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ABSTRACT 

Bai Yu, Design for Soft Error Tolerance in FPGA-Implemented Asynchronous Circuit. Master of 

Science (MS), July, 2011, 82 pp., 4 tables, 46 figures, references, 24 titles. 

This research in its present form is the result of experimentation on effect of soft error in 

FPGA-implemented asynchronous circuit. The conclusion are drawn that asynchronous circuit 

are much easier to detect soft error than synchronous circuits. The asynchronous circuit is 

implemented in FPGA with software fault injection method to analyze the behavior of soft error 

generation in FPGA implementation asynchronous circuits. The proposed detection circuit can 

detect all soft errors that generated in FPGA-implemented asynchronous circuit.  

The contributions include: investigation of FPGA structure, investigation of soft error model 

in FPGA, mechanism of FPGA implemented asynchronous circuit, behavior of soft error 

injection in FPGA look up table that implemented asynchronous circuit, and proposed detection 

scheme. The research on soft error injection in FPGA routing system and soft error rate 

estimation will be done in the future. 
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CHAPTER I  

INTRODUCTION 

 

Soft error is called transient faults or single-event upsets (SEUs). SEUs are caused due to 

electrical noise or external radiation rather than design or manufacturing defects. As CMOS 

device sizes decrease, they are more easily affected by the low energy particles resulting from 

collisions between cosmic rays and particles in the atmosphere, potentially leading to a much 

higher rate of soft errors [3]. A Field Programmable Gate Array (FPGA) is an integrated 

semiconductor device designed to be programmed or configured any number of times using a 

schematic design or a source code in HDL (hardware description language) that describe the 

user’s hardware design [1]. FPGAs can be configured with dense logic and have very high logic 

capacity. However, sensitive to Single Event Upsets (SEU) limit their widespread use in 

mission-critical application. The circuit implemented in FPGAs may be changed functionality by 

SEUs. Different from synchronous circuits, the asynchronous circuits use handshaking protocols 

to communicate between modules or parts of the circuits for the operations to be down in 

sequence, so that they are not governed by a clock circuit or global clock signal, but instead need 

only wait for the signals that indicate completion of instructions and operations. Since the 

asynchronous circuit [2] is a circuit in which the parts are largely autonomous, the effect of SEU 

hitting on Asynchronous circuits implemented FPGA should be explored.  
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1.1 Overview of modern FPGA 

The FPGA industry sprouted from programmable read-only memory (PROM) and 

programmable logic devices (PLDs). Both PROMs and PLDs had the option of being 

programmed in batches in the field (field programmable), however， programmable logic was 

hard-wired between logic gates [1]. In 1970s, the mask programmable logic arrays (MPGA) 

were invented and used to implement application-specific integrated circuits (ASICs). The 

MPGAs make up of an array of pre-fabricated transistors that can be customized into the logic 

circuit. The specifying metal interconnect perform customization during chip fabrication, it 

means that in order to use an MPGA a large setup cost is involved and manufacturing time is 

long. MPGA gave motivation to the design of FPGAs. In the earlier 1980s, the monolithic 

memories Inc  （MMI） programmable array logic (PAL) was introduced by AMD. The MMI 

PALs were commercially very successful. The PALs consist of an array of programmable AND 

gate, which link to array of programmable OR gate, thus, the output can be produced 

conditionally complemented. However, the PAL is only a single level that wired AND plane that 

feeds fixed OR-gates.  

Nowadays, FPGAs are widely known in many applications such as industrial productions, 

spacecraft and embedded applications, according to their high performance, no non-refundable- 

engineering cost and fast time response. The strengths of modern FPGAs are quick prototyping 

and time-to-market, reprogramability, relatively easy to use. The weaknesses are, cost, density, 

and speed.  

The FPGAs are handy thing to have on the workbench; it means they can be used for rapid 

prototyping. With the obvious advantages that compare with ASIC, FPGAs are used in critical 

applications and are replacing ASICs on a regular basis. The last decade, FPGAs are ever 
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increasingly collect attention by most researchers in areas of DSP applications, automotive 

applications, space applications, robotics, computer security, and reconfigurable computing.  

1.2 Soft error background and previous work 

  Soft errors, also called transient errors, are intermittent malfunctions of hardware that are 

not reproducible [2], arise from Single Event Upset (SEU).  Soft error was first discovered in 

memory element like Dynamic random-access memory (DRAMs) in 1970s [3]. Since then 

DRAMs were the focus of soft error also because it occupies most of the susceptible surface area. 

DRAMs of 256 KB with 1980s technology had flips of five to six bits from single alpha particle 

[5]. The present devices employ more flips for the same alpha particle.  

  These SEUs are caused by energetic neutrons originating from cosmic rays or alpha 

particles coming from radioactive contaminants in the package material hitting the surface of 

silicon devices. Device scaling significantly affects the susceptibility of integrated circuits to soft 

error [4].  The cause factors of intensity of these soft errors lie in energy of hitting particles, the 

location of the device, geometry of the impact, and design of the logic circuit. The Soft Error 

Rate (SER) is measured by Failures In Time (FIT): one FIT is one error per billion hours of 

operation. Alternative unit is mean time between failures (MTBF). EX: 1 year 

MTBF=10
�

�365 	 24� � 114,115 FIT. The Fig.1.2.1 shows the mechanism of soft errors in a 

Metal Oxide Semiconductor Field Effect Transistor (MOSFET). 

 



 

Fig.1.2.1 mechanism of soft errors in MOSFET

Electron-hole pairs with a very high carrier concentration

energy in silicon when a particle hits the drain of the MOS

rapidly collected by the electric field to create a

transient current can be modeled as

where Q is the amount of colle

constant. The detailed discussion

The Fig 1.2.2 shows the induced current caused by soft error.

  

The case of the current is injected into or drawn from the node depends on the type of 

drain of transistor. For example, a current is injected into the node if particle hit occurs at a 

p-type drain, so that it increase

Current 
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Fig.1.2.1 mechanism of soft errors in MOSFET 

hole pairs with a very high carrier concentration are generated as the particle loses 

when a particle hits the drain of the MOSFET, and the resulting

rapidly collected by the electric field to create a large transient current at that node

modeled as [8] 

 

where Q is the amount of collected charge, and T is a process technology

nstant. The detailed discussion about this model and related parameters can be found in [

.2 shows the induced current caused by soft error. 

  

Time 

Fig.1.2.2 Induced current 

he case of the current is injected into or drawn from the node depends on the type of 

or example, a current is injected into the node if particle hit occurs at a 

increases the node voltage. If this node of logic circuit is 

Current  

are generated as the particle loses 

FET, and the resulting charges can be 

large transient current at that node [8]. The 

technology-dependent time 

arameters can be found in [9]. 

he case of the current is injected into or drawn from the node depends on the type of victim 

or example, a current is injected into the node if particle hit occurs at a 

of logic circuit is transmitting 
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logic 0 under the current injected to the node, a transient positive glitch (0-1-0) may occur at the 

node. Similarly, the negative transient glitch (1-0-1) may be generated if an n-type drain is hit. 

Since FPGAs are vulnerable to single event upsets (SEUs) [7], an SEU with sufficient energy 

changes the logic state of memory element, producing a soft error [8]. For sake of SEU 

mitigation of FPGAs, the SEU Mitigation Techniques are therefore desirable. Many studies have 

focused on solution either at device level or architecture level. At device level, one solution is to 

use radiation-hardened FPGA devices. However, these devices are much more expensive than 

Commercial-Off-The-Shelf (COTS) FPGAs [7]. At architecture level, redundancy designs such 

as Triple Module Redundancy (TMR) are explored to protect FPGAs from soft error [10]. 

TMR-based mitigation techniques impose more than 200% overhead in terms of area and power. 

Scrubbing, i.e., the periodic refresh of the configuration memory, is another effective approach, 

especially when used in conjunction with TMR. Others Mitigation Techniques are multiple 

redundancy with voting, error detection and correction codes (EDAC), and FPGA-specific 

methods, such as reconfiguration, partial configuration, rerouting design. 

 

 

1.3 Brief background work on asynchronous circuit 

For last three decades, most circuits designed and fabricated are “synchronous”. However, as 

lock rates have significantly increased while feature size has decreased, clock skew has become a 

major problem. Most of performance chips must dedicate increasingly larger portions for clock 

drivers to generate acceptable skew, causing these chips to dissipate increasingly higher power, 

especially at the clock edge, when switching is most prevalent. With the process of these trends, 

the clock is becoming more and more difficult to manage, while clocked circuits’ inherent power 
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inefficiencies are emerging as the dominant factor hindering increased performance. These 

concerns caused renewed interest in asynchronous circuit. Asynchronous, clockless circuits 

require less power, generate less noise, and produce less electro-magnetic interference (EMI), 

compare to synchronous circuits, without degrading performance. Furthermore, these 

delay-insensitive (DI) asynchronous circuits have some additional advantages, especially when 

designing complex circuit, such as system-on-a-chip (SoCs), including substantially reduced 

crosstalk between analog and digital circuits, ease of integrating multi-rate circuits, and 

facilitation of component reuse. Recently, companies such as ARM, Phillips, Intel, and others are 

incorporating asynchronous logic into some of their products using their own proprietary tools. 

Asynchronous circuits can be classified into two main categories: bounded-delay and 

delay-insensitive models. Bounded-delay models, such as micropipelines [12], assumed that 

delays in both gates and wires are bounded. Delays are added based on worse-case scenarios to 

avoid hazard conditions. This leads to extensive timing analysis of worse-case behavior to ensure 

correct circuit operation. Delay-insensitive circuits assume delays in both logic elements and 

interconnects to be unbounded, although they assume that wire forks within basic components, 

such as full adder, are isochronic, meaning that the wire delays within a component are much 

less than the logic element delays within the component, which is a valid assumption even in 

future nanometer technologies. Wires connecting components do not have to adhere to the 

isochronic fork assumption. This implies the ability to operate in the presence of indefinite 

arrival times for the reception of inputs. Completion detection of the output signals allows for 

handshaking controlling input wavefronts. Delay-intensive design styles therefore require very 

little, if any, timing analysis to ensure correct operation (i.e., they are correct by construction), 
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and also yield averge-case performance rather than the worse-case performance of 

bounded-delay and traditional synchronous paradigms.  
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CHAPTER II  

ASYNCHRONOUS CIRCUIT ON FPGAS 

 

The modern FPGAs use schematic design or a resource code in HDL (hardware description 

language) to program and configure circuit. The modern CAD tool can implement both 

synchronous and asynchronous circuits by using HDL. The previous soft error mitigation method 

are more focus on synchronous circuit implemented on FPGA, however, the asynchronous 

circuits, especially Null Convention Logic (NCL), implemented on FPGA have much easier 

detection signal when the soft error injected in asynchronous circuit implemented FPGAs. In 

order to analyze behavior of soft error injected in asynchronous circuit implemented FPGAs, the 

FPGA architecture, NCL circuit, and FPGA implementation NCL circuit are necessary 

understood and introduced. 

