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Abstract

This thesis addresses the problem of detecting and segmenting biological objects and
tracking them over time. This is far from trivial due to the fact that, in biology, the
objects of interest are usually indistinguishable from each other and can appear tightly
packed and in various configurations. Since we focus on objects that have a constrained
shape and move according to specific patterns, it seems natural to approach the detection,
segmentation, and tracking problems with model-based techniques.

We present a class of parametric active contours that use a novel kind of B-splines as basis
functions. We prove analytically that our new bases have the shortest-possible support,
subject to some design constraints. While the resulting active contours are versatile and
able to closely approximate any closed curve in the plane, their most important feature is
the fact that they admit ellipses within their span. Thus, they are able to represent exact
circular and elliptical shapes and are particularly appropriate to delineate cross sections
of cylindrical-like conduits and to outline blob-like objects. Then, we extend our model to
a fully parametric 3D design. The resulting active surface can approximate smooth blob-
like objects with good accuracy and can perfectly reproduce spheres and ellipsoids of any
position and orientation.

Finally, we make use of our active contours to segment and track mitotic cells in large-
scale time-lapse images. Due to their optimally short support, our active contours are
computationally efficient. Moreover, we designed a highly parallelizable image analysis
toolkit to further increase the throughput rate.

Keywords: Time-lapse, high-throughput microscopy, exponential B-spline, interpolation,
parameterization, multiresolution, Fourier descriptor, segmentation, active contour, active
surface, shape prior, ellipse, tracking, mitosis, crowd, particle filter, ImageJ.
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Résumé

Cette thèse aborde le problème de la détection et segmentation d’objets biologiques, ainsi
que de leur poursuite temporelle. Ce problème est rendu difficile par le fait que, en bio-
logie, les objets d’intérêt ne sont généralement pas différenciables les uns des autres,
peuvent s’agglutiner et apparaître dans plusieurs configurations. Nous nous concentrons
sur des objets qui ont une forme préétablie et se déplacent selon des trajectoires prévi-
sibles ; dès lors, il semble naturel que détection, segmentation et poursuite soient traitées
selon des techniques fondées sur des modèles.

Nous présentons une classe de contours actifs paramétriques qui utilisent un nouveau type
de B-splines comme fonctions de base. Nous démontrons analytiquement que nos nou-
velles bases ont un support minimal tout en satisfaisant certaines contraintes de concep-
tion. Alors que les contours actifs qui en résultent sont polyvalents et capables d’approcher
toute courbe fermée du plan, leur caractéristique majeure est le fait que le sous-espace
qu’ils engendrent contient les ellipses. Ainsi, ils sont en mesure d’offrir une représentation
exacte de toute forme circulaire ou elliptique, et sont donc particulièrement propices pour
délinéer les sections de tubes cylindriques et celles d’objets globuleux. Ensuite, nous éten-
dons notre modèle à une conception paramétrique 3D. La surface active qui en résulte
peut approcher avec bonne précision les objets lisses et globuleux. Elle peut reproduire de
façon exacte les sphères et ellipsoïdes de n’importe quelle position et orientation.

Enfin, nous tirons parti de nos contours actifs pour segmenter et poursuivre des cellules
mitotiques dans une volumineuse séquence d’images. En raison de leur support minimal,
nos contours actifs sont efficaces d’un point de vue calculatoire. En outre, nous avons
conçu un outil d’analyse d’images qui se prête bien à la parallèlisation, dans le but d’aug-
menter encore le débit de calcul.

Mots-clé : Vidéo-microscopie, B-splines exponentielles, interpolation, multirésolution, pa-
ramétrisation, descripteurs de Fourier, segmentation, contours actifs, surfaces actives, el-
lipses, contraintes de forme, suivi de cellules, mitose, cultures cellulaires, filtres à parti-
cules, ImageJ.
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Chapter 1

Introduction

1.1 The Quest for Quantitative Microscopy

By their nature, biological systems are dynamic. In recent years, there has been an increas-
ing interest in getting a proper understanding of the underlying cellular and molecular
processes [1, 2]. One of the major challenges of current biomedical research is to charac-
terize not just the spatial organization of these complex systems, but their spatio-temporal
relationships as well [3].

Thanks to substantial improvements in optics [4, 5], imaging sensors [6, 7, 8], and flo-
rescence labeling methods [9, 10, 11], microscopy has matured to the point that it en-
ables sensitive time-lapse imaging of cells in vivo and even of single molecules [12, 13].
Microscopy was initially a qualitative technique, but the transition to computerized mi-
croscopy enables one to extract meaningful quantitative data from images [14, 15]. Mak-
ing microscopy more quantitative will bring important scientific benefits in the form of
new applications and improved performance and reproducibility.

A direct consequence of the advances in high-throughput microscopy is that the size and
complexity of image data are increasing. Datasets generated in time-lapse experiments
commonly consist of hundreds to thousands of images, each containing hundreds to thou-
sands of objects to be analyzed [16, 17]. Such huge amounts of data cannot be analyzed
by visual inspection or manual processing within any reasonable amount of time. Au-
tomated methods are therefore necessary, not only to handle the growing rate at which
images are acquired, but also to provide a level of sensitivity and objectivity that human
observers cannot match.

1.2 Image Analysis in Bioimaging

The aim of image analysis in bioimaging is to use cutting-edge techniques from the fields
of Image Processing and Computer Vision to achieve insights into biological problems
through analysis of large-scale image datasets [18].

The domain of action of the tools provided by these fields is very large. It actually begins
during the image acquisition process itself. All imaging modalities introduce a certain
degree of distortion in the captured images, which are already intrinsically noisy. These
deformations can range from simple smoothing with a point spread function (PSF), to
optical aberrations, or non-linearities in the acquisition process [19].

