness and REM sleep (Jasper and Tessier 1971;
Vanini et al. 2012). The results show that, when neuromodulators
are parametrically decreased, local slow waves occur, but the
overall organization of resting-state networks does not change.
In contrast, when the neuromodulator decrease to very low
levels, slow waves become global and resting-state networks
merge into a single undifferentiated, synchronized network.

Materials and Methods
Experimentally, assessing changes in resting-state FC (fMRI or MEG/
EEG based) during the process of falling asleep is made difficult by the
speed and nonstationarity of the transitions in brain dynamics. To do so
systematically, large-scale models that can derive resting-state FC from
anatomical connectivity data and systematically vary physiological par-
ameters can be useful (Honey et al. 2007; Ghosh et al. 2008; Deco et al.
2009, 2011; Cabral et al. 2011; Deco and Jirsa 2012). These models take
advantage of realistic neuroanatomical information from the macaque
cortex provided by the CoCoMac neuroinformatics (Kötter 2004) and
from the human provided by diffusion MRI (Hagmann et al. 2008). In
particular, Deco and Jirsa (2012) considered a global attractor network
of multiple cortical areas based on spiking neurons and realistic
2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA),
N-Methyl-D-aspartate (NMDA), and gamma-aminobutyric acid (GABA)
synapses. In this model, the best fit of empirical resting-state fMRI corre-
lations was obtained when the brain network is critical, that is, at the
border of a dynamical bifurcation point. Here, we extend and use this
model for investigating the process of falling asleep. In the next subsec-
tions, we describe the architecture and dynamics of this model.

BrainModel
In this paper, only the cortex was modeled, because the resting-state
experimental data (neuroanatomical- and fMRI BOLD-based FC
matrices) used for fitting the model during the wake state included
only cortical areas. We used here the experimental data of Hagmann
et al. (2008), who analyzed the cortex of 5 healthy right-handed male
human subjects using diffusion spectrum imaging (DSI; Wedeen et al.
2005) and white matter tractography (Hagmann et al. 2008; Honey
et al. 2009). Imaging was performed on a 3-T scanner using a diffusion-
weighted single-shot echo planar imaging (EPI) sequence with a time
repetition (TR) of 4200 ms and a time echo (TE) of 89 ms and a
maximal b-value of 9000 s/mm2. Q-space was sampled over 129 points
located inside a hemisphere. The axial field-of-view was set to 224 mm
with an in-plane resolution of 2 mm, and 36 slices of 3-mm thickness
were acquired in an acquisition time of 18 min.

The gray matter was first parcellated in 66 areas (33 areas per hemi-
sphere, see Fig. 1). The structure of the underlying neuroanatomical
connectivity matrix was extracted by expressing as coupling weights
the density with which 2 different brain areas are connected through
white matter fiber tracts. In other words, the coupling weights were
proportional to a normalized number of detected tracts linking the 2
brain areas. The neuroanatomical matrix was then averaged across the
5 human subjects. Figure 1 shows graphically the structure of the con-
nectivity matrix by encoding the strengths of the different connections
as a color map. Figure 1 also reveals the small-world structure of the
cortex through the presentation of clusters of varying size, obtained by
reordering the different brain regions according to modules that have

substantially denser connectivity within the module than with the
complementary part of the network, consistent with previous findings
(Bullmore and Sporns 2009).

The brain model consists of coupled local attractor networks as
specified in the next subsection. The coupling between the different
local attractor networks at each node is specified by the neuroanatomi-
cal human matrix described above. We consider here that the white
matter tract connections between 2 distinct brain areas describe synap-
tic connections between pyramidal neurons in those areas. We weight
those interareal connections by the strength specified in the neuroana-
tomical matrix (normalized numbers of fibers connecting those
regions) and by a common scaling factor denoted by W that multiplies
all interareal connection strengths. We estimated this scaling factor by
fitting the simulated BOLD FC to the empirical BOLD FC matrix ac-
quired from the same human subjects from whomwe had obtained the
neuroanatomical matrices (see Deco and Jirsa 2012, for details).
Resting-state activity was obtained on a 3-T MRI scanner with a
32-channel head coil using a gradient echo sequence with EPI
read-out. Thirty-two slices of 3.6 mm with in-plane resolution of 3.3
mm (field-of-view 212 mm) were sampled at a TR of 1920 ms using a
TE of 3 m ms. The fMRI BOLD signal was sampled during 20 min in
the absence of any stimulation or task while the subject was asked to
remain awake and look at a fix point in front of him. Both fMRI and
DSI data were acquired from the same 5 subjects in order to be absol-
utely consistent and increase so the confidence in the results. After re-
gressing out the global signal (Fox et al. 2005) and averaging across
subjects, we obtained an empirical FC matrix (see Honey et al. 2009 for
details). We used averaged values over the 5 subjects in order to mini-
mize individual differences and artifacts that could appear because of
the sporadic lack of vigilance. This empirical FC matrix reflects the cor-
relation of the BOLD activity between different brain areas at rest.
Next, after simulating in the model the firing activity of all 66 brain
areas, we derived the BOLD fMRI signal by using the Balloon–Wind-
kessel model described below. The simulated BOLD signal was also
down sampled at 2 s to achieve the same resolution as in Honey et al.
(2009), and the global signal was regressed out of the BOLD time
series using the same procedure as in the experiments. Finally, we
computed the simulated FC by calculating the correlation matrix of the
BOLD activity between all brain areas. To identify the region of the par-
ameter W for which the model best reproduced the empirical FC, we
computed the Pearson correlation between the empirical and the simu-
lated BOLD FC matrix. The best fit was obtained forW = 1.6.

Single Cortical Area Model
Each local cortical area is modeled in a biophysically realistic frame-
work of spiking attractor networks (Rolls and Deco 2010). In our
case, the spiking attractor network consists of integrate-and-fire (IF)
spiking neurons with excitatory (AMPA and NMDA) and inhibitory
(GABA-A) synaptic receptor types (Brunel and Wang 2001). This at-
tractor network constitutes a dynamical system specified by a set of
coupled equations describing each neuron and synapse. This type of
dynamical system has stationary fixed points called “attractors,”
which are commonly expressed as stable patterns of firing activity.
Furthermore, transitions between different stable attractors can be
driven by noise that appears in the form of finite-size effects that
amplify the effect of external stochastic background noise (as de-
scribed below in eq. 8). Finite-size effects are due to the fact that the
populations are described by a finite number, N, of neurons (Mattia
and Del Giudice 2004).

The architecture of each local cortical area attractor network is
given by a fully connected recurrent network of a population of,
NE = 100, excitatory pyramidal neurons and a population of, NI = 100,
inhibitory neurons. The recurrent self-excitation within each excitatory
population is given by the weightw+, and within each inhibitory popu-
lation is given by the weight w = 1. The connections between excitatory
and inhibitory neurons have the weight w = 1.

