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Abstract

This thesis addresses the problem of detecting and segmenting biological objects and
tracking them over time. This is far from trivial due to the fact that, in biology, the
objects of interest are usually indistinguishable from each other and can appear tightly
packed and in various configurations. Since we focus on objects that have a constrained
shape and move according to specific patterns, it seems natural to approach the detection,
segmentation, and tracking problems with model-based techniques.

We present a class of parametric active contours that use a novel kind of B-splines as basis
functions. We prove analytically that our new bases have the shortest-possible support,
subject to some design constraints. While the resulting active contours are versatile and
able to closely approximate any closed curve in the plane, their most important feature is
the fact that they admit ellipses within their span. Thus, they are able to represent exact
circular and elliptical shapes and are particularly appropriate to delineate cross sections
of cylindrical-like conduits and to outline blob-like objects. Then, we extend our model to
a fully parametric 3D design. The resulting active surface can approximate smooth blob-
like objects with good accuracy and can perfectly reproduce spheres and ellipsoids of any
position and orientation.

Finally, we make use of our active contours to segment and track mitotic cells in large-
scale time-lapse images. Due to their optimally short support, our active contours are
computationally efficient. Moreover, we designed a highly parallelizable image analysis
toolkit to further increase the throughput rate.

Keywords: Time-lapse, high-throughput microscopy, exponential B-spline, interpolation,

parameterization, multiresolution, Fourier descriptor, segmentation, active contour, active
surface, shape prior, ellipse, tracking, mitosis, crowd, particle filter, ImageJ.






Résumé

Cette these aborde le probleme de la détection et segmentation d’objets biologiques, ainsi
que de leur poursuite temporelle. Ce probléeme est rendu difficile par le fait que, en bio-
logie, les objets d’intérét ne sont généralement pas différenciables les uns des autres,
peuvent s’agglutiner et apparaitre dans plusieurs configurations. Nous nous concentrons
sur des objets qui ont une forme préétablie et se déplacent selon des trajectoires prévi-
sibles ; dés lors, il semble naturel que détection, segmentation et poursuite soient traitées
selon des techniques fondées sur des modeéles.

Nous présentons une classe de contours actifs paramétriques qui utilisent un nouveau type
de B-splines comme fonctions de base. Nous démontrons analytiquement que nos nou-
velles bases ont un support minimal tout en satisfaisant certaines contraintes de concep-
tion. Alors que les contours actifs qui en résultent sont polyvalents et capables d’approcher
toute courbe fermée du plan, leur caractéristique majeure est le fait que le sous-espace
qu'’ils engendrent contient les ellipses. Ainsi, ils sont en mesure d’offrir une représentation
exacte de toute forme circulaire ou elliptique, et sont donc particulierement propices pour
délinéer les sections de tubes cylindriques et celles d’objets globuleux. Ensuite, nous éten-
dons notre modéle a une conception paramétrique 3D. La surface active qui en résulte
peut approcher avec bonne précision les objets lisses et globuleux. Elle peut reproduire de
facon exacte les spheres et ellipsoides de n’importe quelle position et orientation.

Enfin, nous tirons parti de nos contours actifs pour segmenter et poursuivre des cellules
mitotiques dans une volumineuse séquence d’images. En raison de leur support minimal,
nos contours actifs sont efficaces d’'un point de vue calculatoire. En outre, nous avons
concu un outil d’analyse d’images qui se préte bien a la parallélisation, dans le but d’aug-
menter encore le débit de calcul.

Mots-clé : Vidéo-microscopie, B-splines exponentielles, interpolation, multirésolution, pa-
ramétrisation, descripteurs de Fourier, segmentation, contours actifs, surfaces actives, el-
lipses, contraintes de forme, suivi de cellules, mitose, cultures cellulaires, filtres a parti-
cules, ImageJ.
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1.1

1.2

Chapter 1

Introduction

The Quest for Quantitative Microscopy

By their nature, biological systems are dynamic. In recent years, there has been an increas-
ing interest in getting a proper understanding of the underlying cellular and molecular
processes [[I,2]]. One of the major challenges of current biomedical research is to charac-
terize not just the spatial organization of these complex systems, but their spatio-temporal
relationships as well [3]].

Thanks to substantial improvements in optics [4} [5]], imaging sensors [I6} [7, [8]], and flo-
rescence labeling methods [[9, [10} [11]], microscopy has matured to the point that it en-
ables sensitive time-lapse imaging of cells in vivo and even of single molecules [12} [13]].
Microscopy was initially a qualitative technique, but the transition to computerized mi-
croscopy enables one to extract meaningful quantitative data from images [[14} [15]]. Mak-
ing microscopy more quantitative will bring important scientific benefits in the form of
new applications and improved performance and reproducibility.

A direct consequence of the advances in high-throughput microscopy is that the size and
complexity of image data are increasing. Datasets generated in time-lapse experiments
commonly consist of hundreds to thousands of images, each containing hundreds to thou-
sands of objects to be analyzed [[16}[I7]. Such huge amounts of data cannot be analyzed
by visual inspection or manual processing within any reasonable amount of time. Au-
tomated methods are therefore necessary, not only to handle the growing rate at which
images are acquired, but also to provide a level of sensitivity and objectivity that human
observers cannot match.

Image Analysis in Bioimaging

The aim of image analysis in bioimaging is to use cutting-edge techniques from the fields
of Image Processing and Computer Vision to achieve insights into biological problems
through analysis of large-scale image datasets [[18]].

The domain of action of the tools provided by these fields is very large. It actually begins
during the image acquisition process itself. All imaging modalities introduce a certain
degree of distortion in the captured images, which are already intrinsically noisy. These
deformations can range from simple smoothing with a point spread function (PSF), to
optical aberrations, or non-linearities in the acquisition process [[19].

The quality of an acquired image from an optical imaging system can be limited by factors
such as imperfections or misalignment in the lenses. However, there is a fundamental
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maximum to the magnification of any optical system which is due to diffraction [[19].
Shannon’s sampling theory from Signal Processing provides the conditions for setting the
optimal resolution of the camera during the acquisition process to match the magnifica-
tion of the optical device [[20]]. As for the next step, a large variety of image restoration
algorithms exist to facilitate the extraction of the information of interest. Among them,
the most used ones are deconvolution [21]] and denoising [22]] algorithms. Then, the last
major image analysis challenge is to reliably segment thousands of individual biological
objects and to track them over time. This is far from trivial due to the dependence on the
imaging modality and the fact that the cells can be tightly packed in the growth chamber
and may appear in various configurations making them difficult to segregate.

The DynamiX Project

The research in this thesis is part of the larger interdisciplinary DynamiX project within the
SystemsX.ch consortium.E] SystemsX is the the research initiative underway in Switzerland
with the mandate of promoting Systems Biology.

The aim of the DynamiX project is to advance in the state-of-the-art of protein biochem-
istry and live cell imaging by applying highly-integrated microfluidic devices, advanced
image processing, and computational biology to two central aspects of cell function: the
cell cycle and growth control. Together these methods enable a single scientist to gather
thousands of precision measurements on protein expression dynamics, promoter architec-
ture, or molecular interactions in a single experiment. The measurements provide insights
into network function on all levels, including cis-regulatory networks, transcriptional reg-
ulatory networks, and protein expression dynamics, thus permitting the development of
quantitative models of specific sub-network function, such as ribosome biogenesis or DNA
damage response. The final goal of the project is to decipher promoter architecture to
understand how a given promoter DNA sequence regulates gene expression levels. We
show in Figure the general pipeline of the DynamiX project from the image acquisition
process to the final data analysis. Within the DynamiX project, we tackle the block of
image analysis shown in Figure|1.1

Developement of Principalized Image Analysis Tools for Systems
Biology

Many algorithms exist in the literature that perform cell detection, segmentation or track-
ing. We review the state of the art with regard of this matter in Chapter [2| These algo-
rithms are usually ad-hoc, and strongly dependent upon the acquisition technique. This
makes it difficult to reuse image analysis tools from different imaging modalities, or even
tools developed for the same imaging modality, but designed to detect objects with clear
morphological differences (e.g., an elliptic detector designed to segment cell nuclei is not
suited to segment chromosomes even though both can be imaged with fluorescence mi-
Croscopy).

In this thesis, we aim at designing tools that can be used in a variety of situations and are
easily extensible to a broad range of imaging modalities. For that reason, our approach to
design segmentation and tracking algorithms is principaled, in contrast to many of ad-doc
designs that can be found in the literature. Our aim is two-fold: first of all, we want our
methods to be rooted in a consistent and flexible framework in which our algorithms can
be properly analyzed. This will enable us to derive optimality results and make concrete

1. http://www.systemsx.ch/
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1.5. Overview of the Contributions

Microfluidic
Yeast Image Image Data
. . —> chemostat —> N —> . - .
libraries arrays acquisition analysis analysis

4100 member yeast 2400-4100 chemostats >200,000 images per Fully automated image Clusering of protein
GFP strain library per device experiment analysis expression profiles
Constructed promoter Each chemostat DIC and fluorescence Single cell: Cell cycle dependent
library ~500pL small - Detection protein abundance,
High-temporal - Tracking localization, and noise
mCherry transcription Real time control over resolution: ~0.25-1Hz - Size determination fluctuations
factor library growth environment
High-spatial Protein: Pathway dependent
TAP library (protein Fully automated resolution - Abundance fluctuations
arrays) - Localization

Easily integrated with
optics

Figure 1.1: Description of the DynamiX work-flow. Microfluidic devices are programmed
with yeast libraries and imaged on an automated microscope. The acquired images are
then analyzed and the resulting data interpreted. The images on the bottom show, from
left to right, a highly-integrated microfluidic device, yeast cells grown in pico-chemostats
using device on left, a fully automated fluorescence microscope, a yeast cell expressing a
GFP tagged protein, a colony of yeast cells and their trajectories, and a statistical temporal
analysis of the colony of yeast cells expressing RNR3.

statements about the efficiency and performance of the derived algorithms. Moreover, it
will also provide a clear methodology to extend or adapt our algorithms to new imaging
modalities. Secondly, we want to produce useful tools for the bioimaging community.
Thus, special attention is given to the user-friendliness and interactivity of our resulting
software.

Usually, the general perception of the shape of an object is independent of its location,
orientation and size [23]]. These abstract attributes, which seem to come form Plato’s
world of Ideas, can be made precise using the appropriate formalism. We identify the
areas of functional analysis and differential geometry as the ones that provide an ele-
gant methodology to design shape descriptions with explicit parametrization. Moreover,
computational geometry provides us with strategies to implement the shape descriptors
and create routines that perform quantitative analyses of biological images. We use the
machinery of these disciplines to identify the strengths and limitations of the classical
B-spline representation model.

Overview of the Contributions

Specifically, this thesis addresses the problem of detecting and segmenting biological ob-
jects and tracking them over time in high-throughput microscopy. This is far from trivial
due to the fact that, in biology, the objects of interest are usually indistinguishable from
each other and can appear tightly packed and in various configurations making them dif-
ficult to segregate. We focus on objects that have a constrained shape and move according
to specific patterns. It seems natural, then, to approach the detection, segmentation and
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tracking problems with model-based techniques that enforce the topology.

We revisit the spline-based framework for active contours, and tailor it to cell segmenta-
tion. We identify the key elements of the framework that have an important impact on the
efficiency, speed, robustness, and usability. We address them providing optimal solutions
derived from functional analysis. The most important design factor throughout the thesis
is the efficiency of the derived algorithms. For that, a proper definition of shape descrip-
tors is imperative. Every module of the segmentation and tracking algorithms must be
efficient in order to be able to apply them to high-throughput microscopy.

The main contributions of this thesis can be summarized as

— The proposal of a parametric curve representation model using generalized B-splines
that can perfectly replicate ellipses as well as higher-order algebraic curves. For that
purpose, we fully characterize the family of basis functions with shortest support that
allows one to reproduce exponential polynomials. We show that the minimal-support
of these functions has a crucial role in terms of efficiency.

— Anew 2D segmentation method using our B-spline parametric curve model. It is versa-
tile enough to provide a good approximation of any closed curve in the plane. Further-
more, its most important feature is that it can perfectly generate circular and elliptical
shapes. These features are appropriate to delineate cross sections of cylindrical-like
conduits and to outline blob-like objects.

— The extension of our 2D segmentation method to 3D obtaining a fully parametric
B-spline surface model with a sphere-like topology. This surface can approximate any
blob-like structure with arbitrary precision and reproduce spheres and ellipsoids per-
fectly.

— A framework that is capable of generating fast and intuitive interactions of the user
with the segmentation algorithms due to our B-spline representation of the 2D and
3D segmentation methods. The modification of one parameter in the model affects a
limited region of the active curve/surface, which allows us to provide feedback to the
user in terms of live updating display.

— The design of an image analysis toolkit that performs large-scale time-lapse analysis of
mitotic cells using our segmentation algorithms as building blocks. This is possible due
to the efficiency of each individual segmentation routine and and possibility of high
level of parallelization.

Organization of this Thesis

The thesis proceeds with a review in Chapter [2|of different segmentation methods, among
which we highlight the active contours framework. Special effort is given to categorize
methodologies that have emerged from this framework using different shape representa-
tions.

We present in Chapter [3|the mathematical concepts that are used extensively throughout
the work. Special attention is given to the parametric representation of curves in a basis
composed of integer shifts of a generating function (i.e., uniform B-spline representation).
We also prove our optimality theorems in which the methods designed in the subsequent
chapters are based on.

In Chapter 4} we present a new class of parametric active contours using the special kind
basis functions designed in Chapter[3] We force our bases to have the shortest possible sup-
port subject to some design constraints to maximize efficiency. While the resulting snakes
are versatile enough to provide a good approximation of any closed curve in the plane,
their most important feature is the fact that they admit ellipses within their span. Thus,
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they can perfectly generate circular and elliptical shapes. We address the implementation
details and illustrate the capabilities of our snake with synthetic and real data.

An extension to 3D active contours is presented in Chapter [5] We introduce a fully para-
metric 3D design relying on the basis functions of Chapter [3| Once more, we design our
bases to have the shortest possible support subject to some constraints that maximize
computational efficiency. The proposed 3D snake can approximate blob-like objects with
%! smoothness, with good accuracy and can perfectly reproduce spheres and ellipsoids
irrespective of their position and orientation. The optimization process is remarkably fast
for a volumetric method thanks to the use of Gauss’ theorem within our energy computa-
tion scheme. Our technique yields successful segmentation results, even for challenging
datasets where object contours are not well defined. This is due to our parametric ap-
proach that allows us to favor prior shapes.

Finally, in Chapter[6] we make use of the active contours designed in previous chapters to
design a segmentation and tracking method that performs large-scale time-lapse analysis
of mitotic cells. The demonstrated efficiency of our active contours allows us to use them
as building blocks in a highly parallelizable image analysis toolkit.
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Chapter 2

State-of-the-art in Image Analysis

In this chapter, we first review the state of the art in image-analysis algorithms. Then, we
address how implementation standards allow one to provide users with appropriate tools.

First, we focus on image segmentation. We review different approaches, among which we
highlight the active contours framework. Then, we present the current paradigm in image
analysis for software development.

We describe the current good practices of the bioimage analysis community. To conclude,
we briefly review the most popular open image analysis available platforms.

A Survey on Segmentation

The first step of Biomedical image analysis is often to identify objects in images that are
relevant to a specific application. These objects are typically anatomical structures (e.g.,
organs, vessels or other conduits) in medical imaging, and different cell structures in
automated microscopy.

In image processing and computer vision, the process of separating the desired object (or
objects) of interest from the background in an image is called segmentation. More pre-
cisely, it is the process of assigning a label to every pixel in an image such that pixels with
the same label share certain visual characteristics. Ultimately, the goal of segmentation
is to simplify and/or change the representation of an image into something that is more
meaningful to analyze.

A variety of techniques can be used to do this. The literature contains hundreds of segmen-
tation techniques [24]. They range from simple pixel-wise operations (such as threshold-
ing or masking) to more complex continuous models (such as active contours). There is
no single method that can be considered good for all images, nor are all methods equally
good for a particular type of image.

Segmentation methods vary depending on the imaging modality, application domain, the
level of automation, and other specific factors. Beside manual segmentation, the simplest
method for separating objects from a background is intensity thresholding [25] [26} [27].
This involves defining one or several threshold parameters whose value can be set man-
ually or derived automatically from the data based on the intensity histogram [25]]. This
approach would be successful if the objects to segment and the background are well sep-
arated and their intensity levels differ significantly from each other. Unfortunately, these
methods do not maintain object integrity since they do not include neighborhood rela-
tions, and are also sensitive to noise.