The quality of an acquired image from an optical imaging system can be limited by factors
such as imperfections or misalignment in the lenses. However, there is a fundamental
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1. INTRODUCTION

maximum to the magnification of any optical system which is due to diffraction [19].
Shannon’s sampling theory from Signal Processing provides the conditions for setting the
optimal resolution of the camera during the acquisition process to match the magnifica-
tion of the optical device [20]. As for the next step, a large variety of image restoration
algorithms exist to facilitate the extraction of the information of interest. Among them,
the most used ones are deconvolution [21] and denoising [22] algorithms. Then, the last
major image analysis challenge is to reliably segment thousands of individual biological
objects and to track them over time. This is far from trivial due to the dependence on the
imaging modality and the fact that the cells can be tightly packed in the growth chamber
and may appear in various configurations making them difficult to segregate.

1.3 The DynamiX Project

The research in this thesis is part of the larger interdisciplinary DynamiX project within the
SystemsX.ch consortium. 1 SystemsX is the the research initiative underway in Switzerland
with the mandate of promoting Systems Biology.

The aim of the DynamiX project is to advance in the state-of-the-art of protein biochem-
istry and live cell imaging by applying highly-integrated microfluidic devices, advanced
image processing, and computational biology to two central aspects of cell function: the
cell cycle and growth control. Together these methods enable a single scientist to gather
thousands of precision measurements on protein expression dynamics, promoter architec-
ture, or molecular interactions in a single experiment. The measurements provide insights
into network function on all levels, including cis-regulatory networks, transcriptional reg-
ulatory networks, and protein expression dynamics, thus permitting the development of
quantitative models of specific sub-network function, such as ribosome biogenesis or DNA
damage response. The final goal of the project is to decipher promoter architecture to
understand how a given promoter DNA sequence regulates gene expression levels. We
show in Figure 1.1 the general pipeline of the DynamiX project from the image acquisition
process to the final data analysis. Within the DynamiX project, we tackle the block of
image analysis shown in Figure 1.1.

1.4 Developement of Principalized Image Analysis Tools for Systems
Biology

Many algorithms exist in the literature that perform cell detection, segmentation or track-
ing. We review the state of the art with regard of this matter in Chapter 2. These algo-
rithms are usually ad-hoc, and strongly dependent upon the acquisition technique. This
makes it difficult to reuse image analysis tools from different imaging modalities, or even
tools developed for the same imaging modality, but designed to detect objects with clear
morphological differences (e.g., an elliptic detector designed to segment cell nuclei is not
suited to segment chromosomes even though both can be imaged with fluorescence mi-
croscopy).

In this thesis, we aim at designing tools that can be used in a variety of situations and are
easily extensible to a broad range of imaging modalities. For that reason, our approach to
design segmentation and tracking algorithms is principaled, in contrast to many of ad-doc
designs that can be found in the literature. Our aim is two-fold: first of all, we want our
methods to be rooted in a consistent and flexible framework in which our algorithms can
be properly analyzed. This will enable us to derive optimality results and make concrete

1. http://www.systemsx.ch/
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1.5. Overview of the Contributions

Yeast
libraries

4100 member yeast
GFP strain library

Constructed promoter
library

mCherry transcription
factor library

TAP library (protein
arrays)

Microfluidic
chemostat

arrays

2400-4100 chemostats
per device

Each chemostat
~500pL small

Real time control over
growth environment

Fully automated

Easily integrated with
optics

>200,000 images per
experiment

DIC and fluorescence

High-temporal
resolution: ~0.25-1Hz

High-spatial
resolution

Image
acquisition

Fully automated image
analysis

Single cell:
- Detection
- Tracking
- Size determination

Protein:
- Abundance
- Localization

Image
analysis

Clusering of protein
expression profiles

Cell cycle dependent
protein abundance,
localization, and noise
fluctuations

Pathway dependent
fluctuations

Data
analysis

Figure 1.1: Description of the DynamiX work-flow. Microfluidic devices are programmed
with yeast libraries and imaged on an automated microscope. The acquired images are
then analyzed and the resulting data interpreted. The images on the bottom show, from
left to right, a highly-integrated microfluidic device, yeast cells grown in pico-chemostats
using device on left, a fully automated fluorescence microscope, a yeast cell expressing a
GFP tagged protein, a colony of yeast cells and their trajectories, and a statistical temporal
analysis of the colony of yeast cells expressing RNR3.

statements about the efficiency and performance of the derived algorithms. Moreover, it
will also provide a clear methodology to extend or adapt our algorithms to new imaging
modalities. Secondly, we want to produce useful tools for the bioimaging community.
Thus, special attention is given to the user-friendliness and interactivity of our resulting
software.

Usually, the general perception of the shape of an object is independent of its location,
orientation and size [23]. These abstract attributes, which seem to come form Plato’s
world of Ideas, can be made precise using the appropriate formalism. We identify the
areas of functional analysis and differential geometry as the ones that provide an ele-
gant methodology to design shape descriptions with explicit parametrization. Moreover,
computational geometry provides us with strategies to implement the shape descriptors
and create routines that perform quantitative analyses of biological images. We use the
machinery of these disciplines to identify the strengths and limitations of the classical
B-spline representation model.

1.5 Overview of the Contributions

Specifically, this thesis addresses the problem of detecting and segmenting biological ob-
jects and tracking them over time in high-throughput microscopy. This is far from trivial
due to the fact that, in biology, the objects of interest are usually indistinguishable from
each other and can appear tightly packed and in various configurations making them dif-
ficult to segregate. We focus on objects that have a constrained shape and move according
to specific patterns. It seems natural, then, to approach the detection, segmentation and
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tracking problems with model-based techniques that enforce the topology.

