14 research outputs found

    Mesh Sensitivity Investigation in the Discrete Adjoint Framework

    Get PDF
    Aerodynamic optimisation using gradient-based methods has found a wide range of academic applications in the last 30 years. This framework is also becoming more and more popular in the industrial world where, most of the time, unstructured grids are largely used. In this framework, apart from the need to solve the flow field, there is the need to quickly map the aerodynamic surface in terms of some aerodynamic figure of merits such as the drag coefficient, without being limited by the computational expense related to the grid size. This is a concrete industrial need which requires the efficient computation of the grid sensitivity. A novel method based on the DGM (Delaunay Graph Mapping) mesh movement is proposed to efficiently compute the grid sensitivity required in the discrete adjoint optimisation framework. The method makes use of a one-to-one explicit algebraic mapping between the volume mesh and the solid boundary nodes. This procedure results in a straightforward computation of the gradient without the need to invert a large, sparse and stiff matrix generally associated with implicit mesh movements such as the spring or LE (Linear Elastic) analogy. The method is verified using FDs (Finite Difference) and a thorough comparison in terms of CPU time, formulation against the LE-based mesh movement and adjoint gradient is presented. The DGM-based gradient chain allows to comfortably obtain the gradient with respect to each surface mesh point. Unfortunately, these gradients cannot be used directly because of their inherent poor smoothness feature. In order to address this issue one has to use a parameterisation technique which inevitably sacrifices the design space explorablity. To bridge the gap between the free-nodes and the parameterisation approaches, a novel formulation of the CST (Class Shape Transformation) was developed and termed l-CST (local-CST). The method is based on a simple trigonometric function which works as a cut-off filter on the BPs (Bernstein Polynomials) which are used to enforce a strong on-demand local control. The method is tested on an inverse geometric fitting and its effect on the resulting aerodynamic coefficients and the pressure distribution is also analysed. The DGM-based chain allows the efficient mapping of the entire surface while the l-CST allows the combination of excellent explorablity and surface smoothness. The former is tested within the non-consistent mesh movement and sensitivity framework because there are situations where one method may be preferred over the other based on the grounds that mesh movement is a very different task than mesh sensitivity although strongly related to each other. The latter is instead tested against the free-nodes approach which offers a similar advantage in terms of discrete control although without maintaining a C2 curve unless properly smoothed

    Mesh Sensitivity Investigation in the Discrete Adjoint Framework

    Get PDF
    Aerodynamic optimisation using gradient-based methods has found a wide range of academic applications in the last 30 years. This framework is also becoming more and more popular in the industrial world where, most of the time, unstructured grids are largely used. In this framework, apart from the need to solve the flow field, there is the need to quickly map the aerodynamic surface in terms of some aerodynamic figure of merits such as the drag coefficient, without being limited by the computational expense related to the grid size. This is a concrete industrial need which requires the efficient computation of the grid sensitivity. A novel method based on the DGM (Delaunay Graph Mapping) mesh movement is proposed to efficiently compute the grid sensitivity required in the discrete adjoint optimisation framework. The method makes use of a one-to-one explicit algebraic mapping between the volume mesh and the solid boundary nodes. This procedure results in a straightforward computation of the gradient without the need to invert a large, sparse and stiff matrix generally associated with implicit mesh movements such as the spring or LE (Linear Elastic) analogy. The method is verified using FDs (Finite Difference) and a thorough comparison in terms of CPU time, formulation against the LE-based mesh movement and adjoint gradient is presented. The DGM-based gradient chain allows to comfortably obtain the gradient with respect to each surface mesh point. Unfortunately, these gradients cannot be used directly because of their inherent poor smoothness feature. In order to address this issue one has to use a parameterisation technique which inevitably sacrifices the design space explorablity. To bridge the gap between the free-nodes and the parameterisation approaches, a novel formulation of the CST (Class Shape Transformation) was developed and termed l-CST (local-CST). The method is based on a simple trigonometric function which works as a cut-off filter on the BPs (Bernstein Polynomials) which are used to enforce a strong on-demand local control. The method is tested on an inverse geometric fitting and its effect on the resulting aerodynamic coefficients and the pressure distribution is also analysed. The DGM-based chain allows the efficient mapping of the entire surface while the l-CST allows the combination of excellent explorablity and surface smoothness. The former is tested within the non-consistent mesh movement and sensitivity framework because there are situations where one method may be preferred over the other based on the grounds that mesh movement is a very different task than mesh sensitivity although strongly related to each other. The latter is instead tested against the free-nodes approach which offers a similar advantage in terms of discrete control although without maintaining a C2 curve unless properly smoothed