A more elaborated approach consists in using a predefined intensity profile, also referred
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to as a template, to be matched to the image data 28] [29]. This method has been shown
to work well as long as the shape to segment does not change significantly across different
experiments (i.e., rigid transformations) [28]]. In order for the algorithm to gain flexibility
and generality, a large number of different templates must be considered. This usually
makes a good algorithm design impractical [[30].

Another segmentation strategy is to apply the watershed transform [31]]. The image is
considered as a topographic relief map and progressively flooded starting from its local
minima. This transform subdivides the image into regions (catchment basins) with delim-
iting contours (watersheds). However, the basic algorithm has several drawbacks such as
sensitivity to noise and a tendency toward oversegmentation [32]].

Finally, the most used statistical segmentation methods rely on Markov Random Field
Models (MRF). MRF modeling itself is not a segmentation method but a statistical model
that can be used within segmentation methods. MRFs model spatial interactions between
neighboring pixels [33]]. MRFs are often incorporated into clustering segmentation algo-
rithms such as the K-means [34} [35, [36]. The segmentation is then obtained by maxi-
mizing the a posteriori probability of the segmentation, given the image data. The major
difficulty associated with MRF models is the proper selection of the parameters controlling
the strength of spatial interactions [33]]. Moreover, MRF-based segmentation methods are
usually computationally intensive algorithms.

Snakes, a Perfect Fit for Image Segmentation

In recent years, there has been an increasing interest in using deformable models in seg-
mentation [37), (38 [39] [40] since they provide the best tradeoff between flexibility and
efficiency. Within this category, active contours (also named snakes) are the most popular
tools for image segmentation. More precisely, an active contour is a curve within a 2D im-
age that evolves from an initial position towards the boundary of the object of interest. Its
extension to 3D images is an evolving surface. The initial position of the snake is usually
specified by the user, or it is provided by an auxiliary detection algorithm. The evolution
of the snake is formulated as a minimization problem; the associated cost function is usu-
ally referred as snake energy. Snakes have become popular because it is possible for the
user to interact with them, not only when specifying its initial position, but also during
the segmentation process. This interaction is usually implemented by allowing the user to
specify control points the snake must go through.

Research in this area has been fruitful and has resulted in many snake variants [37, [38}
41] 42]). They differ in the type of representation and in the choice of the energy term. In
the rest of this chapter we provide a categorization of snakes in terms of representation,
and offer a description of the overall snake energies.

Snake Representations Snakes can be broadly categorized based on the type of repre-
sentation used:

1. Point-snakes. These snakes are based on the simplest representation of discrete curves
(or surfaces): by using an ordered collection of points [43] [44} [45]]. A pair of snake
points are considered adjacent if some topological relations are satisfied [46]. In
Figure we show a 2D point-snake overlaid on the grid associated to a discrete
image model. The discrete curve is displayed as gray pixels, and has an 8-neighbor
connectivity.

This approach does not ensure smoothness of the contour due to the discrete nature
of the representation. However, some degree of smoothness (in a discrete sense) is
usually introduced by adding extra constraints in the energy functional [43]]. This
discrete representation requires many parameters to encode a simple shape (two for
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Figure 2.1: Graphical representation of the discrete curve defined by a point-snake over
the grid associated to a discrete image model. The shaded pixels represent the snake
points joined by an 8-connected digital topology.

each snake point in 2D and three for each snake point in 3D). The large number of pa-
rameters to be estimated abate the robustness of the overall segmentation algorithm,
and results in a high computational complexity.

2. Parametric Snakes. The snake is described continuously by some coefficients [[47,
48| 149| 50| [51]]. Parametric snakes are usually built in a way that continuity and
smoothness are ensured. This provides the algorithm the capability to segment at an
arbitrary resolution, which may yield subpixel accuracy. Moreover, when compared
with the discrete approaches, they require much fewer coefficients and result in faster
optimization schemes than their discrete counterpart.

There are many different techniques for representing continuous curves. For a com-
plete review, refer to [52] 53]]. In computer graphics, curves and surfaces are often
represented using non-uniform or uniform B-spline functions [|54]] and, more recently,
NURBS (Non-Uniform Rational B-Splines) [[55]]. NURBS are the preferred approach
in computer graphics since these functions are closed under perspective transforma-
tions. On the other hand, curve and surface parameterizations based on Fourier de-
scriptors [48}, [56] and uniform B-spline functions [50} 57, (58] are popular in image
processing due to the existence of efficient signal-processing algorithms, and their
invariance to affine transformations. Of these, the B-spline curves have the extra ad-
vantage of locality of control which favors a more user-friendly interaction: a change
in one of the snake points will only affect a small region of the curve or surface.
We show in Figure a curve parameterized with a B-spline basis, its spline con-
trol points as well as its corresponding coordinate functions. We discuss the B-spline
representation of curves in detail in the next chapter.

In the case of B-spline parameterizations, it can be shown that the computation com-
plexity of the snake energy and, therefore, the speed of the optimization algorithms,
is related to the size of the support of the basis functions [[57]. It is therefore critical
to minimize this support while designing snakes.

Since the curve or surface of parametric snakes is represented explicitly, it is easy
to introduce smoothness and shape constraints [47]]. It is also straightforward to
accommodate user interaction. This is often achieved by allowing the user to specify



2. STATE-OF-THE-ART IN IMAGE ANALYSIS

z1(t)15
1
05 N — -
0 ~ — ZT O~ ;
0 04 /0{ 0.8 1
-0.5 \
-1 \ _//
-15
z2(t)15

1
05 S~ N

0 7 — N —_—
= : = : —— 3
0.2 0.4~ 06, 08 1
-0.5 ~ N rd
» 7
-15

Figure 2.2: Graphical representation of the continuous curve defined by a snake parame-
terized by a B-spline basis. The snake contour is shown as a solid line enclosing a shaded
region, while the '+’ elements are the spline control points. The parametric functions
x1(t) and x,(t) are displayed in solid lines, and the dashed lines indicate the weighted
basis functions.

some anchor points the curve should go through [43]]. The downside of the method
is that the topology of the curve is imposed by the parameterization. This makes
parametric snakes less suitable for handling topological changes, although solutions
have been proposed for specific cases [59] 60].

3. Geodesic Snakes. Geodesic approaches have obtained a lot of attention during the last
decade [61}, 162} 163],[64]. The representation of these snakes is implicit and described
as the zero level-set of a higher-dimensional manifold. Formally, the snake contour is
given by #1(0) = {p € R*|®(p) = 0}, where & is a scalar function defined all over the
image domain. This method is based on the ideas developed by Osher and Sethian to
model propagating solid/liquid interfaces with curvature-dependent speeds [[65]]. The
interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient
field with constant speed or a speed that depends on the curvature. It is moved by
solving a Hamilton-Jacob type equation written for a function in which the interface
is a particular level-set.

These methods offer great flexibility as far as the curve topology is considered. A
single geodesic snake (evolving under the appropriate energy functional), has the
ability to split freely to segment multiple objects within an image. This flexibility is
convenient when segmenting complex shapes, which include shapes with significant
protrusions, and to situations where no a priori assumption about the topology of the
object is made [66]. Moreover, level-set methods can be extended to any dimension,
which is more challenging for the case of point-snakes and parametric snakes.

However, they tend to be computationally more expensive since they evolve a man-
ifold with a higher number of dimensions than the actual contour to segment. We
show in Figure a set of curves generated as the result of computing ®~*(0).
2.1.1.2 Snake Energies In this thesis we follow the standard paradigm introduced by Kass et
al. [43] and formulate the snake evolution as an energy minimization. The snake energy

10
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Figure 2.3: Graphical representation of the continuous curves generated as the result of
computing the zero level-set ($71(0)) of a scalar function &.

is typically a linear combination of three terms:

— the image energy, which is the responsible for guiding the snake toward the boundary
of interest;

— the internal energy, which ensures that the segmented region has smooth boundaries;
— the constraint energy, which provides a means for the user to interact with the snake.
The total energy of the snake is written as

Esnake(@) = Eimage(@) + Eint(e) + Ec(@): 2.1)

where © encodes the snake representation (snake points, parameters, or manifolds).
Then, the optimal © is formally obtained as

€")opt = arg(;nin Esnake(e)'

The energy minimization process is nothing but an optimization procedure, where we
iteratively update the snake representation so as to reach the minimum of the energy
function from a starting position. Many methods exist to minimize the energy functional
(gradient descent, PDEs, DB etc.), and each optimization scheme is usually linked to a
particular snake representation.

The image energy is the most important of the three terms in since is the one that
guides the snake to the object of interest. Traditional snakes rely on edge maps derived
from the image [43| [47]]. These edge-based energies can provide a good localization of
the contour of the object to segment. However, they have a narrow basin of attraction,
making critical a good initialization. Traditional point-snakes and parametric snakes were
very sensitive to initialization. This was in part due to the fact that the underlying internal
energy of these methods was purely based on edge maps. Several authors have developed
alternative solutions to this issue. Among them the most important ones are the introduc-
tion of balloon forces [67], the introduction of gradient vector-fields defined everywhere
on the image domain [[44]], or multiresolution approaches [|50].

More image energies use statistical information to distinguish different homogeneous re-
gions [[49] 68, [69]. The region-based energies have a larger basin of attraction and can

11
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converge even if explicit edges are not present [[70]. However, it does not provide a good
localization as the edge-based image energies.

The internal energy is responsible for ensuring the smoothness of the snake. In its original
definition, it is composed by a linear combination of the length of the contour and the
curvature of the snake [43]]. Despite the fact that this particular expression was the first
one to be introduced, it still corresponds to the most widely used [I38]]. Some authors also
incorporate prior knowledge as shape constraints in this energy [[71].

The constraint energy provides a means for the user to interact with the snake. Usually,
this is obtained by introducing an energy functional that behaves as virtual springs that
pull the snake towards the desired points [[57]]. Some implementations obviate the con-
straint energy while accommodating the user interaction as a hard constraint and leaving
the parameters related to the point out of the optimization routine [[72].

An alternative minimization framework to is the multipurpose Mumford-Shah func-
tional [[73]]. In this framework, the image is modeled as a piecewise-smooth function.
The functional penalizes the distance between the model and the input image, the lack of
smoothness of the model within the sub-regions, and the length of the boundaries of the
sub-regions. This approach is quite popular in the context of geodesic snakes [70}, (74, [75]
76].

The quality of segmentation is determined by the choice of the energy terms; it is gen-
erally agreed that specific image energies need to be defined for each particular imaging
device. For this reason, we define in the subsequent chapters particular energies for each
application.

Image Analysis Software

The step for converting algorithms to good and usable bioimage analysis software is also
of great importance. In this section, we present the current good practices for software
development to ensure a successful conversion, and we review the history and current
state of the most popular open image analysis platforms.

Software Design

The primary users of image analysis software are biologists with little or no programming
training and who are operating their own microscopes and analyzing their own data. They
require user-friendly, well-supported, and flexible software to easily fulfill their particular
needs [77].

It is generally agreed that the following good practices must be followed in order to create
software that is usable and helpful to a broad segment of bioimaging community [|78]]:

1. User-friendliness: The software should be intuitive and easy-to-use. Moreover, it
should be accompanied with clear usage manuals and offer feedback mechanisms
(e.g., forums, mailing lists, bug report systems) [79]. We show in Figure 2.4 an intu-
itive interface of an image analysis software running in a Tablet PC.

2. Developer-friendliness: A good documentation of the structure of the code is crucial
since it provides developers the capability to understand what and how the program
works. Open-source software is a good example of developer-friendly software.

3. Interoperability: It is important to make software that communicates using the avail-
able open standards. In this way, different software can easily interact without having
to define complementary components to translate the data. A successful example is
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Figure 2.4: Samsung Slate PC Series 7 running the open image analysis software Icy [|81]]
and one of the plug-ins described in this thesis. This is the result of the efforts of the open-
source community of developers to produce an user-friendly image analysis software.

the Bio-Formats project, a Java library for reading and writing life sciences image file
formats [|80]].

4. Modularity: The implicit modularity of object-oriented design is key when maintaining
a large piece of software. The use of modular structures with common interfaces
allows developers to update their software at a minimum effort.

5. Validation and Quality Control: The software should be tested in ways that are relevant
to the user. Moreover, for the benefit of making research reproducible, it must be
possible to replicate the same exact computations and quantitative results that the
developers advertise.

Open Image Analysis Platforms

The established paradigm in science is to ask and answer scientific questions by making
observations and doing experiments. In order to properly analyze the experiments and
draw conclusions, the scientist must be aware of how his tools work. Simply pressing a
button in a piece of software and interpreting the results without understanding what the
software does is obviously not good scientific practice. Open-source software provides the
necessary transparency, giving scientists the opportunity to fully understand the computa-
tional methods behind their tools.

Among all open-source bioimage analysis tools, the one that has had the most impact so
far is ImageJ [82]]. It was initiated by Wayne Rasband at the National Institutes of Health
(NIH) under the name of NIH Image. The idea was to develop a low-cost image-processing
platform for the Apple Macintosh II. This piece of software was coded in Pascal, and had
add-on capabilities in the form of expansion slots in order to enable other developers to
easily extend the software for their own applications.

In the mid-nineties, the programming language Java was created by Sun Microsystems.
Java applications are typically compiled to bytecode that can run on any machine regard-
less of the architecture. This allowed developers to write their software independently of

13
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Initiated Status Language License
NIH Imageli] 1987 Discontinued Pascal Public domain
ImageJ 1997 Active Java Public domain
MManager 2005 Active C++ BSD, Lesser GPL
CellProﬁler 2006 Active Python GNU
Fijif 2007 Active Java GNU
ImageJZE] 2009 Under development Java Simplified BSD
Icyﬂ 2011 Active Java GPL

Table 2.1: Summary of open-source image-processing platforms.

the platform. Rasband ported NIH Image to Java in the late-nineties under the name of
ImageJ. As a result the base of NIH Image users and developers was extended to PC and
Unix.

ImageJ upgraded the expansion slots of NIH Image into the more modular concept of
plug-ins. Since its creation, ImageJ has enjoyed a great popularity, and resulted in the
development of a wide variety of plug-ins for very diverse applications [83].

Besides the core application, another popular distribution is Fiji. It is a more user-friendly
distribution of ImageJ together with Java, Java 3D and the most prominent plug-ins as
well as transparent installation and updates [84].

The largest upgrade of ImageJ since NIH Image is being prepared involving several re-
search laboratories under the name of ImageJ2. It involves a full rewrite of the source
code using new architectures in order to overcome the limitations of ImageJ.

Recently, other open-source related platforms are emerging. Among them, we can find:
pwManager, a software package for the control of automated microscopes [|85]]; CellProfiler,
a software specialized in measuring phenotypes automatically within images [|86]]; and
Icy, a full integrated easy-to-use platform extensible with plug-ins [[81]]. We summarize all
these open-source projects in Table [187].

Due to the possibility that all the aforementioned image-processing packages diverge and
interoperability becomes an issue, the Open Bio Image Alliance[ﬂ (OBIA) was constituted
in 2012. Its primary mission is to provide biologists and researchers in the life sciences
with the highest quality public-domain software resources and a corresponding knowledge
base to analyze and quantitate their image data in a sound and reproducible fashion, and to
strengthen the interaction between biologists, imaging scientists and developers of bio-image
analysis software and algorithms.

OBIA capitalizes on the existence of highly successful software packages such as ImageJ. How-
ever, it also faces substantial challenges relating to the long-term support of existing software,
its improvement, the quantity and diversity of available plug-ins, the documentation and
organization of the modules, as well as compatibility issues. OBIA promotes long-term avail-
ability and backward compatibility, federates the harmonious community-based development
of interoperable software, and promotes good software development practices.

. http://rsb.info.nih.gov/nih-image/
. http://rsbweb.nih.gov/ij/

. http://www.micro-manager.org/

. http://www.cellprofiler.org/

. http://fiji.sc/

. http://developer.imagej.net/

. http://icy.bioimageanalysis.org/

. http://www.openbioimage.org/
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The methods described in this thesis have been programmed as plug-ins for ImageJ and
Icy. Both are free open-source multi-platform Java image-processing platforms. Our plug-
ins are independent of any imaging hardware and, thanks to ImageJ and Icy, any common
file format may be used. The plug-ins and the source codes are freely available at the
respective official repositories.
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Chapter 3

Spline Bases for Representation of
Curves

The generation of curves under geometric restrictions is an important area of research in
Computer-Aided Geometric Design (CAGD). Considerable effort has been expended over
the last forty years in this field in order to develop efficient and flexible representations
of complex shapes. Since Bézier curves in the early sixties, B-spline curves in the mid
seventies, and subdivision schemes in the late seventies, the search for representations that
overcome the topological limitations of the classical approaches has not ceased. Research
in this area has been fruitful and has resulted in many different methodologies [|88],[89].
They can be broadly categorized in terms of curve representation as

— subdivision schemes, where the curve is described as the limit of a refinement pro-
cess [90l, (97, [02];
— parametric schemes, where the curve is described continuously by some coefficients
using basis functions [|53} (93], (94, [95]].
A subdivision scheme is a set of rules that recursively define new points on finer grids start-
ing form a set of initial points on a coarse grid. If the same rule is kept for all iterations, the
scheme is called stationary [[96}[97,[98]]. If a different rule is used at each refinement level,
the scheme is called nonstationary [[99, [100]]. Research is continually moving toward the
investigation of refinement rules able to combine desirable reproduction properties under
some geometrical constraints. In particular, schemes capable of reproducing circles were
proposed in [[101],[T02} 103} [104, [T05]], and, more recently, schemes based on exponential
B-splines made possible the reproduction of conic sections [[106} 107,108}, [109, [110]] and
exponential polynomials [111] [112]].