2.1 FPGA architecture 

FPGA is logic devices that contain basic components LUT (look-up-table), flip-flops, 

multiplexors, I/O blocks, programmable switching matrices, interconnect, clocks. These basic 

elements compose the functional blocks in FPGAs, such as configurable logic blocks, I/O blocks, 

and programmable interconnects. The FPGA structure is shown in Fig2.1.1 [13]. The 

two-dimensional arrays of generic logic elements (LEs) as shown in Fig.2.1.2 [13], and 

programmable switches are main elements specifying the functionality of circuit mapped into the 

FPGAs.  
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Fig 2.1.1 Xilinx FPGA structure [11] 

Fig 2.1.2 Logic Elements (LEs) [13] 
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A logic element can be configured (i.e., programmed) to perform a simple function, and a 

programmable switch can be customized to provide interconnections among the logic elements. 

A custom design can be implemented by specifying the function of each logic element and 

selectively setting the connection of each logic element and selectively setting the connection of 

each programmable switch. A logic element usually contains a programmable look-up table 

(LUT), programmable interconnects, and flip-flops (FF). An n-input look-up table is typically 

implemented by a static random access memory (SRAM), and is used to implement any n-input 

combinational function. The flip-flops can be selectively used to implement sequential circuits. 

Most FPGA devices also embed certain macro cells, such as BlockRAMs, dedicated multipliers, 

clock managers, and I/O interface circuits. Logic elements are usually grouped into logic array 

blocks (LABs).  

For example, the architecture of Altera Cyclone II FPGAs is shown in Fig.2.1.3 [14]. The 

logic array consists of Logic Array Blocks (LABs), with 16 LEs in each LAB. Each LE includes 

a four-input LUT, a D-flip-flop and connections. The phase-locked loops (PLLs) provide 

general-purpose clocking with clock synthesis and phase shifting as well as external outputs for 

high-speed differential I/O support. The input/output elements (IOEs) contain a bidirectional I/O 

buffer and three registers for complete embedded bidirectional single data rate transfer. The 

devices also contain embedded memory and multipliers.  

 



 

PLL

PLL
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Fig 2.1.3 

The architecture of an SRAM

( )ABCDf ,,, , is illustrated by Fig.2.1.4.  The truth table of 

memory cells. For instance, binary data 1110_1000_1110_1000 is stored in the memory cells as 

shown in Fig.2.1.4, to implement logic function is

Fig 2.1.4 Architecture of SRAM
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The architecture of an SRAM-based 4-input look-up table, implementing a logic function

, is illustrated by Fig.2.1.4.  The truth table of ( BCDf ,,

memory cells. For instance, binary data 1110_1000_1110_1000 is stored in the memory cells as 

, to implement logic function is ( ) BCABABCDf ++=,,,

Fig 2.1.4 Architecture of SRAM-based 4-input look-up table (LUT)
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PLL
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up table, implementing a logic function

)AB,  is stored in the 

memory cells. For instance, binary data 1110_1000_1110_1000 is stored in the memory cells as 

AC+ . 

 

up table (LUT) 



12 
 

These SRAM-based 4-input LUTs are used to implement digital circuits while switch 

modules provide the interconnection between resources, shown in Fig.2.1.5. The switch module 

consists of several switch blocks. The programmable switch blocks provide the selective 

connectivity of horizontal as well as vertical routing channels placed between logic blocks which 

consist of nets of different length [17]. Inside switch block, a pass transistor controlled by a 

user-SRAM cell play a role as programmable switches. Each of this architecture with pass 

transistor and user-SRAM cell is called Programmable interconnect points (PIPs). Consider the 

matrix shown in Fig. 2.1.6, three different nets are PIPs (W1, N1), (W2, S1), (S2, E2). The PIPs 

can control the net open or close. The light line shows the possible connection nets, while the 

PIP is closed. 

 

Fig 2.1.5 SRAM-FPGA architecture model [22] 
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Fig 2.1.6 PIPs control in switch block [23] 

2.2 Null Convention Logic (NCL) circuit 

Null Convention Logic (NCL) [16] is a delay-insensitive asynchronous paradigm meaning 

that NCL circuits will operate correctly regardless of delay of components and wires. NCL 

circuits utilize dual-rail or quad-rail logic to achieve delay-insensitivity. For this thesis, the 

designs employ the dual-rail logic.   

2.2.1 Completion Criteria 

NCL uses two completeness criteria to achieve its delay-insensitive behavior: symbolic 

completeness of expression and completeness of input. A symbolically complete expression is 

defined as an expression that only depends on relationships of the symbols presented in the 

expression. Dual-rail signals state logic value (NULL, DATA0, and DATA1) achieve symbolic 

completeness of expression. A dual-rail signal D is encoded by two wires D�, D�,  as shown in 

Table 2.2.1. 
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Table 2.2.1 dual-rail encoding 

Dual-rail encoding 

(D
1
, D

0
) 

Logic value 

(0,0) NULL 

(0,1) DATA0 

(1,0) DATA1 

(1,1) Invalid 

 

The DATA0 state (D� � 0, D� � 1) corresponds to a Boolean logic 0, the DATA1 state 

(D� � 1, D� � 0) corresponds to a Boolean logic1, and the NULL state (D� � 0, D� � 0 ) 

corresponds to empty set meaning that the value of D is not available. Two rails are mutually 

exclusive, such that both rails can never be asserted simultaneously, this state is defined as an 

illegal state.  

The second criterion is completeness of input for NCL combinational circuit, 1) the output 

may not transition from NULL to a complete set of DATA until the input values are completely 

DATA, 2) the output may not transition from DATA to a complete set of NULL values until the 

input values are completely NULL. The criterion, equivalent to Seitz’s “weak condition” [17], is 

shown in Fig 2.2.1.1. 
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Fig 2.2.1.1 weak conditions for NCL completeness of input 

(1) Some inputs become DATA before some outputs become DATA. 

(2) Some inputs become NULL before some outputs become NULL. 

(3) All inputs become DATA before all outputs become DATA. 

(4) All outputs become DATA before some inputs become NULL. 

(5) All inputs become NULL before all outputs become NULL. 

(6) All outputs become NULL before some inputs become DATA. 

2.2.2 Threshold Gates with Hysteresis 

NCL uses a special type of gates, namely threshold gates with hysteresis [18], as basic units to 

build NCL circuits. The format that describes threshold gate is thmnWn�n�n� … . n�, where ‘th’ 

is stand for threshold gate, m is the threshold, n is the number of inputs, W means the following 

‘n�’, ‘ n�’… ‘n�’ are weights of the first ‘W’ inputs and the weights of other inputs are one by 

default. The following figures are schematic and symbol of TH23 and TH23w2. 
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Fig 2.2.2.1 Schematic and symbol of TH23 

 

Fig 2.2.2.2 Schematic and symbol of TH23W2 

NCL circuits are comprised of a family of threshold gates with hysteresis. The primary type of 

threshold gate is THmn gate where n is the number of inputs, m is the threshold, and 1 ≤ m ≤ n. A 

THmn gate will set its output high when any m inputs have gone high and it will reset its output 

low when all n inputs are low. A more general type of threshold gate with hysteresis is referred 

to as a weighted threshold gate, denoted as THmnWw1w2…wR, where n is the number of inputs, 
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m is the threshold,  w1, w2, …wR  (1 < wi ≤ m, 1≤ R < n) are the integer weights of input 1, input 

2, … input R, respectively. For example, TH34 has 4 inputs (A, B, C, D) and a threshold of 3, as 

shown in Fig 2.2.2.3 (a). When any three inputs go high, its output will be asserted to high. Only 

when all inputs are low, the output will be reset to low. For all other input patterns, the output 

will remain unchanged. A weighted gate TH34W22 has the same number of inputs (4) and 

threshold (3) as TH34 gate, but there is a weight 2 applied to each of the first two inputs (A and 

B), as shown in Fig 2.2.2.3 (b). For the gate TH34W22, the output is asserted only when either 

input A is high along with any other input, or input B is high along with any other input. The 

output is deasserted only when all inputs are low. NCL threshold gates may also include a reset 

input to initialize the output. Either a d or an n is attached at the end of the gate name to 

designate these gates, such as TH22n shown in Fig 2.2.2.3 (c). d denotes the gate as being reset 

to high while n to low. These resettable gates are used in the design of registers. A bubble 

attached at the output denotes an inverter connected at the output, as shown in Fig 2.2.2.3 (d). 

The principle of transistor-level threshold gate design can be found in [18]. The design of 

computational blocks, registers and completion detection blocks using threshold gates is 

available in [18]. 



 

Fig 2.2.2.3

The framework for NCL systems consist of delay

between delay-insensitive registers. This combination of NCL registers al

detection circuitry and combinational 

architecture consists of NCL registers, completion detection circuitry and NCL combinational 

logic like exor, full-adder,etc. the following 

Fig

18 

2.2.2.3.  Symbol examples of threshold gates 
 

2.2.3 NCL Pipeline 

The framework for NCL systems consist of delay-insensitive combinational logic sandwiched 

insensitive registers. This combination of NCL registers al

detection circuitry and combinational logic is called NCL pipeline [17]. A typical NCL pipeline 

architecture consists of NCL registers, completion detection circuitry and NCL combinational 

adder,etc. the following Fig 2.2.3 shows basic NCL pipeline structure.

Fig 2.2.3 Basic NCL pipeline structure 

  

 

insensitive combinational logic sandwiched 

insensitive registers. This combination of NCL registers along with completion 

]. A typical NCL pipeline 

architecture consists of NCL registers, completion detection circuitry and NCL combinational 

shows basic NCL pipeline structure. 
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The NCL allows DATA and Null pass through the NCL pipeline alternately. The input 

request for each register gate comes from the detection gate of the next register. Two adjacent 

register stages interact through their request and acknowledge signals k�, k�, respectively, to 

prevent the current DATA wavefront from overwriting the previous DATA wavefront, by 

ensuring that the two DATA wavefronts are always separated by a NULL wavefront. For 

example, assume that all the circuits are in a NULL state and that input request signals of the 

current register (k� ) and the next register (k�!) are requesting DATA, at same time, the previous 

register is transiting a complete DATA to its combinational circuit. As the wavefront propagates 

through the previous combinational circuit to the current register, the current register passes the 

data since its control line is requesting DATA. When a complete data is received by current 

detection circuitry, it gives control line (k�") to the previous register to indicating that the current 

register has received and stored the data wavefront, thus, the previous registers can pass NULL. 

The requested NULL by previous register may arrive at the current register, however, the NULL 

wavefront will be blocked at current register until control line (k� ) is requesting NULL, and the 

current register will maintain presentation DATA values to the current combinational circuit. 

When the next register receives and stores the DATA wavefront, the DATA set no longer needs 

to be maintained by the current register. Since the next completion detection circuit detects the 

complete DATA set and transitions its acknowledge line (k� ) to request NULL indicating that it 

has received DATA wavefront and the current register can allow a NULL wavefront. 

