
This is a postprint version of the following published document:

Entrena, Luis; López-Ongil, Celia; García-Valderas,
Mario; Portela-García, Marta; Nicolaidis, Michael.
(2011). Hardware Fault Injection. In: Nicolaidis, M.
(ed.) Soft Errors in Modern Electronic Systems.
(Frontiers in Electronic Testing, 41). Springer. Pp. 141-
166.

DOI: https://doi.org/10.1007/978-1-4419-6993-4_6

© Springer ScienceþBusiness Media, LLC 2011

https://doi.org/10.1007/978-1-4419-6993-4_6

U
nc
or
re
ct
ed

P
ro
of

1Chapter 6

2Hardware Fault Injection

3Luis Entrena AU1, Celia López Ongil, Mario Garcı́a Valderas,

4Marta Portela Garcı́a, and Michael Nicolaidis

5Hardware fault injection is the widely accepted approach to evaluate the behavior

6of a circuit in the presence of faults. Thus, it plays a key role in the design of robust

7circuits. This chapter presents a comprehensive review of hardware fault injection

8techniques, including physical and logical approaches. The implementation of

9effective fault injection systems is also analyzed. Particular emphasis is made

10on the recently developed emulation-based techniques, which can provide large

11flexibility along with unprecedented levels of performance. These capabilities

12provide a way to tackle reliability evaluation of complex circuits.

136.1 Introduction

14As technology progresses into nanometric scale, the concern for reliability is

15growing. The introduction of new materials, processes, and novel devices along

16with increasing complexity, power, performance, and die size affect reliability

17negatively. On the contrary, the reduction in dimensions, capacitance, and voltage

18results in less node critical charge, bringing up the soft-error threat. Actually, taking

19into account all these trends, the soft-error rate (SER) per bit is expected to keep

20stable, according to recent studies [1]. However, since the memory bit count and the

21functionality integrated in logic components are increasing rapidly, the threat of

22soft errors is becoming a reality for many applications where it was not a concern in

23the past. The increasing use of electronic systems in safety critical applications,

24where human life is at stake, forces to ensure dependability and makes it an important

25challenge today.

C.L. Ongil (*)

e-mail: celia@ing.uc3m.es

M. Nicolaidis (ed.), Soft Errors in Modern Electronic Systems,
Frontiers in Electronic Testing 41, DOI 10.1007/978-1-4419-6993-4_6,
Springer ScienceþBusiness Media, LLC 2011

Celia
Cross-Out

Celia
Replacement Text
-

Celia
Cross-Out

Celia
Replacement Text
-

Celia
Cross-Out

Celia
Replacement Text
-

Celia
Cross-Out

Celia
Replacement Text
ópez-

Celia
Inserted Text
1

Celia
Inserted Text
1

Celia
Inserted Text
1

Celia
Inserted Text
1

Celia
Inserted Text
2

Celia
Typewritten Text
1 Electronic Technology Department, Carlos III University of Madrid, Spain. Email: { entrena, mgvalder, mportela, celia}@ing.uc3m.es2

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text
2 TIMA (CNRS, Grenoble INP, UJF), Grenoble–France,<michael.nicolaidis@imag.fr>

U
nc
or
re
ct
ed

P
ro
of

26 Providing quality of service in the presence of faults is the purpose of fault

27 tolerance. But before a fault-tolerant system is deployed, it must be tested and

28 validated. Thus, dependability evaluation plays an important role in the design of

29 fault-tolerant circuits. Fault injection, i.e., the deliberate injection of faults into a

30 circuit under test, is the widely accepted approach to evaluate fault tolerance. Fault

31 injection is intended to provide information about circuit reliability covering three

32 main goals: validate the circuit under test with respect to reliability requirements;

33 detect weak areas that require fault-tolerance enhancements; and forecast the

34 expected circuit behavior in the occurrence of faults.

35 From a general point of view, we can distinguish between hardware and

36 software fault injection, although the frontier between them is not well defined.

37 Software fault injection deals with software reliability and will not be treated

38 here. Hardware fault injection is related to hardware faults, which are generally

39 modeled at lower levels (e.g., logical or electrical) and are injected into a piece of

40 hardware.

41 In spite of the work made over many years, hardware fault injection is still a

42 challenging area. New types of faults and effects come to place or achieve

43 increasing relevance. In addition to permanent stuck-at faults or transient faults

44 affecting memory bits, such as single-event upsets (SEUs), today designers must

45 face the possibility of timing faults, single-event transients (SETs) affecting

46 combinational logic, and multiple bit upsets (MBUs) affecting memories. More

47 complex circuits need to be evaluated as a consequence of technology scaling and

48 increasing density. In particular, Systems on Chip (SoCs) include a variety of

49 components, such as microprocessors, memories, and peripherals, which pose

50 different fault injection requirements. The widespread use of field-programmable

51 technology confronts the need to evaluate the effect of errors on the configuration

52 bits. As complexity increases, the number of faults to be injected in order to

53 achieve statistical significance also increases. Thus, there is a need for new

54 approaches and solutions in order to accurately reproduce fault effects, increase

55 fault injection performance, and support the variety of existing technologies and

56 components.

57 This chapter summarizes the current state of the art in hardware fault injection

58 techniques and optimizations of the hardware fault injection process. It must be

59 noted that the fault injection process is not only concerned with the means to inject

60 faults. A complete environment is required for initialization of the circuit under test,

61 selection and application of appropriate workloads, collection of information about

62 faulty circuit behavior, comparison with the correct behavior, classification of fault

63 effects, and monitoring of the overall process. The importance of each of these tasks

64 must not be neglected, because all of them are relevant for a successful evaluation.

65 The remaining of the chapter is organized as follows. Section 6.2 reviews the

66 most relevant hardware fault injection techniques and the existing approaches to

67 inject faults. Section 6.3 describes the fault injection environments. Section 6.4

68 describes optimizations that contribute to increase fault injection performance.

69 Finally, Sect. 6.5 contains the conclusion of this chapter AU2.

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

706.2 Hardware Fault Injection Techniques

71Dependability evaluation of modern VLSI circuits entails the need of injecting

72realistic faults at internal locations, and observing in an efficient way the circuit

73behavior in the presence of these faults. Indeed, with the generalization of deep

74submicron technologies, there can be a much greater number of faults in digital

75systems, and a significant proportion of them occur internally in the chip [2]. There

76are different methods for injecting faults in integrated circuits mimicking hard or

77soft errors. Some of these methods have been used for several years, while others

78are being proposed in recent research works.

79In every fault injection method, there are some common elements that may be

80defined at different abstractions levels. First of all, faults to be injected in the

81evaluation process should be selected. The possibility of provoking real faults

82within the device or just modeling the effect they cause (fault model) in the circuit

83elements must be considered. Second, the circuit to be checked, usually named

84device under test (DUT) or circuit under test (CUT), could be a commercial-off-the-

85shelf (COTS), a prototype, or a design model. The level of abstraction for the DUT

86is related to the type of fault to be injected. Third, a collection of workloads should

87be available in order to get a representative subset of the circuit functionality.

88Circuit robustness should be checked when working as closely as possible to

89normal operation in its final application. Finally, the most important element in

90every fault injection method is the expected result, which corresponds mainly to a

91measure of device robustness against faults.

92Furthermore, any fault injection method requires a specific setup for the fault

93injection campaign. In particular, a dedicated PCB with the DUT must be devel-

94oped. Also, a system for workload application and processing of the test results,

95including hardware, software, communication links, etc., should be implemented

96for results processing.

97Faults are typically classified according to their duration into permanent, inter-

98mittent or transient faults. Permanent faults are related to manufacturing defects

99and circuit aging. Transient faults are mainly caused by the environment, such as

100cosmic radiation or electrical noise. They do not produce a permanent damage and

101their effects are known as soft errors.

102Cosmic radiation is the main source of single-event effects (SEEs) in integrated

103circuits. SEEs are caused by single energetic particles and take many forms, with

104permanent or transient effects. Thus, in this case, injected faults range from real

105faults coming from natural cosmic radiation to fault models of SEEs; circuits to be

106tested range from COTS to design descriptions. The result of a fault injection

107campaign is the probability a device will fail when working. Typically, this

108measure is the failure in time (FIT), which stands for the number of circuit failures

109per 109 h, and it is referred to a given radiation environment.