For certain applications, it is more convenient to represent the curve in an explicit para-
metric form instead of representing it as the limit of a subdivision process, the reason
being that the parameters provide a direct way of evaluating any point on the curve. For
computational reasons, short basis functions are preferable because the evaluation of a
single point on the curve then depends on fewer coefficients.

In this chapter, we design a parametric curve representation model that can perfectly
replicate ellipses as well as higher-order algebraic curves. To achieve this, we select basis
functions that have the capability of reproducing specific families of exponential poly-
nomials. We prove a factorization theorem that links the reproduction properties of a
given basis function and its support. The theorem shows that any compact-support basis
function that reproduces that subspace can be expressed as the convolution of an ex-
ponential B-spline and a compact-support distribution. As a corollary of this result, we
obtain a full characterization of the minimal-support basis functions with the required re-
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production properties; these basis functions were first identified by Ron using a different
approach [[I13]]. This explicit characterization gives us the opportunity to identify inter-
esting candidates within the family, and to construct nonstationary subdivision schemes
that share the same reproduction properties.

This chapter is organized as follows: In Section we state the general parametric
curve model through an expansion with compact-support basis functions, and discuss the
requirements these bases should fulfill. In Section (3.2} we construct a family of basis func-
tions that reproduce exponential polynomials and prove that these bases have minimal
support. In Section [3.3] we exhibit the multiresolution properties of our basis functions
and propose a subdivision scheme that shares the same reproduction properties within
the family. Finally, we illustrate the versatility of our model in Section [3.4|by identifying a
basis from the family that contains ellipses and higher-order harmonics within its span.

Parametric Curves

Generic Curves

A curve r(t) on the plane can be described by a pair of Cartesian coordinate functions
x1(t) and x,(t), where t € R is a continuous parameter. We choose to parameterize the
one-dimensional functions x; and x, by linear combinations of suitable basis functions.
Among all possible bases, we focus on those derived from a compactly supported generator
and its integer shifts {¢(- — k)};ez- This allows us to take advantage of fast and stable
interpolation algorithms [[114} [115] [116]]. The parametric representation of the curve is
then given by the vectorial equation

00

(0= Y k(s -k, (3.1

k=—00
where {c[k]},cy is a sequence of control points and T a sampling step.

We want our parametric curve to be defined in terms of the coefficients in such a way that
unicity of representation of the coordinate functions x; and x, is satisfied. Furthermore,
for computational purposes, we ask the interpolation procedure to be numerically stable.
A generating function ¢ is said to satisfy the Riesz-basis condition if and only if there exist
two constants 0 <A < B < oo such that

0 2

D clkle(-—k)

k=—00

Allellf ) < <Bllelly 2> (3.2)

Ly(R)

for all ¢ € £,(Z). A direct consequence of the lower inequality is that the condition
Y, clk] np(% —k) =0 for all t € R implies that ¢[k] = O for all k € Z. Moreover,
c[k] =0 for all k € Z trivially implies that > . _ e[k] @(% — k) =0 for all t € R. There-
fore, the basis functions are linearly independent and every function is uniquely specified
by its coefficients. Moreover, the upper inequality ensures the stability of the interpolation
process [116][117]. Condition can be expressed [[117] in the Fourier domain, where
the following equivalent form must hold for every w € R:

A< D] [p(w+2mn)? < B.

n=-—00

The curve model in (3.1) has been shown to be very versatile since it can approximate any
curve when the sampling step T decreases while keeping the same basis function ¢. The
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minimum requirement for this to happen is that ¢ should be able to reproduce constants,
which we formalize by
o0

Z e(-—k)=1. (3.3)

k=—00

In the literature of approximation theory, this constraint is often named the partition-of-
unity condition [[T18]].

3.1.2 Closed Curves

We are especially interested in the case when r is closed. In this context, the two co-
ordinate functions are periodic, with the same period. We normalize it to unity so that
r(t) =r(t+1) for all t € R, and divide it into M segments, which is equivalent to choosing
the sampling step T = % Under these conditions, we can reduce the infinite summation
in to a finite one with M terms involving periodized basis functions. We write

I
M2

r(t) c[klp(Mt—k)
kz;mM—l
= > c[Mn+k]le(M (t—n)—k)
v
= D clkl D) oM (t-n)—k), (3.4)
k=0 n=—00

Wpcr(M t_k)

where M is the number of control points, the sequence {c[k]},c;, is M-periodic, and ¢,
is the M-periodization of the basis function ¢. In the periodic setting, it has also been
shown that this parametric curve model is very versatile [[I119], and we can approximate
any closed curve as accurately as we want by increasing the number of control points M.
Under some mild refinability conditions, it has been shown that this model naturally leads
to a stationary subdivision scheme [90].

3.1.3 Desirable Properties of Bases in the Periodic Settings

Now, we enumerate the conditions that our parametric closed curve model should satisfy,
and introduce the corresponding mathematical formalism.

1. Unique and Stable Representation. We want our closed parametric curve to be defined
in terms of the coefficients in such a way that unicity of representation is satisfied, and
we want the interpolation procedure to be numerically stable. A generating function
@ is said to satisfy the periodic Riesz-basis condition if and only if there exist two
constants 0 <A < B < oo such that

M-1 2

2 2
Allell? qop-1p) < ch[k] Pper(M - —k) <Bllel? o1y 35
=0 Ly([0,1])

holds true for all M-periodic and bounded sequences c¢. The interpretation of this
condition is in all points similar to the non-periodic case. We also note that (3.5) is
automatically satisfied if ., is defined as in (3.4), and (3.2) holds true for ¢.
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2. Affine Invariance. Since we are interested in representing shapes irrespective of their
position and orientation, we would like our model to be invariant to affine transfor-
mations, which we formalize as

M-1

Ar(t)+b=>" (Ac[k] +b) g (Mt —k), (3.6)
k=0

where A is a (2 x 2) matrix and b is a two-dimensional vector. From (3.6)), it is easy
to show that the affine invariance is satisfied if and only if

M-

_

wper(M : _k) =1 (37)
k=0

This last equality is a direct implication of the partition-of-unity condition stated

in (3.3).

3.1.4 Approximation and Reproduction Properties in Periodic Settings

3.2

20

The parametric closed-curve model (3.4) can be used to approximate any closed curve s
as accurately as desired by increasing the number of control points M. Formally, we write
that

Jim_lls = Zsls o =0

where %,,s denotes a projection of s onto {¢(M - —k)}key, or, equivalently, onto {@pe,(M -
—k)}k=[0..m—1]> Since both allow for alternative representations of the same space. In order
to be able to select a suitable basis function, it is important to know the rate at which
the error decreases as a function of M. The open-curve case reduces to the well-known
Strang-and-Fix framework in approximation theory [[120] [121]], the results of which are
transposable to the closed-curve case as well [[T19].

In addition to desirable approximation properties, our main interest lies in the situation
where the curve r can reproduce desirable shapes exactly. For this purpose, we select
for each M > M, a specific basis function capable of reproducing the shapes of interest
with M vector coefficients, and denote it ¢,,. Its M-periodization is written as @y pe-
Using a different basis function ¢,, for each value of M obviously leads to a subdivision
scheme that is nonstationary. The existence of such a scheme depends on some refinability
conditions over ¢,,. In particular, the conditions of Section have to hold for each
¢y individually.

In the nonstationary case, the approximation error of a curve s is ||s — Zysl|;(0,17), Where
now #,s denotes the projection of s onto the space {py (N - —k)}iey, With N = M.
Inspired by [[100], which discusses asymptotically equivalent binary subdivision schemes,
we show in Section that the rate of decay of the approximation error as a function
of N = M is equivalent to that of the stationary case.

Reproduction of Exponential Polynomials

The main aim of this section is to introduce a family of functions that reproduce exponen-
tial polynomials, and prove that these functions have minimal support. To achieve this
goal, we start by formalizing the concept of the reproduction of exponential polynomials.
Next, we define the exponential B-splines and list their relevant properties. This allows
us to give a full parameterization of the family of functions of interest: they happen to be
combinations of exponential B-splines and their derivatives. Note that, in this section, we
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consider spline functions on a cardinal grid on the real line. The case of periodic spline
functions corresponding to closed curves follows directly from this theory by the argument
given in Section but the theory we develop here is more general and can also be
used to design basis functions that reproduce non-periodic functions, for instance, open
curves or surfaces.

3.2.1 Preliminary Definitions

A function Pg of the variable t € R is called an exponential polynomial of degree N and
exponent a € C when it takes the form

N
PN() = et (a[o] + Y aln] t"), (3.8)
n=1

where {a[n]},c0. 7 is a sequence of (N + 1) complex coefficients such that a[N] # 0. A
finite linear combination of exponential polynomials takes the form

M
> plm] P, (3.9)
m=1

A generating function ¢ is said to reproduce a function f if and only if there exists a
sequence {c[k]}rez such that

00

=7 clklpt—k)

k=—o00

holds almost everywhere.

3.2.2 Reproduction Conditions

A fundamental result in approximation theory is that there is an equivalence between the
ability of a generating function to reproduce polynomials of a certain degree and the order
of decay of the approximation error as the step size goes to zero [[122]. Strang and Fix
showed in [[121]] that a generating function ¢ € L,(R) has an approximation error that
decays with order N if and only if

f p(t)dt #0

—00
and there exists a finite constant C,, € C such that

o0

D =k e(t—k)=C,

k=—00
holds for almost every t € R, and for n € [0...N — 1]. Moreover, the generating function
reproduces polynomials up to degree (N — 1).

An extension of the Strang-and-Fix conditions was presented by Vonesch et al. in [[123]] in
the context of the reproduction of exponential polynomials. Here, we provide a reformu-
lation suited to our needs.
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Proposition 1. A compact-support generating function ¢ € L,(R) reproduces exponential
polynomials of degree up to (N — 1) and exponent a if and only if

J e *tp(t)dt #0 (3.10)

—00

and there exists a finite constant C, € C such that

D t-k) e Rt —k)=c, (3.11)

k=—o00

holds for almost every t € R, and forn€ [0...N —1].

This proposition is a direct consequence of the generalized Strang-and-Fix conditions
from [[123]] and the fact that ¢ is compactly supported.

Another way of approaching the problem is offered in [[124]] where the authors show that
the reproduction properties of generating functions are preserved through convolution.
We summarize here their proposition for completeness.

Proposition 2 (Unser and Blu, 2005). Given a generating function ¢, that reproduces
exponential polynomials of exponent o and degree up to N, then, for any v such that
fjooo et qp(t)dt # 0, the composite function (4 %) also reproduces exponential poly-
nomials of exponent a and degree up to N.

The formulation proposed by the authors also requires two mild technical conditions over
1 and (¢, *1) to ensure that moments are well-defined.

Proposition |2 provides a constructive procedure to build generating functions using sim-
pler functions with known reproduction properties. In the next section, we present the
exponential B-splines, which will provide us with the appropriate building blocks to re-
produce exponential polynomials.

Exponential B-Splines

As their name suggests, exponential B-splines are the exponential counterpart of the well-
known polynomial B-splines [[124], [125| [126[]]. They have the property of reproducing
exponential polynomials, polynomials being recovered as a particular case by setting a = 0
in (3.8). An exponential B-spline of order N and poles @ = (ay,...,ay) is defined in the
Fourier domain as ( )
N — e Jow—an
Bale)=]] e ™ (3.12)
m=1 Jw—an

Note that the exponential B-splines are entirely specified by the collection a; the ordering
of the poles a,, is irrelevant. We illustrate in Figure several exponential B-splines,
where we see that a wide range of behaviors can be obtained by varying N and a.

The most relevant properties of exponential B-splines for our purposes are

— The exponential B-splines are always well-defined (i.e., bounded and compactly sup-
ported), and form a Riesz basis if and only if (ozm1 — amz) ¢ 27j7Z for all pairs such
that m; # m,.

- Exponential B-splines of order N are compactly supported within the interval [0, N].
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6(04 6((1,04)
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Figure 3.1: Examples of exponential B-splines. (a) First-order exponential B-splines with
a < {(—-2),(-1), (—%), (0),(%)}. (b) Second-order exponential B-splines f, ,) with a €
{(=2,-2),(-1,-1), (—%, —%), (0,0), (%, %)}. (c) N-th order exponential B-splines 3, )
with a = —i and N € [1...5].

— The convolution of two exponential B-splines yields another B-spline of augmented
order

ﬁal * ﬁaz = ﬁaluaz
where (a@; Ua,) is the concatenation of the elements of a; and a,.

— The exponential B-splines of first order with parameter (a) reproduce the exponential
function with exponent a

e‘“= Z e“kﬁ(a)(t—k).

k=—00

— Exponential B-splines reproduce exponential polynomials of degree up to (le — 1)
and exponent a,, if and only if a, appears exactly N, times in @ and, for all other

distinct a,, , we have that (aml - amz) ¢ 2mj 7.

The three last properties provide us with a constructive procedure for building generating
functions capable of reproducing exponential polynomials of a given degree and exponent.
By construction, the support of the resulting generating functions corresponds to the or-
der of the exponential B-spline. We refer to [[124] for additional aspects of exponential
B-splines.
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Our first goal is to characterize the functions that reproduce exponential polynomials.
To that end, we are able to prove a converse version of Proposition [2j we prove that
any compact-support function with the required reproduction properties must contain an
exponential B-spline convolution factor with the same reproduction properties.

Theorem 1. Let ¢ be supported within [a, b] and let it reproduce finite linear combinations
of exponential polynomials P such that (ocm1 — amz) ¢ 27j7Z for my # my. That is, ¢
satisfies (3.10) and (3.11) for each pair (N,,, a,,,). Then, a distribution v exists such that

0 =By *xY, (3.13)

where v satisfies (3.10) for all a,,, each a,, appears N,, times in @, and 1 is compactly
supported within [a,b—N] with N = 3n_ N,

Proof. We proceed by induction over the order N,, of each a,, to show that we can factor
out N, times an exponential B-spline of first order for each a, from the generating
function . The process can be repeated for each exponent until the remaining kernel
cannot reproduce any exponential polynomial anymore. Then, it is enough to show that,
for a given a,,,, there exists a distribution v such that

® = Ba,,) * ¥ (3.14)

where 1 satisfies the following properties:

1. it is compactly supported within [a, b — 1];

2. it reproduces exponential polynomials of degree up to (Nmz - 2) and exponent a,, ;

3. it reproduces exponential polynomials of degree up to (le — 1) and exponent a,,
for all my # m,.

Since the definition of 1 provided in (3.14)) is implicit, we need to verify that this distribu-
tional kernel exists and is well-defined. We show this constructively. For a given m, < M,
we define the function

o0

P(t) =D ek (D - a, De(t —k), (3.15)

k=0

where D is the derivative operator in the sense of distributions, and I is the identity. The
infinite sum in (3.15) is well-defined since, for every t, the sum has only a finite number
of elements because ¢ has compact support. From (3.15]), we write that

P(6) — e (t —1) = (D — a,y, Dp(L). (3.16)
Taking the Fourier transform of (3.16) leads to the factorization
R 1 —_ e_(jw_amz) R N R
¢(w) = ——————Y(@) = fq,, (@) P(w)
Jw — Oy, 2
which corresponds to the implicit definition of v given in (3.14).

To prove Point 1), we recall that ¢ reproduces exponential polynomials of degree up
to N,, —1 = 0 and exponent a,, . Thus, by setting n = 0 in (3.11) and applying the
differential operator (D — O, I) , we have that

00

Z emy k (D — Qp, I) p(t—k)=0,

k=-o00
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in the distributional sense. Thanks to this last equality and using the explicit formula of
given in (3.15)), we can also write that

() == > ek (D-a,,1)o(t—k).

According to this last expression, the support of v is contained within (—oo, b — 1]. But,
according to the definition (3.15]), we also have that the support of 1) is contained within
[a,+00). Hence, we conclude that the support of 1) is contained within [a, b — 1].

