198 research outputs found

    Energy Shaping of Underactuated Systems via Interconnection and Damping Assignment Passivity-Based Control with Applications to Planar Biped Robots

    Get PDF
    The sought goal of this thesis is to show that total energy shaping is an effective and versatile tool to control underactuated mechanical systems. The performance of several approaches, rooted in the port-Hamiltonian formalism, are analyzed while tackling distinct control problems: i) equilibrium stabilization; ii) gait generation; iii) gait robustication. Firstly, a constructive solution to deal with interconnection and damping assignment passivity-based control (IDA-PBC) for underactuated two-degree-of-freedom mechanical systems is proposed. This strategy does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalized momenta are introduced by the controller. The methodology is applied to the stabilization of a translational oscillator with a rotational actuator system, as well as, to the gait generation for an underactuated compass-like biped robot (CBR). Then, the problem of gait generation is addressed using dissipative forces in the controller. In this sense, three distinct controllers are presented, namely simultaneous interconnection and damping assignment passivity-based control with dissipative forces, energy pumping-and-damping passivity-based control (EPD-PBC), and energy pumping-or-damping control. Finally, EPD-PBC is used to increase the robustness of the gait exhibited by the CBR over uncertainties on the initial conditions. The passivity of the system is exploited, as well as, its hybrid nature (using the hybrid zero dynamics method) to carry out the stability analysis. Besides, such an approach is applied to new gaits that are generated using IDA-PBC. Numerical case studies, comparisons, and critical discussions evaluate the performance of the proposed approaches

    Intelligent approaches in locomotion - a review

    Get PDF

    Section-Map Stability Criterion for Biped Robots

    Get PDF

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Controlled walking of planar bipedal robots

    Get PDF
    • …
    corecore