We revisit the spline-based framework for active contours, and tailor it to cell segmenta-
tion. We identify the key elements of the framework that have an important impact on the
efficiency, speed, robustness, and usability. We address them providing optimal solutions
derived from functional analysis. The most important design factor throughout the thesis
is the efficiency of the derived algorithms. For that, a proper definition of shape descrip-
tors is imperative. Every module of the segmentation and tracking algorithms must be
efficient in order to be able to apply them to high-throughput microscopy.

The main contributions of this thesis can be summarized as

– The proposal of a parametric curve representation model using generalized B-splines
that can perfectly replicate ellipses as well as higher-order algebraic curves. For that
purpose, we fully characterize the family of basis functions with shortest support that
allows one to reproduce exponential polynomials. We show that the minimal-support
of these functions has a crucial role in terms of efficiency.

– A new 2D segmentation method using our B-spline parametric curve model. It is versa-
tile enough to provide a good approximation of any closed curve in the plane. Further-
more, its most important feature is that it can perfectly generate circular and elliptical
shapes. These features are appropriate to delineate cross sections of cylindrical-like
conduits and to outline blob-like objects.

– The extension of our 2D segmentation method to 3D obtaining a fully parametric
B-spline surface model with a sphere-like topology. This surface can approximate any
blob-like structure with arbitrary precision and reproduce spheres and ellipsoids per-
fectly.

– A framework that is capable of generating fast and intuitive interactions of the user
with the segmentation algorithms due to our B-spline representation of the 2D and
3D segmentation methods. The modification of one parameter in the model affects a
limited region of the active curve/surface, which allows us to provide feedback to the
user in terms of live updating display.

– The design of an image analysis toolkit that performs large-scale time-lapse analysis of
mitotic cells using our segmentation algorithms as building blocks. This is possible due
to the efficiency of each individual segmentation routine and and possibility of high
level of parallelization.

1.6 Organization of this Thesis

The thesis proceeds with a review in Chapter 2 of different segmentation methods, among
which we highlight the active contours framework. Special effort is given to categorize
methodologies that have emerged from this framework using different shape representa-
tions.

We present in Chapter 3 the mathematical concepts that are used extensively throughout
the work. Special attention is given to the parametric representation of curves in a basis
composed of integer shifts of a generating function (i.e., uniform B-spline representation).
We also prove our optimality theorems in which the methods designed in the subsequent
chapters are based on.

In Chapter 4, we present a new class of parametric active contours using the special kind
basis functions designed in Chapter 3. We force our bases to have the shortest possible sup-
port subject to some design constraints to maximize efficiency. While the resulting snakes
are versatile enough to provide a good approximation of any closed curve in the plane,
their most important feature is the fact that they admit ellipses within their span. Thus,
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they can perfectly generate circular and elliptical shapes. We address the implementation
details and illustrate the capabilities of our snake with synthetic and real data.

An extension to 3D active contours is presented in Chapter 5. We introduce a fully para-
metric 3D design relying on the basis functions of Chapter 3. Once more, we design our
bases to have the shortest possible support subject to some constraints that maximize
computational efficiency. The proposed 3D snake can approximate blob-like objects with
C 1 smoothness, with good accuracy and can perfectly reproduce spheres and ellipsoids
irrespective of their position and orientation. The optimization process is remarkably fast
for a volumetric method thanks to the use of Gauss’ theorem within our energy computa-
tion scheme. Our technique yields successful segmentation results, even for challenging
datasets where object contours are not well defined. This is due to our parametric ap-
proach that allows us to favor prior shapes.

Finally, in Chapter 6, we make use of the active contours designed in previous chapters to
design a segmentation and tracking method that performs large-scale time-lapse analysis
of mitotic cells. The demonstrated efficiency of our active contours allows us to use them
as building blocks in a highly parallelizable image analysis toolkit.
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Chapter 2

State-of-the-art in Image Analysis

In this chapter, we first review the state of the art in image-analysis algorithms. Then, we
address how implementation standards allow one to provide users with appropriate tools.

First, we focus on image segmentation. We review different approaches, among which we
highlight the active contours framework. Then, we present the current paradigm in image
analysis for software development.

We describe the current good practices of the bioimage analysis community. To conclude,
we briefly review the most popular open image analysis available platforms.

2.1 A Survey on Segmentation

The first step of Biomedical image analysis is often to identify objects in images that are
relevant to a specific application. These objects are typically anatomical structures (e.g.,
organs, vessels or other conduits) in medical imaging, and different cell structures in
automated microscopy.

In image processing and computer vision, the process of separating the desired object (or
objects) of interest from the background in an image is called segmentation. More pre-
cisely, it is the process of assigning a label to every pixel in an image such that pixels with
the same label share certain visual characteristics. Ultimately, the goal of segmentation
is to simplify and/or change the representation of an image into something that is more
meaningful to analyze.

A variety of techniques can be used to do this. The literature contains hundreds of segmen-
tation techniques [24]. They range from simple pixel-wise operations (such as threshold-
ing or masking) to more complex continuous models (such as active contours). There is
no single method that can be considered good for all images, nor are all methods equally
good for a particular type of image.

Segmentation methods vary depending on the imaging modality, application domain, the
level of automation, and other specific factors. Beside manual segmentation, the simplest
method for separating objects from a background is intensity thresholding [25, 26, 27].
This involves defining one or several threshold parameters whose value can be set man-
ually or derived automatically from the data based on the intensity histogram [25]. This
approach would be successful if the objects to segment and the background are well sep-
arated and their intensity levels differ significantly from each other. Unfortunately, these
methods do not maintain object integrity since they do not include neighborhood rela-
tions, and are also sensitive to noise.

A more elaborated approach consists in using a predefined intensity profile, also referred
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to as a template, to be matched to the image data [28, 29]. This method has been shown
to work well as long as the shape to segment does not change significantly across different
experiments (i.e., rigid transformations) [28]. In order for the algorithm to gain flexibility
and generality, a large number of different templates must be considered. This usually
makes a good algorithm design impractical [30].