2.2.4 NCL register 

An N-bit register stage, comprised of N single-bit dual-bit NCL registers, requires N 

completion signals, one for each bit. The NCL completion component, shown in Fig 2.2.4, uses 

these Nk� lines to detect complete DATA and NULL sets at the output of every register stage 
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and request the next NULL and DATA set, respectively. In full-world completion, the single-bit 

output of the completion component is connected to all k� lines of the previous register stage. 

Since the maximum input threshold gate is the TH44 gate, the number of logic levels in the 

completion component for N-bit register is given by [ log& N]. Likewise, the completion 

component for an N-bit quad-rail registration stage requires 
(

�
 inputs, and can be realized in a 

similar fashion using TH44. 44444444
4444

4444
4444 4444

Ko[1]Ko[2]Ko[3]Ko[4]Ko[5]Ko[6]Ko[7]Ko[8]
Ko[n-3]Ko[n-1]Ko[n-1]Ko[n]

Ko
 

Fig 2.2.4 N-bit completion component 

2.3 FPGA implementation of NCL circuits 

Generally, a threshold gate is synthesized into three logic elements in FPGAs, as shown in Fig 

2.3.1 Each logic element, utilizing an SRAM LUT, performs Set, Reset, and Hold respectively. 

The function of Set LUT is defined as this: its output t1 is “1” when the number of inputs equal to 

“1” reaches (or more than) the threshold m; otherwise the output is “0”. For example, the Set 

function of TH23 is ACBCABt ++=1 , and the Set function of TH34w2 (A has a weight of 2) is 

BCDDCBAt +++= )(1 . The function of Reset LUT for all threshold gates is an OR gate 
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delivering “0” when all inputs are “0”. The Hold LUT delivers the final output with hysteresis 

using a feedback. It is easy to find out that its function is ( )zttz +⋅= 12 for all threshold gates.  

The Quartus II provides the way to look at schematic of design. By looking at the schematic 

of design at software, it shows three LUT to implement Threshold gate. Each LUT may restore 

the truth table to generate function of threshold gate. The concept in Fig 2.3.1 has been verified 

by implementing TH23 and TH34w2 gates on Altera Cyclone II EP2C35F672C6N chip, as 

shown in Fig 2.3.2. 

Set

LUT

Reset

LUT

Hold

LUT

inputs

z

t2

t1

 

Fig 2.3.1 Threshold gate implemented on FPGAs 

 

Fig 2.3.2. TH34w2 gates on Altera Cyclone II 
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The Fig 2.3.2 shows Th34w2 gates implemented in Altera Cyclone II FPGA by Quartus II 

software. It has 4 inputs going to Set LUT (th34w2x0~11) and Reset LUT (th34w2x0~2). The 

Hold LUT (z$latch) delivers final output with hysteresis using output feedback and output of set 

LUT and reset LUT. The red circle is the value of sum LUT mask. The sum LUT mask is simply 

the hexadecimal representation of the LUT output. Take set LUT for example: the function 

equation of set LUT is BCDDCBAt +++ )(=1 , so that the truth table of set LUT can be 

described in Table 2.3:  
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Table 2.3 truth table of set LUT 

D C B A OUTPUT 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 

 

From this truth table the set LUT function can be represented by following binary sting: 

1110_1010_1010_1000, the sum LUT mask in hexadecimal for this binary string is : EAA8. 

Similarly, the reset LUT and hold LUT mask can be found by this way too. 
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CHAPTER III 

SOFT ERROR MODELS AND EXPERIMENTAL FAULT INJECTION 

 

In the previous chapter, basic works on asynchronous circuit implemented in FPGAs have 

been done. With help of these basic works, effects of soft error injecting asynchronous circuit 

implemented FPGA are obvious to observe. Therefore, the soft error models and experimental 

fault injection method are concluded as part of this research and explained in CHAPTER 3. This 

chapter explains soft error models in FPGAs and possible experimental fault injection method 

are described. 

3.1 Soft error models in FPGAs 

The effects of single event upsets (SEUs) on digital circuits can be classified into 1) transient 

and 2) permanent errors. The transient errors are caused by SEUs hitting on combinational logic 

components, which can be propagated and captured in flip-flops. These errors are called transient 

errors because they may be corrected using detection techniques. These errors could be occurred 

and found in memory elements and caches, register files and flip-flops (FFs). The permanent 

errors are caused by SEUs hitting on memory bits, and these errors alter the contents of 

configuration bits. This case may keep erroneous until the new configuration is downloaded and 

rewrited into the FPGA.  

The research and analysis of transient errors have been described in [18]. They inject faults 

into the simulation or emulation models of the design to investigate the behavior of combination 

logic circuit. The alteration of memory elements such as data-path registers and control-unit 

registers are injected by faults with faults injection techniques [20]. 
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The research of permanent errors that changes contents of configuration bits are more 

complex to analyze, since the simple bit flip fault model cannot be exploited. An SEU can 

changes interconnect inside configurable logic block (CLBs) and also the routing signals 

between different CLBs. Moreover, a SEU may change the content of look-up-tables (LUTs). 

There are two major types of memory resources in FPGAs: user bits and configuration bits. 

An SEU on user bits cause a transient error, and an SEU on configuration bits leads to a 

permanent error. 

3.1.1 Transient errors 

The transient errors do not change the content of SRAM configuration bits, but affect 

user-defined logic and flip-flops. An SEU affecting a combination part makes transient error on 

the combinational part inside CLBs. These errors can be propagated to next part to make a 

bit-flip error. The Fig 3.1.1.1 describes SEU makes bit-flip error in a flip-flop. It has been shown 

that in ASIC designs, combinational logic is less susceptible to soft error than memory elements 

[21]. This is because the combinational logic provides some natural resistance to soft errors [22]. 

 

 

Fig 3.1.1.1 An SEU affects inverter gates and makes a bit-flip error 
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An SEU may also affect the contents of flip-flop and memory. The content of the Flip-Flops 

(FFs) and memory will keep erroneous until another data write to FFs or corrected by detecting 

circuit. The Fig 3.1.1.2 is shown the SEU hit on FF and Block RAM. 

 

Fig 3.1.1.2. SEU hit on FF and Block RAM in FPGA 

 

 

3.1.2 Permanent error 

A single event upset (SEU) induced by a particle strike in a user bit causes a transient error, 

whereas an SEU in a configuration bit would lead to a permanent error which remains in the 

FPGA until the next reconfiguration of a new design. This permanent error may result in a logic 

error or routing error depending on which part of the configuration memory is affected. A logic 

error may lead to complement one of the entries of the LUT modifying the functionality of the 

mapped logic function. A routing error may lead to a signal getting misrouted or disconnected 

[23]. This type of error is the major error type in FPGAs because the number of SRAM cells 
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dominates user-defined memory elements. Typically, the amount of SRAM configuration cells is 

more than 98% of all memory elements inside an FPGA [23].  

There are two types configuration memory bits, are sensitive and non-sensitive bits, based on 

their vulnerabilities to SEUs. When the SEU hit at the sensitive configuration bits, it affects the 

functionality of the circuit which mapped into FPGA. On the other hand, the non-sensitive 

configuration bits play role as “don’t care” for the design mapped into FPGA.  

Since a transient error is not lasting ever and easy to be detected by detection correcting 

circuit, permanent error is more difficult to correct. Our research is more focus on permanent 

error. Permanent error can be classified into routing errors, LUT bit-flips, and control/clocking 

bit-flips. 

3.1.2.1 Routing error 

The programmable routing network of FPGA consist of Programmable interconnect points 

(PIPs), multiplexers and buffers. An SEU changing a configuration routing bit causes PIPs 

switch open, switch short. Normally, the PIPs employ the NMOS transistor as switch. Since the 

SRAM cell control the NMOS transistor with logic 1 close, the changing a PIP control from 1 to 

0 by SEU will cause a switch open in this nets resulting in an open error in the gate-level netlist, 

is shown in Fig 3.1.2.1.1. It’s easy to see the close connection nets break out by the changing of 

PIP control cell from 1 to 0.  However, the short error is a little bit different with open error. An 

SEU (0 to 1) on unused PIP (W1,S1) or (N1,S1) causes a bridging error between nets A and B. 

it’s called short error. On the other hand some unused PIP (N2, E1) not cause any bridging errors 

since no nets are adjacent to this PIP. Therefore, we may define PIP as two categories, sensitive 

PIP and non-sensitive PIP. The Fig 3.1.2.1.2 shows the sensitive PIP and non-sensitive PIP in 

short error case. 
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Fig 3.1.2.1.1 open errors in switch blocks 

 

Fig 3.1.2.1.2 short errors in switch blocks 

 

3.1.2.2 Bit-flip on Look up Table (LUT) configuration bits 

As the previous chapter’s illustration, a logic function can be implemented by storing all 

values for the truth table in LUT. The look up table (LUT) consists of SRAM cell. A SEU may 

lead to complement one of the entries of the LUT modifying the functionality of the mapped 

logic function permanently. Fig 3.1.2.2 the SRAM cell changes its stored value by SEU. 
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Fig 3.1.2.2 SEU hits on SRAM cell 

3.1.2.3 Bit-flip on control/clocking bits 

There are some control bits in CLBs and I/0 blocks to determine miscellaneous functionalities. 

For example, the control bits may determine whether the LUT performs as a look up table, a 

dual-ported RAM, or a programmable shift register. Furthermore, some SRAM cells also works 

for clock signal routing throughout the circuit. In summary, bit-flip on the control/clock bits 

affects the functionality of the mapped design drastically [24].  

3.2 Fault injection method 

The soft error propagation both in signal NCL gate and NCL pipeline has been derived in next 

chapter. In order to verify our analysis and conclusion of soft error, the simulation with soft error 

injected environment must be generated, so that the fault injection techniques are employed to 

reach our aim. In modern society, the approaches to fault injection have been classified by three 

categories:  

� Hardware fault injection   

� Software fault injection 

� Simulation fault injection 
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The hardware fault injection cause faults in circuit physically. The advantages of hardware fault 

injection are realistic good fault coverage, good for low latency faults, and low perturbation. On 

other hand, it’s harder to control and expensive to build up system in safety limit their 

widespread use. The hardware injection with contact uses pin-level injection such as, probes, 

socket insertion, but without contact uses heavy ion radiation and electromagnetic interference. 

The common used hardware tools are Messaline, FIST and MARS. The software fault injection 

injects the soft error by software programmatically. It has compile-time injection and runtime 

injection.  The software injection is cheaper, controllable and more targeted and flexible, but 

it’s more perturbation and limited coverage. The common software tools are Ferrari, Ftage, 

Xception. The simulation injection injects faults during the simulation time. It’s not closed to 

real environment. 

The fault injection in this thesis is performed by Quartus II software properties resource editor. 