We deal with a modified version of (3.11) to prove Point 2). By linearity, and since ¢
reproduces exponential polynomials of degree up to N,, —1 > 0 and exponent a,, , we
can write that

00
D7 Pt—k)e Tyt —k) =G, (3.17)
k=—00
where P is any polynomial of degree no greater than (N 1) and C, is a constant that

only depends on the polynomial P and not on t. Then, the application of (D A I)

to ([3.17) leads to

0

0 = > P(t—ke M (D-q, 1) o(t—k)

k=-o00

P(t—k)—e*m2 Y(t—k-1)

[o¢]
+ D0 P(t—k)e P (e — k),
k=—00

Cp

where we have used (3.16) to rewrite the first term, and where the second term is equal
to the constant C; since P is a polynomial of degree no greater than (Nm2 - 2). Since 1
has a compact support, we can rearrange the terms as

[0 9]

Dt —k)e Ty —k)=—Cp, (3.18)

k=—o00
where Q(t) = P(t) — P(t +1).
Since P is a polynomial of degree no greater than (Nm2 — 1), it follows that Q is a
polynomial of degree no greater than (Nm2 — 2). This also means that, for all poly-
nomials Q of degree no greater than (N 2) there exists a constant C, such that
Zk__oo Q(t — k) e % (t=H) Y(t —k) = Cq. In particular, if P(t) = t, then Q(t) = —1. Be-
cause P is a polynomial of degree lesser than that of P, it also satlsﬁes . Then, we

can substitute P by P = 1 in (3.17), which we combine with (3.18) and Q = —1 to obtain
the system

Y€ ot —k) = G
~ Y € TP —k) = =G,
which leads to
Z e M (R (t — k) = Z e % () o (r — k).
k=—00 k=—00
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Integrating the last expression of t over the interval [0,1], and rearranging the terms,

yields
f e‘“mzfmp(t)dt:J e *mtp(t)dt.

—00 —00
Thus, since ¢ satisfies (3.10), so does 1. Therefore, 1 reproduces exponential polynomi-
als of degree up to (Nm2 - 2) and exponent a,,,

Finally, to prove Point 3), we proceed in the same manner. We recall that, for m; # m,,
the function ¢ reproduces exponential polynomials of degree up to N, —1 = 0 and
exponent a,, . Thus, if we use (3.17) with parameter a, and apply the differential

operator (D — O, I), then we obtain

(am1 - amz) C‘P =

00

> P(t—k)e ) (D—a, 1) o(t —k)

k=—00

P(e—k)—e"m2 4(t—k—1)

[o¢]
+ >0 Pe—Kk)e T g(e — k),

k=—o00

7
Ci’

where we have used again (3.16) to rewrite the first term, and where the second term
is equal to the constant C’ since P is a polynomial of degree no greater than (N 2).
Since 1 has compact support we can rearrange the terms to obtain

00
Dot -k m y(e —k) = (an, —ay,) Cp— Ch, (3.19)
k=—c0

where Q(t) = P(t) — e®m~%m P(t +1).

Since P is a polynomial of degree no greater than (le - 1), and e*m2"%m # 1, then Q

is a polynomial of degree (le — 1), too. This also means that, for all polynomials Q

of degree no greater than (N,, — 1), there exists a constant C, such that Ziiioo Q(t —

k)e @m (R (t — k) = Cq- In addition, we see that, if P(t) = 1, then Q(t) = 1 —e“m"%m

and C}f) = 0. Now, by setting P(t) = 1 in and Q(t) = 1 —e%"%m in li we

have the system

Y e et —k) =
Z;o:—oo (1 — eamz_aml) e_aml (t=k) ,"b(t _ k)

which leads to

P
(aml - amz) Cp,

[e8) [e9)

Am, — Ay
Z e 0m (R (p — )= — M2 Z e (=K (¢ — k).
1

k=—00 - ei(amliaMZ) k=—00

Integrating the last expression of t over the interval [0,1], and rearranging the terms,

yields
f e %miyp(t)dt = ———2— J e *mtp(t)dt.

—00 1- e_(a"‘l ~tny ) —
Thus, since ¢ satisfies (3.10) for a,, , so does ¢ for a,, . Therefore, vy reproduces expo-
nential polynomials of degree up to (le - 1) and exponent a,, . O
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3.2.5 Minimal-Support Generating Functions

As a direct consequence of Theorem |1} we show that appropriate combinations of expo-
nential B-splines define the whole family of functions of minimal support that reproduce
exponential polynomials. This family was first identified in [113] by independent means.

Theorem 2. The size of the smallest-support kernel ¢ € L,(R) that reproduces exponential
polynomials of degree up to (N,, — 1) and parameter a,, form € {1...M} is

N = i N, (3.20)

provided that (OLm1 — amz) ¢ 27jZ for my # m,. Moreover, every minimal-support function
@ can be written as

n

N-1 d
o(t) = Zjo P g Balt =), (3.21)

where a is an arbitrary shift parameter that determines the lower extremity of the support of
. In (3.21), each a,, appears exactly N,, times within the collection a and the collection of

A, satisfies 21::_01 Apal #0.

Proof. By Theorem (1| we can write

0 =Pax1,

where 1 is a distribution with support [a, b — N] that satisfies for all a,,. Finally,
each a,, appears N,, times within the collection a. Conversely, if we take a distribution 1
that satisfies for all a,, and is supported within [a, b’], then ¢ = f8,*%) is supported
within [a, b’ + N] and reproduces exponential polynomials of degree up to (N,, —1) and
parameter a,, for m € [1...M]. Now, minimizing the support of ¢ means finding the
smallest b such that 1) exists. Of course, this is possible only if b’ = b — N > a, which
yields v as a single-point distribution. This shows that the minimum size of the support
of pisb—a=N.

We know from distribution theory that the only distributions that have a support of zero-
measure are finite linear combinations of the Dirac distribution and of its derivatives [[127,
Th. XXXV]. Thus, if ¢ has minimal support, then there exist constants A, such that

P(O) = 24,87t - a). (3.22)

n=0

This means that

00 dn
ORI O

Since we restrict ourselves to L,(R), the summation has to run from 0 to (N — 1).
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Finally, since 1 satisfies (3.10) for all a,,, we have that

o0
0 # f e () de by hypothesis

—0o0
e}

N-1
et Y 2,8M(e)dt by (3:22)
n=0

N1 oo

= Z An f e %t 5MW(r)dt by linearity
n=0 —00
N-1

= Z An <5(”)(t),e_°‘mt> by definition
n=0
N-1

= Anar,
n=0

which proves the last result. O

Interpolator

It is also possible to constrain ¢ to be an interpolator. That is,
VkeZ: o(t)|,_, =5[k].

Due to the size of the support of ¢, the interpolation condition can add up to N constraints,
depending on the value of a. This number of constraints matches the N degrees of freedom
that result from the choice of A, in (3.21)). A general study of the appropriate choice of
A, to satisfy the interpolation condition lies out of the scope of this thesis. However, we
propose a case-by-case approach that will be exemplified in Section [3.4

Multiresolution and Subdivision

We have characterized the complete family of functions with minimal support that re-
produce exponential polynomials in order to build parametric curves. In this section, we
emphasize the connection with the subdivision world using the classical multiresolution
properties of exponential B-splines. Moreover, we also specify another type of multireso-
lution scheme in terms of reproduction capabilities. In this section we focus on our case
of interest: closed curves.

Classical Multiresolution of Exponential B-Splines

An important observation concerning the family of minimal-support basis functions in
(3.21) is that it is constructed with exponential B-splines and their derivatives of equal
parameter @. Thanks to this property and under appropriate circumstances, the basis
functions in (3.21) inherit the multiresolution properties of the exponential B-splines.
It has been shown in [[124), [128] that an exponential B-spline and its derivatives with
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parameter @ = (ay,...,ay) satisfy the nonstationary set of dilation relations

Bl = D halk)Pali—F)

d ¢ S d
aﬁa(a) = 2 :z: ha[k] —tﬁ%(t_k)

k=-00 : d
L) = 203 halkl e patc— k) (3:23)
aP3) = e oLkl gPe ’ '

where n < (N —1), 7 = (%, s %N) is the collection of roots divided by 2, and he is the
2
mask whose symbol is given by

3.3.2 Subdivision Scheme

We have now all the ingredients in hand to define a multiresolution hierarchy of spaces of
closed curves. We define the spline space at resolution M as

M-1
Va,M = {l‘(t) = Z Cy [k] (PM,per(M t— k)} b
k=0

where M is the number of control points, and ¢, .., is the M-periodization of (3.21) with

defining parameter . Note that the parameters {A,},—o_n_1, Which are used to define
@1 per through and (3.4), depend on M. In order to find the equivalent scaling
expression for our generating function ¢,;, we proceed in the Fourier domain where the
explicit expression of ¢, in terms of exponential B-splines is

Pu(@) = Ay (o) Ba(w)e . (3.24)
There, the Fourier-domain function Ay (jw) = Ag[M]+ -, A,[M] (jw)" is a polyno-

mial in (jw) of degree no greater than (N — 1). To derive the scaling relation, we take
@ M(é) and ¢,,,(t) to the Fourier domain. We have that

2¢M(2 Cl)) _ ZAM(]Z(,()) B%(z w)e*ija

> = — . (3.25)
Pam(®) Aay(w)fa(w)er e
By identifying the Fourier symbol H a (e/*), we can rewrite li as
202w Ay(2w . .
Pu(20) _ Mn(20) oy o, (3.26)

Gom(@)  Agy(ow) 2w

Using this result, it is straightforward to verify that V,, y; C Vg 5, provided that a in (3.21)
Ay(2w)
Aym(w)
olution embedding space scheme can be achieved by shifting the grid at each refinement
level. In any case, the particular choice of the set of parameters {A,},—o ny_; Will de-

termine if the basis function is refinable and, therefore, if the multiresolution spaces are

is an integer and is a 2 t-periodic function. If a is noninteger, a similar multires-
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nested or not. We analyze in Section [3.4.1.3|how (3.26) applies to the various bases pro-
posed in this chapter. In addition, we illustrate in Section|3.4.1.4]a constructive procedure
to determine a nontrivial set of {A,},—, y_; that satisfies (3.26)) and generates refinable
schemes.

In the case where the spaces are nested, the subdivision process for finding the sequence
of coefficients c,,, starting with the sequence ¢, is then carried out in the following two
steps:

1. up-sampling of the original sequence c;; with a factor of 2;
2. filtering of the up-sampled sequence with a smoothing filter ha using periodic bound-
2
ary conditions.

The filter h, will depend on the particular choice of the parameters {,},_o y_1, and its
construction will be exemplified in Section for the case of centered basis functions.
The sequence ¢, ,, of 2 M coefficients represents exactly the same parametric curve as the
original sequence ¢, of M coefficients. This process can be repeated indefinitely to obtain
finer representations of the curve in a dyadic fashion.

3.3.3 Multiresolution-Reproduction Capabilities

An alternative multiresolution scheme emerges as we concatenate new elements to a for
fixed M. Since the reproduction of exponential polynomials is fully determined by a, the
incorporation of additional elements does not perturb the reproduction capabilities. This
multiresolution scheme in the reproduction properties will be exemplified in the case of
multiple harmonics in Section [3.4.2]

3.4 Applications

In this section, we make use of Theorem [2| to build basis functions with minimal support
capable of reproducing sinusoids. We start with single-frequency sinusoids that lead to
ellipses, and then we derive the basis functions for generating higher-order harmonics.

3.4.1 Reproduction of Ellipses

Circles and ellipses deserve a special attention since these simple shapes appear frequently
in images in many fields, for example computer graphics and biomedical engineering.
Since all ellipses can be obtained by applying an affine transformation to the unit circle,
we focus on the reproduction of this simple shape. This allows us to take advantage of the
requirement for affine invariance that we stated in Section[3.1.3]

A parametric curve defined by M vectorial coefficients and by an M-dependent generating
function ¢, is said to reproduce the unit circle if there exist two M-periodic sequences
{cc[k]}kez and {c[k]}yey such that

<

-1
cos(2mt) = celk] oumper(M t — k) (3.27)

T
L

sin(27tt) = cs[k] op per(M t — k). (3.28)

>
o

We illustrate in Figure[3.2]the reproduction of sinusoids of unit period for each component.
Note that, when and hold, it is possible to represent any sinusoid of unit
period for an arbitrary initial phase using linear combinations of the two sequences of
coefficients.
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(@ (b

Figure 3.2: Parametric representation of the unit circle (a) and its coordinate functions
(b) with exponential B-splines and M = 10. The dashed lines in (b) indicate the corre-
sponding basis functions.

3.4.1.1 Minimal-Support Basis for Sinusoids with Maximum Smoothness We now particular-
ize Theorem [2| for the case of sinusoids keeping the maximum degree of smoothness for
- This particular case is of special interest to us. We show in Chapter |4]and Chapter
how to build active contours capable of reproducing ellipses and ellipsoids respectively.

Corollary 1. The centered generating function with minimal support and maximal smooth-
ness that satisfies all conditions in Section and that reproduces sinusoids of unit period
with M coefficients is

3
3
¢S (6)= ; AR ) (3.29)

where

. 2
au®) = Lsgn(o) (52

sig% )
¢y = [1,1+2cos=F,1+2cos=7,1].

Proof. Using (3.21)), we see that ¢, needs to be constructed from combinations of expo-
nential B-splines with parameters a = (0, j Zﬁ, —j %”), which leaves N = 3. Therefore, we
have

dn
den

2

05 ()= AS[M] — B,(t — a). (3.30)
n=0

This ensures that npf/[ is the shortest generating function that reproduces constants and

all sinusoids of unit period with M coefficients. The reproduction of constants is a direct

consequence of using @; = 0, and the sinusoid-reproduction property comes from applying

Euler’s identity to a, =j sz and a; = —j zﬁ”

In order to maximize the smoothness of the resulting generating function, the coefficients
A5[M] and 25[M] in (3.30) must vanish. Since @3, reproduces constants, A3[M] can be
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determined by imposing the partition-of-unity condition. From (3.7)), we have that
1 -2
AS[M] = | sinc— | .
ST ( M)

An exponential B-spline parameterized by a generates a Riesz basis if and only if

Ay, — A, E2TZ

for all purely imaginary pairs such that m; # m,. In our case, it is important to realize
that this condition is satisfied if and only if M > M, = 3. In other words, at least three
control points are needed to define our parametric curve.

Finally, a closed form for cpf/, is obtained by computing the inverse Fourier transform of

o 1—ed0 1— e (0d5F) 1 —e-(05)

e

~S S
() =Ag[M ,
e o Tenif ety

where we have set a = —% in order to ensure that the basis function is centered. O

We show in Figure some members of this family of functions for several values of M.
We observe that they are continuous, with finite support of length W = 3, and tend to be
bump-like. Moreover, when M — oo, they converge to the quadratic B-spline. We can see
this by expanding in Maclaurin series ¢,,;. Then, we have that lim,,_,, ¢;,(t) = i sgn(t) t2
and limy, ., ¢}, = [1,3,3,1] immediately implies that lim,; ., ¢, = . This is because
a polynomial B-spline of degree n can be written as

+1 +1
( )g"(t+”7—k),

Note that the convergence of 3,

n+1

ﬁ(t)—Z( 1)t

where ¢"(t) = —sgn(t) t". to 32 is point-wise. A

piecewise expression of (3 » can be obtained by expanding |i into

2me] T _ cog 27 1

) cos = costcosM 0§|t|<2

S () — . 7(3/2-t]) 1 3

AGES (sm—) <t <=
M 1-—- cosz—7T M 2 lt] 2

Minimal-Support Interpolating Basis for Sinusoids As was suggested in Section|3.2.6}
the generating function ¢,, can be tailored to satisfy the interpolating condition. We
investigate now how this applies to the reproduction of ellipses and other trigonometry-
related curves.

Corollary 2. The centered interpolating generating function with minimal support that sat-
isfies all conditions in Section and that reproduces sinusoids of unit period with M
coefficients is

Z( 1k ¢ [k] sec — (gM(t—l— ; —K)

! ™ (t+3 k)
16 (SeczM) Sgtt 2 )

el (6) =

(3.3
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Figure 3.3: Plot of a quadratic B-spline 32 and of the generating functions in (3.29) for
M =3, 4,5, and 6. The function with the lowest peak at t = 0 corresponds to M = 3,
and, as M increases, the central peak increases as well.