110The main hardware fault injection cases will be summarized in the following

111subsections. Some of them are also addressed in detail in other chapters.

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

112 6.2.1 Physical Fault Injection

113 Physical fault injection methods use external perturbation sources, such as natural

114 and accelerated particle radiation, laser beam, pin forcing, etc. The objective of this

115 test is the analysis of circuit robustness in the presence of faults affecting a device.

116 These methods are applied on COTS or prototypes for qualifying new technologies

117 or existing chips for a new application environment.

118 These methods can cause a wide range of internal damages in the circuit under

119 test: SEEs, displacement damage (DD) and total ionization dose (TID). Typically,

120 studied SEEs are SEUs, SETs and single-event latchups (SELs).

121 6.2.1.1 Radiation Methods

122 The most traditional method for provoking internal soft errors in the circuit under

123 test is the use of particle radiation. Cosmic radiation is the main source of SEEs in

124 integrated circuits. Therefore, testing a device in its real environment (space, high

125 altitude, etc.) is the most realistic way of evaluating its sensitivity with respect

126 to SEEs. There are some practical disadvantages for this solution that are related to

127 cost and time-to-market. Due to the low probability of error, weeks or months are

128 generally required, as well as hundreds or thousands of samples, for obtaining valid

129 measures. Another disadvantage is the unknown relationship between failures and

130 the energy of particles striking the samples.

131 When shorter testing times and more controlled experiment setup are required,

132 accelerated radiation tests are used for qualifying new technologies. The DUT

133 receives a beam of particles, coming from a specific accelerator facility [3] or from

134 a radioactive source [2]. In this case, few samples are needed (typically in the order

135 of ten) as well as less time for testing (hours or days). Also, an energy or intensity

136 sweep can be applied on the particle beam affecting the circuit under test. In this

137 case, it is easy to know the SER with respect to the energy of particles.

138 In accelerated radiation tests, several types of particles are used for evaluating

139 circuit robustness in harsh environments. Particles coming from cosmic radiation

140 (primary or secondary radiation) are heavy ions, protons, and neutrons. Also, shells

141 of devices emit alpha particles that provoke SEEs in the circuit.

142 The main origin of cosmic radiation is the sun [4]; it provokes ionizing

143 particles (heavy ions and protons), known as primary radiation, in deep

144 space and stratospheric orbits, and non-ionizing particles (neutrons), known as

145 secondary radiation, in atmospheric applications. The IEEE standard for testing

146 space-borne components [5] indicates the type of particles present in different

147 environments. This information is used together with the final location of the

148 circuit for stating the work environment and deciding the type of radiation test to

149 be performed. When checking the dependability of circuits in aircrafts or in earth

150 surface, neutron and alpha particles are used for accelerated radiation tests [6].

151 Alpha particles affect circuits, especially at earth surface. On the contrary, heavy

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

152ions are used for testing circuits working in nuclear or spatial applications [7].

153Finally, protons are employed for testing components of terrestrial satellites

154[8, 9].

155Standards developed by space agencies [8, 9] or by JEDEC association [6, 7]

156regulate radiation test procedures. In any case, simulation software tools are used

157together with these tests in order to obtain a more accurate knowledge of damage

158effect in devices. Material, type of particle, orbit, etc., are key elements in these

159calculations.

160In these experiments, the setup task is a heavy process. Flux, fluence, and energy

161of particles must be set accurately (dosimetry is a key factor) for achieving a

162significant number of events and avoiding TID damage. The final result obtained

163is the cross-section, which is a function of particle energy or linear energy transfer

164(LET) and gives the number of events detected with respect to the particle fluence

165applied.

166Static and dynamic tests should be performed on the DUT. While static tests

167qualify the technology of a device, dynamic tests measure the robustness of a circuit

168running in that device with a given workload. It is possible to disaggregate both

169tests and avoid dynamic test under radiation. Velazco et al. [10] proved that

170dynamic test results can be obtained by combining static test results (static cross-

171section) and results obtained with another fault injection method.

172The main disadvantages of fault injection based on accelerated radiation ground

173testing are the high cost of the test campaigns and the relative small number of

174events achieved per run, which may lead to results that are not statistically signifi-

175cant. Also, controllability and observability are very limited. In any case, this type

176of test is currently mandatory for qualifying a technology in aerospace applications.

1776.2.1.2 Laser Methods

178A relatively recent approach for injecting faults from an external source is the use of

179laser beams. Laser incidence in the internal elements of the circuit causes effects

180similar to the ones provoked by particles issued from cosmic radiation. Indeed, this

181method is associated with bit-flip fault model for SEU effects. It is able to inject

182faults in a very accurate way, with the help of a microscope and a laser beam spot

183control.

184There are research works [11–13] that prove the correlation between the results

185obtained from accelerated radiation test and laser test. Although there is a

186slight difference between the particle–material interaction and the photon–material

187interaction, SERs obtained from laser beam exposure are commonly accepted

188nowadays [13].

189Laser test provides a high level of accessibility to locate the circuit elements

190where faults are injected. Also, this method implies less expensive equipment than

191radiation ground test facilities and less complex experiment setup (e.g., it is not

192necessary to separate the DUT in another PCB).

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

193 6.2.1.3 Pin Forcing

194 Another solution for fault injection from external sources is pin forcing [14, 15].

195 It was proposed for testing relatively simple ICs. Some authors considered that

196 forcing values at input/output pins of a device could provoke the same effect as

197 SEEs in very simple circuits. There are several CAD tools developed for helping

198 designers to execute fault injection campaigns, such as RIFLE [16], SCIFI [17], FIST

199 [18], or Messaline[19]. Considering current complexities in ICs, this method is very

200 limited. Currently, it is employed for testing other external aspects of reliability

201 (vibrations, electrical noise, etc.), but it is not intended for SEU fault injection.

202 Although it is a really cheap solution, possible circuit damage due to values

203 forced onto device pins, together with the poor controllability and observability

204 provided in the increasingly complex ICs, makes this method unattractive for

205 dependability analysis of current technologies.

206 Physical fault injection methods provide realistic measures of SERs, but they are

207 very expensive. They are considered the best methods available for qualifying new

208 technologies. Nevertheless, better solutions are required for testing circuits during

209 the design process where re-design is possible and cheaper. Furthermore, very

210 complex designs require testing large amounts of faults in order to obtain statisti-

211 cally valid results. When thinking of large fault sets for current designs, fault

212 injection can be accomplished at higher abstraction levels.

213 6.2.2 Logical Fault Injection

214 Logical fault injection methods use logic resources of the circuit to access internal

215 elements and insert the effect a fault provokes (fault model). These extra logic

216 resources are originally intended for other purposes, such as the IEEE standard for

217 Boundary Scan 1149.1 (JTAG) that provides an easy way for accessing internal

218 scan path chains through a serial interface. Also, some commercial microprocessors

219 include on-chip debugging (OCD) capabilities that enable access to internal mem-

220 ory elements (program counter, user registers, etc.). Finally, reconfiguration

221 resources for programmable devices enable to control and observe internal config-

222 uration nodes and, therefore, injecting faults and observing their effects.

223 The undertaken fault models depend on the robustness analysis under execution.

224 Therefore, bit-flip model is applied for SEUs and MBUs, stuck-at model is applied

225 for permanent faults, voltage pulses are used for SETs, etc.

226 6.2.2.1 Software Implemented Fault Injection

227 SWIFI is intended for testing hardware by means of executing specific software that

228 modifies internal memory elements (user accessible) according to a fault model.

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

229Fault injection can be performed during compilation time or during execution time

230[20]. In this last group, typical approaches use timers, such as FERRARI tool [21],

231or interruption routines, such as XCEPTION tool [22] or CEU tool [10]. More

232recently, new solutions have been presented [23] combining software-based tech-

233niques with previous approaches.

2346.2.2.2 On-Chip Debugging for Microprocessors

235Debugging resources provide direct access to internal registers, program counter,

236and other key elements in microprocessor architectures. This access can enable

237fault injection and fault effects observation in a rapid and effective way. Further-

238more, the external accessibility of these capabilities makes the automation of fault

239injection campaigns easier. The use of OCD resources for testing purposes has

240been studied by some authors in recent years. FIMBUL tool uses JTAG interface

241for injecting bit-flip faults into memory elements of a microprocessor [17].