It also can be called software fault injection. Quartus II provides an easy way to change the 

content of a desired LUT SRAM cell after compiling the VHDL files. This change is equivalent 

to a fault injection to the cell. After saving the change, it can simulate the behavior of the circuit 

with a fault injection. The Fig 3.2.1 shows the Quartus II design flow with fault injection. 
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Fig 3.2.1 Quartus II design flow 

From Quartus II tools, it provides lots of powerful and useful tools, such as in system content 

memory editor, in system source and probes editor and so on. One of them is called net viewers 

allow you to view schematic representations of internal structure of your designs. Fig 3.2.2 

shows netlist viewers in tool box. 
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Fig 3.2.2: Netlist viewer in tool button 

If you are ready find out the netlist viewer button as shown in Fig 3.2.2, the software will 

provide four different functional views ask you choose. The RTL viewer can view a schematic of 

the design netlist after Analysis & Elaboration and netlist extraction, but before Quartus II 

synthesis and fitting optimizations. This view is not the final structure of the design, because not 

all optimizations are included; instead it is the closest possible view to the original design. If the 

design uses integrated synthesis, this view shows how the Quartus II software interprets the 

design files; if you are using a third-party EDA synthesis tool, this view shows the netlist as 

written by the EDA synthesis tool. The Technology Map Viewer can view a low-level, 

technology-specific schematic of the design netlist after fitting or after Analysis & Synthesis. 
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You can access the post-fitting view of the schematic with the Technology Map Viewer; or you 

can access the post-mapping view of the schematic, regardless of the synthesis tool you use, with 

the Technology Map Viewer (Post-Mapping). When opened from a timing path in the Timing 

Analyzer report, the Technology Map Viewer also displays detailed timing delay information for 

the timing path. The State Machine Viewer provides a high-level view of finite state machines in 

the design and displays the internal structure of state machines in the design, including a more 

detailed view of the fan-in and fan-out of individual state nodes. The State Machine Viewer also 

displays the node transitions in table format. We use the technology map viewer to find out 

schematic of our design. With help of this function we can find out the TH34w2 is implemented 

on three LUTs: Set LUT, Reset LUT, and Hold LUT, as shown in Fig.3.2.3.  The K-map, truth 

table, and logic function are available for each LUT in Properties pop-up window. The 

“Resource property editor” can be used to change the logic function of any LUT so that the 

K-map and truth table are changed accordingly as desired is shown as Fig 3.2.4. The resource 

property editor has a block to show and edit equation  provides possibility to change the truth 

table by editing sum equation, is shown as Fig 3.2.5, thus, we can achieve fault injection by 

changing the truth table. 
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Fig 3.2.3 Technology Map Viewer of TH34w2 gate

 
Fig 3.2.4 Resource property editor for fault injection  
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CHAPTER IV 
SOFT ERROR IN FPGA-BASED ASYRCHRONOUS CIRCUIT 

 

The FPGAs are widely used in many applications, however, the sensitivity of soft error limit 

their used in mission-critical application. When soft error is generated by alpha particles hitting 

FPGAs, the digital circuit which is implemented on FPGAs has totally changed. Most previous 

research on soft error of synchronous circuit implemented FPGA presents effect of soft error 

infected FPGA and also gives hints to possible detection method for soft error in FPGA [23]. As 

the previous chapter describes NCL circuits implemented in FPGA are different with 

synchronous circuit, soft error in FPGA-based asynchronous circuit has to be investigated. In this 

chapter, we investigate the mechanism of soft error generation and propagation in asynchronous 

circuits which are implemented on FPGAs 

4.1 Soft error generations and simulation in a single threshold gate 

As previous chapter explained, there are so many soft errors models; we only focus on the 

permanent logic error due to bit-flips in LUT configuration bits. It is assumed that a particle 

strike leads to the change of a configuration bit in LUT. Under this assumption, the implemented 

circuit such as a threshold gate has been changed into an undesired circuit. The TH34w2 gate is 

used as an example to show how and what kind of soft errors may be generated at the output of a 

threshold gate. TH34w2 is mapped into a 4-input Set LUT, a 4-input Reset LUT and a 3-input 

Hold LUT with feedback, as shown in Fig.4.1.1. Each entry in LUT is associated with a cell in 

SRAM. A particle strike may randomly lead to the data flip in a cell. 
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Fig. 4.1.1 TH34w2 implemented on FPGA 

The function set LUT is bringing ‘fire’ under the condition that number of inputs equal to ‘1’ 

is greater than or equal to the threshold m, otherwise there is no fire at output. Once the SEU 

generates at set LUT, the output may not fire correctly.  The effect of soft error at set LUT is 

defined as these:  

� No error, the SEU happened at set LUT: 0000 (0�1), the error signal transmits to hold LUT. 

Because of reset LUT gives reset signal (“0”) to hold LUT, the SEU will not lead to any 

error. The Fig 4.1.2 shows simulation results of no error at set LUT 0000. 

 

Fig 4.1.2 no error appears at output Z (soft error setting set LUT: 0000 (0� 1)) 
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� Premature fire, some SEUs, such as set LUT: 0001,0010,0011,0100,0101,0110,1000 (0�1) 

will generate fire (‘1’) to hold LUT, despite the number of inputs does not satisfy the 

threshold m. These SEUs may lead to premature fire, as shown in Fig4.1.3 

 

Fig 4.1.3 Premature fire appears at output Z (soft error setting set LUT: 0011 (0� 1)) 

� No fire, on opposite side, others SEUs in set LUT (1�0) hold the fire. These may lead to no 

fire, despite the number of inputs satisfies the threshold m. The simulation results are shown 

in Fig 4.1.4. 

 

Fig 4.1.4 No fire appears at output Z (soft error setting set LUT: 0111 (1� 0)) 

         

The reset LUT functionalizes OR gate to achieve reset process. It delivers “0” when all inputs 

are “0”. The SEUs at reset LUT may generate wrong reset signal to hold LUT. The effect of soft 

error at set LUT is defined as these: 
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� No return to 0, the SEU of reset LUT: 0000 (0� 1) changes function of reset LUT to a 

constant “1”. The reset LUT keeps “1”, even during the process of reset delivering “0”. This 

SEU leads to no return to 0 is shown as Fig 4.1.5. 

 

Fig 4.1.5 No return to 0 appears at output Z (soft error setting Reset LUT: 0000 (0� 1)) 

� Early return to 0, some SEUs, such as reset LUT: 0001,0010,0011,0100, 0101,0110,1000  

(1�0) give wrong signal delivering “0” to hold LUT, though the only one condition of reset 

process delivering “0” is not satisfied, as shown in Fig 4.1.6.  

 

Fig 4.1.6 Early return to 0 appears at output Z (soft error setting Reset LUT: 0001 (1� 0)) 

� No fire, SEUs at others reset LUT cause no fire at output. At this case, the TH gate default 

the 0000 signal already arrives reset LUT startup the reset process and the fire keep on set 

LUT may be considered as time-delay case too. These SEUs may lead to no fire that is 

totally different from no fire at set LUT. The simulation is shown as fig 4.1.6 
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Fig 4.1.7 No fire appears at output Z (soft error setting Reset LUT: 0111 (1� 0)) 

Hold LUT is more difficult to analyze compared to set and reset LUT. The reason is that hold 

LUT employs output of system as its input to achieve delay-insensitivity. The variable effects of 

SEU at hold LUT are defined as following: 

� Oscillating, the SEU happened at hold LUT: 000 (0�1) 111 (1� 0), the soft error 

propagates to output and comes back as its input, thus, the output could get value which is 

opposite with current output from LUT. When the new value comes to output again, it leads 

to output oscillating, is shown as Fig 4.1.7 

 

Fig. 4.1.8 oscillating appears at output Z (soft error setting hold LUT: 111 (1� 0)) 

� No return to 0, SEU of hold LUT 001 (0 � 1) leads to no return to 0 with full satisfied 

condition of reset process which is that set and reset LUT all stay at “0”. The Fig 4.1.8 

shows simulation. 
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Fig 4.1.9 No return to 0 appears at output Z (soft error setting hold LUT 001(0 � 1) 

� Premature fire, SEU at hold LUT 010 (0� 1) cause the fire at condition of number of 

inputs does not satisfy the threshold m in set LUT. The simulation is shown as Fig 4.1.9 

 

Fig 4.1.10 Premature fire appears at output Z (soft error setting hold LUT 010 (0� 1)) 

� Early return to 0, hold LUT 011 has changes (1� 0), so that the TH gate runs reset process 

not wait until reset LUT delivering “0”. It may lead to early return to 0 at wrong condition. 

The Fig 4.1.10 shows the simulation results. 

 

Fig 4.1.11 Early return to 0 appears at output Z (soft error setting hold LUT 011 (1� 0)) 

� No error, the hold LUT 100,101 change from 0� 1, these blocks are designed for inputs 

signal delay arriving. The hold LUT block 100 is used for a process that changes from null 

to data, the beginning status is reset, and all inputs keep “0”. When inputs of set LUT are 

equal or more than the threshold m, the output of set LUT which is also the input of hold 

LUT changes to 1, so that the hold LUT 100 is active for keeping current output. Similarly, 
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the hold LUT block 101 is used for a process that changes from data to null, the beginning 

status is set, and all inputs keep 1. When inputs of reset LUT receives null (“0”), the output 

of reset LUT which is also inputs of hold LUT changes to 0, so that hold LUT 101 is active 

for changing current output. Once the SEU (0� 1� happened at these hold LUT block, short 

lasting time of these process determine the effect can be ignored. 

Table 4.1 Soft error of TH34w2 

 

In summary, Table 4.1 lists all possible soft errors of TH34w2 associated with different 

data-flip (SEU) locations. The index of each box in K-map (for example, Fig 4.1.1) is used to 

represent the location of LUT SRAM cell. Some SEUs, such as Set LUT 0000 and Hold LUT 

100 or 101, will not lead to any error. Other SEUs result in four types of soft errors: 1) premature 
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fire, i.e., the output is erroneously equal to 1 when the inputs do not reach the threshold), 2) no 

fire, i.e., the output is equal to 0 when inputs reach the threshold, 3) no return to 0, i.e., the output 

is still 1 even when all inputs are 0, and 4) oscillating. “Early return to 0” usually does not lead 

to malfunction under reasonable delay-timing assumption, therefore being ignored here. The fig 

4.1.11 shows the summarized simulation results. 

Other threshold gates can be implemented on FPGAs in the same way illustrated in Fig 4.1.1, 

except that different threshold gates have different content in Set LUT. Therefore, the above 

statement about four types of soft errors is generally true for all threshold gates.  

 

Fig 4.1.12 Summarized simulation results of TH34w2 gate with different soft errors 

4.2 Soft Error Propagation and simulation verified in NCL Pipelines 

The behavior of any computational block in Fig.4.1.11 has a monotonic property that does not 

exist in traditional logic. Specifically, during the computation, i.e., transition from NULL to 

complete DATA, the number of asserted gate-level nodes monotonically increases. On the other 
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hand, during returning to all NULL from complete DATA, the number of asserted gate-level 

nodes monotonically decreases to zero. The simulation of normal simulated circuit is shown as 

Fig4.2.1. It is assumed that an SEU occur only in a computational block in Fig.4.1 because 

computational blocks consume the major resource of FPGAs. The behavior of an NCL pipeline 

in the presence of SEU can be delivered by considering: 1) dual-rail encoding, 2) monotonic 

property, 3) weak conditions, and 4) handshake protocol of pipeline. 