Proof. Following the same approach as when constructing ‘Pz?/p we see that ‘lew needs
to be constructed from combinations of exponential B-splines with a = (0, ] %n, —j Zﬁ").
Therefore, we have that

dn
den

2
Ph ()= AL IM] — Bu(t —a). (3.32)
n=0

In order to fulfill the interpolating condition, A;[M], A}[M], and A,[M] must satisfy a
linear system of equations. If we set a = —% in order to ensure that the basis function is
centered, we end up with

ApM] = 1
AL [M] 0

A [M] = (%)2 (1 —sec%) )

In this case, the interpolating Lpllw is a Riesz basis if and only if M > 3, a condition that we
already encountered in the case of Corollary Finally, a closed form for gollw is obtained
by applying an inverse Fourier transform to

_eio 1 e (0 idF) 1 _ e (iwHiF

a1
py(w) = AMle — : - ; .
M ° jo  jo-jiE  jo+j2E

1-edo 1—e (0d5) 1 — e (otif)

+ 3] () &F — — —
’ jo  je-jif jo+jir

O

We show in Figure [3.4] some members of this family of functions for several values of
M. We observe that they share a finite support of length W = 3. As we increase M, cp}w
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8 dt?

Figure 3.4: Plot of the third-order -MOMS (2 — %[3) and of the generating functions
in li for M = 3, 4, 5, and 6. Among the different Lp}w, the function with the least
pronounced discontinuity at t = :I:% corresponds to M = 3, and, as M increases, the
jump of the discontinuity increases as well. For M = 3, cp}w is continuous at t = :l:%, but

discontinuous at t = :l:%.

converges to 32 — é /32, which is the third-order I-MOMS described in [[129]. A piecewise
expression of (pllw can be obtained by expanding dl into

27t

cos 2L —cos 27

1%0052—””{ 0§|t|<%
M

(2 cos ﬁJrl)z |t| 1
. 8cosﬁ (cozsﬂ%(:/—zl)‘t‘) 2
(,OM(l') = cos 77 —cos =TS Ee 1. |t| <3
2(1—cosz—") cosﬁ 2 2
R S 3
8cosﬁ (cosﬁ—&-l) |t| T2
0 le] > 3.

Refinability of the Proposed Bases As discussed in Section|3.3.2] not all members of the
family of functions given by Theorem [2| are refinable. Here, we show the multiresolution
properties of the proposed basis functions that reproduce sinusoids.

When imposing maximal smoothness, it is straightforward to verify that the basis function
(,0;,1 is refinable since it is proportional to a refinable exponential B-spline. To build the as-
sociated refinement mask, we have to take into account that a is a half-integer. Therefore,
there is a half-integer shift in the parameterization every time we apply the refinement.
This means that a curve r); built with M coefficients and the same curve expressed with
2 M coefficients satisfy

= 3
() = AJIM] Y eulklfa(Mt—k+2)
k=—00
s > 31
AS[2M] > e[kl fa@Mt—k+5 - 2).
k=—00



3.4. Applications

The dependency between the two sequences of coefficients can be stated as

Ml &

eulk]l = eIl I_Z cu[lhe [k +2-21]
sine=- 7200
) ( sinczﬁM) ((CM)TZ * h%) [k+2],

where (cy);, is the ¢, sequence upsampled by a factor of 2. It is interesting to note that
the filter h% is equal to the sequence cf/[ in the expression of gof/[ in (3.29). We identify

the refinement filter he described in Section as a shifted and scaled version of the
refinement filter ha of the exponential exponential B-spline f3,.

When imposing the interpolation property, it can be shown that, for the particular choice

A{[M], AJ[M], and AL[M] leads to a ratio //\\M(’—é:j)) that is not 27-periodic. Thus, the
2M

multiresolution spaces are not nested, and no refinement mask exists. Meanwhile, ¢},
is unique due to the restrictions introduced by the interpolatory condition, and there is
no remaining degree of freedom to be used to increase the regularity or to improve the
multiresolution properties of the basis function.

3.4.1.4 Additional Refinable Bases In this section, we illustrate a constructive procedure to
design new refinable schemes. In particular, we focus on the particular case where the

: Ay(2w)
ratio -5
roots {y,},=1. ' of the polynomial A,,(j w). Then, we have that

is constant. This can be achieved by imposing scaling conditions over the N’

N/
AG)= Ay M ] | Geo —raMD),
n=1

where N’ < N and where we have made explicit the dependence of the roots with re-
spect to M. Note that there is a one-to-one dependence between the elements of the
set {A,},—0.n—1 and the roots of the polynomial {y,},—; n/, up to a scaling factor. In
particular, if we choose the roots such that

n[M]
v [2M] = Y : (3.33)
for all n, then the quantity
Ay(2w) _ Ay [M] nf:l (120 —y,[M]) by definition
Aoy ) Ay [2M] ]_[f:&/(jw—n[ZM])
_ A IM]2Y Ty (G —71a[M1/2) factoring
JLN/)EZZEM ]l'[f:1 jo—y,[2M])
! M
N N
by (3.33
Sy [2M] B

is independent of w and the resulting function ¢ is refinable. This particular multiresolu-
tion scheme where the roots of A, (j w) satisfy (3.33)) is intimately related to the general-
ized exponential B-splines proposed in [[130].

To build new refinable basis functions that reproduce sinusoids, we can choose the roots
{Y2},=1..n of Ay (jw) such that yR[2M] = yR[M]/2. The number of roots N’ determines
which is the maximum non-zero element in the sequence {N;‘}nzo_“z, and therefore the
smoothness of the resulting basis function.
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Figure 3.5: Plot of the generating functions in (3.34) for M = 3, 4, 5, and 6. Among the
different ¢}, the function with the most pronounced discontinuity at t = :I:% corresponds
to M = 3, and, as M increases, the jump of the discontinuity decreases.

The particular choice of }/If[M 1= —yfz‘[M 1= ﬁ and a = —% defines a refinable, centered,

and symmetric generating function with minimal support reproduces sinusoids of unit
period with M coefficients. These roots determine the set of parameters {A%},_, , up to
a scaling constant as

25[M]
MMl = - Ve
ARM] = o0
AS[M] = AS[M].
Then, the resulting generating function is
AS[M 3 B} 3
gof\‘/[(t) =— ZJ\EIZ ] Boa(Mt—k+ 5) +A§[M] Boa(Mt—k+ 5)' (3.39)

We show in Figure [3.5|some members of this family of functions for several values of M.
We choose A5[M] such that the L, norm of ¢y, (t) is unitary. We observe that they share
a finite support of length W = 3.

Our choice of {YE}H=1...N’ is arbitrary and corresponds to one particular case where the
resulting generating function is symmetric and non-smooth. Other choices would lead to
asymmetric functions and other degrees of smoothness.

Order of Approximation The notion of order of approximation is crucial in approxima-
tion theory since it governs the rate of decrease of the approximation error as the sampling
step vanishes. Specifically, in the periodic stationary case, the approximation order is de-
fined as the exponent L such that the difference between a function f and its projection
Py f onto {9(M - —k)}iez, or equivalently in {@pe(M - —k)}i—[o. M1, tends to zero. In
direct analogy with the classical Strang-and-Fix theory of approximation for the nonperi-
odic case, it has been shown in [J[TT19] that the error for the periodic case can be bounded
by

1f = Puf 011 < Co M7 llnyt0,17)5



3.4.2

3.4. Applications

P Py
Parameters AS[M] = (sincﬁ)_2 Ap[M]=1
A[M]=0 AM[M]=0
ASIM]=0 AM] = () (1-secZ)
Smoothness € 1(R) €' (R)
Order of approximation o(M™3) o(M™3)
Limit (M — 00) B2 B*—1p?
Refinable YES NO

Table 3.1: Summary of the properties of ¢5, and ¢},.

where C,, is a constant that only depends on the particular choice of ¢. An analogous re-
sult for the nonstationary case can be obtained using the concept of asymptotically equiv-
alent subdivision schemes presented in [[100]]. We say that ¢,, and ¢ define equivalent
multiresolution schemes of order y if and only if

1Py f — Puf o1y =0M), (3.35)

where #,,f denotes the projection of f onto {¢y(N - —k)}xez With N = M, and &, f
denotes the projection of f onto {F(M - —k)}icy. In our setting, if we set ¢(t) =
lim,,_,o, @ (t) for all t € R, it is straightforward to see that

If = Puflli,qonn < Nf = Puf i qoay + 1Puf — Puflli, oy = @M~ ™0ED),

Therefore, if the ¢, and ¢ define multiresolution schemes of order high enough, the rate
of decay of the error is the same for the nonstationary and the stationary case.

By taking the limit M — oo on ¢}, and ¢}, we can observe that such functions converge
to the classical quadratic B-spline 32 and to the third-order -lMOMS f32 — %ﬁz derived
in [[129]], respectively. Both generating functions are known to have the same order of ap-
proximation L = 3. The main difference between them lies in the constant that multiplies
the M~ factor. This factor is more favorable in the case of the quadratic B-spline than in
the case of the third-order -MOMS. Thus, in general, the approximation offered by the
quadratic B-spline is more accurate than the one offered by the I-MOMS. This property
carries over to ¢y and ¢}, when M — oo.

Reproduction of Higher-Order Harmonics

We now present a constructive procedure to extend the ellipse-reproduction properties of
our curves to higher-order harmonics. This problem was already approached using Fourier
descriptors [56]. Since our basis functions are capable of perfectly reproducing sinusoids,
the classical family of Fourier descriptors becomes a special class of our construction. It
must be noted, though, that our bases have a finite support, a property which is lacking in
Fourier descriptors.

We say that a parametric curve defined by M vectorial coefficients and by a generat-
ing function ¢,, reproduces higher-order harmonics up to order L if there exist two
M -periodic sequences {c; .[k]}iez and {c;s[k]};ez for every 1 <1 < L such that

M-1

cos(2mlt) = crelk] P per(Mt — k) (3.36)
k=0
M-1

sin2rlt) = Y o (k] @upe(Mt— k). (3.37)
k=0
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Such a curve is able to reproduce all modes up to order L for each component. Like in
the case of the sinusoids, it is possible to represent any initial phase using linear combi-
nations of the two sequences of coefficients in and (3.37). We recall that, usmg
Euler’s identity and the multinomial theorem, related functions such as (cos(27- )) and
(sin(27-))!, with 1 < [ < L, can also be expressed as linear combinations of elements from
{cos(2ml-),sin(27tl -)},<;<;- This ensures that the functions (cos(27-))! and (sin(27-))!
are expressible with the same basis functions ¢ or @y er-

Minimal-Support Basis for Higher-Order Harmonics

Corollary 3. The centered generating function with minimal support and maximal smooth-
ness that satisfies all conditions in Section [3.1.3|and that reproduces higher-order harmonics
up to order L with M coefficients is

L+1

5 ), (3.38)

S 2
Py () = Ao [M] By (t +

where a contains only {0}, {j Zﬁ" k}rera..r1, and {
is an appropriate normalizing constant.

—jin m = k}err..1)> and where the value Ao [M]

Proof. The proof follows the same strategy as in Corollary |1l The choice of the collec-
tion a and the size of the support N = 2L + 1 is given by Theorem |2l The parameters
A IM],..., A [M] are set to zero to maximize the smoothness of goi‘,[, and A,[M] is fixed
in such a way that 4,01%, satisfies the partition-of-unity condition, which yields

1
A’0|:M:|_ 2L—1

i Balk 1)
We recall that exponential B-splines parameterized by a form a Riesz basis if and only
if (aml - amz) ¢ 2mjZ for all pairs such that m; # m,. In our case, this condition is
satisfied if M > 2 L + 1. Finally, the shift parameter is set to a = 2L+1 to ensure that the
generating function is centered. O

It should be noted that the smoothest basis function corresponds to a normalized trigono-
metric spline, which was defined as a piecewise trigonometric function by Schoenberg
in [131].

Parametric Expansion of Higher-Order Harmonics Here, we determine the sequence
of M vector coefficients that reproduce the higher-order harmonics using the generating
function cp;, given in . We start by recalling the exponential-reproducing property
of the exponential B-splines

e

e‘“ = Z eakﬁ(a)(t - k) (339)

k=—o00

. i2mi
Setting a =j <~ 27l with 1 <1 < L, we see that B 2xty reproduces e “u ', If we now convolve
M

both sides of (3.39) with ﬁa\(j 2x1), We get that

(B2 ﬁ')“):kif“mk (B2 B2y ) e =B

17 —
o (M] oG

2L+1 k)

where we have used the definition of % » from (3.38), along with the fact that the convolu-
tion operator commutes with the shift operator. To srmphfy the left-hand side, we invoke
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3.5. Conclusions

an important property of linear shift-invariant (LSI) systems: complex exponentials are
eigenfunctions of LSI operators. By virtue of this property, if the complex exponential e/ *¢
is presented at the input of a system specified by the impulse response h, then its output
is given by h(a) e/ *¢, where h denotes the Fourier transform of h. If we consider By (12a1)

as the impulse response of a LSI system, then
—_ PR Lt
(Bagzzty *& ) 0= ooz oy @5

Therefore, we have that

it = Z o hrk (p;(t—T—k).

X 1 2L+1
k=—00 A0[1\/1] ﬁa\(

2ml
M

By flipping the sign of a, we can easily obtain an analogous result for the reproduction of
e i5 L Finally, by using both results, we have that

2L+1 >
cos (an (t + )) = k;m c1[k] @y, (M & — k) (3.40)
. 2L+1
sin (an (t + 23 )) = k;w o[kl S, (Mt —k), (3.41)
where
-Lﬂlk _s2ml k
k] 1 em N e™
€
20, M
o[M] /3‘1\()2711)(0))’ Caml ﬁa\(_sz)(a))) aml
'Lﬂlk _:2ml k
1 e e™
cy[k]

2j2o[M] \(Jm!)(w)‘ o=t a\(—j%)(w)’wzfm

Note that the sequences c; and c, can be considered M-periodic and that the summations
in (3.40) and can be reduced to finite ones if we make use of the periodized basis
functions given in (3.4). We have expressed in and how to compute the
vector coefficients for reproducing sinusoids and initial phase. The appropriate linear
combination of ¢; and c, allows one to change arbitrarily the initial phase.

In order to illustrate the reproduction capabilities of the proposed model, we designed
a basis function capable of reproducing some of the classical harmonic curves [132].
In partlcular we tallored LpM in with L = 4 and M = 9, which lead to a =
(0,j3Z 9 ,—j & 9 sees) 7,—J 89” ). We show some members of the Lissajous, Hypotroch01d
and Epltrochmd families in Figures[3.6} [3.7} and[3.8] respectively. More singular examples
like the Teardrop, the Deltoid, the Astroid, and the Cardioid are shown in Figure[3.9] The
coefficients for each coordinate function can be found in Table

Conclusions

In this chapter we have proposed a new family of basis functions that we use to represent
planar curves. We were able to single out the basis of shortest support that allows one
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(@) (b) (© (d)

Figure 3.6: Lissajous curves.

(b) © d

(a)
Figure 3.7: Hypotrochoid curves.
(@) (b) (© (D
Figure 3.8: Epitrochoid curves.
(@) (b) (© (D

Figure 3.9: Other curves: (a) Teardrop, (b) Deltoid, (c) Astroid, (d) Cardioid.

40



3.5. Conclusions

Curve Cyy Cy
Lissajous (a) Cis Cos
Lissajous (b) Cis Cqs
Lissajous (c) Cos Cas
Lissajous (d) C3s Cas

Hypotrochoid (a) | 2¢;.+3¢y,  2¢;5— 3¢y
Hypotrochoid (b) C1etCse C1s—C3s
Hypotrochoid (c) CietCopc C1s—Cags
Hypotrochoid (d) | 3¢;.+2c3,  3cy5—2¢35
Epitrochoid (a) 2¢c1.— 3¢y 25— 3Cy
Epitrochoid (b) Cle—Cac C15— Cas
Epitrochoid (c) 2C1c—Cqp 2¢15—Cys
Epitrochoid (d) 4c1.—5¢4  4cys— 50y,
Teardrop 4cq 2¢15—Cy
Deltoid 2¢1 .+ cy 25— Cy
Astroid 3¢ tcs, 3¢ —C3
Cardioid 2¢y.—Cyp 2¢15—Coy

Table 3.2: Coefficients for the curves shown in Figure Figure Figure and

to reproduce exponential polynomials. Under the appropriate circumstances, these basis
functions may form a natural multiscale hierarchy. In these cases, we specified multires-
olution algorithms and subdivision schemes for the representation of geometric closed
curves. We were able to characterize the order of approximation of such nonstationary
multiresolution schemes. We exemplified our method by constructing minimal-support
bases that reproduce ellipses and higher-order harmonics. In particular we tailored these
bases to obtain maximal-smoothness basis functions, and interpolatory basis functions.
In the forthcoming chapters, we take advantage of the theoretical developments of this
chapter to build efficient active contours in 2D and 3D.
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Chapter 4

2D Spline Snakes

In this chapter, we present a new class of continuously defined parametric snakes using
the basis functions we designed in Chapter While the resulting snakes are versatile
enough to provide a good approximation of any closed curve in the plane, their most
important feature is the fact that they admit ellipses within their span. Thus, they can per-
fectly generate circular and elliptical shapes. These features are appropriate to delineate
cross sections of cylindrical-like conduits and to outline blob-like objects. We illustrate in
Figure how our snake can adopt the shape of a perfect ellipse (i.e., reproduces the
ellipse) as well as more refined shapes.