Another segmentation strategy is to apply the watershed transform [31]. The image is
considered as a topographic relief map and progressively flooded starting from its local
minima. This transform subdivides the image into regions (catchment basins) with delim-
iting contours (watersheds). However, the basic algorithm has several drawbacks such as
sensitivity to noise and a tendency toward oversegmentation [32].

Finally, the most used statistical segmentation methods rely on Markov Random Field
Models (MRF). MRF modeling itself is not a segmentation method but a statistical model
that can be used within segmentation methods. MRFs model spatial interactions between
neighboring pixels [33]. MRFs are often incorporated into clustering segmentation algo-
rithms such as the K-means [34, 35, 36]. The segmentation is then obtained by maxi-
mizing the a posteriori probability of the segmentation, given the image data. The major
difficulty associated with MRF models is the proper selection of the parameters controlling
the strength of spatial interactions [33]. Moreover, MRF-based segmentation methods are
usually computationally intensive algorithms.

2.1.1 Snakes, a Perfect Fit for Image Segmentation

In recent years, there has been an increasing interest in using deformable models in seg-
mentation [37, 38, 39, 40] since they provide the best tradeoff between flexibility and
efficiency. Within this category, active contours (also named snakes) are the most popular
tools for image segmentation. More precisely, an active contour is a curve within a 2D im-
age that evolves from an initial position towards the boundary of the object of interest. Its
extension to 3D images is an evolving surface. The initial position of the snake is usually
specified by the user, or it is provided by an auxiliary detection algorithm. The evolution
of the snake is formulated as a minimization problem; the associated cost function is usu-
ally referred as snake energy. Snakes have become popular because it is possible for the
user to interact with them, not only when specifying its initial position, but also during
the segmentation process. This interaction is usually implemented by allowing the user to
specify control points the snake must go through.

Research in this area has been fruitful and has resulted in many snake variants [37, 38,
41, 42]. They differ in the type of representation and in the choice of the energy term. In
the rest of this chapter we provide a categorization of snakes in terms of representation,
and offer a description of the overall snake energies.

2.1.1.1 Snake Representations Snakes can be broadly categorized based on the type of repre-
sentation used:

1. Point-snakes. These snakes are based on the simplest representation of discrete curves
(or surfaces): by using an ordered collection of points [43, 44, 45]. A pair of snake
points are considered adjacent if some topological relations are satisfied [46]. In
Figure 2.1, we show a 2D point-snake overlaid on the grid associated to a discrete
image model. The discrete curve is displayed as gray pixels, and has an 8-neighbor
connectivity.

This approach does not ensure smoothness of the contour due to the discrete nature
of the representation. However, some degree of smoothness (in a discrete sense) is
usually introduced by adding extra constraints in the energy functional [43]. This
discrete representation requires many parameters to encode a simple shape (two for
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Figure 2.1: Graphical representation of the discrete curve defined by a point-snake over
the grid associated to a discrete image model. The shaded pixels represent the snake
points joined by an 8-connected digital topology.

each snake point in 2D and three for each snake point in 3D). The large number of pa-
rameters to be estimated abate the robustness of the overall segmentation algorithm,
and results in a high computational complexity.

2. Parametric Snakes. The snake is described continuously by some coefficients [47,
48, 49, 50, 51]. Parametric snakes are usually built in a way that continuity and
smoothness are ensured. This provides the algorithm the capability to segment at an
arbitrary resolution, which may yield subpixel accuracy. Moreover, when compared
with the discrete approaches, they require much fewer coefficients and result in faster
optimization schemes than their discrete counterpart.
There are many different techniques for representing continuous curves. For a com-
plete review, refer to [52, 53]. In computer graphics, curves and surfaces are often
represented using non-uniform or uniform B-spline functions [54] and, more recently,
NURBS (Non-Uniform Rational B-Splines) [55]. NURBS are the preferred approach
in computer graphics since these functions are closed under perspective transforma-
tions. On the other hand, curve and surface parameterizations based on Fourier de-
scriptors [48, 56] and uniform B-spline functions [50, 57, 58] are popular in image
processing due to the existence of efficient signal-processing algorithms, and their
invariance to affine transformations. Of these, the B-spline curves have the extra ad-
vantage of locality of control which favors a more user-friendly interaction: a change
in one of the snake points will only affect a small region of the curve or surface.
We show in Figure 2.2 a curve parameterized with a B-spline basis, its spline con-
trol points as well as its corresponding coordinate functions. We discuss the B-spline
representation of curves in detail in the next chapter.
In the case of B-spline parameterizations, it can be shown that the computation com-
plexity of the snake energy and, therefore, the speed of the optimization algorithms,
is related to the size of the support of the basis functions [57]. It is therefore critical
to minimize this support while designing snakes.
Since the curve or surface of parametric snakes is represented explicitly, it is easy
to introduce smoothness and shape constraints [47]. It is also straightforward to
accommodate user interaction. This is often achieved by allowing the user to specify
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Figure 2.2: Graphical representation of the continuous curve defined by a snake parame-
terized by a B-spline basis. The snake contour is shown as a solid line enclosing a shaded
region, while the ’+’ elements are the spline control points. The parametric functions
x1(t) and x2(t) are displayed in solid lines, and the dashed lines indicate the weighted
basis functions.

some anchor points the curve should go through [43]. The downside of the method
is that the topology of the curve is imposed by the parameterization. This makes
parametric snakes less suitable for handling topological changes, although solutions
have been proposed for specific cases [59, 60].

3. Geodesic Snakes. Geodesic approaches have obtained a lot of attention during the last
decade [61, 62, 63, 64]. The representation of these snakes is implicit and described
as the zero level-set of a higher-dimensional manifold. Formally, the snake contour is
given by Φ−1(0) = {p ∈ Rn|Φ(p) = 0}, where Φ is a scalar function defined all over the
image domain. This method is based on the ideas developed by Osher and Sethian to
model propagating solid/liquid interfaces with curvature-dependent speeds [65]. The
interface (front) is a closed, nonintersecting, hypersurface flowing along its gradient
field with constant speed or a speed that depends on the curvature. It is moved by
solving a Hamilton-Jacob type equation written for a function in which the interface
is a particular level-set.

