5 research outputs found

    TFI-FTS: An efficient transient fault injection and fault-tolerant system for asynchronous circuits on FPGA platform

    Get PDF
    Designing VLSI digital circuits is challenging tasks because of testing the circuits concerning design time. The reliability and productivity of digital integrated circuits are primarily affected by the defects in the manufacturing process or systems. If the defects are more in the systems, which leads the fault in the systems. The fault tolerant systems are necessary to overcome the faults in the VLSI digital circuits. In this research article, an asynchronous circuits based an effective transient fault injection (TFI) and fault tolerant system (FTS) are modelled. The TFI system generates the faults based on BMA based LFSR with faulty logic insertion and one hot encoded register. The BMA based LFSR reduces the hardware complexity with less power consumption on-chip than standard LFSR method. The FTS uses triple mode redundancy (TMR) based majority voter logic (MVL) to tolerant the faults for asynchronous circuits. The benchmarked 74X-series circuits are considered as an asynchronous circuit for TMR logic. The TFI-FTS module is modeled using Verilog-HDL on Xilinx-ISE and synthesized on hardware platform. The Performance parameters are tabulated for TFI-FTS based asynchronous circuits. The performance of TFI-FTS Module is analyzed with 100% fault coverage. The fault coverage is validated using functional simulation of each asynchronous circuit with fault injection in TFI-FTS Module

    Design of Asynchronous Circuits for High Soft Error Tolerance in Deep Submicron CMOS Circuits

    Get PDF
    As the devices are scaling down, the combinational logic will become susceptible to soft errors. The conventional soft error tolerant methods for soft errors on combinational logic do not provide enough high soft error tolerant capability with reasonably small performance penalty. This paper investigates the feasibility of designing quasi-delay insensitive (QDI) asynchronous circuits for high soft error tolerance. We analyze the behavior of null convention logic (NCL) circuits in the presence of particle strikes, and propose an asynchronous pipeline for soft-error correction and a novel technique to improve the robustness of threshold gates, which are basic components in NCL, against particle strikes by using Schmitt trigger circuit and resizing the feedback transistor. Experimental results show that the proposed threshold gates do not generate soft errors under the strike of a particle within a certain energy range if a proper transistor size is applied. The penalties, such as delay and power consumption, are also presented

    Identification of Soft-Error at Gate Level

    Get PDF
    Due to shrinking feature size and significant reduction in noise margins, as we are moving into very deep sub-micron technology, circuits have become more susceptible to manufacturing defects, noise-related transient faults and interference from radiation. Traditionally, soft errors have been a much greater concern in memories than in logic circuits. However, due to technology scaling, logic circuits have become equally susceptible to soft errors. Moreover, enhanced usage of commercial off the shelf (COTS) electronic components for avionics has also increased the importance of analyzing soft errors in hardware circuits. Conventionally, understanding soft error glitches requires circuit level modeling, which requires information available only at late stages in the design flow. Instead of this approach some researchers have produced modeling techniques using Reduced Order Binary Decision Diagrams (ROBDD) and Algebraic Decision Diagrams (ADD), which does allow analyzing soft error at an earlier stage in design flow. In this thesis, a new methodology for modeling soft errors glitch propagation path using Multiway Decision Graphs is introduced. This modeling technique is applicable on both combinational and asynchronous circuits. The proposed glitch propagation path modeling technique jointly takes care of logical and electrical masking. Our methodology involves new ways of injecting glitches including glitch injection in feedback paths of asynchronous circuits. This work presents a complete framework to exhaustively provide all the possible sequences of signals that lead to the possibility of glitch propagation to the primary output in combinational and asynchronous circuits. In addition, a new tool is developed based on the proposed methodology called Soft Error Glitch-Propagating Path Finder (SEGP-Finder) to automate the identification of these sequences of signals. This work helps designers identify the vulnerable circuit paths at the logic abstraction level. Also, this methodology allows designers to apply radiation tolerance techniques on reduced sets of possibilities. By applying our methodology on different combinational and asynchronous circuits an improvement in terms of possible-fault injection vectors is observed. As an example, approximately 8% of all the possible input vectors and sequences is required for obtaining exhaustive glitch propagation path identification in a representative implementation of a bundled data asynchronous circuit. To the best of our knowledge, this is the first time MDG based decision diagram based soft error identification approach is proposed for combinational and asynchronous circuits

    Asynchronous designs on FPGA with soft error tolerance for security algorithms

    Get PDF
    Asynchronous methodologies, such as Null Convention Logic (NCL), have tremendous potential in implementing digital logic. It is essential to design complex asynchronous circuits using commercial Electronic Design Automation (EDA) tools. The main focus of this thesis is to design NCL circuits using VHDL and implementing them on FPGAs. The major contributions of this thesis include: 1) Developing a methodology of designing NCL circuits with VHDL and applying it successfully to all practical designs in this thesis. 2) As an example, the NCL circuit for DES (Data Encryption Standard) algorithm has been designed and simulated using VHDL and the implementation issues on various FPGAs (Xilinx and Altera) have been investigated. Modification of the design has been done to minimize the amount of logic used. 3) An effective soft error tolerant scheme for asynchronous circuits on FPGAs is proposed, and successfully verified through software simulation and hardware implementation by introducing it into a DES round. This thesis provides a starting point for further investigation of NCL circuits, in terms of VHDL modeling, FPGA implementations, and soft error tolerance

    Asynchronous circuits sensitivity to fault injection

    No full text
    ISBN: 0769521800This paper presents an analysis of the faults sensitivity of Quasi Delay Insensitive (QDI) asynchronous circuits. Faults considered in this work can be either natural or intentional. However, fault injection attacks which consist in causing an intentional temporary dysfunction of a circuit by injecting faults in its combinational or sequential parts are of prime interest. This failure enables hackers to access protected memory areas or secret information like cryptographic keys. This work focuses on analysing the sensitivity of asynchronous circuits to fault injection. A circuit fault-sensitivity criterion is defined, which enables to point out weak parts of the circuits in order to specify hardening strategies
    corecore