Segmenting circles and ellipses in images is a problem that arises in many fields, for ex-
ample biomedical engineering [[133} [134] (135} [136] or computer graphics [137, [138]].
In medical imaging in particular, it is usually necessary to segment arteries and veins
within tomographic slices [139]]. Because those objects are physiological tubes, their sec-
tions show up as ellipses in the image. Ellipse-like objects are also present at microscopic
scales. For instance, cell nuclei are known to be nearly circular [140] and water drops
are similarly spherical thanks to surface-tension forces [141]]. However, these elements
deform and become elliptical when they are subject to stress forces.

In order to efficiently segment elliptical objects, a parametric snake named the Ovuscule
was proposed in [J69]. It is a minimalistic elliptical snake defined by three control points.
Its main drawback was that it was unable to represent shapes different from circles and
ellipses. Our goal here is to create a more versatile parametric snake whose basis functions
are short, perfectly reproduce ellipses, and have good approximation properties. Our main
contribution in this chapter is to fulfill this goal by selecting a special kind of exponential
B-splines. We are actually able to prove that our basis functions are the ones with the
shortest support among all admissible functions. Since the computational cost of spline
snakes is determined in part by the size of the support of the basis function, our use of the
shortest possible support favors optimal performance.

The chapter is organized as follows: In Section 4.1| we review the general parametric
snake model, fix the notation, and formalize our design constraints. The main contribu-
tion is described in Section |4.2] where we build an explicit expression for the underlying
basis functions that fulfill our requirements, and we analyze in detail its reproduction
and approximation properties. Implementation details such as energy functionals and dis-
cretization issues are addressed in Section Finally, we perform report evaluations in

Section [4.4]
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Figure 4.1: Approximation capabilities of the proposed parametric snake. The thin solid
line corresponds to an elliptical fit. The dashed thick line corresponds to a generalized
shape.

Parametric Snakes

In this section we begin by recalling the formalism of B-spline parametric curves, and fix
the notation for the rest of the chapter, which is a simplification of the one of Chapter 3]

Parametric Representation of Closed Curves

Following our formalism introduced in Section [3.1} a curve r(t) on the plane can be de-
scribed by a pair of Cartesian coordinate functions x;(t) and x,(t), where t € R is a
continuous parameter. The one-dimensional functions x; and x, are efficiently parame-
terized by linear combinations of suitable basis functions. Among all possible bases, we
focus on those derived from a compactly supported generator ¢ and its integer shifts
{¢(- = k)}iez. This allows us to take advantage of the availability of fast and stable inter-
polation algorithms [[116]].

We are interested in closed curves specified by an M-periodic sequence of control points
{e[k]}rez, with c[k] = c[k+ M]. The parametric representation of the curve is then given
by the vectorial equation

o0

i)=Y clkloMt—k). 4.1)

k=—00

The number of control points M determines the degrees of freedom in the model (4.1).
Small numbers lead to constrained shapes, and large numbers lead to additional flexibility
and more general shapes.

Since the curve r is closed, each coordinate function is periodic, and the period is common
for both. For simplicity, in (4.1) we normalized this period to be unity. Under these con-
ditions, we can reduce the infinite summation in (4.1)) to a finite one involving periodized
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basis functions as

M-1 oo
w(t) = D7 e[Mn+k]M (t—n)—k)
e
= D ekl D] oM (t-n)—k), (4.2)
k=0 n=-—00

ou(M t—k)
where ¢,, is the M-periodization of the basis function ¢.

This kind of curve parameterization is general. Using this model, we can approximate
any closed curve as accurately as desired by using a higher number of vector coefficients
M, > M, provided that ¢ satisfies some mild conditions [[119]].

4.1.2 Desirable Properties for the Basis Functions

We now enumerate the conditions that our parametric snake model should satisfy and

introduce the corresponding mathematical formalism.

1. Unique and Stable Representation. We want our parametric curve to be defined in
terms of the coefficients in such a way that unicity of representation of the coordinate
functions x; and x, is satisfied. Furthermore, for computational purposes, we ask the
interpolation procedure to be numerically stable.

A generating function g is said to satisfy the Riesz basis condition if and only if there
exist two constants 0 < A < B < oo such that

00

D clklp(M - —k)

k=—00

Allelle, < VM <B |lcll,, (4.3)

Ly

for all ¢ € ¢,. A direct consequence of the lower inequality is that the condition
Z?;—m clk]o(Mt—k) =0 for all t € R implies that c¢[k] =0 for all k € Z. Thus,
the basis functions are linearly independent and every function is uniquely specified
by its coefficients. The upper inequality ensures the stability of the interpolation pro-
cess [[116].

It has been shown in [[117] that, due to the integer-shift-invariant structure of the
representation, the Riesz condition has the following equivalent expression in the
Fourier domain:

00
A< D7 |eC+2mk)* <B,
k=—00
where ¢g(w) = fR ¢(x)e“*dx denotes the Fourier transform of ¢. Once expressed

in the Fourier domain, the Riesz condition provides a practical way to verify if a given
generating function ¢ satisfies (4.3).

2. Affine Invariance. Since we are interested in outlining shapes irrespective of their
position and orientation, we would like our model to be invariant to affine transfor-
mations, which we formalize as

o0

Ar()+b= Z (Ac[k]+b) (Mt — k), (4.4)

k=—o00

where A is a (2 x 2) matrix and b is a two-dimensional vector. From (4.4), it is easy
to show that affine invariance is ensured if and only if

VteR: > oMt—k)=1. (4.5)

k=—o00
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In the literature, this constraint is often named the partition-of-unity condition [[116]].

3. Well-Defined Curvature. The curvature of a parametric curve at a point (x;(t), x,(t))

is given by

Xp &g — X1 Xy

K(xp,x3) = T 32
22 22

(x1 + xz)
where the dot denotes the derivative with respect to t. We would like x to be a
bounded function with respect to t. To do so, each coordinate function (or, equiva-
lently, the basis () must be at least ¢*(R) with bounded second derivative.

Reproduction of Ellipses

Since every ellipse can be obtained by applying an affine transformation to the unit cir-
cle, we focus on the reproduction of this simpler shape. This simplification is allowed
whenever the affine-invariance requirement stated in Section |4.1.2|is satisfied.

A parametric snake defined by M vectorial coefficients and by a generating function ¢ is
said to reproduce the unit circle if there exist two M-periodic sequences {c.[k]}re; and
{¢s[k]} ez such that

cos2mt) = > clklo(Mt—k) (4.6)
k=—00

sin2me) = > [kl t—k). 4.7)
k=—00

That is, we need to be able to reproduce sinusoids of unit period for each component of
the parametric snake, as illustrated in Figure Note that, when and hold,
it is possible to represent any sinusoid of unit period for an arbitrary initial phase using
linear combinations of the two sequences of coefficients.

Minimum-Support Ellipse-Reproducing Basis

We now provide an explicit expression for the minimum-support basis functions that re-
produce sinusoids. These bases are a particular case of the broader family of basis func-
tions investigated in Chapter 3]

By Corollary [1] in Section we know that the centered generating function with
minimal support that satisfies the Riesz basis condition, the partition-of-unity condition,
is 41(R) with bounded second derivative and reproduces sinusoids of unit period with M
coefficients is

2me] T _ cos 2% 1
. cos costcosM 0§|t|<2
p(t)= T eos 2 (sin W) % <|t| < % (4.8)
M-1o 2 <t

This result is a direct consequence of the Minimal-Support Generating Functions Theo-
rem detailed in Section This theorem provides a complete characterization of the
family of basis functions with minimum-support that reproduce exponential polynomials
expressed as combinations of exponential B-splines.

We recall that the basis function (4.8) form a Riesz basis if and only if M > 3. Therefore,
at least three control points are needed to define our parametric snake. Moreover, they are
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(@ (b

Figure 4.2: Parametric representation of the unit circle (a) and its coordinate functions
(b) with exponential B-splines and M = 10. The dashed lines in (b) indicate the corre-
sponding basis functions.

r T 1 ¢
-2 -1 0 1 2

Figure 4.3: Plot of a quadratic B-spline 32 and the resulting generating functions given
in (4.8) for M =3, 4, 5, and 6. The function with the lowest peak at t = 0 corresponds to
M =3, and as M increases, the height of the central peak increases as well.

one-time continuously differentiable and the second derivative is bounded. This ensures
the well-definiteness of the curvature of the snake curve.

For the sake of completeness, we also show in Figure [4.3] the function ¢ for several values
of M. We observe that they share with the quadratic B-spline a finite support of length
W = 3, and all of them have a similar bump-like appearance.
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Approximation Properties

Not only are we interested in reproducing ellipses, but we would also like our snake to
be able to approximate any other shape s. This is achieved by increasing the number
of degrees of freedom afforded by the number M of nodes. In the Fourier domain, it is
easy to see that ¢ converges to a quadratic B-spline as M increases (see Section [3.4.1.1).
Therefore, we expect similar approximation properties for large values of M.

While ¢ leads to integer-shift invariance, the space spanned by the generating function
(p is not shift-invariant in general. Hence, the approximation error using M vector coeffi-
cients is dependent upon a shift in the continuous parameter t of the 1-periodic function
s. The minimum-mean-square approximation error for a shifted function is given by

1
(7, M) f lIs(t —©) = r(0)||* dt
0

lIs(- —7)— r(')H%Z([O,l]) >

where r is the best approximation within the span {¢(M - —k)},,. Since 7 is usually
unknown, we measure the error averaged over all possible shifts as

1 2
n(M) = (f y(T,M)dT) . (4.9
0

We give in Section the decay of 1 as M — oo, following the method described
in [119].

Approximation Order

In this section, we introduce the necessary formalism to compute the order of the approx-
imation error associated to the best-possible approximation of a periodic vector function
s within the span of the basis {¢(M - —k)},.,, where ¢ is given by (4.8).

As explained in Section about the approximation properties of (, the space spanned
by the generating function ¢ is not shift-invariant in general. Hence, as a metric of dissim-
ilarity between shapes, we use the averaged minimum-mean-square approximation error

7.
Using the main result of [[119]], we obtain the asymptotic behavior of 7 as
ﬂZ(M) = Clz(M) “s“i([o,l]) M2

+C MBI oy M+ 0 (M),

where C; = % \/(Zk?&o )¢(L)(27rk)|2) and ¢ is the L-th derivative of the Fourier trans-
form of ¢. Following lengthy calculations, we get

1 1
QM = - (18 (Mo —M) (M, +4M) +307%)* (4.10)
1
C,(M) = o (225 (2Mg— 7TM> M2 — 15M3M0+20M4)
1
+75 (8Mg —29M?) * +1707") 2, (4.11)
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4.2. Reproduction of Ellipses

where we defined M, = 7t cot ﬁ It can be shown that C;(M) = ¢(M~2) and C,(M) =
0(M~2). Since the curve s does not depend on M, we can also write that

non = (0 (M) = 0 (),
which shows that the averaged quadratic mean error decays as M ~>—the same rate as the
quadratic B-spline [[142]).

Best Constant and Ellipse Fitting

Since our snakes have the capability of perfectly reproducing ellipses, it is natural to ask
which is the best ellipse that approximates the parametric curve r defined by the M-
periodic sequence {c[k]};c;. In other words, we are interested in finding the ellipse r,
that minimizes

1
el oy = |l =0 ar

Since r is continuous and 1-periodic, we can expand it in a Fourier series as

[e9)

r(t)= > R[n]el2™, (4.12)

n=—oo

The Fourier-series vector coefficients R in ( are given by

1
R[n] = fr(t)ejzm“dt
0

1 2 M-1
= o ””)Zc[k]ew , (4.13)

where the parametric expression of r has been used in the second equality.

From the classical theory of harmonic analysis, we know that the best ellipse approxima-
tion (component-wise sinusoids) of r, in the L,([0, 1]) sense, is the first-order truncation
of the series , where only the terms n = —1, n =0, and n = 1 are kept. Therefore,
we have that
r.(t) = R[O]+(R[1]+R[—1]) cos(2mt)
+j(R[1] —R[—-1])sin(27t), (4.14)
where R[O] is the center of gravity of the snake. The Fourier-series vector coefficients

in can easily be obtained from (4.13) as

M-
R[0] = — c[k]
MZ§
R[1]+R[-1] = Zh[k]c[k]
v
j(R[1]-R[-1]) = h[k] e[k],
k=0
where
2 T 2mk
h.[k] = — cos— cos——
M M M
2 n . 2mk
hk] = — cos— sin—.
M M M
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Since all sinusoids of unit period can be reproduced by the generating function ¢ and
the appropriate M-periodic sequence of coefficients ¢, the curve r, belongs to the span of
. For the sake of completeness, we provide in the next section an explicit expansion of
sinusoids in terms of .

Expansion of Sinusoids

Here, we explicitly find the sequence of M vector coefficients that reproduce sinusoids
of unit period using the generating function ¢ given in (4.8). We start by recalling the
exponential-reproducing property of the exponential B-splines as

[e8)

et =" e py(t—k). (4.15)

k=—00

Setting a = j Zﬁ”, we see that ;2 reproduces the complex exponential et , which is
M
M -periodic. If we now convolve both sides of |i with S, _; 21, We get that

(Bosz x&™ ) (0= 35 &5* Bz o) =K,

2(1-cos 275

7((277,)”24 ) olt=3-k)
where we have used the definition of ¢ from (4.8)), along with the fact that the convolution
operator commutes with the shift operator.

To simplify the left-hand side, we invoke an important property of linear shift-invariant
(LSI) systems: complex exponentials are eigenfunctions of LSI operators. By virtue of this
property, if the complex exponential e/ *¢ is presented at the input of a system specified by
the impulse response h, then its output is given by i(a)e/*!, where i denotes the Fourier
transform of h. If we consider B, _; 2xy as the impulse response of a LSI system, then

s 27 ~ s27C
(Rl =¥ ) 0= Roypl)]_,, &
A
Therefore, we have that

) X 1 —cos 22 3
= ik a—— p(t— = k).

k=—00 A (2_71) 2

M

By flipping the sign of a we can easily obtain an analogous result for the reproduction of
e it Finally, by using both results, we have that

00

cos(2mt) = Z c[klp(Mt—k) (4.16)
k=—00
o0
sin(2ntt) = Z c[k] (Mt —k), 4.17)
k=—00
where
2 (1—cos2Z 27k
clk] = (n 1\22 cos —
cos -+ — cos =%
2 (1—cos2Z 27tk
k] = (T[ Ng){ sin R
cos 3. — Cos <%
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Note that the sequences c, and c, are M-periodic and that the summations in (4.16)
and (4.17) can be reduced to finite ones if we make use of the periodized basis functions.

We have expressed in (4.16) and (4.17) how to compute the vector coefficients for repro-
ducing sinusoids of unit period. The appropriate linear combination of c. and ¢, allows
one to reproduce sinusoids of arbitrary initial phase.

4.3 Energies and Implementation

Since the presented parametric active contour is a spline snake, it is capable of handling
all traditional energies applicable to point-snakes and parametric snakes. However, to
illustrate the behavior of our parameterization in a real implementation, we performed
our experiments with a specific snake energy that we designed to be versatile.

In this section, we first introduce the snake energy that drives the optimization process,
and then we provide a description of the implementation details for the proposed snake.
We construct the energy functional to detect dark objects on a brighter background.

4.3.1 Snake Energy

As it was exposed in Chapter 2] the snake evolution is driven by a chosen energy function.
Thus, the quality of the segmentation depends on the choice of the energy term. In our
model we obviated the constraint energy since we accommodated the user interaction as
a hard constraint allowing the user to leave some control points outside the optimization
routine.

4.3.1.1 Image Energy There are many construction strategies for the image energy. These can
be categorized in two main families: 1) edge-based schemes, which use gradient informa-
tion to detect contours [43] [47, [50] and 2) region-based methods, which use statistical
information to distinguish different homogeneous regions [49, 68]]. In order to benefit
from the advantages of both strategies, a unified energy was proposed in [57]. In our
case, we are going to follow a similar approach by using a convex combination of gradient
and region energies, like in

Eimage =a Eedge + (1 - (X) Eregion (418)

where a € [0,1]. The tradeoff parameter a balances the contribution of the edge-based
energy and the region-based energy. Its value depends on the characteristics of each
particular application.