These methods offer great flexibility as far as the curve topology is considered. A
single geodesic snake (evolving under the appropriate energy functional), has the
ability to split freely to segment multiple objects within an image. This flexibility is
convenient when segmenting complex shapes, which include shapes with significant
protrusions, and to situations where no a priori assumption about the topology of the
object is made [66]. Moreover, level-set methods can be extended to any dimension,
which is more challenging for the case of point-snakes and parametric snakes.

However, they tend to be computationally more expensive since they evolve a man-
ifold with a higher number of dimensions than the actual contour to segment. We
show in Figure 2.3 a set of curves generated as the result of computing Φ−1(0).

2.1.1.2 Snake Energies In this thesis we follow the standard paradigm introduced by Kass et
al. [43] and formulate the snake evolution as an energy minimization. The snake energy
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Figure 2.3: Graphical representation of the continuous curves generated as the result of
computing the zero level-set (Φ−1(0)) of a scalar function Φ.

is typically a linear combination of three terms:

– the image energy, which is the responsible for guiding the snake toward the boundary
of interest;

– the internal energy, which ensures that the segmented region has smooth boundaries;

– the constraint energy, which provides a means for the user to interact with the snake.

The total energy of the snake is written as

Esnake(Θ) = Eimage(Θ)+ Eint(Θ)+ Ec(Θ), (2.1)

where Θ encodes the snake representation (snake points, parameters, or manifolds).
Then, the optimal Θ is formally obtained as

Θopt = arg min
Θ

Esnake(Θ).

The energy minimization process is nothing but an optimization procedure, where we
iteratively update the snake representation so as to reach the minimum of the energy
function from a starting position. Many methods exist to minimize the energy functional
(gradient descent, PDEs, DP, etc.), and each optimization scheme is usually linked to a
particular snake representation.

The image energy is the most important of the three terms in (2.1) since is the one that
guides the snake to the object of interest. Traditional snakes rely on edge maps derived
from the image [43, 47]. These edge-based energies can provide a good localization of
the contour of the object to segment. However, they have a narrow basin of attraction,
making critical a good initialization. Traditional point-snakes and parametric snakes were
very sensitive to initialization. This was in part due to the fact that the underlying internal
energy of these methods was purely based on edge maps. Several authors have developed
alternative solutions to this issue. Among them the most important ones are the introduc-
tion of balloon forces [67], the introduction of gradient vector-fields defined everywhere
on the image domain [44], or multiresolution approaches [50].

More image energies use statistical information to distinguish different homogeneous re-
gions [49, 68, 69]. The region-based energies have a larger basin of attraction and can
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converge even if explicit edges are not present [70]. However, it does not provide a good
localization as the edge-based image energies.

The internal energy is responsible for ensuring the smoothness of the snake. In its original
definition, it is composed by a linear combination of the length of the contour and the
curvature of the snake [43]. Despite the fact that this particular expression was the first
one to be introduced, it still corresponds to the most widely used [38]. Some authors also
incorporate prior knowledge as shape constraints in this energy [71].

The constraint energy provides a means for the user to interact with the snake. Usually,
this is obtained by introducing an energy functional that behaves as virtual springs that
pull the snake towards the desired points [57]. Some implementations obviate the con-
straint energy while accommodating the user interaction as a hard constraint and leaving
the parameters related to the point out of the optimization routine [72].

An alternative minimization framework to (2.1) is the multipurpose Mumford-Shah func-
tional [73]. In this framework, the image is modeled as a piecewise-smooth function.
The functional penalizes the distance between the model and the input image, the lack of
smoothness of the model within the sub-regions, and the length of the boundaries of the
sub-regions. This approach is quite popular in the context of geodesic snakes [70, 74, 75,
76].

The quality of segmentation is determined by the choice of the energy terms; it is gen-
erally agreed that specific image energies need to be defined for each particular imaging
device. For this reason, we define in the subsequent chapters particular energies for each
application.

2.2 Image Analysis Software

The step for converting algorithms to good and usable bioimage analysis software is also
of great importance. In this section, we present the current good practices for software
development to ensure a successful conversion, and we review the history and current
state of the most popular open image analysis platforms.

2.2.1 Software Design

The primary users of image analysis software are biologists with little or no programming
training and who are operating their own microscopes and analyzing their own data. They
require user-friendly, well-supported, and flexible software to easily fulfill their particular
needs [77].

It is generally agreed that the following good practices must be followed in order to create
software that is usable and helpful to a broad segment of bioimaging community [78]:

1. User-friendliness: The software should be intuitive and easy-to-use. Moreover, it
should be accompanied with clear usage manuals and offer feedback mechanisms
(e.g., forums, mailing lists, bug report systems) [79]. We show in Figure 2.4 an intu-
itive interface of an image analysis software running in a Tablet PC.

2. Developer-friendliness: A good documentation of the structure of the code is crucial
since it provides developers the capability to understand what and how the program
works. Open-source software is a good example of developer-friendly software.

3. Interoperability: It is important to make software that communicates using the avail-
able open standards. In this way, different software can easily interact without having
to define complementary components to translate the data. A successful example is
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Figure 2.4: Samsung Slate PC Series 7 running the open image analysis software Icy [81]
and one of the plug-ins described in this thesis. This is the result of the efforts of the open-
source community of developers to produce an user-friendly image analysis software.

the Bio-Formats project, a Java library for reading and writing life sciences image file
formats [80].