Spiking activity of the neurons is described by the classical IF
model. This model expresses the dynamical evolution of the mem-
brane potential V(t) driven by incoming input currents coming from
connected neurons or external inputs. An IF neuron consists of a basic
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resistor–capacitor circuit. Specifically, the membrane potential of each
neuron in the network is given by the following equation:

Cm
dV ðtÞ
dt

¼� gm½V ðtÞ � VL� � IM

� gAMPA;ext½V ðtÞ � VE�
XNext

j¼1

sAMPA;ext
j ðtÞ

� gAMPA;rec½V ðtÞ � VE�
XNE

j¼1

wjs
AMPA;rec
j ðtÞ

� gNMDA½V ðtÞ � VE�
1þ ge�bV ðtÞ

XNE

j¼1

wjs
NMDA
j ðtÞ

� gGABA½V ðtÞ � VI�
XNI

j¼1

wjs
GABA
j ðtÞ:

If the membrane potential is below a given threshold Vthr (subthreshold
dynamics). When the voltage across the membrane reaches the
threshold Vthr, the neuron generates a spike. The spike is transmitted to
other neurons and the membrane potential is instantaneously reset to
Vreset and maintained there for a refractory time τref during which the
neuron is unable to produce further spikes. In equation (1), gm is the
membrane leak conductance, Cm, the capacity of the membrane, and VL,
the resting potential. The membrane time constant is defined by
τm= Cm/gm. The synaptic input current is given by the last 4 terms on the
right-hand side of equation (1). The spikes arriving at the synapse
produce a postsynaptic excitatory or inhibitory potential given by a
conductance-based model specified by the synaptic receptors. The 4
terms correspond to: Glutamatergic AMPA (IAMPA,ext) external excitatory
currents, AMPA (IAMPA,rec), and NMDA (INMDA) recurrent excitatory cur-
rents, and GABAergic recurrent inhibitory currents (IGABA). The respect-
ive synaptic conductances are gAMPA,ext, gAMPA,rec, gNMDA, and gGABA, and
VE and VI are the excitatory and inhibitory reversal potentials, respect-
ively. The dimensionless parameterswj of the connections are the synap-
tic weights described above. The gating variables sijðtÞare the fractions

of open channels of neurons and are given by:

dsIj ðtÞ
dt

¼ � sIj ðtÞ
tI

þ
X

k

dðt � tkj Þ; for I ¼ AMPA or GABA;

dsNMDA
j ðtÞ
dt

¼ � sNMDA
j ðtÞ

tNMDA;decay
þ axNMDA

j ðtÞ½1� sNMDA
j ðtÞ�;

dxNMDA
j ðtÞ
dt

¼ �xNMDA
j ðtÞ

tNMDA;rise
þ
X

k

dðt � tkj Þ:

The sums over the index k represent all the spikes emitted by the presyn-
aptic neuron j (at times tkj ). In equations (7–11), τNMDA,rise and τNMDA,

decay are the rise and decay times for the NMDA synapses, and τAMPA and
τGABA the decay times for AMPA and GABA synapses. The rise times of
both AMPA and GABA synaptic currents are neglected because they are
short (<1 ms). The values of the constant parameters and default values
of the free parameters used in the simulations are displayed in Table 1.

We included in the IF-model spike frequency adapting mechanisms,
including slow voltage-dependent potassium currents M-currents IM
(Brown and Adams 1980) given by:

IM ¼ gMaðtÞ½V ðtÞ � VK�;

In the last equation, VK=−80 mV is the reversal potential of the potass-
ium channel. M-currents are mainly activated by supra-threshold mem-
brane potential, and therefore they are implemented by incrementing

Table 1
Neural and synaptic parameters for each local brain area

Excitatory neurons Inhibitory neurons Synapses

NE 100 neurons NI 100 neurons VE 0 mV
Cm 0.5 nF Cm 0.2 nF VI −70 mV
gm 25 nS gm 20 nS τAMPA 2 ms
VL −70 mV VL −70 mV τNMDA,rise 2 ms
Vthr −50 mV Vthr −50 mV τNMDA,decay 100 ms
Vreset −55 mV Vreset −55 mV τGABA 10 ms
τref 2 ms τref 1 ms α 0.5 kHz
gAMPA,ext 2.496 nS gAMPA,ext 1.944 nS β 0.062
gAMPA,rec 0.104 nS gAMPA,rec 0.081 nS γ 0.28
gNMDA,rec 0.327 nS gNMDA,rec 0.258 nS
gGABA 4.375 nS gGABA 3.4055 nS

Figure 1. Anatomical connectome derived by Hagmann et al. (2007) using DSI averaged over 5 healthy subjects. (Left) The parcellation scheme dividing the cortex into 33
anatomically segregated regions in each hemisphere [adapted from Hagmann et al. (2008)]. (Middle-left) White matter tracts detected using DSI and tractography [adapted from
Honey et al. (2007)]. (Middle-right) Schematic representation of the anatomical network, where regions are represented by red spheres placed at their center of gravity and the link’s
thickness is proportional to the number of fiber tracts detected in each connection. (Right-top) The coupling weights are proportional to the number of tracts detected. White color
means that no fiber connecting the 2 corresponding regions was detected. Weights were normalized so that they are between 0 and 1. (Right-bottom) Distance between regions (in
mm) given as the average length of the fibers connecting a pair of regions. The list of brain regions is reported in Table 2.
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the adaptation variable a(t) after each action potential by a small
amount (α = 0.1), so that IM is incremented accordingly (Benda and
Herz 2003). Between spikes, the a(t) dynamics is modeled as a leaky
integrator with a decay constant τM= 500 ms. Thus, the M-current’s dy-
namics can be described by the following system of equations:

daðtÞ
dt

¼ �aðtÞ
tM

;

if V ðtÞ ¼ Vthr then aðtÞ ¼ aðtÞ þ a and V ¼ Vreset:

Furthermore, all neurons in the network receive an external back-
ground input of uncorrelated Poisson spike trains with a time-varying
rate vpextðtÞ, governed by:

tn
dvpextðtÞ

dt
¼ �½vpextðtÞ � v0� þ sv

ffiffiffiffiffiffiffiffi
2tn

p
npðtÞ;

where τn= 30 ms, ν0 = 2.4 kHz, σν is the standard deviation of vpextðtÞ,
and np(t), normalized Gaussian white noise. Negative values of vpextðtÞ
that could arise due to the noise term are rectified to zero.

The emergence of high-structured spatio-temporal patterns across
the brain at rest in neuroimaging experiments is typically characterized
by the resting FC matrix. The FC reflects, in fact, the segregation of the
activity of the idle brain in resting-state networks. In our model, the
mutual interaction between the different local brain area dynamics is
shaped by the underlying neuroanatomical structure. As illustrated in
the next section, in order to adjust the global coupling between differ-
ent brain areas, we used the empirical FC BOLD fMRI activity obtained
in healthy humans during rest. It has been shown that, for this detailed
spiking model, the best fit of empirical resting fMRI data is obtained
when the brain network is critical, that is, the global scaling factorW is
at the border of a dynamical bifurcation point, so that at that operating
working point the system defines a meaningful dynamic repertoire
that is inherent in the neuroanatomical connectivity (Deco and Jirsa

2012). Indeed, the resting FC emerges from the noisy fluctuations of
the spiking activity of each brain area around a low activity spon-
taneous state that get correlated (between areas) through the under-
lying anatomical structural connectivity matrix. As described above, to
identify the critical region of the parameterW for which the model best
reproduced the empirical FC, we computed the Pearson correlation
between the empirical and simulated BOLD FC matrix. Hence, it is
necessary to convert spiking activity as simulated in the attractor
network model to a BOLD fMRI signal. For this purpose, we used the
Balloon–Windkessel hemodynamic model of Friston et al. (2003). The
Ballon–Windkessel model describes the coupling of perfusion to
the BOLD signal, with a dynamical model of the transduction of neural
activity into perfusion changes. The model assumes that the BOLD
signal is a static nonlinear function of the normalized total deoxyhemo-
globin voxel content, normalized venous volume, resting net oxygen
extraction fraction by the capillary bed, and resting blood volume frac-
tion. The BOLD signal estimation for each brain area is computed by
the level of neuronal activity summed over all neurons in both popu-
lations (excitatory and inhibitory populations) in that particular area.
We also regressed out the global signal from the simulated BOLD time
series in all calculations.