For the gradient-based (or edge) energy, we consider the one described in [68] since it
has the advantage of penalizing the snake when the orientation is inconsistent with the

object to segment. Let r be our parametric snake. The contour energy term is then given
by

Eedge = _jf kT (Vf(xlyxz) X dX) ) (419)

where k= (0,0,1) denotes the outward vector orthonormal to the image plane, where
Vf(xy,xy)= (M, 9 xix) 0) is the within-plane gradient of the image f at (x;, x,)

dx dx ’
on the curve, Wherel dx denoztes the tangent vector of the curve in the three-dimensional
space formed by the image plane and its orthogonal dimension, and where X is the 3D
cross product. In Figure (4.4, we present the configuration of the various quantities in-
volved. The chirality of the system of coordinates will determine the sign of the integrand,

as discussed in [57, 68]].
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Figure 4.4: Schematic representation of a parametric snake r (dashed line), of its interac-
tion with an object constituted by a gray semicircle (representing low pixel values), of the
vector dx tangent to the curve, and of the gradient vector Vf of the image. The vector k,
which is mentioned in the text, is perpendicular to the image plane and points outwards,
towards the reader.

For the region-based energy, we adopt a strategy similar to the Ovuscule in [[69]. More
precisely, our region-based energy discriminates an object from its background by building
an ellipse r; around the snake and maximizing the contrast between the intensity of the
data averaged within the curve, and the intensity of the data averaged over the elliptical
shell ;. When Q C Q,, the region energy term can be expressed as

Egon = — | || Foodxid,— [|  foodeds |, 4.20)
€2 Q Q,\Q

where || is given by

M-1M-1
9] =~

c1[k]cy[n] J om(t —n) @y (t —k)de. (4.21)
k=0 n=0

The normalization factor |2| can be interpreted as the signed area, defined as || =
— §r x,dx;. The sign of the quantity |Q2| depends on the clockwise or anti-clockwise
path followed on the curve r. In this paper, we follow the usual convention whereby
an anti-clockwise path leads to a positive sign. We enforce our criterion to remain neutral
(Eyegion = 0) when f takes a constant value, for instance in flat regions of the image. To

achieve this we set |QA} =219

The construction of the elliptic shell is performed using the best ellipse r, given in (4.14)),
and magnifying its axes by a factor A to achieve

r,(t) = R[O]+A(R[1]+R[-1]) cos(2mt)
+jA (R[1] —=R[-1]) sin(27tt),

where A = 4/2(Q|/ |Qe} and }Qe| is the signed area enclosed by the curve r,, with

Rt ~2n(n—k)
cl[k] cy[n] sin ———.

7T
9] = — X cos =
M?2 M

k=0 n=0

The elliptic shell r, is fully determined by the sequence of control points {c[k]};cz. Thus,
the optimization of the control points leads to an automatic readjustment of r and r,.
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Figure 4.5: Representation of the parametric snake r, the best ellipse approximation r,,
and the corresponding enclosing shell r; used in Ejegion-

In Figure 4.5, we illustrate how we take advantage of the ideas presented in Section |4.2.4
to build the best ellipse approximation r, of an arbitrary snake r.

4.3.1.2 Internal Energy The internal energy is responsible for ensuring the smoothness of the
curve. In the original implementation by Kass et al. [43]], the internal energy is com-
posed of a linear combination of the length of the contour and the integral of the square
of the curvature along the contour. This energy is the one that is most widely-used in
applications.

In the framework of parametric snakes, most schemes rely on the smoothness of the repre-
sentation, thus eliminating the need for an explicit internal energy term. However, these
approaches can ensure a low value of the curvature only when the curves are parameter-
ized at constant speed (proportional to arc-length). For example, a spline curve may be
rough if some of the spline control points accumulate at the same position. A practical
workaround is to reparameterize the curve to constant arc-length after each step of the
optimization algorithm, which is quite expensive [[143]]. Another approach is to substitute
the curvature term of by an energy term that penalizes the curve for not being
in the curvilinear abscissa [[57]]. This energy is called curvilinear reparameterization en-
ergy. Minimizing this energy causes the control points to move tangentially to the snake,
thus bringing it to curvilinear abscissa. The use of this energy yields the same results as
reparameterizing the snake at each step, but with a much lower computational load.

In our implementation we obviated the internal energy term in order to allow our snake to
segment objects with non-smooth boundaries. In Section we quantify the accuracy
of our snake while segmenting objects with non-smooth boundaries.

4.3.2 Fast Energy Computation

The computational cost is dominated by the evaluation of the surface integrals in (4.20).
An efficient way to implement these operations is the use of pre-integrated images. Let g
be the function we are integrating (Af, f, or —f, respectively) and let I' be the domain
of integration (Q or £2,). Then, by Green’s theorem, we rewrite the surface integrals as
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the line integrals

JJ g(x)dx;dx, = § g1(x1,x5)dx,
r ar
= _f 82(x1, x5) dxq,
ar
where JT is the boundary of I, and
g1(x1,xy) = J g(7,x;)dr (4.22)
8a(x1,x5) = J g(xq, 7)dr. (4.23)

The use of Green’s theorem to rewrite the surface integrals as line integrals reduces dra-
matically the computational load. This can only be achieved if the curve is defined con-
tinuously, like with the curves of Section By contrast, this acceleration would not
be available to methods such as point-snakes and level-sets, because their implementation
ultimately relies on discretization.

In the interest of space, we show the derivation of the energies using pre-integrated images

in Appendix

Sampling

Despite the fact that we are assuming a continuously defined model for our functions, in a
real-world implementation we only have at our disposal a sampled version of the functions
we want to pre-integrate. To solve this inconsistency, we perform a bilinear interpolation
of the sampled data and we store in lookup tables the values of or at integer
locations.

Optimization

As mentioned before, the active contour extracts the final contour by finding the mini-
mum of the energy functional. For that purpose, we iteratively update the value of the
M free control points {c[k]}sefo. 117 Using a generic unconstrained gradient-based op-
timizer. The optimization scheme is efficiently carried out by a Powell-like line-search
method [144]]. This method requires the derivatives of the energy function with respect
to the parameters, and converges quadratically to the solution. The algorithm proceeds
as follows: firstly, one direction within the parameter space is chosen depending on the
partial derivatives of the energy. Secondly, a one-dimensional minimization is performed
within the selected direction. Finally, a new direction is chosen using the partial deriva-
tives of the energy function once more, while enforcing conjugation properties. This
scheme is repeated till convergence. Assuming a bilinear interpolation of the original
function f, we were able to derive exact and closed expressions for these derivatives. In
the interest of space, we show the derivation of these expressions in Appendix [4.A]

For spline snakes it has been shown that the evaluation of the partial derivatives of the
energy of the form depends quadratically on the number of parameters [57]. In
Figure[4.6] we compare the computational cost of the snake during line minimization (sim-
ple update), and when the energy gradient is required to chose a new direction (gradient
update). For the latter case, we contrast the computation time of an analytical computa-
tion of the gradient to that of a centered finite differences approach. For low values of
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Figure 4.6: Mean time of one iteration in the snake evolution.

M, the simple update and the gradient update using analytical energy gradient lead to a
similar computational load. As the value of M increases, the quadratic behavior of the
computation of the gradient makes the update cost increase. This quadratic behavior can
be easily discerned in the topmost curve of Figure

4.4 Experiments and Simulations

We present in this section four experimental setups. In the first one, we compare our
choice in against the classical quadratic B-spline when representing sinusoids. We
move away from sinusoids in the second experiment, where we work with synthetic data
and perform an objective validation of the segmentation properties of our snake in noise-
less and noisy environments. In the third setup, we also perform a quantitative evaluation
by segmenting real cardiac MRI data. Finally, in the last experiment, we illustrate some
real applications of our snake where the ground truth is not available.

4.4.1 Approximation of Sinusoids

By design, our basis function ¢ has the property of reproducing sinusoids exactly. By
contrast, the classical polynomial B-splines do not enjoy this property. In this section, we
are focusing on this aspect and exhibit the amount of error committed by B-splines when
attempting to reproduce a sine function.

We start with exact reproduction by our basis. Using the result of Section [4.2.5] we deter-
mine the coefficients for the case M = 3 (smallest possible M). They are given by

sin(27t) = V3 (p3(3t — 1) — p5(3t +1)),

where ¢4 corresponds to the 3-periodization of the basis function (4.8)), as in (4.2).

We continue with approximate reproduction by B-splines. For fairness, we choose a
quadratic B-spline 32 so that the size of the support of 32 and ¢ is the same. The repro-
duction will be approximate, not because of the limited size of the support, but because
the sine function does not lie in the span of polynomial B-splines of any degree. Never-
theless, we can compute the coefficients that best adjust the sinusoid with unit period in
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Figure 4.7: Approximations of a sin function with unit period. (a) Parametric representa-
tion (solid line) using g5 (dashed lines). (b) Best parametric approximation (solid line)
using B2 (dashed lines).
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Figure 4.8: Sinusoid of period 3, its representation with our basis function (solid line),
and its best quadratic B-spline approximation (dashed line).

the least-squares sense. This yields

1215
sin(27t) & T ([532(3t— 1)- B3¢t + 1)),

where
2 e 0<|tl<3
200\ 1(3 2 1 3
B)=4 3 (3-1) g Sli<3 (4.24)
0 5§|t|

is the quadratic B-spline and the subscript 3 indicates a 3-periodized basis function as

in (4.2).
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We observe in Figure that both constructions result in sine-like functions. However,
the reproduction is exact in the left part of Figure while it is only approximate in the
right part. This happens even though the support of 32 is identical to the support of ¢,
even though the asymptotic approximation properties of 32 and ¢ are identical, and even
though 32 and ¢ have the same degree of differentiability. We show in Figure the

amount of error committed by the parabolic approximation. We determine that MSE =
1 _ 98415

2 2087t °

Accuracy and Robustness to Noise

In this section, two experiments are carried out. The first one consists in outlining different
synthetic blob-like shapes in a noise-free environment. The second experiment consists in
outlining one specific target within an image, this time, in the presence of noise. In both
experiments we set a = 0, that is, we make use of the region energy only. This particular
choice ensures that the snake is not misled by noisy boundaries in the presence of excessive
noise.

In the first experiment, we generate 10 test images of size (512 x 512) by pixel-wise
sampling of our shape of interest, which is built by intersecting or making the union of
two circles of radius 50 pixel units. We illustrate these shapes in the header of Table
They are parameterized with the distance d, in pixel units, between the centers of the
circles. For d < 0, the shape is built by the intersection of the two circles. For d > 0,
they are parameterized by their union. The grayscale values of the images are 255 for the
shape, and O for the background.

We used the Jaccard distance J = 1 — |©@NQ|/|© US| to measure as a percentage the
dissimilarity between the two sets. There, ® corresponds to the ground-truth region, and
Q corresponds to the region enclosed by the snake. We computed J with a pixel-wise
discretization of the images.

In the simulations of Table we investigated the dependence of J on the number M
of coefficients and the distance d between the circles. We denoted with a dash (—) when
the snake did not converge, and therefore, we could not compute the Jaccard distance.
We initialized every snake as a circle with a radius of 75 pixel and a center that lay in
the middle of the shape. We observe that the results in Table tend to improve as the
number M of control points is increased, especially for the non-elliptical shapes. However,
the increase in the number of control points does not bring any further improvement when
the shape to segment is a perfect circle. This result is expected since the circular shape is
reproduced exactly for any M > 3. The residual error seen in Table for d = 0 can be
attributed to the discretization of ® and Q2. We also observe that for d = —80 and d = —64
the Jaccard distance starts increasing severely for M > 7 and for M > 9, respectively. This
is due to the fact that the sharp corners of the shape lead to loops in the curve during the
optimization process. Such self-intersections violate the conditions of Green’s theorem in

Section

In the second experiment, we investigated the sensitivity to noise of our snake depending
on the number of snake coefficients M. We generated 100 noisy realizations of a circle
of radius 50 pixel units for different signal-to-noise ratios. We computed the power of
the noise over a region of interest of size (200 x 200). We illustrate a realization of the
resulting images in the header of Table

We show the percentage of success in Table We considered that our snake succeeded
in segmenting the circle when the optimization process led to a segmentation with J < 1%.
This criterion is very conservative as shown in Figure We observe from the results
that our snake is robust against noise since it is capable of giving a proper segmentation
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M 3 4 5 6 7 8 9 10
' 508 4.85 353 269 3.63 1884 — -
d=-80
‘ 412 412 264 218 187 058 156 1.41
d=—64

3.78 3.84 203 200 163 068 099 093

d=—48

2.84 278 125 1.3 108 055 0.72 0.70
d=-32

1.54 153 058 0.64 048 032 0.30 034
d=-16

0.17 0.5 020 0.17 0.17 018 0.15 0.17
d=0

2.18 222 106 091 109 086 0.55 0.18
d=16

406 4.01 227 181 1.92 192 085 0.41
d=32

6.63 6.64 421 284 250 400 1.41 0.80

Q.
Il
N
)

9.49 948 6.82 436 3.68 573 - 1.23

Q
Il
o

N

Table 4.1: Error percentage of our snake for noiseless synthetic data.
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M 3 4 5 6 7 8 9 10

' 100 100 99 100 100 99 99 96
SNR = 15dB

. 100 100 99 99 99 100 98 99

100 100 100 100 100 100 99 97

SNR = 5dB

100 100 100 99 99 98 96 100

SNR = 0dB

99 96 97 98 90 90 92 92

45 33 25 25 20 7 7 11

SNR = —10dB

Table 4.2: Percentage of success rate of our snake for noisy synthetic data.

even for low signal-to-noise ratios. Furthermore, the increased sensitivity to noise as we
increase the number of vector coefficients M corresponds to the appearance of additional
noise-related local minima in the energy of the snake. Therefore, M should be chosen as
small as possible in order to avoid over-fitting of the noise, but large enough to be able to
approximate the shape of interest.

Medical Data

Now, we move away from synthetic data. We compare our snake against other snake
variants in terms of accuracy and speed. We quantify their accuracy at outlining the
endocardial wall of the left ventricle within slices of 3D cardiac MR image sequences.

The data we used are short-axis cardiac MR image sequences from 33 subjects acquired in
the Department of Imaging of the Hospital for Sick Children in Toronto, Canada [[145]]. For
each subject, data consist of a time-series of 20 volumes. For each volume, the number of
slices varies from 8 to 15. Each slice is a (256 x 256) image with a pixel spacing between
0.93 mm and 1.64 mm. The ground truth was obtained by manual annotation. In each
segmented image 1,000 points (named landmark points) define a closed polygon outlining
the endocardial wall.
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Figure 4.9: Segmentation results for noisy synthetic data with SNR= —5dB. (a) Barely
accepted with J= 0.853%. (b) Rejected with J=1.001%. (c) Rejected with J= 81.065%.

Accuracy For each subject, we selected one slice guided by its anatomical structures
along the long axis and its timing in the cardiac cycle. Since the region of interest is
nearly elliptical, we used the minimalistic elliptical active contour named Ovuscule to
provide a first estimate of the location and orientation of the left ventricle [[69]]. Then, we
refined the segmentation of the endocardial wall using the general parametric active con-
tour model for different values of M and several basis functions. More specifically,
we used linear and quadratic B-splines, our function that we refer to as third-order
exponential spline, and an extended version of that we refer to as fourth-order
exponential spline. The linear B-spline basis function has a smaller support than our func-
tion (4.8). However, it can only adopt the form of polygons. The quadratic B-spline basis
function has the same support and regularity than (4.8). However, it is unable to repro-
duce ellipses. Finally, the fourth-order exponential spline is an extended version of (4.8),
with one more degree of regularity, but with a support one unit larger. The initialization
provided by the Ovuscule could be carried over to (4.8) and to the fourth-order exponen-
tial spline. In the case of other types of snakes, the perfect ellipse of the Ovuscule cannot
be reproduced but must be approximated. This approximation was achieved by sampling
the outline of the Ovuscule.

In a preprocessing step, the images were magnified four times horizontally and vertically.
Firstly, we evolved the Ovuscule on the magnified image. Secondly, we evolved more
refined snakes, guided exclusively by the edge energy on a smoothed version of the mag-
nified image. The smoothing was Gaussian, with a kernel of variance o2 = 10%. We then
measured the landmark error. We computed this error as the mean distance of the snake
to the landmark points given by the ground truth, as was done in [145]).

In Figures[4.10| [4.11} and [4.12] we show the mean, median, and maximum values of the
landmark error, respectively. From these graphs, we validate that the Ovuscule provides a
good and robust starting point to be refined by the snakes investigated in this paper. The
polygonal snake does not reach the accuracy of the Ovuscule till M = 7, and exhibits a
high variance across subject. The quadratic-spline snake and the third-order exponential-
spline snake converge to similar accuracies starting with M = 4. This was expected, since
we showed in Section [4.2.2] that our function does converge to a quadratic B-spline when
M increases. However, for low values of M, the difference is noticeable, and the quadratic-
spline snakes produce shapes that are not compatible with the region of interest. Finally,
the fourth-order exponential-spline snakes produce equivalent results in terms of accuracy
and stability than the third-order one, at a price of a larger support, and therefore, of a
slower convergence.
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Figure 4.10: Mean and variance of the landmark error across all 33 patients.
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Figure 4.11: Median of the landmark error across all 33 patients.
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Figure 4.12: Maximum landmark error among all 33 patients.
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In Figure 4.13b, we illustrate the initialization provided to the Ovuscule, and in Fig-
ure the outcome of optimizing the Ovuscule, which will provide the initialization
for further processing. We also show the result of several more elaborated snake variants,
and how they compare with the ground truth. The fourth-order exponential-spline snake
results in an outline that is visually indistinguishable from that of the third-order one, but
comes at an increased computational cost.