242Rebaudengo et al. use the Motorola OCD, named background debugging mode

243(BDM), to execute fault injection through a serial port [24]. Also, AU3NEXUS

244debugging standard is being used to enhance this fault injection method [25]. In

245[26] and [27], solutions are proposed by implementing specific hardware modules

246for interfacing between DUT (microprocessor) and host machine.

247Recently, Portela et al. [28] have proposed another enhancement in the use of

248OCD capabilities, implementing in a hardware module the host in charge of

249injecting faults and analyzing obtained results. By reducing communication delays

250between hardware and software, fault injection process can be easily accelerated

251and automated.

2526.2.2.3 Reconfiguration Resources

253Reconfiguration resources in programmable devices make possible a direct fault

254injection within memory elements in prototyped designs. This method is widely

255used to evaluate the effect of faults in the configuration memory of FPGAs (field

256programmable gate arrays), which is a very important issue in these devices.

257Partial reconfiguration reduces the time needed for performing fault injection in

258the configuration memory of FPGAs. Ref. [29] presents a solution based on

259reconfiguring by means of the Xilinx software JBits. In [30], a tool for injecting

260SEU faults in a Virtex1 FPGA is proposed. This tool is able to inject faults in

261programmable interconnections, which are not accessible through commercial soft-

262ware tools (JBits). In recent contributions, Alderighi et al. proposed the FLIPPER

263fault injection platform which enables the fault-tolerance evaluation of hardened

264prototypes in FPGAs [31].

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

265 6.2.3 Logical Fault Injection by Circuit Emulation

266 As FPGA-based prototyping becomes popular for ASIC verification, it can also be

267 exploited for hardware fault injection. In this case, the circuit under test is proto-

268 typed in one or several FPGAs. This approach is generally known as emulation-

269 based fault injection. Contrary to the approaches mentioned in the previous section,

270 FPGAs are used here just as a means to support fault injection, and the final circuit

271 is to be implemented in some ASIC technology.

272 Fault injection in an FPGA-based prototype can take advantage from the flexi-

273 bility of field-programmable hardware. Fault injection requires high controllability

274 of each circuit node in order to modify its logic state. This can be obtained by using

275 the FPGA reconfiguration mechanisms to modify the circuit or the contents of

276 accessible memory elements. Another approach consists in inserting some addi-

277 tional hardware blocks in the prototype to support fault injection. These hardware

278 blocks are called instruments.
279 Emulation-based fault injection was originally developed for permanent faults.

280 In [32], a fault injection method is proposed for stuck-at faults. This method

281 consists in modifying the circuit by connecting a signal to a constant logic value.

282 Therefore, the FPGAmust be resynthesized and reconfigured for each fault. Several

283 techniques to emulate faults in parallel are proposed to alleviate the resynthesis and

284 reconfiguration effort.

285 A fault injection technique for SEUs (bit-flips) based on run-time reconfigura-

286 tion of the FPGA is proposed in [33]. In this technique, flip-flop (FF) contents are

287 modified by controlling the asynchronous set/reset of each FF through the FPGA

288 configuration bitstream. Injection of a fault is performed with the following steps:

289 (a) at injection time, read the states of FFs; (b) reconfigure FPGA to set the

290 asynchronous set/reset switch of each FF as to keep the current state, except for

291 the faulty FF, that will be set in the opposite way; (c) pulse global set/reset line

292 (state of faulty FF is modified); and (d) reconfigure FPGA again to set the

293 asynchronous set/reset switches to the original value. The first step is performed

294 by readback of the configuration bitstream, which includes the states of FFs.

295 Readback is also used to check the results of each fault injection experiment and

296 classify fault effects. This idea is also followed up in the FT_UNSHADES

297 platform [34].

298 Note that this approach requires reconfiguring twice the FPGA for each fault.

299 Although partial reconfiguration can be used, the reconfiguration process is slow.

300 Fault injection rates range between 0.1 s and more than 1 s per fault, depending on

301 the length of the partial reconfiguration bitstream.

302 Circuit instrumentation is a means to overcome the limitations of FPGA recon-

303 figuration. It consists in inserting some pieces of hardware or instruments that can

304 provide external controllability and observability to inject a fault and observe its

305 effects. Then, the circuit is prototyped in an FPGA including the instruments. It is

306 important that circuit instrumentation can be automated in order to avoid handling

307 the circuit and to make the instrumentation process effective. On the contrary, the

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

308instruments should be small enough to obtain an acceptable overhead in the

309prototype.

310In one of the earlier works [35], Hong et al. proposed a technique to avoid

311reconfiguring for each fault by adding some specialized hardware blocks. Each

312block is attached to a target node and contains a flip-flop that stores the injection

313signal value. These flip-flops are arranged in a chain, so that faults can be injected

314by shifting in the desired injection values in the chain.

315A circuit instrumentation technique for the injection of non-permanent faults is

316proposed in [36]. This technique is intended to emulate SEUs by injecting faults in

317the circuit flip-flops. For this purpose, the circuit under test is modified by sub-

318stituting each flip-flop by the instrument shown in Fig. 6.1. This instrument contains

319an additional flip-flop, called the mask flip-flop, and two gates that implement the

320mask logic. The mask flip-flop is used to select the fault injection target. At

321injection time, the inject signal is asserted to all instruments. Then, the input

322value at the nodes where the mask flip-flop is set will flip and the fault is injected.

323More elaborated instruments have been proposed by Lopez et al. [37] that will be

324described in Sect. 6.4.

325The mask flip-flops are arranged in a scan chain that can be loaded serially. Once

326the mask scan chain is loaded, the inject signal is asserted at the required time to

327inject a fault. Faults can be injected at different nodes by shifting in the mask scan

328chain. MBUs are supported by setting more than 1 bit in the mask. Eventually, the

329contents of the functional flip-flops can be loaded into the mask flip-flops. This

330operation captures the internal state of the circuit, which can be observed by

331shifting out the mask chain.

332The circuit instrumentation technique is very efficient, as it does not require

333reconfiguring the circuit for every fault. Also, setting the fault injection mask is

334much faster than FPGA reconfiguration. In addition, latent faults can be detected by

335checking the circuit state as obtained through the scan chain after the fault injection

336process. Experimental results [36] show a fault injection rate of 10,000 faults/s by

MASK

D

Inject

Q

Clk

ScanIn

ScanOut

Fig. 6.1 Fault injection instrument in [36]

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

337 using a 20-MHz clock and a short workload (100 test vectors). For large workloads,

338 the fault injection rate is inversely proportional to the workload length.

339 Injecting and propagating SETs is much more difficult, since it requires proto-

340 typing the logic delays of the circuit under test. Synthesizing the circuit under test

341 for an FPGA would produce an equivalent functional circuit model, but with

342 different gate delays. Existing approaches for SET emulation are based on embed-

343 ding timing information in some way, such as the topology of the circuit [38].

344 Recently, an efficient approach has been proposed using a quantized delay model

345 [39]. In this model, gate delays are rounded to a multiple of a small amount of

346 time, addressed as time quantum. Quantized delays can be implemented in an

347 FPGA using shift registers where the time quantum corresponds to a clock cycle.

348 Experimental results show a fault injection rate in excess of one million faults/s,

349 representing an improvement of three orders of magnitude with respect to a

350 simulation-based approach.

351 The flexibility provided by FPGAs can be used to support some fault injection

352 functions. For example, the FPGA prototype can include two instances of the circuit

353 under test that are dedicated, respectively, to prototype the golden (fault-free) and

354 the faulty circuit. Both instances run in parallel and the outputs can be compared

355 inside the FPGA at the end of the execution to detect failures [34, 40]. A refined

356 solution consists in duplicating just the sequential elements, sharing the combina-

357 tional logic [37]. In this case, the golden and faulty instances run in alternate clock

358 cycles.

359 Most of the work on emulation-based hardware fault injection focuses on

360 general-purpose logic, but circuits may also include embedded memories. As the

361 number of storage elements in memories is generally very large, memories are in

362 fact very relevant. However, the controllability and observability are limited to a

363 memory access per memory port and clock cycle.