 

 

Fig 4.2.1: Normal simulated circuit pipeline. 
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Fig 4.2.2 Simulated NCL full-adder circuit  
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In order to investigate soft error at RTL level, a simple pipeline in Fig.4.2.2 is simulated and 

implemented on Altera FPGA Cyclone II EP2C35F672C6N with various soft errors injected into 

the computational block.  Without the loss of generality, soft errors are injected into the 

different LUT SRAM cells in TH34w2 gate G3 that delivers the output of sum rail0. The effect 

of soft error on NCL pipeline can be analyzed based on the soft error effect on signal TH gate. 

The effect of signal TH gate’s soft error is analyzed as following: 

1) Premature fire: some SEUs changing “0” to “1” at output of TH34w2 gate lead to the 

premature fire. Since the output of TH34w2 Gate G3 delivers the output of sum rail0 (s0), the 

s0 is the only one infected output by soft error at TH34w2 gate G3.  The NCL dual-rail 

encoding uses two wires to present null, data0, data1, invalid logic value. The NCL pipeline 

without soft error injection should operate only through the logic value of data1, data0, null. 

If the premature fire soft error happened at TH34w2 gate G3 and changes its orginal logic 

value “0” to logic value “1”, the output will appear “11” invalid data at system output based 

on the NCL encoding. For the handshake protocol, the NCL register can detect data full 

arrives and give completion signal to previous stage NCL register to request null. In 

premature fire case, the feedback signal of regsiter2 (kf) runs normally, because the “11” 

invalid data can still satisfy the weak condition of NCL register detection gate. The fig 4.2.3 

shows simulation for premature fire case. 
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Fig 4.2.3 Invalid “11” appears at the output sum  (soft error setting: Set LUT 0110 (0�1) in G3 

gate in full adder) 

 

2) No fire: some SEUs at LUT (1�0) cause the no fire. The no fire lead to “0” instead of “1”, 

despite the number of inputs satisfies the threshold m at TH gate. In the NCL pipeline, no fire 

may cause “00”, since gate G3 which is also called sum rail0 changing from 0� 1. By 

delivering “00” to NCL register2, the NCL register2 can’t generate feedback of completion 

data to requesting null to previous stage register. So that the system will stop by requesting 

data, is shown as Fig4.2.4. 

 

Fig 4.2.4 Deadlock in the pipeline when no fire at sum (soft error setting: Set LUT 1001 (1�0) 

in G3 gate in full adder) 
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3) No return to 0: some SEUs happened on reset or hold LUT changes SRAM memory from 

0� 1. These may lead to no return to 0. The LUT lose the function of reset makes the TH 

gate will not delivering “0”, through the inputs are ready set up null, thus, the system cannot 

complete null at output and NCL register cannot generate feedback signal of completion null 

to requesting data to previous stage register. The effect of no return to 0 on NCL pipeline is 

stopping the system and keeping requesting null, as shown in Fig4.2.5. 

       

Fig 4.2.5 Deadlock in the pipeline when no return to 0 at sum (soft error setting: hold LUT 

001(0->1) in G3 gate in full adder). 

 

4) Oscillating: some SEUs happened at hold LUT: 000 (0�1) 111 (1� 0), the soft error 

propagates to output and comes back as its input, thus, the output could get value which is 

opposite with current output from LUT. When the new value comes to output again, it leads 

to output oscillating. However, in NCL pipeline two different changes have two obvious 

output, as shown in Fig 4.2.6. 
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Fig 4.2.6 Invalid “11” appears at sum when G3 ocsillating (soft error setting: Hold LUT 000 

(0�1) in G3 gate in full adder) 

 

Fig 4.2.7 No error appears at the output when G3 ocsillating (soft error setting: Hold LUT 

111(1�0)) in G3 gate in full adder) 

 

Table 4.2 soft errors in NCL pipeline 

 

In summary, Table 4.2 lists all possible soft errors at the output of computational block and 

pipeline behavior originating from SEU in the computational block. Premature fire will 

eventually generate an invalid dual-rail code “11”. No fire makes the computation process 
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everlasting long while No return to 0 makes the reset process unlimited long. Oscillating may 

lead to an invalid dual-rail code “ 
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CHAPTER V  

SOFT ERROR DETECTION SCHEME 

 

This chapter proposed a detection scheme for asynchronous circuits on FPGAs. In the 

previous chapter, the obvious behavior of soft error injected NCL pipeline on FPGAs are 

classified by invalid data and deadlock. Unlike the synchronous circuit, the asynchronous circuits 

do not hold the global clock to control circuit. Furthermore, the delay-insensitivity of 

asynchronous circuits may cause unbounded delay in both logic elements and interconnects. 

Therefore, it’s hard to separate between normal operation delay and deadlock. The deadlock 

would never be detected without sacrificing delay-insensitivity. 

5.1 Soft error detection scheme. 

  As explanation of previous chapter, the soft errors in NCL pipeline have been summarized. 

Table 4.2 gives us the hint to detect SEU in NCL pipelines. The invalid data “11” can be easily 

detected by ANDing two rails for each bit at output of computational block. Deadlock can be 

detected by monitoring the request signal Kf between two neighboring registers, shown in Fig 

5.1.1.  If any of T1, T2, or T3 is approaching to infinite, it is said that deadlock occurs. Since 

the deadlock would never be detected without sacrificing delay-insensitivity, a worst-case delay 

should be assumed. We assume that a NULL (or Data) propagation delay is not more than k 

times of previous Data (or NULL) delay. For example, 
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k=2 is used in this thesis, that is, T2 < 2T1, T3 < 2T2, otherwise, the occurrence of a soft error is 

reported. The bigger k, the less false alarm rate.  

 

Fig 5.1.1 Scheme of soft error detection 

In Fig 5.1.1, the right up-counter and down-counter are used to detect no_return_0 deadlock 

while the left up and down counters are used to detect no_fire deadlock. In the right side, the 

up-counter is used to measure the time of Kf request data (T1) and reset to 0 when Kf=0. At the 

falling edge of Kf, the result of up-counter is doubled and then used as the initial value of the 

down-counter, and the down-counter starts to reduce 1 every clock cycle. If the output of the 

down-counter is equal to 0 at one moment, it implies that T2 is equal or more than 2T1, and that 

a no-return_0 deadlock is detected. To achieve enough accuracy, the frequency of the external 

clk is relatively much higher than Kf frequency. The size of counters should be enough to avoid 

overflow. Similarly, the left side up and down counters detect whether T3 is more than twice of 

T2, i.e., whether a no_fire deadlock occurs. A high-level of output signals from detection circuit 

will automatically trigger the FPGA programmer to re-program the FPGA. Because of the Kf 
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gives count up or down signal to both deadlock no return to 0 detection system and deadlock no 

fire detection system, the all detection systems high-level output will generate sequentially. 

5.2 Soft error detection scheme simulations 

To demonstrate the effectiveness of the proposed soft error detection scheme,  the circuit is 

attached in Fig 5.2.2 to Fig 5.2.3 to monitor Kf for deadlock detection, and also attach an 

AND-OR tree circuit to the output of the full adder in Fig 5.2.1 to detect invalid code “11”. 

Furthermore, the up-down counter is all counters are 4-bit. The “11” invalid data detection 

circuit gives 1 once the invalid data happened. The up-down counter measure the regular data 

time to determine deadlock case the deadlock_no_return0 and deadlock _no_fire will turn on 

when the deadlock soft error happened.   

 

Fig 5.2.1 The detect output is 1 when invalid “11” appears at sum (soft error setting: set LUT 

0010(0->1))

 

Fig 5.2.2 The detect_no_fire output is 1 when no fire appears at sum (soft error setting: Set LUT 

1001 (1->0) in G3 gate) 
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Fig 5.2.3 The detect_ no_return0 output is 1 when no return to 0 appears at sum (soft error 

setting: hold LUT 001(0->1) in G3 gate) 
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CHAPTER VI  

CONCLUSION 

 

Null Convention Logic Circuit (NCL) can be implemented through either full custom design 

at transistor level or FPGAs, but the effects of SEU on the two implementation styles are 

different. In the full-custom implementation, the soft errors are transient and no deadlock 

happens. The corresponding soft error detection and correction scheme was proposed in [11]. 

Unfortunately, soft errors in FPGA implementations are permanent. To remove the errors, the 

FPGA has to be reprogrammed.  

This research investigated FPGA-based implementations of asynchronous circuits and their 

behavior in the presence of SEU in FPGA SRAM cells. The preliminary results and simulations 

show that dual-rail asynchronous circuits have obvious advantage for SEU detection. The 

proposed detected circuit can detect all possible soft errors occurs in NCL pipelines which 

implemented in FPGA.  

Future work should focus on the presence of the routing soft error in Asynchronous circuit 

implemented on FPGAs, and the SEU estimation for Asynchronous circuit implemented on 

FPGAs. To expatiate the behavior of soft error affected Asynchronous circuit implemented on 

FPGAs roundly, the multiple or combination of different types of soft error in Asynchronous 

circuit implemented on FPGAs will be considered too. 
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APPENDIX A 
 
 

VHDL CODE TO SIMULATE NCL CIRCUIT AND DETECTION SCHEME 
 
 

1. TH34W2 gate 

library ieee;  

  use ieee.std_logic_1164.all;  

  entity NCL_TH34 is  

      port(a: in std_logic; -- weight 2  

           b: in std_logic;  

           c: in std_logic;  

           d: in std_logic;  

           z: out std_logic );  

  end NCL_TH34;  

  architecture archth34w2x0 of NCL_TH34 is  

  begin  

     th34w2x0: process(a, b, c, d)  

     begin  

        if (a= '0' and b= '0' and c= '0' and d = '0') then  

           z <= '0';  

        elsif  (a = '1' and b = '1')  

                    or (a = '1' and c = '1')  

                    or (a = '1' and d = '1')  

                    or (b = '1' and c = '1' and d = '1') then  

           z <= '1';  

        end if; -- else NULL  

     end process;  

  end archth34w2x0; 

2. Asynchronous fulladder  
Library IEEE; 

Use IEEE.std_logic_1164.all; 

Use work.ncl_signals.all; 

 

entity asynfulladder is 

  port (  

         rst : in std_logic; 

         Qo : out dual_rail_logic_vector(1 to 2); 

         Dq : out dual_rail_logic_vector(1 to 3); 

         ki,kf: out std_logic); 

        end asynfulladder; 

architecture behavioral of asynfulladder is 

signal Q1 : dual_rail_logic_vector(1 to 3); 

signal sc : dual_rail_logic_vector(1 to 2); 

signal k1,k2: std_logic; 

signal D : dual_rail_logic_vector(1 to 3); 

component event_countern is  

port ( clk: in std_logic;Di : out dual_rail_logic_vector(1 to 3)); 

end component; 

component initreg is 

   port ( D : in dual_rail_logic_vector(1 to 3); 

          ki : in std_logic; 
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          rst : in std_logic; 