4. Modularity: The implicit modularity of object-oriented design is key when maintaining
a large piece of software. The use of modular structures with common interfaces
allows developers to update their software at a minimum effort.

5. Validation and Quality Control: The software should be tested in ways that are relevant
to the user. Moreover, for the benefit of making research reproducible, it must be
possible to replicate the same exact computations and quantitative results that the
developers advertise.

2.2.2 Open Image Analysis Platforms

The established paradigm in science is to ask and answer scientific questions by making
observations and doing experiments. In order to properly analyze the experiments and
draw conclusions, the scientist must be aware of how his tools work. Simply pressing a
button in a piece of software and interpreting the results without understanding what the
software does is obviously not good scientific practice. Open-source software provides the
necessary transparency, giving scientists the opportunity to fully understand the computa-
tional methods behind their tools.

Among all open-source bioimage analysis tools, the one that has had the most impact so
far is ImageJ [82]. It was initiated by Wayne Rasband at the National Institutes of Health
(NIH) under the name of NIH Image. The idea was to develop a low-cost image-processing
platform for the Apple Macintosh II. This piece of software was coded in Pascal, and had
add-on capabilities in the form of expansion slots in order to enable other developers to
easily extend the software for their own applications.

In the mid-nineties, the programming language Java was created by Sun Microsystems.
Java applications are typically compiled to bytecode that can run on any machine regard-
less of the architecture. This allowed developers to write their software independently of
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Initiated Status Language License
NIH Image 1 1987 Discontinued Pascal Public domain

ImageJ 2 1997 Active Java Public domain
µManager 3 2005 Active C++ BSD, Lesser GPL
CellProfiler 4 2006 Active Python GNU

Fiji 5 2007 Active Java GNU
ImageJ2 6 2009 Under development Java Simplified BSD

Icy 7 2011 Active Java GPL

Table 2.1: Summary of open-source image-processing platforms.

the platform. Rasband ported NIH Image to Java in the late-nineties under the name of
ImageJ. As a result the base of NIH Image users and developers was extended to PC and
Unix.

ImageJ upgraded the expansion slots of NIH Image into the more modular concept of
plug-ins. Since its creation, ImageJ has enjoyed a great popularity, and resulted in the
development of a wide variety of plug-ins for very diverse applications [83].

Besides the core application, another popular distribution is Fiji. It is a more user-friendly
distribution of ImageJ together with Java, Java 3D and the most prominent plug-ins as
well as transparent installation and updates [84].

The largest upgrade of ImageJ since NIH Image is being prepared involving several re-
search laboratories under the name of ImageJ2. It involves a full rewrite of the source
code using new architectures in order to overcome the limitations of ImageJ.

Recently, other open-source related platforms are emerging. Among them, we can find:
µManager, a software package for the control of automated microscopes [85]; CellProfiler,
a software specialized in measuring phenotypes automatically within images [86]; and
Icy, a full integrated easy-to-use platform extensible with plug-ins [81]. We summarize all
these open-source projects in Table 2.1 [87].

Due to the possibility that all the aforementioned image-processing packages diverge and
interoperability becomes an issue, the Open Bio Image Alliance 8 (OBIA) was constituted
in 2012. Its primary mission is to provide biologists and researchers in the life sciences
with the highest quality public-domain software resources and a corresponding knowledge
base to analyze and quantitate their image data in a sound and reproducible fashion, and to
strengthen the interaction between biologists, imaging scientists and developers of bio-image
analysis software and algorithms.

OBIA capitalizes on the existence of highly successful software packages such as ImageJ. How-
ever, it also faces substantial challenges relating to the long-term support of existing software,
its improvement, the quantity and diversity of available plug-ins, the documentation and
organization of the modules, as well as compatibility issues. OBIA promotes long-term avail-
ability and backward compatibility, federates the harmonious community-based development
of interoperable software, and promotes good software development practices.

1. http://rsb.info.nih.gov/nih-image/
2. http://rsbweb.nih.gov/ij/
3. http://www.micro-manager.org/
4. http://www.cellprofiler.org/
5. http://fiji.sc/
6. http://developer.imagej.net/
7. http://icy.bioimageanalysis.org/
8. http://www.openbioimage.org/
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The methods described in this thesis have been programmed as plug-ins for ImageJ and
Icy. Both are free open-source multi-platform Java image-processing platforms. Our plug-
ins are independent of any imaging hardware and, thanks to ImageJ and Icy, any common
file format may be used. The plug-ins and the source codes are freely available at the
respective official repositories.
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Chapter 3

Spline Bases for Representation of
Curves

The generation of curves under geometric restrictions is an important area of research in
Computer-Aided Geometric Design (CAGD). Considerable effort has been expended over
the last forty years in this field in order to develop efficient and flexible representations
of complex shapes. Since Bézier curves in the early sixties, B-spline curves in the mid
seventies, and subdivision schemes in the late seventies, the search for representations that
overcome the topological limitations of the classical approaches has not ceased. Research
in this area has been fruitful and has resulted in many different methodologies [88, 89].
They can be broadly categorized in terms of curve representation as

– subdivision schemes, where the curve is described as the limit of a refinement pro-
cess [90, 91, 92];

– parametric schemes, where the curve is described continuously by some coefficients
using basis functions [53, 93, 94, 95].

A subdivision scheme is a set of rules that recursively define new points on finer grids start-
ing form a set of initial points on a coarse grid. If the same rule is kept for all iterations, the
scheme is called stationary [96, 97, 98]. If a different rule is used at each refinement level,
the scheme is called nonstationary [99, 100]. Research is continually moving toward the
investigation of refinement rules able to combine desirable reproduction properties under
some geometrical constraints. In particular, schemes capable of reproducing circles were
proposed in [101, 102, 103, 104, 105], and, more recently, schemes based on exponential
B-splines made possible the reproduction of conic sections [106, 107, 108, 109, 110] and
exponential polynomials [111, 112].