364 Memories can AU4be emulated by forcing the synthesizer to treat them as flip-flops.

365 This approach would usually produce emulation circuits much larger than commer-

366 cially available FPGAs. Therefore, embedded memories must be instrumented in a

367 particular way to support fault injection.

368 A memory can be implemented in an FPGA using FPGA memory blocks. In this

369 case, fault injection is performed by instrumenting the memory buses [28]. In [40],

370 memories are implemented using dual-port FPGAmemory blocks, where one of the

371 ports is specifically devoted to fault injection. At the fault injection time, the target

372 memory position is read, XORed with the fault mask, and then written back. A

373 monitor circuit is included to clear all the internal memory after an experiment, in

374 order to avoid accumulation of errors, and to read serially all the internal memory

375 in order to compare it and detect faults. These two operations take a lot of time, just

376 in proportion to memory size, and must be performed for every fault injection

377 experiment. Thus, injecting a fault in a memory position can be achieved by

378 instrumenting the memory buses, but the initialization of the memory and the

379 extraction and comparison of the fault injection results for analysis are the major

380 problems of memory fault injection.

L. Entrena et al.

Celia
Typewritten Text

Celia
Typewritten Text

U
nc
or
re
ct
ed

P
ro
of

3816.3 Fault Injection System

382A hardware fault injection system is able to execute a circuit with a workload in the

383presence of faults, and compare the faulty behavior with the fault-free behavior. A

384fault injection system is typically composed of the following elements:

385l The CUT

386l A fault injection mechanism, which can be physical or logical

387l A test environment, in charge of the following tasks:

388– Supply the vectors required for the workload

389– Check the effect of faults in the CUT

390– Collect results

391– Classify faults

392– Control the whole process

393Fault injection systems are used to perform fault injection campaigns, which are

394experiments intended for obtaining a measurement of the circuit reliability. Some

395examples of this measurement are the fault dictionary, the circuit cross-section, the

396SER, the mean time between failures, etc.

397Fault injection systems using physical fault injection require a prototype of the

398DUT, which is exposed to the fault provoking element (radiation, laser).

399The system has to be built in such a way that the DUT is correctly exposed, but

400the rest of the system is not affected by the fault source. In accelerated radiation

401experiments, the CUT must be separated from the rest of the system, in order to

402receive the beam without affecting the test environment. For example, the THESIC

403system [41] consists of a motherboard as test environment, and a mezzanine board

404for the CUT. For laser campaign, the circuit package must be removed for the laser

405beam to be effective, and the CUT must also be visible through a microscope to

406locate the laser incidence point [42].

407Systems using logical fault injection have a similar structure but use a different

408fault injection mechanism, so there are no restrictions related to physical exposure

409aspects. The only additional part to add is a fault injection method, for example, a

410host-controlled JTAG interface connected to the OCD of the CUT.

411The rest of this section will cover the implementation of systems using logical

412fault injection by circuit emulation. This kind of system uses FPGA-based proto-

413typing to implement the CUT. As this is the most general and flexible scenario,

414there is a large variety of solutions. Building these systems represent a very

415challenging task as far as the process performance is concerned.

416There is a wide range of possibilities to build emulation-based fault injection

417systems, as there are many tasks that can be executed in a host computer or in the

418hardware. Fig. 6.2 shows the main required tasks. The user interaction takes place at

419the host computer and the circuit emulation is performed in the hardware (circuit

420core). The rest of the tasks may be executed either by the host computer or by the

421hardware.

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

422 There are a lot of intermediate possibilities, depending on the tasks assigned to

423 the host computer and to the hardware. The speed of the communication channel is

424 critical when considering the amount of information to transfer.

425 In general, the tasks required to perform a fault injection campaign comprise

426 fault list management, workload application, fault injection, fault classification and

427 result analysis. These tasks are analyzed in the following paragraphs.

428 6.3.1 Workload

429 A workload must be provided to the circuit under evaluation for execution. The

430 implementation of this task must consider a trade-off between flexibility, perfor-

431 mance, and resource usage. Several approaches can be considered. Test vectors can

432 be generated at the host computer and sent to the hardware when they are going to

433 be applied. This method is very flexible, as the workload can be changed very

434 easily, but implies a continuous host–hardware communication which slows down

435 the execution.

436 On the contrary, a stimulus generation block can be implemented in the hard-

437 ware, next to the circuit core, so it can supply vectors at the speed they are required.

438 A simple approach is to use some BIST-like vector generation circuit, like an

439 LFSR. This kind of implementation is very fast and uses very little resources, but

440 the workload obtained may not be very representative.

441 An intermediate solution is to store test vectors in the FPGA memory. This

442 solution is flexible, as the workload can be easily changed by downloading a new

T
h
is

fi
g
u
re

w
ill
b
e
p
ri
n
te
d
in

b
/w

Fig. 6.2 Emulation-based fault injection system components

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

443one or by reconfiguring the FPGA, and it is also fast, because test vectors are fed to

444the circuit core by hardware. However, FPGA devices usually have a limited

445amount of internal memory, representing a drawback for this method. In order to

446improve resource usage, test vectors may be compressed, or external memory may

447be used if it is available on the FPGA board.

4486.3.2 Fault List

449The fault list management task has some important aspects, both in design and

450implementation. The ideal case is to generate a fault list including faults at every

451location and every time instant, for a given workload. Considering bit-flip fault

452model for SEUs, the complete single fault list would include a fault in every

453memory element and every clock cycle of the workload. This approach is practical

454only if the circuit is either very small or the fault injection system is very efficient,

455like Autonomous Emulation [37].

456Usually, the system is not so efficient to perform a fault injection campaign with

457all possible faults in a reasonable time. In these cases, the fault space must be

458sampled to obtain a statistically representative subset. There are several approaches

459to create the fault list. The simplest one is to use random fault list generation, both

460in fault localization and time instant, although it must be taken into account that a

461computer or a hardware generated list is not really random, but pseudo-random.

462Other proposals include the use of Poisson distribution for the generation of the

463time instants, in order to reproduce the results of a radiation experiment. A deeper

464discussion on these aspects can be found in [43].

465Regarding implementation, the fault list can be generated at the host computer or

466in the hardware. If it is generated at the host computer, it must then be transferred to

467the hardware. It is advisable to implement an intermediate storage mechanism, so

468that the emulator does not need to wait for the new fault when it has already finished

469processing the previous one. This mechanism can make use of internal FPGA

470memory or on-board memory.

471In this case, the impact in performance is not as high as for the workload case.

472For the workload, a test vector is required every clock cycle, but a new fault is

473required only when the previous one has already been processed.

4746.3.3 Fault Classification

475The classification of a fault can be made out of the comparison of the faulty and the

476golden executions.

477If a fault is injected and after some time it produces a result different than

478expected, it is called a failure. If the fault effect completely disappears from the

479circuit after some execution time, the fault is called silent. If the faulty circuit shows

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

480 differences with the golden one after the execution of the workload, but it did not

481 produce any error in the results, the fault is called latent. If the circuit has some

482 built-in fault detection mechanism, the faults can also be classified as detected or

483 not detected. In microprocessor-based circuits, a fault could also be classified as lost
484 of sequence, when the effect of the fault is modifying the normal instruction

485 sequence, preventing the circuit to reach the end of the workload.

486 Concerning failures, the condition of producing an erroneous result is different

487 for every case. For a control circuit, an AU5error can be a value in the outputs that is

488 different than expected. For an algorithm processor, the calculation results must be

489 checked and they can be written at the circuit outputs or stored in memory. Failures

490 could also be sub-classified by a criticality-based criteria. For example, some errors

491 could produce physical damage in the system (e.g., an electronically controlled

492 mechanical engine) or produce a dangerous situation (a brake system), while others

493 may be irrelevant (a wrong pixel in an image).

494 Latent faults represent an additional problem. The system must have a mecha-

495 nism to compare the golden and the faulty circuit states to decide if the fault is still

496 present. For example, two instances of the circuit can be implemented, and a

497 mechanism to compare them must be included. If partial reconfiguration is used,

498 readback of the circuit flip-flops can be used for this purpose with a high penalty on

499 performance [34]. With instrumented circuit technique, flip-flops are duplicated

500 and compared [37], so that latent faults can be detected online.