          Q : out dual_rail_logic_vector(1 to 3); 

          ko : out std_logic); 

end component; 

component finalreg is 

   port ( D : in dual_rail_logic_vector(1 to 2); 

          ki : in std_logic; 

          rst : in std_logic; 

          Q : out dual_rail_logic_vector(1 to 2); 

          ko : out std_logic); 

end component; 

component fulladder is 

   port ( a : in dual_rail_logic_vector(1 to 3); 

          s : out dual_rail_logic_vector(1 to 2)); 

end component; 

begin 

c1:event_countern port map (k1,D); 

Dq<=D; 

reg1 : initreg port map(D,k2,rst,Q1,k1); 

ki<=k1; 

combi1 : fulladder port map(Q1,sc); 

reg2 : finalreg port map(sc,k2,rst,Qo,k2); 

kf<=k2; 

end behavioral; 

3. Event counter 
library ieee; 

use ieee.std_logic_1164.all; 

use work.ncl_signals.all; 

entity event_countern is  

port ( clk: in std_logic; 

       Di : out dual_rail_logic_vector(1 to 3)); 

       end event_countern; 

architecture event_counter of event_countern is  

signal digit1,digit2 : integer range 0 to 8; 

signal digit : integer range 0 to 15; 

begin  

rising: process(clk) 

variable temp1: integer range 0 to 8; 

begin  

if (clk'event and clk='1') then  

temp1:=temp1+1; 

if (temp1=8) then temp1:=0; 

end if; 

end if; 

digit1 <= temp1; 

end process rising; 

falling: process(clk) 

variable temp2: integer range 0 to 9; 

begin  

if (clk'event and clk='0') then 

temp2 :=temp2+1; 

if (temp2=8) then temp2:=0; 

end if; 

end if; 

digit2 <=temp2; 
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end process falling; 

digit <=digit1+digit2; 

process (digit) 

 begin 

case digit is  

when 0 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

  when 1 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 2 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

 when 3 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 4=> 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

  when 5 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

  when 6 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

  when 7 => 
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 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

  when 8 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

 when 9 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 10 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

   when 11 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

  when 12 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

  when 13 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

  when 14 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 
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when others => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 end case; 

end process;  

end event_counter; 

4. Initial register 

Library IEEE; 

Use IEEE.std_logic_1164.all; 

Use work.ncl_signals.all; 

 

entity initreg is 

   port ( D : in dual_rail_logic_vector(1 to 3); 

          ki : in std_logic; 

          rst : in std_logic; 

          Q : out dual_rail_logic_vector(1 to 3); 

          ko : out std_logic); 

end initreg; 

 

architecture behavioral of initreg is 

signal ao : std_logic_vector(1 to 3); 

component ncl_register_D 

    generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic_vector(width-1 downto 0); 

         ki: in std_logic; 

         rst: in std_logic; 

         Q: out dual_rail_logic_vector(width-1 downto 0); 

   ko : out  std_logic_vector(width-1 downto 0)); 

end component; 

component th33x0 

   port(a: in std_logic; 

        b: in std_logic; 

        c: in std_logic; 

        z: out std_logic); 

end component; 

begin 

regi : ncl_register_D generic map(width=>3,initial_value=>-4) 

                      port map(D,ki,rst,Q,ao); 

cdi : th33x0 port map(ao(3),ao(1),ao(2),ko); 

end behavioral; 

5. Final register 
Library IEEE; 

Use IEEE.std_logic_1164.all; 

Use work.ncl_signals.all; 

entity finalreg is 

   port ( D : in dual_rail_logic_vector(1 to 2); 

          ki : in std_logic; 

          rst : in std_logic; 

          Q : out dual_rail_logic_vector(1 to 2); 

          ko : out std_logic); 
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end finalreg; 

architecture behavioral of finalreg is 

signal ao : std_logic_vector(1 to 2); 

component ncl_register_D 

    generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic_vector(width-1 downto 0); 

         ki: in std_logic; 

         rst: in std_logic; 

         Q: out dual_rail_logic_vector(width-1 downto 0); 

   ko : out  std_logic_vector(width-1 downto 0)); 

end component; 

component th22x0 

   port(a: in std_logic; 

        b: in std_logic; 

        z: out std_logic); 

end component; 

begin 

regi : ncl_register_D generic map(width=>2,initial_value=>-4) 

                      port map(D,ki,rst,Q,ao); 

cdi : th22x0 port map(ao(2),ao(1),ko); 

end behavioral; 

6. Signal generator 
Library IEEE; 

Use IEEE.std_logic_1164.all; 

Use work.ncl_signals.all; 

 entity signal_gen1 is 

port ( 

      clk : in std_logic; 

      Di : out dual_rail_logic_vector(1 to 3)); 

 end signal_gen1; 

 architecture behavior of signal_gen1 is  

 begin 

  process (clk) 

 variable count_value: natural:=0 ; 

 begin  

 if (clk='1')then count_value := (count_value+1) mod 16; 

 end if; 

  case count_value is  

 when 1 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

 when 2 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 3 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 
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 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

 when 4 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 5 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

 when 6 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 7 => 

 Di(1).rail0<='1'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

 when 8 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 9 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

 when 10 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 11 => 

 Di(1).rail0<='0'; 
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 Di(1).rail1<='1'; 

 Di(2).rail0<='1'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

  when 12 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 when 13 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='1'; 

 Di(3).rail1<='0'; 

 when 14 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

  when 15 => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='1'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='1'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='1'; 

when others => 

 Di(1).rail0<='0'; 

 Di(1).rail1<='0'; 

 Di(2).rail0<='0'; 

 Di(2).rail1<='0'; 

 Di(3).rail0<='0'; 

 Di(3).rail1<='0'; 

 end case; 

end process; 

end behavior; 

7. NCL Full adder 
Library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use work.ncl_signals.all; 

entity fulladder is 

   port ( a : in dual_rail_logic_vector(1 to 3); 

          s : out dual_rail_logic_vector(1 to 2) 

          ); 

end fulladder; 

architecture beh of fulladder is 

signal c0,c1: std_logic; 

component th23x0 is 
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   port( a: in std_logic;  

         b: in std_logic;  

         c: in std_logic;  

         z: out std_logic ); 

end component; 

component th34w2x0 is  

      port(a: in std_logic; -- weight 2  

           b: in std_logic;  

           c: in std_logic;  

           d: in std_logic;  

           z: out std_logic );  

end component;  

begin 

g1 : th23x0 port map(a(1).rail0,a(2).rail0,a(3).rail0,c0); 

g2 : th23x0 port map(a(1).rail1,a(2).rail1,a(3).rail1,c1); 

g3 : th34w2x0 port map(c1,a(1).rail0,a(2).rail0,a(3).rail0,s(2).rail0); 

g4 : th34w2x0 port map(c0,a(1).rail1,a(2).rail1,a(3).rail1,s(2).rail1); 

s(1).rail0<=c0;s(1).rail1<=c1; 

end beh; 

 

 

8. Detection scheme for Invalid data “11” 
library IEEE; 

use IEEE.std_logic_1164.all; 

use work.all; 

Use work.ncl_signals.all; 

entity dect_logic is  

port( input:in dual_rail_logic_vector(1 to 2); 

      output: out std_logic); 

 end dect_logic; 

 architecture behavior of dect_logic is 

component AND_ent is 

port ( A:in std_logic; 

       B: in std_logic; 

       F1: out std_logic); 

end component; 

COMPONENT OR_GATE is  

port (a:in std_logic; 

      b: in std_logic; 

      F2: out std_logic);     

end component; 

signal w1,w2: std_logic; 

begin  

gate1:AND_ent port map (A=>input(1).rail0,B=>input(1).rail1,F1=>w1); 

gate2:AND_ent port map (A=>input(2).rail0,B=>input(2).rail1,F1=>w2); 

gate3:OR_GATE port map (a=>w1,b=>w2,F2=>output); 

end behavior; 

9. Detection scheme for Deadlock 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity clear_gen is  

port (cectionlk:in std_logic; 

di:IN STD_LOGIC; 
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Si:out std_logic; 

      COUNT_OUT:OUT STD_LOGIC_VECTOR (3 DOWNTO 0)); 

      END clear_gen; 

      architecture behavioral of clear_gen is 

      signal Q: STD_LOGIC_VECTOR (3 DOWNTO 0); 

            component upcounter_1 is 

      port (clk:in std_logic; 

      di:IN STD_LOGIC; 

      COUNT_OUT:OUT STD_LOGIC_VECTOR (3 DOWNTO 0)); 

      END component; 

            component downcounter_1 is 

      port (clk:in std_logic; 

      di:IN STD_LOGIC; 

      P:OUT STD_LOGIC; 

      COUNT:in STD_LOGIC_VECTOR (3 DOWNTO 0); 

      COUNT_OUT:OUT STD_LOGIC_VECTOR (3 DOWNTO 0)); 

      end component; 

            begin 

            c1: upcounter_1 port map (clk,di,Q);  

      c2: downcounter_1 port map (clk,di,SI,Q,count_out); 

            end behavioral; 

A. Down counter  
library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

entiy downcounter_1 is  

port (clk:in std_logic; 

      di:IN STD_LOGIC; 

      P: OUT STD_LOGIC; 

      COUNT:in STD_LOGIC_VECTOR (3 DOWNTO 0); 

      COUNT_OUT:OUT STD_LOGIC_VECTOR (3 DOWNTO 0)); 

      END downcounter_1; 

      architecture behavioral of downcounter_1 is 

      signal count_int:std_logic_vector(3 downto 0); 

      signal B:integer range 0 to 15; 

      begin  

      process (clk) 

      begin      

      if clk'event and clk ='1' then 

      if di='0'then 

      count_int<=count_int-1; 

      else  

      count_int<=count+count; 

      end if;  

      end if; 

      end process; 

      count_out<=count_int; 

      B<=conv_integer(count_int); 

      process(B) 

      begin  

      case B is 

      when 0=> 

      P<='1'; 

      when others => 

      P<='0'; 
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      end case; 

      end process; 

      end behavioral; 

B. Up counter 
library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity upcounter_1 is  

port (clk:in std_logic; 

      di:IN STD_LOGIC; 

      COUNT_OUT:OUT STD_LOGIC_VECTOR (3 DOWNTO 0)); 

END upcounter_1; 

architecture behavioral of upcounter_1 is 

signal count_int:std_logic_vector(3 downto 0):="0001"; 

begin  

process (clk) 

begin      

if clk'event and clk ='1' then 

if di='1'then 

count_int<=count_int+1; 

else  

count_int<="0001"; 

end if;  

end if; 

end process; 

count_out<=count_int; 

end behavioral; 
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APPENDIX B 
 
 