For certain applications, it is more convenient to represent the curve in an explicit para-
metric form instead of representing it as the limit of a subdivision process, the reason
being that the parameters provide a direct way of evaluating any point on the curve. For
computational reasons, short basis functions are preferable because the evaluation of a
single point on the curve then depends on fewer coefficients.

In this chapter, we design a parametric curve representation model that can perfectly
replicate ellipses as well as higher-order algebraic curves. To achieve this, we select basis
functions that have the capability of reproducing specific families of exponential poly-
nomials. We prove a factorization theorem that links the reproduction properties of a
given basis function and its support. The theorem shows that any compact-support basis
function that reproduces that subspace can be expressed as the convolution of an ex-
ponential B-spline and a compact-support distribution. As a corollary of this result, we
obtain a full characterization of the minimal-support basis functions with the required re-
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production properties; these basis functions were first identified by Ron using a different
approach [113]. This explicit characterization gives us the opportunity to identify inter-
esting candidates within the family, and to construct nonstationary subdivision schemes
that share the same reproduction properties.

This chapter is organized as follows: In Section 3.1, we state the general parametric
curve model through an expansion with compact-support basis functions, and discuss the
requirements these bases should fulfill. In Section 3.2, we construct a family of basis func-
tions that reproduce exponential polynomials and prove that these bases have minimal
support. In Section 3.3, we exhibit the multiresolution properties of our basis functions
and propose a subdivision scheme that shares the same reproduction properties within
the family. Finally, we illustrate the versatility of our model in Section 3.4 by identifying a
basis from the family that contains ellipses and higher-order harmonics within its span.

3.1 Parametric Curves

3.1.1 Generic Curves

A curve r(t) on the plane can be described by a pair of Cartesian coordinate functions
x1(t) and x2(t), where t ∈ R is a continuous parameter. We choose to parameterize the
one-dimensional functions x1 and x2 by linear combinations of suitable basis functions.
Among all possible bases, we focus on those derived from a compactly supported generator
and its integer shifts {ϕ(· − k)}k∈Z. This allows us to take advantage of fast and stable
interpolation algorithms [114, 115, 116]. The parametric representation of the curve is
then given by the vectorial equation

r(t) =
∞
∑

k=−∞

c[k]ϕ(
t

T
− k), (3.1)

where {c[k]}k∈Z is a sequence of control points and T a sampling step.

We want our parametric curve to be defined in terms of the coefficients in such a way that
unicity of representation of the coordinate functions x1 and x2 is satisfied. Furthermore,
for computational purposes, we ask the interpolation procedure to be numerically stable.
A generating function ϕ is said to satisfy the Riesz-basis condition if and only if there exist
two constants 0< A≤ B <∞ such that

A ‖c‖2
`2(Z)
≤
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c[k]ϕ(· − k)
















2

L2(R)

≤ B ‖c‖2
`2(Z)

, (3.2)

for all c ∈ `2(Z). A direct consequence of the lower inequality is that the condition
∑∞

k=−∞ c[k]ϕ( t
T
− k) = 0 for all t ∈ R implies that c[k] = 0 for all k ∈ Z. Moreover,

c[k] = 0 for all k ∈ Z trivially implies that
∑∞

k=−∞ c[k]ϕ( t
T
− k) = 0 for all t ∈ R. There-

fore, the basis functions are linearly independent and every function is uniquely specified
by its coefficients. Moreover, the upper inequality ensures the stability of the interpolation
process [116, 117]. Condition (3.2) can be expressed [117] in the Fourier domain, where
the following equivalent form must hold for every ω ∈ R:

A≤
∞
∑

n=−∞
|ϕ̂(ω+ 2πn)|2 ≤ B.

The curve model in (3.1) has been shown to be very versatile since it can approximate any
curve when the sampling step T decreases while keeping the same basis function ϕ. The
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minimum requirement for this to happen is that ϕ should be able to reproduce constants,
which we formalize by

∞
∑

k=−∞

ϕ(· − k) = 1. (3.3)

In the literature of approximation theory, this constraint is often named the partition-of-
unity condition [118].

3.1.2 Closed Curves

We are especially interested in the case when r is closed. In this context, the two co-
ordinate functions are periodic, with the same period. We normalize it to unity so that
r(t) = r(t+1) for all t ∈ R, and divide it into M segments, which is equivalent to choosing
the sampling step T = 1

M
. Under these conditions, we can reduce the infinite summation

in (3.1) to a finite one with M terms involving periodized basis functions. We write

r(t) =
∞
∑

k=−∞

c[k]ϕ(M t − k)

=
∞
∑

n=−∞

M−1
∑

k=0

c[M n+ k]ϕ(M (t − n)− k)

=
M−1
∑

k=0

c[k]
∞
∑

n=−∞
ϕ(M (t − n)− k)

︸ ︷︷ ︸

ϕper(M t−k)

, (3.4)

where M is the number of control points, the sequence {c[k]}k∈Z is M -periodic, and ϕper
is the M -periodization of the basis function ϕ. In the periodic setting, it has also been
shown that this parametric curve model is very versatile [119], and we can approximate
any closed curve as accurately as we want by increasing the number of control points M .
Under some mild refinability conditions, it has been shown that this model naturally leads
to a stationary subdivision scheme [90].

3.1.3 Desirable Properties of Bases in the Periodic Settings

Now, we enumerate the conditions that our parametric closed curve model should satisfy,
and introduce the corresponding mathematical formalism.