501 Performance will profit from an early fault classification mechanism. Being able

502 to stop the execution immediately after the fault is classified will allow saving some

503 time. If the classification is made in hardware, it is easier to implement a fast

504 classification mechanism. This aspect will be explained in more detail in the next

505 section.

506 6.3.4 Result Analysis

507 The results of a fault injection campaign can be expressed in several ways. In terms

508 of circuit qualification, it is usually required to obtain a single figure for the circuit

509 reliability, like the SER, expressed by either number of FIT, or Mean Time Between

510 Failures (MTBF). These figures are calculated using information from fault injec-

511 tion campaigns and taking into account the environment where the circuit will

512 operate. Emulation-based fault injection campaigns are useful to obtain information

513 about the consequences of faults. Information about fault occurrence probabilities

514 and other aspects must be obtained using other methods.

515 The most complete result information that can be obtained from a fault injection

516 campaign is the fault dictionary, which is the list that holds the classification of

517 every injected fault. The complete fault dictionary is very useful to locate weak

518 areas in the circuit or critical tasks in the workload.

519 The implementation problems for this task are quite similar to those of the fault

520 list. A new result is generated for every processed fault. Results can be transferred

L. Entrena et al.

Celia
Typewritten Text

Celia
Typewritten Text

Celia
Typewritten Text

U
nc
or
re
ct
ed

P
ro
of

521immediately after processing to the host, or they can be temporally stored in the

522hardware to improve performance.

523In case result generation is very fast or there is no temporal storage available,

524statistical measures may be collected in the hardware. For example, results can be

525classified per location, or per injection instant, or just percentages can be calculated.

5266.3.5 Communication

527Emulator–host communication has a great impact on the system performance. In

528order to improve the performance, we can either increase the speed of the commu-

529nication channel or decrease the amount or the frequency of the transmitted data.

530Commonly used communication mechanisms are serial ports, USB, Ethernet, or

531PCI.

532Obviously, an increment in the channel speed will result in an overall speed

533improvement, but several aspects must be taken into account. For example, com-

534munication channels like USB can be very fast, but only in burst mode, transmitting

535big amounts of data in a single pack.

536In the case of a fault injection system, the information to transmit (test vectors,

537fault list, fault dictionary, and control commands) can be sparse in time. This

538approach is not very efficient for high speed communication channels, so it is

539advisable to design the emulator, including data compaction or communication

540buffers. In order to obtain the maximum performance, the objective is to maintain

541the core emulation circuit running as much time as possible, and avoid the time gaps

542due to communication.

5436.4 Fault Injection Optimizations

544Emulation-based fault injection techniques have the capability of notably speeding

545up the fault-tolerance evaluation process regarding other methods. Injecting

546millions of faults in a few hours is possible using these techniques. However,

547reducing this time is a very interesting goal, since fault-tolerance evaluation is a

548task performed many times during the circuit development. Furthermore, current

549circuits have large complexity, including an increasing count of sensitive areas that

550can be affected by faults. Therefore, the higher the number of possible faults, the

551higher the number of faults that must be injected to obtain a significant measure-

552ment of the circuit robustness. Definitely, speeding up the fault-tolerance evaluation

553process is required.

554Several approaches exist to speed up the fault injection process using emulation-

555based techniques. In the following sections, we will describe the main sources of

556fault injection inefficiency and solutions to overcome them.

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

557 6.4.1 Autonomous Emulation

558 Emulation-based techniques profit from the capability of an FPGA to emulate

559 circuit behavior at hardware speed. Using typical emulation-based fault injection

560 solutions, the emulation process is interrupted every time the emulator needs to wait

561 for the host to apply the stimuli, to inject a fault, or to check the output values. Then,

562 a very intensive interaction is required between the emulator and the host computer.

563 The host controls the injection and evaluation of every fault. This introduces a

564 performance bottleneck due to the communication between the emulator and the

565 host computer, which prevents taking full advantage of the FPGA capabilities for

566 fast hardware emulation.

567 Autonomous emulation [37] is a fault injection solution aimed at avoiding the

568 intensive communication between host and emulation platform. It consists in

569 implementing the whole injection system in the FPGA by making use of the

570 instrumentation mechanism to insert faults in the circuit under test (Fig. 6.4). The

571 FPGA is in charge of performing the following tasks:

572 1. Managing the whole fault injection process.

573 2. Applying the input stimuli to the circuit under test.

574 3. Activating the fault injection.

575 4. Watching the circuit behavior under faults and classifying the injected fault

576 depending on its effect on the circuit functionality.

577 Using autonomous emulation, access to any circuit-sensitive element is simple

578 and straightforward, and the required time necessary to perform the different

579 injection tasks can be significantly reduced. Figure 6.3 shows the typical emula-

580 tion-based solutions scheme and Fig. 6.4 the autonomous emulation scheme with

581 the purpose of illustrating the differences between both systems. The autonomous

582 emulation system benefits from the available resources in current FPGA platforms,

583 like memory blocks, in order to implement more tasks close to the circuit under test,

584 which minimizes the required interaction with the host computer. The enhance-

585 ments provided by the autonomous emulation solution are as follows:

T
h
is

fi
g
u
re

w
ill
b
e
p
ri
n
te
d
in

b
/w

Fig. 6.3 Typical scheme for an emulation-based fault injection system

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

586l The required communication between host computer and the emulation platform

587is minimized, being established only twice, at the beginning of the evaluation

588process to configure the FPGA from the PC, and at the end of the fault injection

589campaign to collect the obtained results, that is, to download the fault dictionary.

590l Observability and controllability are significantly enhanced, since access to the

591memory elements does not require a particular communication channel and then

592it is straightforward and easier. In general, the typical emulation-based techni-

593ques set a trade-off between the process speed and the observability of the

594internal circuit resources, because higher observability requires more informa-

595tion exchange and, therefore, more time to spend in the evaluation process. The

596autonomous emulation system provides a high observability without penalty in

597the injection process speed, since the injection system and the circuit under test

598are implemented in the same device.

599l Hardware implementation makes the parallel execution of different injection

600tasks and it speeds up the whole process with respect to a software implementa-

601tion.

602Once the PC-FPGA communication, that is, the main limitation in fault emula-

603tion techniques, has been minimized, the fault injection process is much more

604efficient. Moreover, the access to the circuit internal resources does not require

605exchange of information between the host computer and the FPGA. This feature

606allows the application of new optimizations to reduce the time spent per fault.

6076.4.2 Fault Evaluation Process

608The fault injection process can be optimized by applying techniques to reduce the

609time spent in the different steps needed to evaluate the consequences of a fault. For

610a given workload these steps are the following (Fig. 6.5):

T
h
is

fi
g
u
re

w
ill
b
e
p
ri
n
te
d
in

b
/w

Fig. 6.4 Autonomous Emulation scheme

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

611 1. Reach the circuit state corresponding to the injection instant. The most common

612 way to do it consists of running the workload from the beginning until the

613 injection instant.

614 2. Inject the fault.

615 3. Classify the fault according to its effect on the circuit behavior. For this purpose,

616 the circuit under test resumes the workload execution since the injection instant

617 until the fault is classified or the workload finishes.

618 In the worst case, emulating the complete workload for each fault can be

619 required. A fault injection campaign with a large number of injected faults and

620 long workloads may involve excessive time to complete the evaluation process.

621 With the instrumentation-based mechanism, the fault injection task takes just one

622 clock cycle and so possible time optimization should be applied to the other steps

623 (1 and 3). The time required for reaching the circuit state at the injection instant can

624 be optimized by applying techniques to save fault-free emulation time. A solution

625 consists in doing a previous storage of the circuit state and a posterior reloading of

626 this state in the next fault injection (state restoration). Regarding fault classification,

627 techniques can be applied to speed up fault emulation by aborting execution as soon

628 as the fault can be classified, profiting from the higher observability available in an

629 Autonomous Emulation system. In the following sections, these optimizations are

630 detailed for SEU faults.

631 6.4.3 State Restoration

632 The circuit under test can get to the state corresponding to the injection instant in

633 two different ways:

634 l Emulating the workload until the injection instant is reached.