SIGNAL AND THRESHOLD GATE LIBRARY 
 

1. Completion component 
-- Package used for Completion Component 

Library IEEE; 

use IEEE.std_logic_1164.all; 

package tree_funcs is 

function log_u(L: integer; R: integer) return integer; -- ceiling of Log base R of L 

function level_number(width, level, base: integer) return integer; -- bits to be combined on level of tree of width 

using base input gates 

end tree_funcs; 

package body tree_funcs is 

function log_u(L: integer; R: integer) return integer is 

variable temp: integer := 1; 

variable level: integer := 0; 

begin 

        if L = 1 then 

                return 0; 

        end if; 

        while temp < L loop 

                temp := temp * R; 

                level := level + 1; 

        end loop; 

        return level; 

end; 

function level_number(width, level, base: integer) return integer is 

variable num: integer := width; 

begin 

    if level /= 0 then 

 for i in 1 to level loop 

  if (log_u((num / base) + (num rem base), base) + i) = log_u(width, base) then 

   num := (num / base) + (num rem base); 

  else 

   num := (num / base) + 1; 

  end if; 

 end loop; 

    end if; 

    return num; 

end; 

end tree_funcs; 

-- Generic Completion Component --width = 120-- 

library ieee; 

use ieee.std_logic_1164.all; 

use work.tree_funcs.all; 
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entity comp is 

   generic(width : integer);-- := 120); 

   port(a: IN std_logic_vector(width-1 downto 0); 

        ko: OUT std_logic); 

end comp; 

architecture arch of comp is 

 type completion is array(log_u(width, 4) downto 0, width-1 downto 0) of std_logic; 

 signal comp_array: completion; 

        component th22x0 

            port(a: in std_logic; 

                b: in std_logic; 

                z: out std_logic); 

        end component; 

        component th33x0 

            port(a: in std_logic; 

                b: in std_logic; 

                c: in std_logic; 

                z: out std_logic); 

        end component; 

        component th44x0 

            port(a: in std_logic; 

                b: in std_logic; 

                c: in std_logic; 

                d: in std_logic; 

                z: out std_logic); 

        end component; 

begin 

 RENAME: for i in 0 to width-1 generate 

  comp_array(0, i) <= a(i); 

 end generate; 

 STRUCTURE: for k in 0 to log_u(width, 4)-1 generate 

 begin 

    NOT_LAST: if level_number(width, k, 4) > 4 generate 

    begin 

  PRINCIPLE: for j in 0 to (level_number(width, k, 4) / 4)-1 generate 

   G4: th44x0 

    port map(comp_array(k, j*4), comp_array(k, j*4+1), comp_array(k, j*4+2), comp_array(k, 

j*4+3), 

     comp_array(k+1, j)); 

  end generate; 

  LEFT_OVER_GATE: if log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) rem 4), 4) + 

k + 1  

     /= log_u(width, 4) generate 

  begin 

   NEED22: if (level_number(width, k, 4) rem 4) = 2 generate 

        G2: th22x0 

                                 port map(comp_array(k, level_number(width, k, 4)-2), comp_array(k, 

level_number(width, k, 4)-1),  

      comp_array(k+1, (level_number(width, k, 4) / 4))); 

   end generate; 

   NEED33: if (level_number(width, k, 4) rem 4) = 3 generate 

                                G3: th33x0 



71 
 

                                        port map(comp_array(k, level_number(width, k, 4)-3), 

comp_array(k, level_number(width, k, 4)-2),  

      comp_array(k, level_number(width, k, 4)-1), comp_array(k+1, (level_number(width, 

k, 4) / 4))); 

                        end generate; 

               end generate; 

                LEFT_OVER_SIGNALS: if (log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) 

rem 4), 4) + k + 1 

                                        = log_u(width, 4)) and ((level_number(width, k, 4) rem 4) /= 0) 

generate 

                begin 

   RENAME_SIGNALS: for h in 0 to (level_number(width, k, 4) rem 4)-1 generate 

    comp_array(k+1, (level_number(width, k, 4) / 4)+h) <= comp_array(k, level_number(width, k, 

4)-1-h); 

                        end generate; 

                end generate; 

    end generate; 

    LAST22: if level_number(width, k, 4) = 2 generate 

  G2F: th22x0 

                        port map(comp_array(k, 0), comp_array(k, 1), ko); 

           end generate; 

           LAST33: if level_number(width, k, 4) = 3 generate 

                G3F: th33x0 

                        port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), ko); 

           end generate; 

          LAST44: if level_number(width, k, 4) = 4 generate 

                G4F: th44x0 

                        port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), comp_array(k, 3), 

ko); 

           end generate; 

 end generate; 

end arch; 

-- Generic Completion Component width = 64 

--library ieee; 

--use ieee.std_logic_1164.all; 

--use work.tree_funcs.all; 

--entity finalcompdet is 

  -- generic(width: in integer := 120); 

  -- port(a: IN std_logic_vector(width-1 downto 0); 

    --    ko: OUT std_logic); 

--end finalcompdet; 

--architecture arch of finalcompdet is 

 --type completion is array(log_u(width, 4) downto 0, width-1 downto 0) of std_logic; 

 --signal comp_array: completion; 

       -- component th22x0 

        --    port(a: in std_logic; 

       --         b: in std_logic; 

        --        z: out std_logic); 

       -- end component; 

      --  component th33x0 

          --  port(a: in std_logic; 

           --     b: in std_logic; 

           --     c: in std_logic; 



72 
 

           --     z: out std_logic); 

       -- end component; 

       -- component th44x0 

          --  port(a: in std_logic; 

             --   b: in std_logic; 

             --   c: in std_logic; 

            --    d: in std_logic; 

            --    z: out std_logic); 

      --  end component; 

--begin 

 --RENAME: for i in 0 to width-1 generate 

 -- comp_array(0, i) <= a(i); 

 --end generate; 

 --STRUCTURE: for k in 0 to log_u(width, 4)-1 generate 

 --begin 

 --   NOT_LAST: if level_number(width, k, 4) > 4 generate 

  --  begin 

 -- PRINCIPLE: for j in 0 to (level_number(width, k, 4) / 4)-1 generate 

 --  G4: th44x0 

 --   port map(comp_array(k, j*4), comp_array(k, j*4+1), comp_array(k, j*4+2), comp_array(k, 

j*4+3), 

 --    comp_array(k+1, j)); 

 -- end generate; 

 -- LEFT_OVER_GATE: if log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) rem 4), 4) + 

k + 1  

--     /= log_u(width, 4) generate 

 -- begin 

 --  NEED22: if (level_number(width, k, 4) rem 4) = 2 generate 

 --       G2: th22x0 

       --                          port map(comp_array(k, level_number(width, k, 4)-2), comp_array(k, 

level_number(width, k, 4)-1),  

 --     comp_array(k+1, (level_number(width, k, 4) / 4))); 

 --  end generate; 

 --  NEED33: if (level_number(width, k, 4) rem 4) = 3 generate 

        --                        G3: th33x0 

        --                                port map(comp_array(k, level_number(width, k, 4)-3), 

comp_array(k, level_number(width, k, 4)-2),  

 --     comp_array(k, level_number(width, k, 4)-1), comp_array(k+1, (level_number(width, 

k, 4) / 4))); 

      --                  end generate; 

       --        end generate; 

        --        LEFT_OVER_SIGNALS: if (log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 

4) rem 4), 4) + k + 1 

        --                                = log_u(width, 4)) and ((level_number(width, k, 4) rem 4) /= 0) 

generate 

         --       begin 

  -- RENAME_SIGNALS: for h in 0 to (level_number(width, k, 4) rem 4)-1 generate 

   -- comp_array(k+1, (level_number(width, k, 4) / 4)+h) <= comp_array(k, level_number(width, k, 

4)-1-h); 

                  --      end generate; 

             --   end generate; 

   -- end generate; 

  --  LAST22: if level_number(width, k, 4) = 2 generate 
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 -- G2F: th22x0 

         --               port map(comp_array(k, 0), comp_array(k, 1), ko); 

         --  end generate; 

         --  LAST33: if level_number(width, k, 4) = 3 generate 

         --       G3F: th33x0 

             --           port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), ko); 

        --   end generate; 

         --  LAST44: if level_number(width, k, 4) = 4 generate 

          --      G4F: th44x0 

           --             port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), comp_array(k, 3), 

ko); 

         --  end generate; 

 --end generate; 

--end arch; 

-- 1-bit Dual-Rail Register 

use work.ncl_signals.all; 

library ieee; 

use ieee.std_logic_1164.all; 

entity ncl_register_D1 is 

    generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic; 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic; 

        ko: out std_logic); 

end ncl_register_D1; 

architecture arch of ncl_register_D1 is 

signal Qbuf: dual_rail_logic; 

component th22nx0  

    port (a, b, rst: IN  std_logic; 

          z: OUT std_logic); 

end component; 

component th22dx0  

    port (a, b, rst: IN  std_logic; 

          z: OUT std_logic); 

end component; 

component th12bx0  

    port (a, b: IN  std_logic; 

          zb: OUT std_logic); 

end component; 

begin 

 RstN: if initial_value = -4 generate 

  R0: th22nx0 

   port map(D.rail0, ki, rst, Qbuf.rail0); 

    

  R1: th22nx0 

   port map(D.rail1, ki, rst, Qbuf.rail1); 

 end generate;  

 Rst1: if initial_value = 1 generate 

  R0: th22nx0 

   port map(D.rail0, ki, rst, Qbuf.rail0); 

    

  R1: th22dx0 
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   port map(D.rail1, ki, rst, Qbuf.rail1); 

 end generate; 

 Rst0: if initial_value = 0 generate 

  R0: th22dx0 

   port map(D.rail0, ki, rst, Qbuf.rail0); 

    

  R1: th22nx0 

   port map(D.rail1, ki, rst, Qbuf.rail1); 

 end generate;  

 Q <= Qbuf; 

 COMP: th12bx0 

  port map(Qbuf.rail0, Qbuf.rail1, ko); 

end; 

-- Generic Length Dual-Rail Register width=64 

use work.ncl_signals.all; 

library ieee; 

use ieee.std_logic_1164.all; 

entity ncl_register_D is 

    generic(width: integer; 

            initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic_vector(width-1 downto 0); 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic_vector(width-1 downto 0); 

        ko: out std_logic_vector(width-1 downto 0)); 

end ncl_register_D; 

architecture gen of ncl_register_D is 

component ncl_register_D1  

    generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic; 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic; 

        ko: out std_logic); 

end component; 

begin 

 gen_reg: for i in 0 to D'length-1 generate 

  REGi: ncl_register_D1 

   generic map(initial_value) 

   port map(D(i), ki, rst, Q(i), ko(i)); 

      end generate; 

end; 

-- 1-bit initreg 

use work.ncl_signals.all; 

library ieee; 

use ieee.std_logic_1164.all; 

entity ncl_register_D11 is 

    generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic; 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic); 

end ncl_register_D11; 
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architecture arch of ncl_register_D11 is 

component th22nx0  

    port (a, b, rst: IN  std_logic; 

          z: OUT std_logic); 

end component; 

component th22dx0  

    port (a, b, rst: IN  std_logic; 

          z: OUT std_logic); 

end component; 

begin 

 RstN: if initial_value = -4 generate 

  R0: th22nx0 

   port map(D.rail0, ki, rst, Q.rail0); 