Induction of Sleep: Acetylcholine Level
In the model, sleep was induced by simulating a progressive decrease
in the level of arousal-promoting neuromodulatory inputs from subcor-
tical systems. We capture the overall effects of a progressive decrease
in arousal-promoting neuromodulation by a single parameter ζ, which
we take to represent the level of cholinergic modulation. Although Ach
affects cortical processing in a multitude of manners, we restricted our
analysis to 2 of its main established actions, namely: (1) High ACh
levels reduce the magnitude of cortico-cortical excitatory recurrent
interactions through presynaptic inhibition of glutamate release via
muscarinic receptors (Hasselmo and Bower 1992), and (2) high Ach
level reduces spike frequency adaptation due to its effect on muscar-
inic M-currents (Hasselmo and Giocomo 2006). Both variables induce
slow sleep oscillations in the system. By grading continuously the level
of Ach, we can study carefully the transition from awake resting state to
slow wave sleep. More specifically, we simulated 10 min of spon-
taneous dynamics for 35 different levels of Ach grading the level of
sleep from the sleep mode (ζ = 0) to the awake mode (ζ = 1). Therefore,
we scale the values of the recurrent excitatory weights w+ and of the in-
tercortical weights W, and the value of the adaptation M-currents, as
follows:

wþ ¼ 3� 1:5z

W ¼ 3:2� 1:6z

gM ¼ 9� 9z

Note that the values for ζ = 1 (wake mode) correspond to the working
point that better fits the resting-state BOLD FC. In particular, we
choose the parameters such that for the transition from the wake mode
to the deepest sleep mode (ζ = 0) increases the level of adaptation and
the recurrent intra- and intercortical excitatory waves to maximum
values able to sustain slow sleep waves in most of the cortical areas.
More specifically, for the wake mode (ζ = 1), the parameters in
equation (9) are such that the wake resting state is modeled following
the specific procedure of Deco and Jirsa (2012), that is, there is no
adaptation (gM = 0) and for w+ = 1.5, the optimal W for fitting the em-
pirical resting BOLD FC is obtained at the edge of the bifurcation
(W = 1.6). For the sleep mode (ζ = 0), the adaptation gM = 9 was
choosen such that slow sleep oscillations are properly created for the
increased values of w+ = 3 andW = 3.2.

Analysis of the Slow Sleep Waves
The analysis of the slow sleep waves is based on the simulated firing
rates. In all calculations, we first simulated 10 min of the firing rate.
The slow sleep waves are based on the excitatory populations. For
each brain area, we filtered each excitatory population rate by a band
pass filter between 0.5 and 4 Hz in order to focus on the slow sleep

Table 2
Names and abbreviations of the brain regions considered in the human connectome from Hagmann
et al. (2008) (in alphabetical order)

Abbreviations Brain region

BSTS Bank of the superior temporal sulcus
CAC Caudal anterior cingulate cortex
CMF Caudal middle frontal cortex
CUN Cuneus
ENT Entorhinal cortex
FP Frontal pole
FUS Fusiform gyrus
IP Inferior parietal cortex
ISTC Isthmus of the cingulate cortex
IT Inferior temporal cortex
LING Lingual gyrus
LOCC Lateral occipital cortex
LOF Lateral orbitofrontal cortex
MOF Medial orbitofrontal cortex
MT Middle temporal cortex
PARC Paracentral lobule
PARH Parahippocampal cortex
PC Posterior cingulate cortex
PCAL Pericalcarine cortex
PCUN Precuneus
POPE Pars opercularis
PORB Pars orbitalis
PREC Precentral gyrus
PSTC Postcentral gyrus
PTRI Pars triangularis
RAC Rostral anterior cingulate cortex
RMF Rostral middle frontal cortex
SF Superior frontal cortex
SMAR Supramarginal gyrus
SP Superior parietal cortex
ST Superior temporal cortex
TP Temporal pole
TT Transverse temporal cortex.
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wave band. We also calculated the Hilbert transform to obtain the en-
velopes and phases of the power fluctuations of slow sleep waves. In
concrete, we used the so-called “analytic signal” of the firing rate data.
The analytical signal of the firing rate r(t) is: R(t) = r(t) + i H(t), that is, it
is the complex number whose real part is the original data, and the
imaginary part is the Hilbert transform H(t) of the data. The imaginary
part is a version of the original real sequence with a 90° phase shift.
The analytic signal can be expressed in polar coordinates as: R(t) =A(t)
exp[iψ(t)], where A(t) is the “envelope” or amplitude of the analytic
signal, and ψ the “phase” of the analytic signal. Here, for characterizing
the spatial structure of the slow sleep waves, we calculated the corre-
lation matrix between the envelopes of the firing rates of the excitatory
populations of all areas. We also calculated the correlation matrix
between the corresponding phases in order to study their coherence.
We also calculated the power spectrum of each time series using the
Fast Fourier Transform and evaluated the power in the slow wave fre-
quency range for each area and each condition.

Estimation of the State Repertoire
In the last section of the data analysis, the repertoire of brain states was
estimated from the variance of FC of parcellated brain regions. The var-
iance of connectivity is calculated for all pair-wise correlation coeffi-
cients of between the BOLD signals of the parcellated brain regions.
The variance of the strength of regional connectivity is presumed to
reflect the repertoire of states accessed by the brain over time. All pair-
wise correlation analysis was performed, followed by the calculation of
variance of the obtained correlation coefficients for each level of Ach,
that is, for each level of sleep. Voxel correlations were calculated for
the whole time period of 10 min. First, the 66 regions from our parcel-
lated functionally connected network were selected. All pair-wise cor-
relation coefficients among the simulated BOLD signal of the selected
regions were calculated for each Ach level. The variance of the
so-obtained correlation coefficients characterizes the heterogeneity of
resting-state brain connectivity, which presumably relates to the reper-
toire of brain states at rest. As previously argued (Tononi 2008), highly
similar stereotypic activity across many brain regions or voxels (low
variance) would imply that the repertoire of discriminable brain states
was relatively small. Conversely, an increased heterogeneity of corre-
lations (high variance) would entail a large repertoire of brain con-
figurations or brain sates. A large repertoire translates to large
information capacity and is thought to be a prerequisite of the wakeful
conscious state (Tononi 2008).

Results

Our main goal was to examine how local slow sleep waves
emerge and evolve in the transition and how they are spatially
structured in the cortex. Figure 2 (top) shows for each cortical
area (in half hemisphere) the envelopes of slow sleep waves
(based on the underlying firing rate) as a function of time for a
snapshot of 10 s (after the first 10 min) and for 5 different Ach
levels (ζ = 1, 0.71, 0.57, 0.42, 0, from left to right, respectively).
Starting from the left side, the first panel corresponds to the
wake mode and the subsequent panels reflect progressive
“falling asleep” until a full-fledged sleep mode is reached.
From the panels, it is easy to realize the presence of strong
slow waves during sleep, which are globally synchronized for
the deep sleep state. Reducing the level of Ach (i.e. moving
toward the sleep mode) results at first in the emergence of
local slow waves (in space and time), in line with the exper-
imental observations of Vyazovskiy et al. (2011). Further redu-
cing the level of Ach increases the incidence of slow waves,
until in the full-fledged sleep mode (ζ = 0) the local slow waves
become fully synchronized across cortical areas (rightmost
panel).