Speed In terms of speed, we compared our proposed snake to some classic traditional
snakes such as a Kass-like snake [J[146]] and a traditional Geodesic Active Contour (GAC)
model [|62]].

In this analysis, we used the anatomical structures of the 33 patients of Section
However, we modified our initialization procedure to accommodate for the GAC model,
since it fails unless the initial contour lies totally inside or outside of the boundary of
interest. Therefore, we scaled down the initialization that was provided by the outcome
of optimizing an Ovuscule in Section By doing so, we guarantee that all initial
contours lay inside the endocardial wall to be segmented. Unfortunately, neither the Kass-
like snake nor the GAC model are able to reproduce the initial ellipse perfectly and their
initialization must be approximated. This approximation was achieved by sampling the
outline of the Ovuscule. Finally, we refined the segmentation of the endocardial wall
either using our snake model for different values of M, the Kass-like snake, or the GAC.

This experiment was performed on a MacPro 3.1 with two Quad-Core Intel Xeon pro-
cessors and 8GB of RAM memory running Mac OS X 10.6.8. The implementation of
the Kass-like active contour was taken from [J[146]], and the one of GAC model from the
free open-source image-processing package FijiF_] implementing the algorithm described
in [62].

In Figure [4.14] we show the mean temporal evolution of the improvement of the Jaccard
distance during the snake evolution process for the 33 patients. We can clearly see that
the proposed snake reaches its optimum earlier than the classical Kass-like snake and the
GAC model. The Kass-like snake has a very costly first step, and then it cannot escape a
local minimum. The GAC is executed with an advection value of 2.20, and a propagation
value of 1. These parameters make the GAC succeed in overcoming the local minimum,
but the convergence rate is still slower than that of the parametric case. It is important to
notice that, for our proposed model, an increase in the number M of control points slows
down the convergence. As pointed out in Section [4.3.4] this is due to the fact that larger
values of M increase the computational load per iteration of the snake.

Real Data

Here, we illustrate the behavior of our snake and provide further insights into its capa-
bilities. In the context of this section, the ground truth is missing, so we must relinquish
quantitative assessments in favor of qualitative ones.

HeLa Nuclei We want to evaluate the success of our snake model at outlining ellipse-like
targets in the context of automated time-lapse microscopy. We use (434 x 434) images of
HeLa nuclei that express fluorescent core histone 2B on an RNAi live cell array. We show
in Figure the result of the optimization process with and M = 5. This number
of points is high enough to capture small departures from an elliptic shape.

We initialized every snake as a circle of radius of 25 pixel units, as shown in Figure [4.15
These initial circles were centered on the locations given by a maxima detector applied
over a version of the image that was smoothed with a Gaussian kernel of variance 0% =
122 pixel. A total number of 23 maxima were detected. We then proceed with an inverted

1. http://fiji.sc/
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d (h)

Figure 4.13: Outlining of the endocardial wall. (a) Raw data. (b) Initialization. (c)
Ovuscule. (d) Ground truth. (e) Polygonal snake with M = 3. (f) Quadratic-spline snake
with M = 3. (g) Third-order exponential-spline snake with M = 3. (h) Fourth-order
exponential-spline snake with M = 4.
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Average landmark error [mm]

Time [sec]

Figure 4.14: Temporal evolution of the Jaccard distance. During the 2 seconds of snake
evolution, the proposed method with M = 3 performed 1479 iterations, with M = 5
it performed 1406 iterations, and with M = 3 it performed 889 iterations. The Kass
snake performed 17 iterations, the first of which took 370ms, and the GAC performed 34
iterations.

Figure 4.15: Outline of HeLa nuclei in a fluorescence microscopy image. The parametric
snakes were built with M = 5. (a) The initial contour of the snake. (b) Result provided by
our snake.

version of the original, unsmoothed image to optimize the snakes. The optimization pro-
cess converged in 22 cases. We show in Figure [4.15|the result of the outlining process. We
observe that our snakes were successful in most of the cases.

Droplets As a second example, we show the outline of sprayed and deformed water
droplets hitting a surface. The flight and the impact of the droplet was captured by a
high-speed camera (Photron Fastcam) at a rate of 10,000 images/s. The shape of the
droplet is changing during flight, at impact, and while bouncing. After cropping, the size
of the image was (663 x 663) pixels.

We analyzed two frames. One was an image taken before the collision took place, the
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Figure 4.16: Sprayed droplets. (a) Prior to the impact: The initial contour of the snake
is represented with a black dashed line. (b) After the impact: The initial contour of the
snake is represented with a black dashed line. (c) Prior to the impact: The outline of our
snake with M = 5 is represented with a white dashed line. (d) After the impact: The
outline of the successful snake is represented with a white dashed line (M = 8), while
the configuration with M =5 is represented with a gray solid line. The droplet edges are
partially out of focus, making them blurry and noisy.

other was taken after the impact. In both cases, we initialized the snake as a circle with a
position and size that we chose manually. These initializations are shown in Figure
In the image prior to the impact, which we show in the left part of Figure a snake
with M = 5 was used. We selected a small value for M because the droplet is nearly
circular. In the image after the impact, which we show in the right part of Figure |4.16]
five control points did not provide enough freedom to cope with the discontinuity created
by the attachment to the surface. However, the outline was successfully retrieved when
slightly increasing the number of nodes to M = 8.
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Conclusions

Our contribution in this chapter is a new family of basis functions that we use to describe
parametric contours in terms of a set of control points. We were able to single out the
basis of shortest support that allows one to reproduce circles and ellipses. Those can be
characterized exactly by as few as three control points but, by considering additional ones,
our parametric contours can reproduce with arbitrary precision any planar closed curve.
In particular, we have shown that the mean error of approximation decays in inverse pro-
portion of the cube of the number of control points. We have used our ellipse-reproducing
parametric curves to build snakes driven by a combination of contour and region-based
energies. In the latter case, the energy depends on the contrast between two regions,
one being delineated by the curve itself, and the other by an ellipse of double area. To
determine this ellipse, we showed how to compute the best elliptical approximation, in a
least-squares sense, of a contour described by an arbitrary number of control points. We
were able to accelerate the implementation of our snakes by taking advantage of Green’s
theorem, which was facilitated by the availability of the explicit expressions of our basis.
We have applied our snakes to a variety of problems that involve synthetic simulations
and real data. We achieved excellent objective and subjective performance.

Appendices

Implementation Details

In Section 4.3} we provided the guidelines for an efficient implementation of our energy
functionals. Here, we derive the explicit expressions of our image energies and their par-
tial derivatives. These expressions are needed when implementing the snake optimization
routine.

Image Energy

As described in Section 4.3.1}, our image energy is composed of two terms: a contour (or
edge) term and a region term.
Contour Image Energy Using Green’s theorem, our contour energy can be ex-
pressed as the surface integral

Eedge =- Jf Af(X) dxl dxz,
Q

where x = (x;,x,) and Af is the Laplacian of the image f. We express the surface integral
of g = —Af over the region Q enclosed by the curve r as

1

Eedge =§ gl(r) dxz = J gl(r(t))

0

dx,(t)
de

de,

where g, is the pre-integrated image along the first dimension. Now, by the explicit
parametric description of r, we have

1 M-1
Eedge = j gl(r(t))M Z Cz[k] QP(M t— k)dt’
0 k=0
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4.A. Implementation Details

where ¢ = (¢;, ¢,). Finally, we approximate the integral by the sum

Fegge ™ ~ Zgl(( ))Ifcz[k]w(%—k),

k=0
where R is discretization the sampling rate. Since ¢ is compactly-supported, the number
of non-zero elements of the inner sum is small. We precompute and store in a lookup table
the values of ¢, (i/R — k).
Region Image Energy Our region energy (4.20) can be expressed as

E egion = 77 18] ( ff f(x)dx; dx, — f fx)dx, dxz)

as long as 2 C Q,. Then, computing the image energy reduces to the evaluation of two
surface integrals over the regions delimited by r and r; (i.e., Q and Q; respectively).

We express the surface integral of f over Q as

' dx,(t)
jgfl(r)dxz=f A ——d
r 0

where f; is the pre-integrated image along the first dimension. Now, by the explicit para-
metric description of r, we have

1 M-1
J AGOIM D e[k (Mt k)dt.
0 k=0

Analogously, we can express the surface integral of f over the region Q; enclosed by the
curve 1, = (x;1,X,2) as

1
dx, ,(t)
%fl(ra)dm:f file(e) 5= dt.
oY 0 t

Now, by the explicit parametric description of r;, we have

1
J fir,()2m Z e[k k]cos(2mt) —h [k]sin(27t)) de.
0

We obtain an explicit expression for the region energy by combining both results

1 1 M-1
Eregion =— |2 J fl(r(t))M Z Cz[k] (P(M t— k)
2] 0 pars

M-1
—filr,(t)2n | |Q|| Z cy[k] (hg[k]cos(2mt) — h.[k]sin(27t)) dt) .
el k=0

Finally, we approximate the integral by the sum

M-
Ereglon |Q|R( Zfl( ( )) ;) Z[k]QOM (__k)
27t (29 i lkhk 2m’hk.zm'
v mﬁ (1‘/1 (ﬁ)) 2, ¢y [k] ( ol ]cosm— ol ]Smm) ,

where R is the discretization sampling rate. We precompute and store in lookup tables the
values of ¢, (i/R — k) and (h [k]cos =T 27” <[k] sin m)
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4.A.2 Partial Derivatives of the Image Energy

Our optimization scheme requires the partial derivatives of the energy function with re-
spect to the parameters, that is, the sequence of control points {c[k]}xe0. 1—17-
4.A.2.1 Partial Derivatives of the Contour Image Energy Since the edge-based image energy

can be expressed as a surface integral of a function g = —Af, we can compute the partial
derivatives as
aEedge § ( )d (b )
= r)dx 3
d¢1[K] [k] SR Y
( )
= (x(e) 22 (line integral)
1[k] f i 8
dx;(t) dx;(t
= JO {g1( ()} 3X1[(k]) xcit( )dt (chain rule)
- ——
. g(x(t) om(M t—k) .
= J () oMt =M Y ;[ ¢y (Mt —i)dt  (by @2
i=0

M-1

= il M J gr(t))oyMt —k)oy (Mt —i)dt (reordering).
0

i=0

Qg lk,i]
Thus, we obtain the simplified expression
M-1
% = ZO] & [1]Q, [k, 1],
In a similar manner, we get
Eedge =

G [l] Qg [k: l]

i=0

3Cz[k]

To summarize, the computation of the partial derivatives of the edge energy reduces to
the trivial computation of the finite sequence Q,. Since ¢ and ¢ are compactly supported,
Qq [k, 1] differ from zero if and only if ¢\ (Mt — k) and ¢),(M t — i) overlap. Formally,
Qq[k,i] # 0 if min{|k — i, |i — k|} < N, where N is the common support length of ¢ and
¢. Then, if M is large compared to N or if the length of the support of the basis functions
is short, then most of the elements of Q, [k, ] are zero.

4.A.2.2 Partial Derivatives of the Region Image Energy We compute the partial derivatives of
the region-based image energy as

OEegion O o "
ac k] dcylk] |Q| ” f (0 dxydx; — f F(x)dx; dx,

By using differentiation properties and expanding the expression, we obtain

Eregion a|Q| 1 de.d e d
o e (27 SEOdadeg - o o  0dndn

We can expand the first term using |i We obtain,

M-1
Eregion d |Q| Eregion

M
el 9kl 19 £ 62["]J0 om(t —k)¢y(t —n)dt.

Q[k,n]
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The second term can be expanded following the strategy used in Section |4.A.2.1] We

obtain
1 (M .
ﬁ (Z o[ (2Qy [k, i] —Qf[k,i])),

i=0
where Q ¢ contains the integration of f along the elliptical shell.

To summarize, the partial derivatives of the region-based image energy can be written as

JE

. E.. M-l M-1 .
—a:[glj]“ = 2 eMQlon]+ o (Z &a[i] (2@ [k 1] -Qf[k’il))-
n=0

=0

In a similar manner, we get

aEregion Eregion MZ_I [ ]Q [k ] 1 < [] (ZQ [k ] Q [k ])
— _ 5 _ — Cqt s — >1 °
Feu K] o] L c1[n]Qqlk,n 2 1 f f
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Chapter 5

Extension to 3D Spline Snakes

Many 3D snake variants have been proposed utilizing different types of surface rep-
resentation and various energy terms. Implicit methods based on a level-set formu-
lation of the Chan-and-Vese problem have been investigated extensively over the past
decade [[70]. Some effort was invested to obtain semi-parametric approaches using sim-
plex meshes [[147] and, more recently, 3D triangular meshes [[148]]. A first approach to
fully parametric snakes named active geometric functions (AGF) was proposed in [[149]]
using the variational framework and the Mumford-Shah energy functional. Then, a re-
finement of the AGF method was presented using polynomial B-splines [[150].

In this chapter, we extend our 2D parametric snakes exposed in Chapter[4and propose the
first fully 3D spline-based parametric snake for the analysis of images in 3D microscopy in
which we constrain the topology to segment ellipsoid-like objects of the type encountered
in cell biology. Our snake surface is parameterized by few control points and uses as
basis functions a special kind of exponential B-splines from the family investigated in
Chapter The most important feature of our basis is that it allows our 3D snake to
perfectly reproduce ellipsoids. Our bases have the shortest-possible support given the
aforementioned ellipsoid reproduction property. Because they are also refinable, they also
provide a good approximation of any closed surface with a sphere-like topology.

The parameterization based on splines, and more precisely the use of our exponential
B-splines, allows us to derive a fast algorithm for image segmentation. This is crucial
for biological applications such as cell tracking in time-lapse sequences of 3D images,
which produce tremendous amounts of data. We have investigated the efficiency of the
proposed approach with the analysis of several sets of real microscopic images and are
reporting real-time performance. We have designed edge and region energies that admit
a fast implementation thanks to the use of pre-integrated images and Gauss’ theorem. We
also propose a simple method to detect self-intersections of the surface during the snake
evolution.

The class of parametric snakes proposed here lends itself to a semi-automatic segmenta-
tion scheme that allows for user-friendly interaction. Because the snake is fully parame-
terized by only a few 3D control points, the user is able to easily guide and modify it by
interacting with anchors in dedicated 2D and 3D image views. These views feature a live
display of the snake and provides feedback to the user when a control point is modified.
This ability is precious for crowded biological environments which may require user in-
put and feedback. The software implementing our techniques is given as an open-source
library in an effort to provide useful tools for the bioimaging community.

This chapter is organized as follows: In Section 5.1, we present an extension of the curve
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generation framework introduced in Chapter [3|in order to generate parametric surfaces
using B-splines. Then, we formalize the mathematical conditions for the basis functions
in order to make the parametric surfaces suitable for segmentation. Next, we specify
a 3D snake model with a sphere-like topology. Implementation details such as energy
functionals and discretization issues are addressed in Section Finally, we illustrate
the capabilities of our snake with synthetic and real data in Section|5.3

Spline Surfaces

In this section, we extend the general framework of parametric curve representation inves-
tigated in Chapter 3|to parametric surfaces using B-splines as basis functions, and provide
explicit expressions that characterize the surface points and the tangent spaces. Then,
we provide a formal set of conditions for the basis functions to ensure unique and stable
representation of the surfaces, affine invariance of the model, well-definiteness of the sur-
face curvature, and some reproduction properties. Finally, we specify a 3D snake model
with a sphere-like topology capable of perfectly reproducing ellipsoids irrespective of their
position and orientation.

Parametric Representation of Surfaces

We consider a parametric representation of a surface o (u, v) in 3D space that is described
by a triplet of Cartesian coordinate functions x; (u, v), x,(u, v) and x5(u, v), where u,v € R
are continuous parameters. The two-dimensional functions x, y and z are represented by
linear combinations of suitable basis functions. Among all possible bases, we focus on
those derived from a compactly supported generator ® : R? — R and its multi-integer
shifts {®(u — k,v — D} yez2. Then, the representation of the surface is given by the
vectorial equation

o0 o0 u v
O'(u,v)sz Z c[k,l]cb(?—k,i—l), (5.1

=—00 l=—00 1

where {c[k, 1] € R®}; )2 are the control points in 3D that define the shape of the surface,
and