    

  R1: th22nx0 

   port map(D.rail1, ki, rst, Q.rail1); 

 end generate; 

 Rst1: if initial_value = 1 generate 

  R0: th22nx0 

   port map(D.rail0, ki, rst, Q.rail0); 

     R1: th22dx0 

   port map(D.rail1, ki, rst, Q.rail1); 

 end generate;  

 Rst0: if initial_value = 0 generate 

  R0: th22dx0 

   port map(D.rail0, ki, rst, Q.rail0); 

     R1: th22nx0 

   port map(D.rail1, ki, rst, Q.rail1); 

 end generate; 

end; 

-- Generic Length initial register 

use work.ncl_signals.all; 

library ieee; 

use ieee.std_logic_1164.all; 

entity ncl_reg_Dinit is 

    generic(width: integer; 

            initial_value: integer ); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic_vector(width-1 downto 0); 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic_vector(width-1 downto 0)); 

end ncl_reg_Dinit; 

architecture gen of ncl_reg_Dinit is 

component ncl_register_D11  

    generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    port(D: in dual_rail_logic; 

        ki: in std_logic; 

        rst: in std_logic; 

        Q: out dual_rail_logic); 

end component; 

begin 

 gen_reg: for i in 0 to D'length-1 generate 

  REGi: ncl_register_D11 
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   generic map(initial_value) 

   port map(D(i), ki, rst, Q(i)); 

      end generate; 

end; 

-- Generic Length Dual-Rail Register width=32 

--use work.ncl_signals.all; 

--library ieee; 

--use ieee.std_logic_1164.all; 

--entity ncl_register_D32 is 

   -- generic(width: positive := 32 ; 

     --       initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

   -- port(D: in dual_rail_logic_vector(width-1 downto 0); 

     --   ki: in std_logic; 

      --  rst: in std_logic; 

      --  Q: out dual_rail_logic_vector(width-1 downto 0); 

      --  ko: out std_logic_vector(width-1 downto 0)); 

--end ncl_register_D32; 

--architecture gen of ncl_register_D is 

--component ncl_register_D1  

    --generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    --port(D: in dual_rail_logic; 

      --  ki: in std_logic; 

      --  rst: in std_logic; 

      --  Q: out dual_rail_logic; 

      --  ko: out std_logic); 

--end component; 

--begin 

 --gen_reg: for i in 0 to D'length-1 generate 

 -- REGi: ncl_register_D1 

  -- generic map(initial_value) 

  -- port map(D(i), ki, rst, Q(i), ko(i)); 

      --end generate; 

--end; 

-- Generic Length Dual-Rail Register width=56 

--use work.ncl_signals.all; 

--library ieee; 

--use ieee.std_logic_1164.all; 

--entity ncl_register_D56 is 

   -- generic(width: positive := 56 ; 

      --      initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

    --port(D: in dual_rail_logic_vector(width-1 downto 0); 

     --   ki: in std_logic; 

      --  rst: in std_logic; 

       -- Q: out dual_rail_logic_vector(width-1 downto 0); 

      --  ko: out std_logic_vector(width-1 downto 0)); 

--end ncl_register_D56; 

--architecture gen of ncl_register_D is 

--component ncl_register_D1  

 --   generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 

  --  port(D: in dual_rail_logic; 

     --   ki: in std_logic; 

        --rst: in std_logic; 

       -- Q: out dual_rail_logic; 
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       -- ko: out std_logic); 

--end component; 

--begin 

 --gen_reg: for i in 0 to D'length-1 generate 

  --REGi: ncl_register_D1 

  -- generic map(initial_value) 

  -- port map(D(i), ki, rst, Q(i), ko(i)); 

      --end generate; 

--end; 

2. Threshold gate 
  -------------------------------------  

  -- invx0  

  -------------------------------------  

  library ieee;  

  use ieee.std_logic_1164.all;  

  entity invx0 is  

      port(i: in std_logic;  

           zb: out std_logic);  

  end invx0;  

  architecture archinvx0 of invx0 is  

  begin  

      invx0: process(i)  

      begin  

        if i = '0' then  

           zb <= '1';  

        elsif i = '1' then  

           zb <= '0';  

        else  

           zb <= not i;  

        end if;  

      end process;  

  end archinvx0;  

  ------------------------------------  

  -- th12bx0  

  -------------------------------------  

  library ieee;  

  use ieee.std_logic_1164.all;  

  entity th12bx0 is  

      port(a: in std_logic;  

           b: in std_logic;  

           zb: out std_logic);  

  end th12bx0;  

  architecture archth12bx0 of th12bx0 is  

  begin  

     th12bx0: process(a, b)  

     begin  

        if a = '0' and b = '0' then  

           zb <= '1';  

        elsif a = '1' or b = '1' then  

           zb <= '0';  

       -- else  

           --zb <= a nor b;  

        end if;  
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end process;  

end archth12bx0;  

-----------------------------------------------------------  

 -- th22dx0  

-----------------------------------------------------------  

library ieee;  

use ieee.std_logic_1164.all;  

entity th22dx0 is  

   port(a: in std_logic;  

           b: in std_logic;  

           rst: in std_logic;  

           z: out std_logic );  

end th22dx0;  

architecture archth22dx0 of th22dx0 is  

begin  

     th22dx0: process(a, b, rst)  

     begin  

        if rst = '1' then -- reset  

           z <= '1';  

        elsif (a= '1' and b= '1') then  

           z <= '1';  

        elsif  (a= '0' and b= '0') then  

           z <= '0';  

        end if;  

end process;  

end archth22dx0;  

-----------------------------------------------------------  

-- th22nx0  

-----------------------------------------------------------  

  library ieee;  

  use ieee.std_logic_1164.all;  

  entity th22nx0 is  

      port(a: in std_logic;  

           b: in std_logic;  

           rst: in std_logic;  

           z: out std_logic );  

  end th22nx0;  

  architecture archth22nx0 of th22nx0 is  

  begin  

     th22nx0: process(a, b, rst)  

     begin  

        if rst = '1' then -- reset  

           z <= '0';  

        elsif (a= '1' and b= '1') then  

           z <= '1';  

        elsif  (a= '0' and b= '0') then  

           z <= '0'; 

        end if;  

     end process;  

  end archth22nx0;  

  -----------------------------------------------------------  

  -- th22x0  

  -----------------------------------------------------------  
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library ieee;  

use ieee.std_logic_1164.all;  

entity th22x0 is  

      port(a: in std_logic;  

           b: in std_logic;  

           z: out std_logic );  

end th22x0;  

architecture archth22x0 of th22x0 is  

begin  

th22x0: process(a, b)  

     begin  

        if (a= '1' and b= '1') then  

           z <= '1'; 

        elsif  (a= '0' and b= '0') then  

           z <= '0';  

        end if;  

     end process;  

end archth22x0;  

-----------------------------------------------------------  

-- th23x0  

-----------------------------------------------------------  

library ieee;  

use ieee.std_logic_1164.all;  

entity th23x0 is  

port(a: in std_logic;  

    b: in std_logic;  

    c: in std_logic;  

    z: out std_logic );  

end th23x0;  

architecture archth23x0 of th23x0 is  

begin  

     th23x0: process(a, b, c)  

     begin  

        if (a= '0' and b= '0' and c= '0') then  

           z <= '0';   

        elsif  (a= '1' and b= '1') or (b= '1' and c= '1') or (c= '1' and a= '1') then  

           z <= '1';  

        end if;  

     end process;  

     

  end archth23x0;  

-----------------------------------------------------------  

  -- th23w2x0  

-----------------------------------------------------------  

library ieee;  

use ieee.std_logic_1164.all;  

entity th23w2x0 is  

      port(a: in std_logic; -- weight 2  

           b: in std_logic;  

           c: in std_logic;  

           z: out std_logic );  

end th23w2x0;  

architecture archth23w2x0 of th23w2x0 is  
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begin  

th23w2x0: process(a, b, c)  

begin  

 if (a= '0' and b= '0' and c= '0') then  

 z <= '0';  

 elsif  (a= '1' or (b= '1' and c= '1')) then  

 z <= '1';  

 end if; -- else NULL  

 end process;  

 end archth23w2x0;  

-----------------------------------------------------------  

-- th33x0  

-----------------------------------------------------------  

library ieee;  

use ieee.std_logic_1164.all;  

entity th33x0 is  

port(a: in std_logic;  

b: in std_logic;  

c: in std_logic;  

z: out std_logic );  

end th33x0;  

architecture archth33x0 of th33x0 is  

begin  

th33x0: process(a, b, c)  

begin  

if (a= '1' and b= '1' and c= '1') then  

z <= '1';  

elsif  (a= '0' and b= '0' and c= '0') then  

z <= '0';  

end if; -- else NULL  

end process;  

end archth33x0;  

-----------------------------------------------------------  

--th34w2x0  

-----------------------------------------------------------  

library ieee;  

use ieee.std_logic_1164.all;  

entity th34w2x0 is  

port(a: in std_logic; -- weight 2  

b: in std_logic;  

c: in std_logic;  

d: in std_logic;  

z: out std_logic );  

end th34w2x0;  

architecture archth34w2x0 of th34w2x0 is  

begin  

 th34w2x0: process(a, b, c, d)  

     begin  

        if (a= '0' and b= '0' and c= '0' and d = '0') then  

           z <= '0';  

        elsif  (a = '1' and b = '1')  
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                    or (a = '1' and c = '1')  

                    or (a = '1' and d = '1')  

                    or (b = '1' and c = '1' and d = '1') then  

           z <= '1';  

        end if; -- else NULL  

     end process;  

  end archth34w2x0;  

  -----------------------------------------------------------  

  -- th44x0  

  -----------------------------------------------------------  

  library ieee;  

  use ieee.std_logic_1164.all;  

  entity th44x0 is  

      port(a: in std_logic;  

           b: in std_logic;  

           c: in std_logic;  

           d: in std_logic;  

           z: out std_logic );  

  end th44x0;  

  architecture archth44x0 of th44x0 is  

  begin  

     th44x0: process(a, b, c, d)  

     begin  

        if (a= '1' and b= '1' and c= '1' and d= '1') then  

           z <= '1';  

        elsif  (a= '0' and b= '0' and c= '0' and d= '0') then  

           z <= '0';  

        end if; -- else NULL  

     end process;  

  end archth44x0;  

3. NCL signal 
Library IEEE; 

use IEEE.std_logic_1164.all; 

package ncl_signals is 

type dual_rail_logic is 

   record 

        RAIL1 : std_logic; 

        RAIL0 : std_logic; 

   end record; 

type dual_rail_logic_vector is array (NATURAL range <>) of dual_rail_logic; 

end ncl_signals; 
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