The bottom subpanels of Figure 2 show the power of the
slow sleep waves as a function of the Ach level (left total power
summed over all areas and right for each area). In addition,
slow waves are absent in the wake mode, then local slow
waves begin to appear, and finally in deep sleep (low Ach
level) high power in the slow sleep wave range is evident all
over the cortex. Note that the slow sleep waves are also present
at the spiking level even without any particular filtering.
Figure 3 shows for a high (left) and low (right) Ach level the
spiking activity of the model in a particular area (lPC) during
8 s. The top panel shows the spiking activity of 20 randomly
chosen neurons of the lPC excitatory population. The middle
panel shows the corresponding firing rate activity calculated
using all neurons on the excitatory population of the lPC.
These panels also show the results of the filtering and Hilbert
transform, which confirms that the procedure properly cap-
tures the slow wave events (amplitude and phases). The
bottom panels show the corresponding power spectrum.

Figure 4 plots the temporal correlation of the slow wave en-
velopes (based on the firing rates) between different areas and
of the BOLD signals. The top panel shows the correlation of
the envelopes of the slow sleep waves between a specific seed
lPC and all cortical areas (in half hemisphere), for the same 5
snapshots corresponding to different levels of Ach (ζ = 1, 0.71,
0.57, 0.42, 0, from left to right, respectively). In the early sleep
stages, at high levels of Ach, the spatial structure of the corre-
lation between the envelopes of the slow sleep waves reflects
the RSNs (i.e. the BOLD FC) and thus, the underlying neuroa-
natomical connectivity (This can be seen below in Fig. 6, more
specifically). For low level of Ach (deep sleep), all envelopes
are highly correlated due to the underlying global synchroniza-
tion, that is, no particular neuroanatomical structure is re-
flected at this stage. The second row panel shows the
correlation of the underlying fMRI BOLD signal, that is, the
BOLD FC, for the same seed and for the same 5 snapshots. In
addition, in the wake mode (leftmost subpanel), one observes
the specific resting-state connectivity that is observed exper-
imentally (see Deco and Jirsa 2012), whereas during deep
sleep (rightmost subpanel) the resting-state connectivity is ob-
literated (but not completely lost), consistently with the obser-
vations of Sämann et al. (2011). Note that lPC is the main seed
corresponding to the DMN and according to Sämman et al.
(2011) it is one of the areas that get mainly decorrelated with
the rest of the DMN during sleep. Figure 5 plots, for the wake
mode (Ach level ζ = 1), the experimentally measured BOLD FC
(left) and the simulated one (right) for the same seed. The
model at the optimal critical point W = 1.6 (see Materials and
Methods for details) is able to reproduce the resting-state FC
with reasonable accuracy.

The bottom subpanels of Figure 4 show the correlation
between the envelopes of slow sleep waves for the same seed
as a function of the Ach level (left total correlation summed
over all areas and right for each area). Note that at higher levels
of Ach (wake), slow sleep waves are indeed few (Fig. 2,
bottom right, which also shows that the few extant slow waves
are also localized). In addition, Figure 4 shows that, for high
levels of Ach (wake), slow sleep waves are essentially uncorre-
lated (in Fig 4, bottom subpanels, at high levels of Ach, the cor-
relation between the envelopes of slow sleep waves is indeed
very small).

In the wake mode (higher Ach level), the spatial correlation
between slow sleep waves resembles the pattern seen in the
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resting-state BOLD FC, as shown quantitatively in Figure 6.
When transitioning to deep sleep (low Ach level), one observes
a higher correlation between the seed and the rest of the cortex
resulting from the underlying global synchronization.

During the process of falling asleep, slow waves that appear
locally—in some cortical areas and not others—in line with
what reported by Vyazovskiy et al. (2011)—are structured in
agreement with the observed resting-state FC and thus, reflect
the underlying anatomical structure. In other words, the corre-
lation structures between the envelopes of the slow sleep
waves resemble that of the RSNs, that is, of the BOLD FC. This

can be seen explicitly in the results shown in Figure 6. The top
left panel of Figure 6 plots the correlation between the exper-
imentally obtained resting-state FC correlation matrix (with
fMRI BOLD) and the correlation matrix between the envelopes
of the slow sleep waves (based on the firing rates). This panel
shows that at first there is an increase in the correlation
between the BOLD awake FC, which reflects the underlying
anatomical connectivity, and the envelopes of slow sleep
waves, which remain localized. Then, when the envelopes of
slow sleep waves become globally synchronized, the FC struc-
ture of the envelopes of the slow sleep waves is progressively

Figure 2. Top subpanels: Envelopes of the slow sleep oscillations of each cortical area (based on the firing rates) as a function of time, for 5 snapshot of 10 s (after the first 10
min). Only half hemisphere is shown. The 5 snapshots correspond to different Ach levels, namely: ζ= 1, 0.71, 0.57, 0.42, 0, and 1, from left to right, respectively. Increasing the
level of Ach (i.e. getting awake) reduces the presence of slow sleep waves, so that only local (in space and time) slow sleep waves emerge according to the experimental
observations of Vyazovskiy et al. (2011). Bottom panel (left): Total power (summed over all cortical areas) of slow sleep waves as a function of the Ach level. Bottom panel (right):
Power of slow sleep waves for each cortical area as a function of the Ach level. Awakening decreases the power of the slow sleep waves.
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obliterated and finally destroyed. This figure demonstrates that
local slow sleep waves first become correlated and synchro-
nized locally according to the neuroanatomical connectivity.
Thus, early in the falling asleep process, overall brain dynamics
are preserved in spite of local populations of neurons going
“off-line.” The top right panel shows the evolution of the

correlation between the correlation matrix between the phases
of the slow sleep waves (extracted with the Hilbert transform)
and the empirical resting-state BOLD FC correlation matrix.
The bottom left figure shows that the empirical and the simu-
lated FCs are even more correlated in the wake mode. In fact,
the simulations show that the resting-state structure of the

Figure 3. Firing rate activity of one particular area (lPC). Left (right) subpanels correspond to high (low) Ach levels (i.e. to awake, deep sleep phases, respectively). Top panels show
the spiking activity of 20 randomly chosen neurons of the lPC excitatory population. The middle panels show the corresponding firing rate activity (in black) calculated using all
neurons on the excitatory population of the lPC (and no filtering at all). These panels also show the results of the filtering and Hilbert transform (in red), which confirms that the
procedure properly captures the slow waves events (amplitude and phases). The bottom panels show the corresponding power spectrum.
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Figure 4. Temporal correlation of the slow sleep envelopes (based on the firing rates) between different nodes and of the BOLD signal. First row top panels: Correlation of the
envelopes of the slow sleep waves between a specific seed (left posterior cingulate, lPC) and all cortical areas, for 5 snapshots corresponding to different levels of Ach (ζ=0, 0.42,
0.57, 0.71, and 1, from left to right, respectively). Second row panels: Correlation of the underlying fMRI BOLD signal, for the same seed and for the same 5 snapshots. Only half
hemisphere is shown. Bottom panels (left): Total correlation (summed over all areas) between the envelopes of the slow sleep waves for the same seed as a function of the Ach
level. Bottom panel (right): Correlation between the envelopes of the slow sleep waves for each cortical area and for the same seed as a function of the Ach level.
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BOLD signal is progressively obliterated when falling asleep,
in line with the experimental results of Sämann et al. (2011).
The bottom right panel plots the correlation between the simu-
lated resting-state BOLD FC and the correlation matrix
between the envelopes of the slow sleep waves. In addition,

BOLD signal and slow waves go hand in hand during the
different sleep stages. Note that while FC is globally reduced,
the correlation between the envelopes of slow sleep waves is
globally increased (Fig. 4, bottom subpanels).