635 l Storing the required state in memory elements of the circuit and restoring it just

636 before the fault injection instant (state restoration). In this case, additional

637 hardware to store the corresponding state is necessary.

638 State restoration avoids the fault-free circuit emulation for every injected fault.

639 Required states are easily obtained from the golden execution, run just once.

ClassificationInjection

150 16 17 i

Cycles (TB)

…1 2 3 4 5 6 7 8 9 10 11 12 13 14

Emulation with fault (faulty)

i…

Emulation without fault

Fig. 6.5 Time spent to emulate each fault

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

640The obtained benefit will depend on the time required to perform the restoration

641and, therefore, on the technique used to implement this optimization. Figure 6.6

642presents a possible scheme to replace every original flip-flop in order to support the

643state restoration in just one clock cycle. It includes an additional flip-flop that

644contains the injection state to be restored in the circuit when the fault is going to

645be emulated.

646Let us suppose that the state restoration requires only one clock cycle, the

647workload consists of C clock cycles, and the circuit under test contains F sensitive

648memory elements. Considering that all the memory elements have the same

649probability to be affected by a fault in any workload cycle, the number of possible

650single faults is F·C. In the worst case, with no optimizations, C clock cycles are

651necessary to emulate each fault. Taking into account all the possible single faults,

652the total time spent during the fault injection campaign in emulating the circuit

653without faults is (1þ 2þ 3þ � � � þ C� 1) clock cycles. When the state restoration

654is performed in just one cycle, this optimization avoids the emulation of CS clock

655cycles, where

CS ¼ F
CðC� 1Þ

2

656For example, for a circuit with F ¼ 103, a workload with C ¼ 105 clock cycles,

657and CS ~ 0.5 � 1013 clock cycles, the total saved time at 100 MHz would be 14 h.

6586.4.4 Early Fault Classification

659Emulation of a fault finishes when the fault is classified or when the end of the

660workload is reached. A typical fault classification consists in considering three

Data Out

Data In

D Q

STATE

Restore

D Q

FAULTY

Fig. 6.6 Possible instrument

to support injection state

restoration in one clock cycle

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

661 categories: failure, latent, and silent faults. In order to detect a failure, the faulty

662 circuit outputs must be compared with the golden behavior. To distinguish between

663 silent and latent faults, internal resources must be observed. Reducing the time to

664 classify faults introduces an important optimization in the evaluation process speed.

665 In general, fault injection techniques stop the fault evaluation as soon as a failure is

666 detected, since outputs observation and comparison with expected values are

667 usually straightforward. Due to the limited observability of the internal resources,

668 in most of the hardware fault injection techniques, classifying a fault as either silent

669 or latent is not feasible or, otherwise the classification is performed at the end of the

670 workload execution, which is very time AU6-consuming. However, silent faults can be

671 detected as soon as the fault effect disappears if the internal elements are observed

672 continuously.

673 Speeding up silent fault classification requires access to every memory element

674 within the circuit under test in a fast and continuous way, comparing their content

675 with the golden circuit state. Additional hardware is used to store the golden state

676 and to perform the comparison. This extra hardware is shown in Fig. 6.7 and

677 consists of two flip-flops to run the golden and the faulty execution at every

678 workload instant. This optimization is possible in an Autonomous Emulation

679 system with a low cost, since the complete system is implemented in the same

680 hardware device.

681 Early silent fault classification enhances the fault injection process speed,

682 especially in circuits with fault-tolerant structures that correct or mask faults,

683 where the percentage of silent faults is high. Therefore, applying both optimiza-

684 tions, state restoration (described in the previous section) and early silent fault

685 classification, the time spent in emulating one fault can be drastically reduced

686 (Fig. 6.8).

687 Putting it all together, [37] describes an instrument to replace every original flip-

688 flop that supports Autonomous Emulation, state restoration, and early silent fault

689 classification. Such instrument is shown in Fig. 6.9. In this case, combinational

690 logic is shared, avoiding the duplication of the complete circuit. Then, the faulty

691 and golden emulation are executed alternately. This implementation for an Auton-

692 omous Emulation system is named Time-Multiplexed technique.

FAULTY

D Q

GOLDEN

D Q

Error

Fig. 6.7 Additional

hardware required to

implement early fault

classification

L. Entrena et al.

Celia
Typewritten Text

U
nc
or
re
ct
ed

P
ro
of

693For failure and silent faults, the time elapsed between fault injection and fault

694classification is usually a few clock cycles in circuits with fault-tolerant mechan-

695isms. Only faults with long latencies require the execution of most of the workload,

696in case of latent faults until the end of the workload. Therefore, if fault latencies and

697the number of latent faults are small, which is the usual case in a well-defined

698experiment, the reduction in execution time is proportional to the workload length.

699Experimental results reported in [37] show that using the described optimiza-

700tions, the fault-tolerance evaluation process can achieve fault injection rates in the

701order of one million faults per second.

7026.4.5 Embedded Memories

703Embedded memories are common components in modern digital circuits. SRAM

704memories are sensitive to SEU in the same manner as flip-flops, and then, fault

Cycles(TB)

1 2 3 4 5 6

Faultfree emulation

150 13 14 16 17 … C

ClassificationInjection

Faulty emulation

7 8 9 10 11 12

Fault free emulation

Fig. 6.8 Optimized fault emulation

Q
D

STATE

Data Out

Latent

D Q

MASK

Data In

Mask In

Inject

EnaFaulty

EnaGolden

Load State

Save State

Q
D
FAULTY

Q
D

Q
D

STATE

Mask Out

Q
D
FAULTY

GOLDEN

Fig. 6.9 Hardware logic to support all optimizations presented in [37]

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

705 injection must be performed not only to evaluate flip-flops but also to evaluate

706 effects in the circuit behavior when an SEU affects a memory cell.

707 Fault injection in embedded memories using emulation-based techniques is a

708 complex task due to the limited observability of the memory cells, since only a

709 memory word can be accessed in a clock cycle. For example, in order to know if

710 there is an error in a memory, the complete memory content should be read, which

711 is very time-consuming.

712 Few works have been published about emulation-based fault injection in circuits

713 with embedded memories [28, 40, 44, 45]. Civera et al. [44] proposed the fault

714 injection in memory controlling the control and data memory buses to insert a fault

715 in a given memory bit, but it does not propose a solution to analyze faults inside the

716 memory. Lima et al. [40] presents a memory model that consists of a dual-port

717 memory; one port is used to perform the golden emulation, while the other port is

718 used to inject faults. However, the result analysis is very time-consuming since it

719 consists in reading every memory word, comparing obtained data to expected ones.

720 Portela-Garcı́a et al. [28] describes an Autonomous Emulation system with

721 optimizations in a circuit with embedded memories. Autonomous Emulation speeds

722 up the injection process by minimizing PC-FPGA communication requirements and

723 including optimizations previously described (state restoration and early silent fault

724 classification). In order to apply the Autonomous Emulation concept in complex

725 circuits, solving the fault injection in embedded memories in a fast and cost-

726 effective way is mandatory.

727 Autonomous Emulation solution is based in an instrumentation mechanism, so a

728 memory instrument is necessary. It is assumed that embedded memories are

729 synchronous, i.e., they can be prototyped in current FPGAs using the available

730 block RAMs components, and they do not contain useful information before

731 starting the execution. The objective is to achieve a memory model that supports

732 state restoration and early silent fault classification [45].

733 The proposed solution is based on controlling and observing memory access

734 buses (address, data, and control signals). On the one hand, fault classification

735 requires distinguishing between silent and latent faults. For this purpose, input data

736 bus and control access signals (like write enable, output enable, etc.) in golden and

737 faulty execution are compared (Fig. 6.10). The emulation controller detects the

738 insertion of faulty data in the memory and checks if fault effect is cancelled by

739 writing the correct data during workload execution. As soon as the fault disappears,

740 it is classified as silent.

741 On the other hand, fault injection to emulate an SEU in a memory cell is

742 performed only in read data, since faults in other memory words do not affect the

743 circuit behavior and they would be classified as latent faults. Therefore, the number

744 of faults to evaluate is reduced significantly.