    Entropically driven self-assembly of pear-shaped nanoparticles

    Get PDF
    This thesis addresses the entropically driven colloidal self-assembly of pear-shaped particle ensembles, including the formation of nanostructures based on triply periodic minimal surfaces, in particular of the Ia3d gyroid. One of the key results is that the formation of the Ia3d gyroid, re-ported earlier in the so-called pear hard Gaussian overlap (PHGO) approximation and confirmed here, is due to a slight non-additivity of that potential; this phase does not form in pears with true hard-core potential. First, we computationally study the PHGO system and present the phase diagram of pears with an aspect ratio of 3 in terms of global density and particle shape (degree of taper), containing gyroid, isotropic, nematic and smectic phases. We confirm that it is adequate to interpret the gyroid as a warped smectic bilayer phase. The collective behaviour to arrange into interdigitated sheets with negative Gauss curvature, from which the gyroid results, is investigated through correlations of (Set-)Voronoi cells and local curvature. This geometric arrangement within the bilayers suggests a fundamentally different stabilisation mechanism of the pear gyroid phase compared to those found in both lipid-water and di-block copolymer systems forming the Ia3d gyroid. The PHGO model is only an approximation for hard-core interactions, and we additionally investigate, by much slower simulations, pear-assemblies with true hard-core interactions (HPR). We find that HPR phase diagram only contains isotropic and nematic phases, but neither gyroid nor smectic phases. To understand this shape sensitivity more profoundly, the depletion interactions of both models are studied in two pear-shaped colloids dissolved in a hard sphere solvent. The HPR particles act as one would expect from a geometric analysis of the excluded-volume minimisation, whereas the PHGO particles show deviations from this expectation. These differences are attributed to the unusual angle dependency of the (non-additive) contact function and, more so, to small overlaps induced by the approximation. For the PHGO model, we further demonstrate that the addition of a small concentration of hard spheres ("solvent") drives the system towards a Pn3m diamond phase. This result is explained by the greater spatial heterogeneity of the diamond geometry compared to the gyroid where additional material is needed to relieve packing frustration. In contrast to copolymer systems, however, the solvent mostly aggregates near the diamond minimal surface, driven by the non-additivity of the PHGO pears. At high solvent concentrations, the mixture phase separates into “inverse” micelle-like structures with the blunt ends at the micellar centres and thin ends pointing out-wards. The micelles themselves spontaneously cluster, indicative of a hierarchical self-assembly process for bicontinuous structures. Finally, we develop a density functional for hard solids of revolution (including pears) within the framework of fundamental measure theory. It is applied to low-density ensembles of pear-shaped particles, where we analyse their response near a hard substrate. A complex orientational ordering close to the wall is predicted, which is directly linked to the particle shape and gives insight into adsorption processes of asymmetric particles. This predicted behaviour and the differences between the PHGO and HPR model are confirmed by MC simulations