Figure 5. Detailed comparison between the empirical and the simulated resting-state BOLD FC for the wake state (Ach level ζ= 1) and for an specific seed (left posterior
cingulate, lPC). Left: Empirical resting-state BOLD FC. Right: Simulated resting-state BOLD FC. Both hemispheres are shown.
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Finally, we examined how the variance of connectivity is
altered by a graded reduction in cholinergic neuromodulation.
The variance of the strength of regional connectivity reflects
the heterogeneity of temporal interactions of brain regions and
indirectly, the repertoire of brain states. The repertoire of brain
states has been proposed to be a critical determinant of the
level of consciousness (Tononi 2008). From the simulated
BOLD time courses, the repertoire of brain states was esti-
mated as the average variance of all pair-wise correlation coef-
ficients of the BOLD signals of parcellated brain regions,
repeated at various simulated Ach levels. The computational
results in Figure 7 clearly show that the variance of connec-
tivity was reduced as a function of the Ach level in a graded
manner. A particularly sharp drop was observed at an inter-
mediate Ach level (0.7–0.5), nominally associated with a tran-
sition to deep sleep. This transition appears to correspond to a
global synchronization of neuronal activity, which can thus be
taken as an indication of a diminished repertoire of available
brain states. In other words, the analysis of the variability of

RSNs during the falling asleep process reveals a parametric de-
crease in the repertoire of transient networks that parallels the
decrease in neuromodulators.

In summary, we have shown using a large-scale model of
cortico-cortical connectivity that mimicking the process of
falling asleep results in the progressive appearance of slow
sleep waves that are at first local, that is, confined to a few corti-
cal areas at a given time, and then become more and more
globally synchronous, in line with experimental results ob-
tained in humans (Nobili et al. 2012). The FC expressed by the
cortical model, which reflects the underlying anatomical con-
nectivity derived from the DSI data, is in substantial agreement
with the resting-state FC obtained experimentally in the wake
mode. This specific FC is preserved when slow waves are still
predominantly local, but is obliterated when slow waves
become globally synchronized in deep sleep. In parallel with
these gradual changes, the variability of functionally con-
nected regions is reduced, suggesting a diminution of the re-
pertoire of brain states as the brain transitions to deep sleep.

Figure 6. Top left panel: Correlation between the experimentally obtained resting-state BOLD FC (wakefulness only) and the envelopes of the slow sleep waves as a function of
sleep stage. Top right panel: Correlation between the phases of the slow sleep waves and the same empirical resting-state BOLD FC. Bottom left panel: Correlation between the
empirical and the simulated BOLD FC. Bottom right panel: Correlation between the simulated BOLD signal and the envelopes of the slow sleep waves. During awakening (increasing
the Ach level), the correlation between slow sleep waves gets more shaped according to the resting-state FC.
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Discussion

The characteristic EEG activity patterns that distinguish wake-
fulness from slow wave sleep are generated by the
cortico-thalamic system (Steriade et al. 1997; Robinson et al.
2002, 2011; Nunez and Srinivasan 2006; Roberts and Robinson
2012). Furthermore, discrete populations of cells in the brain-
stem and hypothalamus provide ongoing neuromodulatory
input to the cortex that promotes arousal (Moruzzi and
Magoun 1949, Steriade and McCarley 1990; Robinson et al.
2002, 2011; Roberts and Robinson 2012). When the level of
neuromodulators such as Ach, noerepinephrine, histamine,
and orexin/hypocretin decreases, maintaining arousal
becomes difficult, and the cortico-thalamic system tends to
settle into a bistable pattern of activity, alternating between
depolarized UP states and hyperpolarized DOWN states that
constitute the sleep slow oscillation (Steriade et al. 2001). As
more and more neurons become bistable, synchronized UP
and DOWN states begin to appear, which are reflected in the
EEG as slow sleep waves. As in a previous, detailed model of
wake and sleep in the cortico-thalamic system (Hill and Tononi
2005; Esser et al. 2007), we here simulated the decrease in the
level of arousal-promoting neuromodulators by progressively
modifying some parameters governing the activation of corti-
cal neurons. Our main goal has been to study how the resting-
state FC of the cortex changes with the emergence of slow
sleep waves. Hence, we captured the overall effects of a pro-
gressive decrease in arousal-promoting neuromodulation by a
single parameter, which we took to represent the level of
cholinergic modulation.

In the large-scale model of cortico-cortical connectivity pre-
sented in this paper, when the levels of arousal-promoting
neuromodulators (Ach) are reduced, cortical neurons enter a
bistable, on–off mode of firing, first locally and then globally,

consistent with experimental observations (Steriade et al.
2001) and previous modeling work (Bazhenov et al. 2002; Hill
and Tononi 2005; Esser et al. 2007). At high levels of ACh,
neurons fire in a tonic manner, without off-periods and with
no sign of low-frequency synchronization. Under these con-
ditions, the resting-state FC obtained by convolving simulated
neuronal activity with BOLD hemodynamics resembles empiri-
cal results obtained in awake humans. When Ach are slightly
reduced, off-periods begin to appear in individual cortical
areas at the spiking level, but no long-distance low-frequency
synchronization is observed. As long as off-periods remain
local, resembling experimentally observed local sleep (Vya-
zovskiy et al. 2011), BOLD resting-state FC patterns do not
change appreciably, indicating that, overall, cortico-cortical
interactions are not impaired. In contrast, when Ach levels are
very low, most cortical neurons undergo off-periods synchro-
nously, producing a near-global low-frequency synchroniza-
tion of neural activity. Under these conditions, the slow sleep
waves merge into a single undifferentiated, synchronized
network. Further analysis indicates that, during the falling
asleep process, the variability of BOLD RSNs decreases, indi-
cating a reduction in the repertoire of available transient brain
states.

Resting Functional Connectivity and Sleep
Although for practical purposes most investigations of sleep
are performed using EEG, our explicit purpose here was to
study how resting-state FC changes when the behavior of
nodes in the cortical network is varied parametrically, simulat-
ing changes in neuromodulation during the falling asleep
process. The slow dynamics of resting-state FC are traditionally
studies using fMRI, and while some progress is being made in
evaluating resting-state FC based on EEG, there are still many
issues related to source modeling, to the nonstationarity of the
signal, and to the presence of various nested rhythms, which
make EEG analysis of FC less straightforward than fMRI analy-
sis. Fortunately, recent work comparing fMRI FC with EEG and
intracranial local field potentials shows that the envelope of
the power spectrum of the signal in different frequency bands
shows a very similar structure of slow correlations as fMRI FC
(e.g. He et al. 2008). In addition, only by considering the full
spatial structure of fMRI FC could we investigate the relation-
ship between the synchronization patterns of slow sleep waves
at different levels of neuromodulation with the anatomical con-
nectivity of the cerebral cortex. Nevertheless, despite the focus
on fMRI resting-state FC, the results and predictions derived
from the present paper are in principle applicable also to high-
density EEG data, as long as one can extract correlations in the
EEG envelopes that show a slow dynamics.

A second point that bears emphasizing is that this paper
does not attempt at modeling the sleep EEG. A realistic model
of the resting EEG is no easy undertaking, due to complex
coupling of frequency bands, the bistability of neurons, and
the nonstationarity of events such as spindles, unless one
resorts to detailed, phenomenological models as in our pre-
vious work (e.g. Hill and Tononi 2005). However, such de-
tailed models cannot currently be used for addressing the
questions we intended to address at the scale of a large
number of connected cortical areas. As we showed before, the
simplest way to capture the resting slow functional correlations
evidenced by fMRI, which is what we have attempted to

Figure 7. Variance of connectivity as a function of sleep stage. The variance of
connectivity is calculated for all pair-wise correlation coefficients of between the BOLD
signals of the parcellated brain regions. The variance of the strength of regional
connectivity is presumed to reflect the repertoire of states accessed by the brain over
time.
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model, is by assuming an underlying asynchronous dynamics
(Deco and Jirsa 2012). This is a minimal model, which
assumes at each node a very simple asynchronous dynamics.
Since this is not at all a trivial manner, we eschewed completely
any attempt to model different frequency bands, and merely
implemented ad hoc, as it were, the occurrence of slow sleep
waves.