745 A possible implementation of the faulty memory in this model consists in storing

746 just the faulty memory words. In order to access Faulty Memory in a fast way,

747 spending just one clock cycle, it is implemented using a Content Addressable

748 Memory (CAM) [45]. Therefore, the faulty memory contains the addresses that

749 store a fault and the faulty data itself. If a given address is stored in the faulty

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

750memory, the corresponding memory word contains a fault. Otherwise, the data are

751stored only in golden memory. This implementation is named Error Content

752Addressable Memory (ECAM), see Fig. 6.11. ECAM implementation is very

753suitable to perform the required Autonomous Emulation tasks, such as state resto-

754ration or silent fault classification (if faulty memory is empty).

755The size of an ECAM implementation fixes the maximum number of errors

756that can be considered. In practice, the probability that N faults in memory are

757cancelled (writing a correct value) is very low for just a small value of N. Therefore,

Golden
Memory

Faulty
Memory

Error
Checker

Restoring
Module

Error

Golden/Faulty

Fig. 6.10 Memory instrument to support Autonomous Emulation in complex circuits with

embedded memories

Faulty Memory

CAM

Ctrl

Data
OutDataIn

ADDR

WE

CE

Data
Out

DataIn

ADDR

WE

CE

Golden Memory

CAM

Ctrl

Addr_f1
Addr_f2

CAM

Data_f1
Data_f2

Ctrl

RAM

Fig. 6.11 ECAM model is a

possible implementation for

the memory instrument

compliant to Autonomous

Emulation

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

758 this solution implies less area overhead than other possible implementations

759 (like memory duplication).

760 Portela-Garcı́a et al. [28] and Valderas et al. [46] present experimental results on

761 a LEON2 microprocessor. The experiments consist in injecting millions of faults in

762 flip-flops and memories by means of an Autonomous Emulation system.

763 6.5 Conclusions

764 Hardware fault injection plays a key role in the design and validation of robust

765 circuits. As hardware reliability is becoming an increasing concern in many appli-

766 cation areas, there is a need for new approaches and solutions that can deal with

767 more complex circuits and reproduce fault effects accurately and efficiently.

768 Hardware fault injection methods have significantly evolved in the last years.

769 Among the physical fault injection methods, accelerated radiation tests are the most

770 used, but laser fault injection has gone through substantial developments. On the

771 contrary, FPGAs can support very efficient logical fault injection methods, such as

772 Autonomous Emulation. These methods can provide unprecedented levels of per-

773 formance and fault injection capabilities, and represent suitable fault injection

774 mechanisms to complement physical methods.

775 References

776 1. R. C. Baumann, “Radiation-Induced Soft Errors in Advanced Semiconductor Technologies”,

777 IEEE Transactions on Device and Materials Reliability, Vol. 5, No. 3, pp. 305–316, September

778 2005.

779 2. J. Karlsson, P. Liden, P. Dalgren, R. Johansson, U. Gunnelfo, “Using Heavy-Ion Radiation to

780 Validate Fault Handling Mechanisms”, IEEE Micro, pp. 8–23, February 1994.

781 3. S. Duzellier, G. Berger, “Test Facilities for SEE and Dose Testing”, Radiation Effects on

782 Embedded Systems. Springer 2007. The Netherlands. pp. 201–232.

783 4. R. Ecoffet, “In-Flight Anomalies on Electronic Devices”, Radiation Effects on Embedded

784 Systems. Springer 2007. The Netherlands. pp. 31–68.

785 5. IEEE Standard for Environmental Specifications for Spaceborne Computer Modules,

786 March 1997.

787 6. JEDEC Standard JESD89A, “Measurement and Reporting of Alpha Particle and Terrestrial

788 Cosmic Ray-Induced Soft Errors in Semiconductor Devices”, October 2006.

789 7. JEDEC Standard JESD57, “Test Procedures for the Measurement of Single-Event Effects

790 in Semiconductor Devices from Heavy Ion Irradiation”, December 1996.

791 8. S. Buchner, P. Marshall, S. Kniffin, K. LaBel, “Proton Test Guideline Development – Lessons

792 Learned”, NASA/Goddard Space Flight Center, NEPP, August 2002.

793 9. European Space Agency, “Single Event Effects Test Method and Guidelines”, October 1995.

794 10. R. Velazco, S. Rezgui, R. Ecoffet, “Predicting Error Rate for Microprocessor-Based Digital

795 Architectures Through C.E.U. (Code Emulating Upsets) Injection”, IEEE Transactions on

796 Nuclear Science, Vol. 47, No. 6, pp. 2405–2411, December 2000.

797 11. R. Velazco, B. Martinet, G. Auvert, “Laser Injection of Spot Effects on Integrated Circuits”,

798 1st Asian Test Symposium, pp. 158–163, November 1992.

L. Entrena et al.

U
nc
or
re
ct
ed

P
ro
of

79912. P. Fouillat, V. Pouget, D. Lewis, S. Buchner, D. McMorrow, “Investigation of Single-Event

800Transients in Fast Integrated Circuits with a Pulsed Laser”, International Journal of High

801Speed Electronics and Systems, Vol. 14, No. 2, pp. 327–339, 2004.

80213. F. Miller, N. Buard, T. Carrière, R. Dufayel, R. Gaillard, P. Poirot, J. M. Palau, B. Sagnes,

803P. Fouillat, “Effects of Beam Spot Size on the Correlation Between Laser and Heavy Ion

804SEU Testing”, IEEE Transactions on Nuclear Science, Vol. 15, No. 6, pp. 3708–3715,

805December 2004.

80614. D. Powell, J. Arlat, Y. Crouzet, “Estimators for Fault Tolerance Coverage Evaluation”, IEEE

807Transactions on Computers, Vol. 44, No. 2, pp. 261–274, February 1995.

80815. J. Arlat, A. Costes, Y. Crouzet, J. C. Laprie, D. Powell, “Fault Injection and Dependability

809Evaluation of Fault-Tolerant Systems”, IEEE Transactions on Computers, Vol. 42, No. 8,

810pp. 913–923, August 1993.

81116. H. Maderia et al. “RIFLE: a general purpose pin-level fault injector”, Proceedings of the First

812European Dependable Computing Conference, Berlin, Germany, October 1994, pp. 199–216.

81317. P. Folkesson, S. Svensson, J. Karlsson, “A comparison of simulation based and scan chain

814implemented fault injection (SCIFI)”, Proceedings of FTCS-28, IEEE Computer Society

815Press, Munich, June 1998, pp. 284–293.

81618. O. Gunnetlo, J. Karlsson, J. Tonn, “Evaluation of error detection schemes using fault injection

817by heavy-ion radiation”, Proceedings of the 19th Ann. Int’l Symp. Fault-Tolerant Computing,

818IEEE CS Press, Los Alamitos, CA, 1989, pp. 340–347.

81919. J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie, E. Martins, D. Powell,

820“Fault Injection for Dependability Validation: A Methodology and some Applications”, IEEE

821Transactions on Software Engineering, Vol. 16. No. 2, pp. 166–182, February 1990.

82220. M. C. Hsueh, T. K. Tsai, R. K. Iyer, “Fault Injection Techniques and Tools”, IEEE Computer,

823Vol. 30, No. 4, pp. 75–82, April 1997.

82421. G. Kanawati, N. A. Kanawati, J. A. Abraham, “FERRARI: A Flexible Software-Based Fault

825and Error Injection System”, IEEE Transactions on Computers, Vol. 44, No. 2, pp. 248–260,

826February 1995.

82722. J. Carreira, H. Madeira, J. G. Silva, “Xception: A Technique for the Experimental Evaluation

828of Dependability in Modern Computers”, IEEE Transactions on Software Engineering,

829Vol. 24, No. 2, pp. 125–136, February 1998.

83023. T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, T. Marteau, “Analysis of the effects of real and

831injected software faults: Linux as a case study”, IEEE Proceedings of 2002 Pacific Rim

832international Symposium on Dependable Computing (PRDC’02), 2002.

83324. M. Rebaudengo, M. Sonza Reorda, “Evaluating the Fault Tolerance Capabilities of Embedded

834Systems via BDM”, 17th IEEE VLSI Test Symposium, pp. 452–457, Dana Point, USA,

835April, 1999.