    Entropie‐dominierte Selbstorganisationsprozesse birnenförmiger Teilchensysteme

    Get PDF
    The ambition to recreate highly complex and functional nanostructures found in living organisms marks one of the pillars of today‘s research in bio- and soft matter physics. Here, self-assembly has evolved into a prominent strategy in nanostructure formation and has proven to be a useful tool for many complex structures. However, it is still a challenge to design and realise particle properties such that they self-organise into a desired target configuration. One of the key design parameters is the shape of the constituent particles. This thesis focuses in particular on the shape sensitivity of liquid crystal phases by addressing the entropically driven colloidal self-assembly of tapered ellipsoids, reminiscent of „pear-shaped“ particles. Therefore, we analyse the formation of the gyroid and of the accompanying bilayer architecture, reported earlier in the so-called pear hard Gaussian overlap (PHGO) approximation, by applying various geometrical tools like Set-Voronoi tessellation and clustering algorithms. Using computational simulations, we also indicate a method to stabilise other bicontinuous structures like the diamond phase. Moreover, we investigate both computationally and theoretically(density functional theory) the influence of minor variations in shape on different pearshaped particle systems, including the stability of the PHGO gyroid phase. We show that the formation of the gyroid is due to small non-additive properties of the PHGO potential. This phase does not form in pears with a „true“ hard pear-shaped potential. Overall our results allow for a better general understanding of necessity and sufficiency of particle shape in regards to colloidal self-assembly processes. Furthermore, the pear-shaped particle system sheds light on a unique collective mechanism to generate bicontinuous phases. It suggests a new alternative pathway which might help us to solve still unknown characteristics and properties of naturally occurring gyroid-like nano- and microstructures.Ein wichtiger Bestandteil der heutigen Forschung in Bio- und Soft Matter Physik besteht daraus, Technologien zu entwickeln, um hoch komplexe und funktionelle Strukturen, die uns aus der Natur bekannt sind, nachzubilden. Hinsichtlich dessen ist vor allem die Methode der Selbstorganisation von Mikro- und Nanoteilchen hervorzuheben, durch die eine Vielzahl verschiedener Strukturen erzeugt werden konnten. Jedoch stehen wir bei diesem Verfahren noch immer vor der Herausforderung, Teilchen mit bestimmten Eigenschaften zu entwerfen, welche die spontane Anordnung der Teilchen in eine gewünschte Struktur bewirken. Einer der wichtigsten Designparameter ist dabei die Form der Bausteinteilchen. In dieser Dissertation konzentrieren wir uns besonders auf die Anfälligkeit von Flüssigkristallphasen bezüglich kleiner Änderungen der Teilchenform und nutzen dabei das Beispiel der Selbstorganisation von Entropie-dominierter Kolloide, die dem Umriss nach verjüngten Ellipsoiden oder "Birnen" ähneln. Mit Hilfe von geometrischen Werkzeugen wie z.B. Set-Voronoi Tessellation oder Cluster-Algorithmen analysieren wir insbesondere die Entstehung der Gyroidphase und der dazugehörigen Bilagenformation, welche bereits in Systemen von harten Birnen, die durch das pear hard Gaussian overlap (PHGO) Potential angenähert werden, entdeckt wurden. Des Weiteren zeigen wir durch Computersimulationen eine Strategie auf, um andere bikontinuierliche Strukturen, wie die Diamentenphase, zu stabilisieren. Schlussendlich betrachten wir sowohl rechnerisch (durch Simulationen) als auch theoretisch (durch Dichtefunktionaltheorie) die Auswirkungen kleiner Abweichungen der Teilchenform auf das Verhalten des kolloiden, birnenförmigen Teilchensystems, inklusive der Stabilität der PHGO Gyroidphase. Wir zeigen, dass die Entstehung des Gyroids auf kleinen nicht-additiven Eigenschaften des PHGO Birnenmodells beruhen. In ''echten'' harten Teilchensystemen entwickelt sich diese Struktur nicht. Insgesamt ermöglichen unsere Ergebnisse einen besseren Einblick auf das Konzept von notwendiger und hinreichender Teilchenform in Selbstorganistationsprozessen. Die birnenförmigen Teilchensysteme geben außerdem Aufschluss über einen ungewöhnlichen, kollektiven Mechanismus, um bikontinuierliche Phasen zu erzeugen. Dies deutet auf einen neuen, alternativen Konstruktionsweg hin, der uns möglicherweise hilft, noch unbekannte Eigenschaften natürlich vorkommender, gyroidähnlicher Nano- und Mikrostrukturen zu erklären

    Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods

    Get PDF
    Robotic bipedal locomotion has become a rapidly growing field of research as humans increasingly look to augment their natural environments with intelligent machines. In order for these robotic systems to navigate the often unstructured environments of the world and perform tasks, they must first have the capability to dynamically, reliably, and efficiently locomote. Due to the inherently hybrid and underactuated nature of dynamic bipedal walking, the greatest experimental successes in the field have often been achieved by considering all aspects of the problem; with explicit consideration of the interplay between modeling, trajectory planning, and feedback control. The methodology and developments presented in this thesis begin with the modeling and design of dynamic walking gaits on bipedal robots through hybrid zero dynamics (HZD), a mathematical framework that utilizes hybrid system models coupled with nonlinear controllers that results in stable locomotion. This will form the first half of the thesis, and will be used to develop a solid foundation of HZD trajectory optimization tools and algorithms for efficient synthesis of accurate hybrid motion plans for locomotion on two underactuated and compliant 3D bipeds. While HZD and the associated trajectory optimization are an existing framework, the resulting behaviors shown in these preliminary experiments will extend the limits of what HZD has demonstrated is possible thus far in the literature. Specifically, the core results of this thesis demonstrate the first experimental multi-contact humanoid walking with HZD on the DURUS robot and then through the first compliant HZD motion library for walking over a continuum of walking speeds on the Cassie robot. On the theoretical front, a novel formulation of an optimization-based control framework is introduced that couples convergence constraints from control Lyapunov functions (CLF)s with desirable formulations existing in other areas of the bipedal locomotion field that have proven successful in practice, such as inverse dynamics control and quadratic programming approaches. The theoretical analysis and experimental validation of this controller thus forms the second half of this thesis. First, a theoretical analysis is developed which demonstrates several useful properties of the approach for tuning and implementation, and the stability of the controller for HZD locomotion is proven. This is then extended to a relaxed version of the CLF controller, which removes a convergence inequality constraint in lieu of a conservative CLF cost within a quadratic program to achieve tracking. It is then explored how this new CLF formulation can fully leverage the planned HZD walking gaits to achieve the target performance on physical hardware. Towards this goal, an experimental implementation of the CLF controller is derived for the Cassie robot, with the resulting experiments demonstrating the first successful realization of a CLF controller for a 3D biped on hardware in the literature. The accuracy of the robot model and synthesized HZD motion library allow the real-time control implementation to regularize the CLF optimization cost about the nominal walking gait. This drives the controller to choose smooth input torques and anticipated spring torques, as well as regulate an optimal distribution of feasible ground reaction forces on hardware while reliably tracking the planned virtual constraints. These final results demonstrate how each component of this thesis were brought together to form an effective end-to-end implementation of a nonlinear control framework for underactuated locomotion on a bipedal robot through modeling, trajectory optimization, and then ultimately real-time control.</p

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Direct and Large-Eddy Simulation IX

    Get PDF

    Towards a unifying theory of generalization

    Get PDF
    How do humans generalize from observed to unobserved data? How does generalization support inference, prediction, and decision making? I propose that a big part of human generalization can be explained by a powerful mechanism of function learning. I put forward and assess Gaussian Process regression as a model of human function learning that can unify several psychological theories of generalization. Across 14 experiments and using extensive computational modeling, I show that this model generates testable predictions about human preferences over different levels of complexity, provides a window into compositional inductive biases, and --combined with an optimistic yet efficient sampling strategy-- guides human decision making through complex spaces. Chapters 1 and 2 propose that, from a psychological and mathematical perspective, function learning and generalization are close kin. Chapter 3 derives and tests theoretical predictions of participants' preferences over differently complex functions. Chapter 4 develops a compositional theory of generalization and extensively probes this theory using 8 experimental paradigms. During the second half of the thesis, I investigate how function learning guides decision making in complex decision making tasks. In particular, Chapter 5 will look at how people search for rewards in various grid worlds where a spatial correlation of rewards provides a context supporting generalization and decision making. Chapter 6 gauges human behavior in contextual multi-armed bandit problems where a function maps features onto expected rewards. In both Chapter 5 and Chapter 6, I find that the vast majority of subjects are best predicted by a Gaussian Process function learning model combined with an upper confidence bound sampling strategy. Chapter 7 will formally assess the adaptiveness of human generalization in complex decision making tasks using mismatched Bayesian optimization simulations and finds that the empirically observed phenomenon of undergeneralization might rather be a feature than a bug of human behavior. Finally, I summarize the empirical and theoretical lessons learned and lay out a road-map for future research on generalization in Chapter 8

    Applicable Solutions in Non-Linear Dynamical Systems

    Get PDF
    From Preface: The 15th International Conference „Dynamical Systems - Theory and Applications” (DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding scientists and engineers who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without great effort of the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz University of Technology. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our event was attended by over 180 researchers from 35 countries all over the world, who decided to share the results of their research and experience in different fields related to dynamical systems. This year, the DSTA Conference Proceedings were split into two volumes entitled „Theoretical Approaches in Non-Linear Dynamical Systems” and „Applicable Solutions in Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of Springer Proceedings in Mathematics and Statistics entitled „Control and Stability of Dynamical Systems”, „Mathematical and Numerical Approaches in Dynamical Systems” and „Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will be recommended to special issues of renowned scientific journals.Cover design: Kaźmierczak, MarekTechnical editor: Kaźmierczak, Mare
    corecore