The Role of Neuromodulators in the Transition
FromWake to Sleep
Since the beginning of unit recordings in vivo, many studies
have investigated changes in neuronal firing across behavioral
states. Early reports found that, throughout the cerebral cortex,
neurons often show a burst-pause pattern in NREM sleep, com-
pared with tonic firing in wakefulness and REM sleep. Later,
intracellular recordings in vivo showed that, during NREM
sleep, virtually all cortical neurons alternate between a
depolarized up state, during which they are spontaneously
firing, and a hyperpolarized, silent down state (Steriade et al.
2001). This so-called slow oscillation (<1 Hz) is reflected in an
alternation between periods of multiunit activity (on-periods)
and silence (off-periods) in extracellular recordings and to
negative peaks (slow waves) in the sleep EEG. In contrast, wa-
kefulness and REM sleep are characterized by a sustained
depolarization and tonic firing and are associated with an
absence of EEG slow waves. The main factor controlling the
transition from the tonic, irregular firing of wakefulness and
REM sleep to the synchronous, on–off firing of deep NREM
sleep is the level of arousal-promoting neuromodulators, chief
among them Ach (Steriade et al. 2001). Ach does so by affect-
ing both intrinsic and synaptic conductances (Gil et al. 1997;
Marder and Thirumalai 2002) that influence both membrane
polarization and the tendency of neurons to synchronize. In
the present simulations, in the wake mode, high Ach levels
dampen the magnitude of cortico-cortical excitatory recurrent
interactions through presynaptic inhibition of glutamate
release via muscarinic receptors (Hasselmo and Bower 1992).
Moreover, high Ach levels dampen the tendency of neurons to
synchronize by reducing spike frequency adaptation due to its
effect on muscarinic M-currents (Hasselmo and Giocomo
2006). When Ach was progressively decreased, to mimick the
falling asleep process, neuronal activity in the model changed
gradually from the irregular, tonic mode of wakefulness to the
synchronous, on–off pattern of NREM sleep. While the
complex effects of many different neuromodulators (including
histamine, norepinephrine, serotonin, and hypocretin) on cor-
tical circuits were not captured in this model, the changes in
firing patterns and dynamics were qualitatively not unlike
those observed in multiunit recordings in both humans (Nir
et al. 2011) and animals (Steriade et al. 2001), suggesting that
they constitute a sufficient basis for inferring overall changes
in FC. Nevertheless, extending the present approach to con-
sider the effects of specific neuromodulators would be valu-
able. For instance, classical pharmacological studies suggest
that noradrenergic agents are less effective than cholinergic
drugs in chronically affecting EEG activation and the occur-
rence of slow waves (Domino et al. 1968; Berridge and Espana
2000). On the other hand, recent stimulation studies show that
the noradrenergic system may be particularly effective in pro-
ducing a rapid and powerful EEG activation (Carter et al. 2010;
Constantinople and Bruno 2011). Serotonin’s role in regulating

slow sleep waves is even more complex, because it may stem
indirectly from its ability to affect the release of other neuro-
transmitters including Ach, norepinephrine, and GABA. The
end result may be biphasic, with an early enhancement of
wake followed by an increase in NREM sleep (Ursin 2002;
Watson et al. 2010).

Local Sleep and Preserved Functional Connectivity
It was recently shown that, if animals are kept awake beyond
their normal sleep time, populations of neurons in different cor-
tical areas can suddenly go off-line in a way that resembles the
off-periods of NREM sleep (Vyazovskiy et al. 2011). Strikingly,
subsets of neurons could enter an off-period in one cortical area,
for example motor cortex, but not in another. The occurrence of
local off-periods in the motor cortex was associated with errors
in a motor task. On the other hand, the overall EEG remained
typical of an awake state and the animal appeared behaviorally
awake with eyes open and was responsive to stimuli. When the
animal fell asleep, in contrast, the EEG displayed typical slow
sleep waves and the animal became behaviorally immobile and
unresponsive, with eyes closed. Correspondingly, cortical
neurons in multiple brain areas began to show frequent on–off
oscillations in the slow wave frequency range. During the falling
asleep process, evidence for local sleep and wake has also been
obtained in humans. For example, the thalamus and the hippo-
campal formation may show signs of sleep before the cortex,
and within the cortex different regions may begin to show clear-
cut slow waves at different times (Rey et al. 2007). Even during
full-fledged NREM sleep, multiunit and local field potential re-
cordings from up to 10 regions have shown that off-periods and
associated slow sleep waves are often local, occurring in just a
few areas at a time. Only rarely, especially during deep sleep at
the beginning of the night, are slow sleep waves truly global (Nir
et al. 2011). The present simulations show that, consistent with
experimental evidence, when Ach levels were mildly reduced,
one or another cortical areas begun to show brief off-periods,
while all the other areas continued the irregular, tonic activity
typical of wake. Importantly, as long as the off-periods remained
local, the overall organization of FC remained similar to that ob-
served during wake (cf. Horovitz et al. 2008; Larson-Prior et al.
2009). This result suggests if a patch or area of the cortex goes
off-line transiently and intermittently, it should not interfere sub-
stantially with long-range cortico-cortical interactions among the
remaining areas. This is likely the consequence of the large
number of alternative paths that can mediate cortico-cortical
interactions, not to mention cortico-subcortico-cortical pathways
not examined here. This finding is in line with modeling studies
of the resilience of cortico-cortical FC to localized lesions (Alstott
et al. 2009). It remains to be seen if off-periods localized prefer-
entially to cortical areas acting as hubs (van den Heuvel and
Sporns 2011) may have a greater effect on FC, although it should
be kept in mind that off-periods, unlike lesions, are extremely
brief and intermittent.

Global Synchronization and the Reduction
in the Repertoire of Resting-State Networks
When Ach levels were reduced substantially, most cortical
areas in the model underwent repeated, frequent transitions
between on- and off-periods, with a modal frequency around
1 Hz. These local changes were accompanied by a progress-
ively more global synchronization of on- and off-periods
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among distant areas. The highly synchronous neuronal activity
observed in the deepest sleep mode was associated with
marked changes in FC, such that most cortical areas began to
merge into a single undifferentiated, broadly synchronized
network. To better characterize the changes in FC as a function
of neuromodulation, we examined the variance of connectivity
with Ach levels. The variance of connectivity characterizes the
heterogeneity of the distribution of temporally coherent
activity that the parcellated brain regions engage in the resting
state. When the variance is low, most brain regions function in
stereotypic synchrony, but when the variance is high, the wide
range of correlations imply a large repertoire of possible inter-
actions (states) among the brain regions. The results show that,
in wake and early sleep, many different RSNs can be observed,
whereas with the deepening of sleep the variance shrinks,
with a steep decrease in variance at the transition to global
BOLD synchronization. This finding is relevant in view of the
possibility that the level of consciousness may be closely
associated with the repertoire of neural states available to corti-
cal networks (Tononi 2008). To the extent that the variance of
RSNs evaluated with BOLD can be taken as reflecting the re-
pertoire of neural states, the results of these simulations are
consistent with the fact that consciousness is preserved at the
beginning of the falling asleep process (stage N1), reports of
mental content become more fleeting during light NREM sleep
(stage N2), and may disappear altogether especially during
deep NREM (N3) early in the night (Nir and Tononi 2010). The
prediction of a decreased variance of RSNs with the deepening
of NREM sleep could be evaluated experimentally in both
sleep and anesthesia as well as in pathological conditions
associated with the reduction in the level of consciousness
such as vegetative and minimally conscious states. It should be
noted that previous work in the area of nonlinear dynamical
analysis of EEG data has also often found a reduction in
various measures of EEG complexity with sleep, as well as
with anesthesia, coma, and various brain disorders, using
measures such as entropy, correlation dimension, Lyapunov
exponents, generalized synchronization, and others (reviewed
in Stam 2005). The present findings extend this approach to
characterizing the variance of the repertoire of network states
in the context of the analysis of resting-state networks modeled
after fMRI data. Finally, it should be emphasized that studies
using simultaneous EEG/fMRI techniques point to substantial
changes in the coupling cortical areas when subjects enter
deeper stages of sleep (N3) (Sämann et al. 2011; Boly et al.
2012). These studies suggest that, irrespective of changes in
the repertoire of RSNs, sleep can also be accompanied by a
loss of integration among specific cortical areas. Studies of ef-
fective connectivity using transcranial magnetic stimulation to-
gether with high-density EEG (Massimini et al. 2005; Ferrarelli
et al. 2010) have also demonstrated that, in NREM sleep and
anesthesia, there is both a reduction in the repertoire of brain
states, as evidenced by the occurrence of global, stereotypic
responses to stimuli, as well as in cortical integration, as shown
by a breakdown of effective connectivity. In future work, the
current model will be employed to assess changes in effective
connectivity as a function of neuromodulation (cf. Esser et al.
2007), in addition to those in FC reported here.