83625. IEEE-ISTO 5001-2003, “The Nexus Forum™ standard for a global embedded processor

837debug interface”, version 2.0, 2003.

83826. A. V. Fidalgo, G. R. Alves, J. M. Ferreira, “Real Time Fault Injection Using Enhanced OCD –

839A Performance Analysis”, 21st IEEE International Symposium on Defect and Fault-Tolerance

840in VLSI Systems (DFT), 2006.

84127. J. Peng, J. Ma, B. Hong, C. Yuan, “Validation of Fault Tolerance Mechanisms of an Onboard

842System”, 1st International Symposium on Systems and Control in Aerospace and Astronautics

843(ISSCAA), pp. 1230–1234, January 2006.

84428. M. Portela-Garcı́a, M. Garcı́a-Valderas, C. López-Ongil, L. Entrena, “An Efficient Solution to

845Evaluate SEU Sensitivity in Digital Circuits with Embedded RAMs”, XXI Conference on

846Design of Circuits and Integrated Systems (DCIS’06), November 2006.

84729. P. Kenterlis, N. Kranitis, A. Paschalis, D. Gizopoulus, M. Psarakis, “A Low-Cost SEU Fault

848Emulation Platform for SRAM-Based FPGAs”, 12th IEEE International On-Line Testing

849Symposium, pp. 235–241, July 2006.

85030. M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, A. Marmo, S. Pastore, G. R. Sechi,

851“A Tool for Injecting SEU-like Faults into the Configuration Control Mechanism of Xilinx

6 Hardware Fault Injection

U
nc
or
re
ct
ed

P
ro
of

852 Virtex FPGAs”, 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI

853 Systems, 2003.

854 31. M. Alderighi , F. Casini, S. D’Angelo, M. Mancini, S. Pastore, G. R. Sechi, R. Weigand,

855 “Evaluation of Single Event Upset Mitigation Schemes for SRAM Based FPGAs Using the

856 FLIPPER Fault Injection Platform”, 22nd IEEE International Symposium on Defect and Fault

857 Tolerance in VLSI Systems, pp. 105–113, 2007.

858 32. K. T. Cheng, S. Y. Huang, W. J. Dai, “Fault emulation: a new approach to fault grading”,

859 Proceedings of the International Conference on Computer-Aided Design, pp. 681–686, 1995.

860 33. L. Antoni, R. Leveugle, B. Feher, “Using Run-Time Reconfiguration for Fault Injection in

861 HW Prototypes”, IEEE Int. Symposium on Defect and Fault Tolerance in VLSI Systems,

862 pp. 245–253, 2002.

863 34. M. Aguirre, J. N. Tombs, F. Muñoz, V. Baena, A. Torralba, A. Fernandez-Leon, F. Tortosa,

864 D. Gonzalez-Gutierrez, “An FPGA based hardware emulator for the insertion and analysis of

865 Single Event Upsets in VLSI Designs”, Radiation Effects on Components and Systems

866 Workshop, September 2004.

867 35. J. H. Hong, S. A. Hwang, C. W. Wu, “An FPGA-Based Hardware Emulator for Fast Fault

868 Emulation”, MidWest Symposium on Circuits and Systems, 1996.

869 36. P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, “Exploiting

870 Circuit Emulation for Fast Hardness Evaluation”, IEEE Transactions on Nuclear Science,

871 Vol. 48, No. 6, 2001.

872 37. C. López-Ongil, M. Garcı́a-Valderas, M. Portela-Garcı́a, L. Entrena, “Autonomous

873 Fault Emulation: A New FPGA-based Acceleration System for Hardness Evaluation”, IEEE

874 Transactions on Nuclear Science, Vol. 54, Issue 1, Part 2, pp. 252–261, February 2007.

875 38. M. Violante, “Accurate Single-Event-Transient Analysis via Zero-Delay Logic Simulation”,

876 IEEE Transactions on Nuclear Science, Vol. 50, No. 6, December 2003.

877 39. M. Garcı́a Valderas, R. Fernández Cardenal, C. López Ongil, M. Portela Garcı́a, L. Entrena.

878 “SET emulation under a quantized delay model”, Proceedings of the 22nd IEEE International

879 Symposium on Defect and Fault-Tolerance in VLSI Systems (DFTS), pp. 68–78, September

880 2007.

881 40. F. Lima, S. Rezgui, L. Carro, R. Velazco, R. Reis, “On the use of VHDL simulation and

882 emulation to derive error rates”, Proceedings of 6th Conference on Radiation and Its Effects

883 on Components and Systems (RADECS’01), Grenoble, September 2001.

884 41. F. Faure, P. Peronnard, R. Velazco, R. Ecoffet, “THESIC+, a flexible system for SEE testing”,

885 Proceedings of RADECS Workshop, [September 19–20, 2002, Padova], pp. 231–234.

886 42. D. Lewis, V. Pouget, F. Beaudoin, P. Perdu, H. Lapuyade, P. Fouillat, A. Touboul, “Backside

887 Laser Testing of ICs for SET Sensitivity Evaluation”, IEEE Transactions on Nuclear Science,

888 Vol. 48, Issue 6, Part 1, pp. 2193–2201, December 2001.

889 43. F. Faure, R. Velazco, P. Peronnard, “Single-Event-Upset-Like Fault Injection: A Comprehen-

890 sive Framework”, IEEE Transactions on Nuclear Science, Vol. 52, Issue 6, Part 1,

891 pp. 2205–2209, December 2005.

892 44. P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, M. Violante, “FPGA-Based

893 Fault Injection for Microprocessor Systems”, IEEE Asian Test Symposium, pp. 304–309,

894 2001.

895 45. M. Nicolaidis, “Emulation/Simulation d’un circuit logique”, French patent, filed February 25

896 2005, issued October 12 2007.

897 46. M. G. Valderas, P. Peronnard, C. Lopez-Ongil, R. Ecoffet, F. Bezerra, R. Velazco, “Two

898 Complementary Approaches for Studying the Effects of SEUs on Digital Processors”, IEEE

899 Transactions on Nuclear Science, Vol. 54, Issue 4, Part 2, pp. 924–928, August 2007.

L. Entrena et al.

Author Queries
Chapter No.: 6

Query Refs. Details Required Author’s response

AU1 Please provide affiliation for all the
authors.

AU2 The sentence has been edited for
better readability. Please check and
approve the edit.

AU3 “[NEXUS]” has been changed to ref.
“[25]”. Please check if this is correct.

AU4 The sentence has been edited for
better readability. Please check and
approve the edit.

AU5 The sentence has been edited for
better readability. Please check and
approve.

AU6 The sentence has been edited for
better readability. Please check and
approve the edit.

Celia
Typewritten Text
Affiliation is written

Celia
Typewritten Text
OK

Celia
Typewritten Text
OK

Celia
Typewritten Text
OK

Celia
Typewritten Text

Celia
Typewritten Text
OK

Celia
Typewritten Text
OK

	Chapter 6: Hardware Fault Injection
	6.1 Introduction
	6.2 Hardware Fault Injection Techniques
	6.2.1 Physical Fault Injection
	6.2.1.1 Radiation Methods
	6.2.1.2 Laser Methods
	6.2.1.3 Pin Forcing

	6.2.2 Logical Fault Injection
	6.2.2.1 Software Implemented Fault Injection
	6.2.2.2 On-Chip Debugging for Microprocessors
	6.2.2.3 Reconfiguration Resources

	6.2.3 Logical Fault Injection by Circuit Emulation

	6.3 Fault Injection System
	6.3.1 Workload
	6.3.2 Fault List
	6.3.3 Fault Classification
	6.3.4 Result Analysis
	6.3.5 Communication

	6.4 Fault Injection Optimizations
	6.4.1 Autonomous Emulation
	6.4.2 Fault Evaluation Process
	6.4.3 State Restoration
	6.4.4 Early Fault Classification
	6.4.5 Embedded Memories

	6.5 Conclusions
	References

	ADPC40A.tmp
	Entrena, Luis; López-Ongil, Celia; García-Valderas, Mario; Portela-García, Marta; Nicolaidis, Michael. (2011). Hardware Fault Injection. In: Nicolaidis, M. (ed.) Soft Errors in Modern Electronic Systems. (Frontiers in Electronic Testing, 41). Springer...