In conclusion, we were able to demonstrate and predict: (1)
that local slow sleep waves are structured macroscopically in
networks that resemble the resting-state networks when they
emerge during falling asleep; (2) in contrast, when the sleep

level increases (neuromodulators decrease further to very low
levels), slow waves become global and merge into a single un-
differentiated, broadly synchronized network; (3) during the
falling asleep process, the variability of RSNs decreases, indi-
cating a reduction in the repertoire of available transient brain
states and an obliteration of the RSNs.

Funding

G.D. was supported by the ERC Advanced Grant: DYSTRUC-
TURE (no. 295129), by the Spanish Research Project
SAF2010-16085, and by the CONSOLIDER-INGENIO 2010
Program CSD2007-00012 and the FP7-ICT BrainScales. G.T.
was supported by the Paul Allen Family Foundation and by the
McDonnell Foundation. P.H. was supported by Leenaards
Foundation. The research reported herein was supported by
the Brain Network Recovery Group through the James
S. McDonnell Foundation.

Notes
Conflict of Interest: None declared.

References
Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. 2009.

Modeling the impact of lesions in the human brain. PLoS Comput
Biol. 5(6):e1000408.

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. 2002. Model of tha-
lamocortical slow-wave-sleep oscillations and transitions to acti-
vated states. J Neurosci. 22:8691–8704.

Benda J, Herz A. 2003. A universal model for spike-frequency adap-
tation. Neural Comput. 15:2523–2564.

Berridge CW, Espana RA. 2000. Synergistic sedative effects of noradren-
ergic alpha(1)- and beta-receptor blockade on forebrain electroence-
phalographic and behavioral indices. Neuroscience. 99:495–505.

Biswal B, Yetkin F, Haughton V, Hyde J. 1995. Functional connectivity
in the motor cortex of resting human brain using echo-planar MRI.
Magn Reson Med. 34:537–541.

Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S, Doyon J,
Pélégrini-Issac M, Maquet P, Benali H. 2012. Hierarchical clustering
of brain activity during human nonrapid eye movement sleep. Proc
Natl Acad Sci USA. 109:5856–5861.

Brown D, Adams P. 1980. Muscarinic suppression of a novel voltage
sensitive k+ current in a vertebrate neuron. Nature. 183:673–676.

Brunel N, Wang XJ. 2001. Effects of neuromodulation in a cortical
network model of object working memory dominated by recurrent
inhibition. J Comput Neurosci. 11:63–85.

Bullmore E, Sporns O. 2009. Complex brain networks: graph theoreti-
cal analysis of structural and functional systems. Nat Rev Neurosci.
10:186–198.

Cabral J, Hugues E, Sporns O, Deco G. 2011. Role of network oscil-
lations in resting-state functional connectivity. Neuroimage.
57:130–139.

Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S,
Deisseroth K, de Lecea L. 2010. Tuning arousal with optogenetic
modulation of locus coeruleus neurons. Nat Neurosci. 13:1526–1533.

Constantinople CM, Bruno RM. 2011. Effects and mechanisms of wake-
fulness on local cortical networks. Neuron. 69:1061–1068.

de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti
L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL et al. 2010.
Temporal dynamics of spontaneous MEG activity in brain net-
works. Proc Natl Acad Sci USA. 107(13):6040–6045.

de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V,
Romani GL, Corbetta M. 2012. A cortical core for dynamic inte-
gration of functional networks in the resting human brain. Neuron.
74(4):753–764.

3192 Modeling the Resting-State When the Cortex Falls Asleep • Deco et al.



Deco G, Jirsa V. 2012. Ongoing cortical activity at rest: criticality, multi-
stability and ghost attractors. J Neurosci. 32(10):3366–3375.

Deco G, Jirsa V, McIntosh A. 2011. Emerging concepts for the dynami-
cal organization of resting-state activity in the brain. Nat Rev Neuro-
sci. 12:43–56.

Deco G, Jirsa V, McIntosh A, Sporns O, Kötter R. 2009. Key role of
coupling, delay, and noise in resting brain fluctuations. Proc Natl
Acad Sci USA. 106:10302–10307.

Domino EF, Yamamoto K, Dren AT. 1968. Role of cholinergic mechan-
isms in states of wakefulness and sleep. Progr Brain Res.
28:113–133.

Esser SK, Hill SL, Tononi G. 2007. Sleep homeostasis and cortical syn-
chronization: I. Modeling the effects of synaptic strength on sleep
slow waves. Sleep. 30:1617–1630.

Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G,
Tononi G, Pearce R. 2010. Breakdown in cortical effective connec-
tivity during midazolam-induced loss of consciousness. Proc Natl
Acad Sci USA. 107:2681–2686.

Fox M, Raichle M. 2007. Spontaneous fluctuations in brain activity ob-
served with functional magnetic resonance imaging. Nat Rev
Neurosci. 8:700–711.

Fox M, Snyder A, Vincent J, Corbetta M, Van Essen D, Raichle M. 2005.
The human brain is intrinsically organized into dynamic, anticorre-
lated functional networks. Proc Natl Acad Sci USA. 102:9673–9678.

Fransson P. 2005. Spontaneous low-frequency BOLD signal fluctu-
ations: an fMRI investigation of the resting-state default mode of
brain function hypothesis. Hum Brain Mapp. 26:15–29.

Friston K, Harrison L, Penny W. 2003. Dynamic causal modelling. Neu-
roImage. 19:1273–1302.

Ghosh A, Rho Y, McIntosh A, Kotter R, Jirsa V. 2008. Noise during rest
enables the exploration of the brain’s dynamic repertoire. PLoS
Comput Biol. 4:e1000196.

Gil Z, Connors BW, Amitai Y. 1997. Differential regulation of
neocortical synapses by neuromodulators and activity. Neuron.
19:679–686.

Greicius M, Krasnow B, Reiss A, Menon V. 2003. Functional connec-
tivity in the resting brain: a network analysis of the default mode
hypothesis. Proc Natl Acad Sci USA. 100:253–258.

Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R,
Thiran JP. 2007. Mapping human whole-brain structural networks
with diffusion MRI. PLoS One. 2:e597.

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, Wedeen VJ,
Sporns O. 2008. Mapping the structural core of human cerebral
cortex. PLoS Biol. 6:e159.

Hasselmo M, Bower J. 1992. Cholinergic suppression specific to intrin-
sic not afferent fiber synapses in rat piriform (olfactory) cortex.
J Neurophysiol. 67(5):1222–1229.

Hasselmo M, Giocomo L. 2006. Cholinergic modulation of cortical
function. J Mol Neurosci. 30:133–135.

He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. 2008. Electro-
physiological correlates of the brain’s intrinsic large-scale func-
tional architecture. Proc Natl Acad Sci USA. 105(41):16039–16044.

Hill S, Tononi G. 2005. Modeling sleep and wakefulness in the thala-
mocortical system. J Neurophysiol. 93:1671–1698.

Honey C, Kötter R, Breakspear M, Sporns O. 2007. Network structure
of cerebral cortex shapes functional connectivity on multiple time
scales. Proc Natl Acad Sci USA. 104:10240–10245.

Honey C, Sporns O, Cammoun L, Gigandet X, Thiran J, Meuli R,
Hagmann P. 2009. Predicting human resting-state functional con-
nectivity from structural connectivity. Proc Natl Acad Sci USA.
106:2035–2040.

Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC,
Balkin TJ, Duyn JH. 2008. Low frequency BOLD fluctuations
during resting wakefulness and light sleep: a simultaneous
EEG-fMRI study. Hum Brain Mapp. 29:671–682.

Jasper H, Tessier J. 1971. Acetylcholine liberation from cerebral cortex
during paradoxical (REM) sleep. Science. 172(3983):601–602.

Kötter R. 2004. Online retrieval, processing, and visualization of
primate connectivity data from the CoCoMac database. Neuroinfor-
matics. 2:127–144.

Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle
ME. 2009. Cortical network functional connectivity in the descent
to sleep. Proc Natl Acad Sci USA. 106:4489–4494.

Mantini D, Della Penna S, Marzetti L, de Pasquale F, Pizzella V, Corbetta
M, Romani GL. 2011. A signal-processing pipeline for magnetoen-
cephalography resting-state networks. Brain Connect. 1(1):49–59.

Marder E, Thirumalai V. 2002. Cellular, synaptic and network effects of
neuromodulation. Neural Netw. 15:479–493.

Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. 2005.
Breakdown of cortical effective connectivity during sleep. Science.
309:2228–2232.

Massimini M, Huber R, Ferrarelli F, Tononi G. 2004. Sleep slow oscil-
lations as traveling waves: origins and pathways of propagation in
humans. Sleep. 27:71–79.

Mattia M, Del Giudice P. 2004. Finite-size dynamics of inhibitory and
excitatory interacting spiking neurons. Phys Rev E. 70:052903.

Moruzzi G, Magoun HW. 1949. Brain stem reticular formation and acti-
vation of the EEG. Clin Neurol. 1:455–473.

Murphy MJ, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G.
2009. Source modeling sleep slow waves. Proc Natl Acad Sci USA.
106:1608–1613.

Nir Y, Staba RJ, Andrillon T, Vyazovskiy V, Cirelli C, Fried I, Tononi G.
2011. Regional slow waves and spindles in human sleep. Neuron.
70:153–169.

Nir Y, Tononi G. 2010. Dreaming and the brain: from phenomenology
to neurophysiology. Trends Cogn Sci. 14(2):88–100.

Nobili L, De Gennaro L, Proserpio P, Moroni F, Sarasso S, Pigorini A,
De Carli F, Ferrara M. 2012. Local aspects of sleep: observations
from intracerebral recordings in humans. Prog Brain Res.
199:219–232.

Nunez P, Srinivasan R. 2006. Electric fields of the brain: the neurophy-
sics of EEG, 2nd ed. New York: Oxford University Press.

Raichle M, Mintun M. 2006. Brain work and brain imaging. Ann Rev
Neurosci. 29:449–476.

Roberts J, Robinson P. 2012. Cortico-thalamic dynamics: structure of
parameter space, spectra, instabilities, and reduced model. Phys
Rev E. 85(1):011910.

Robinson P, Phillips A, Fulcher B, Puckeridge M, Roberts J. 2011.
Quantitative modelling of sleep dynamics. Philos Trans Ser A Math
Phys Eng Sci. 13369(1952):3840–3854.

Robinson P, Rennie C, Rowe D. 2002. Dynamics of large-scale brain
activity in normal arousal states and epileptic seizures. Phys Rev E.
65(4):041924.

Rogers BP, Morgan VL, Newton AT, Gore JC. 2007. Assessing func-
tional connectivity in the human brain by fMRI. Magn Reson
Imaging. 25:1347–1357.

Rolls E, Deco G. 2010. The noisy brain. Oxford (UK): Oxford Univer-
sity Press.

Sämann P, Wehrle R, Hoehn D, Spoormaker V, Peters H, Tully C, Hols-
boer F, Czisch M. 2011. Development of the brain’s default mode
network from wakefulness to slow wave sleep. Cereb Cortex.
21:2082–2093.

Spadone S, de Pasquale F, Mantini D, Della Penna S. 2012. A K-means
multivariate approach for clustering independent components
from magnetoencephalographic data. Neuroimage. 62(3):
1912–1923.

Stam CJ. 2005. Nonlinear dynamical analysis of EEG and MEG: review
of an emerging field. Clin Neurophysiol. 116:2266–2301.

Steriade M, Jones E, McCormick D (eds). 1997. Thalamus. Vol. 1–2.
Amsterdam: Elsevier.

Steriade M, McCarley RW. 1990. Brainstem control of wakefulness and
sleep. New York: Plenum Press.

Steriade M, Timofeev I, Greiner F. 2001. Natural waking and sleep
states: a view from inside neocortical neurons. J Neurophysiol.
85:1969–1985.

Tagliazucchi E, von Wegner F, Morzelewski A, Borisov S, Jahnke K,
Laufs H. 2012. Automatic sleep staging using fMRI functional con-
nectivity data. Neuroimage. 63(1):63–72.

Tononi G. 2008. Consciousness as integrated information: a provi-
sional manifesto. Biol Bull. 215:216–242.

Cerebral Cortex December 2014, V 24 N 12 3193



Rey M, Bastuji H, Garcia-Larrea L, Guillemant P, Mauguiere F, Magnin
M. 2007. Human thalamic and cortical activities assessed by dimen-
sion of activation and spectral edge frequency during sleep wake
cycles. Sleep. 30:907–912.

Ursin R. 2002. Serotonin and sleep. Sleep Med Rev. 6:55–69.
van den Heuvel M, Sporns O. 2011. Rich-club organization of the

human connectome. J Neurosci. 31(44):15775–15786.
Vanini G, Lydic R, Baghdoyan HA. 2012. GABA-to-ACh ratio in basal

forebrain and cerebral cortex varies significantly during sleep.
Sleep. 35:1325–1334.

Vincent J, Patel G, Fox M, Snyder A, Baker J, Van Essen D,
Zempel J, Snyder L, Corbetta M, Raichle M. 2007. Intrinsic func-
tional architecture in the anaesthetized monkey brain. Nature.
447:83–86.

Vyazovskiy V, Olcese U, Hanlon E, Nir Y, Cirelli C, Tononi G. 2011.
Local sleep in awake rats. Nature. 472:443–447.

Watson CJ, Baghdoyan HA, Lydic R. 2010. Neuropharmacology of
sleep and wakefulness. Sleep Med Clin. 5:513–528.

Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. 2005.
Mapping complex tissue architecture with diffusion spectrum mag-
netic resonance imaging. Magn Reson Med. 54:1377–1386.

3194 Modeling the Resting-State When the Cortex Falls Asleep • Deco et al.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