1. Unique and Stable Representation. We want our closed parametric curve to be defined
in terms of the coefficients in such a way that unicity of representation is satisfied, and
we want the interpolation procedure to be numerically stable. A generating function
ϕ is said to satisfy the periodic Riesz-basis condition if and only if there exist two
constants 0< A≤ B <∞ such that

A ‖c‖2
`2([0...M−1]) ≤
















M−1
∑

k=0

c[k]ϕper(M · −k)
















2

L2([0,1])

≤ B ‖c‖2
`2([0...M−1]) (3.5)

holds true for all M -periodic and bounded sequences c. The interpretation of this
condition is in all points similar to the non-periodic case. We also note that (3.5) is
automatically satisfied if ϕper is defined as in (3.4), and (3.2) holds true for ϕ.
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3. SPLINE BASES FOR REPRESENTATION OF CURVES

2. Affine Invariance. Since we are interested in representing shapes irrespective of their
position and orientation, we would like our model to be invariant to affine transfor-
mations, which we formalize as

Ar(t) + b=
M−1
∑

k=0

(Ac[k] + b) ϕper(M t − k), (3.6)

where A is a (2× 2) matrix and b is a two-dimensional vector. From (3.6), it is easy
to show that the affine invariance is satisfied if and only if

M−1
∑

k=0

ϕper(M · −k) = 1. (3.7)

This last equality is a direct implication of the partition-of-unity condition stated
in (3.3).

3.1.4 Approximation and Reproduction Properties in Periodic Settings

The parametric closed-curve model (3.4) can be used to approximate any closed curve s
as accurately as desired by increasing the number of control points M . Formally, we write
that

lim
M→∞

‖s−PM s‖L2([0,1]) = 0,

where PM s denotes a projection of s onto {ϕ(M ·−k)}k∈Z, or, equivalently, onto {ϕper(M ·
−k)}k=[0...M−1], since both allow for alternative representations of the same space. In order
to be able to select a suitable basis function, it is important to know the rate at which
the error decreases as a function of M . The open-curve case reduces to the well-known
Strang-and-Fix framework in approximation theory [120, 121], the results of which are
transposable to the closed-curve case as well [119].

In addition to desirable approximation properties, our main interest lies in the situation
where the curve r can reproduce desirable shapes exactly. For this purpose, we select
for each M ≥ M0 a specific basis function capable of reproducing the shapes of interest
with M vector coefficients, and denote it ϕM . Its M -periodization is written as ϕM ,per.
Using a different basis function ϕM for each value of M obviously leads to a subdivision
scheme that is nonstationary. The existence of such a scheme depends on some refinability
conditions over ϕM . In particular, the conditions of Section 3.1.3 have to hold for each
ϕM individually.

In the nonstationary case, the approximation error of a curve s is ‖s−PM s‖L2([0,1]), where
now PM s denotes the projection of s onto the space {ϕM (N · −k)}k∈Z, with N = M .
Inspired by [100], which discusses asymptotically equivalent binary subdivision schemes,
we show in Section 3.4.1.5 that the rate of decay of the approximation error as a function
of N = M is equivalent to that of the stationary case.

3.2 Reproduction of Exponential Polynomials

The main aim of this section is to introduce a family of functions that reproduce exponen-
tial polynomials, and prove that these functions have minimal support. To achieve this
goal, we start by formalizing the concept of the reproduction of exponential polynomials.
Next, we define the exponential B-splines and list their relevant properties. This allows
us to give a full parameterization of the family of functions of interest: they happen to be
combinations of exponential B-splines and their derivatives. Note that, in this section, we
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3.2. Reproduction of Exponential Polynomials

consider spline functions on a cardinal grid on the real line. The case of periodic spline
functions corresponding to closed curves follows directly from this theory by the argument
given in Section 3.1.3, but the theory we develop here is more general and can also be
used to design basis functions that reproduce non-periodic functions, for instance, open
curves or surfaces.

3.2.1 Preliminary Definitions

A function PN
α of the variable t ∈ R is called an exponential polynomial of degree N and

exponent α ∈ C when it takes the form

PN
α (t) = eα t

 

a[0] +
N
∑

n=1

a[n] tn

!

, (3.8)

where {a[n]}n∈[0...N] is a sequence of (N + 1) complex coefficients such that a[N] 6= 0. A
finite linear combination of exponential polynomials takes the form

M
∑

m=1

p[m] PNm
αm

. (3.9)

A generating function ϕ is said to reproduce a function f if and only if there exists a
sequence {c[k]}k∈Z such that

f (t) =
∞
∑

k=−∞

c[k]ϕ(t − k)

holds almost everywhere.

3.2.2 Reproduction Conditions

A fundamental result in approximation theory is that there is an equivalence between the
ability of a generating function to reproduce polynomials of a certain degree and the order
of decay of the approximation error as the step size goes to zero [122]. Strang and Fix
showed in [121] that a generating function ϕ ∈ L2(R) has an approximation error that
decays with order N if and only if

∫ ∞

−∞
ϕ(t)dt 6= 0

and there exists a finite constant Cn ∈ C such that

∞
∑

k=−∞

(t − k)n ϕ(t − k) = Cn

holds for almost every t ∈ R, and for n ∈ [0 . . . N − 1]. Moreover, the generating function
reproduces polynomials up to degree (N − 1).

An extension of the Strang-and-Fix conditions was presented by Vonesch et al. in [123] in
the context of the reproduction of exponential polynomials. Here, we provide a reformu-
lation suited to our needs.
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3. SPLINE BASES FOR REPRESENTATION OF CURVES

Proposition 1. A compact-support generating function ϕ ∈ L2(R) reproduces exponential
polynomials of degree up to (N − 1) and exponent α if and only if

∫ ∞

−∞
e−α t ϕ(t)dt 6= 0 (3.10)

and there exists a finite constant Cn ∈ C such that

∞
∑

k=−∞

(t − k)n e−α (t−k)ϕ(t − k) = Cn (3.11)

holds for almost every t ∈ R, and for n ∈ [0 . . . N − 1].

This proposition is a direct consequence of the generalized Strang-and-Fix conditions
from [123] and the fact that ϕ is compactly supported.

Another way of approaching the problem is offered in [124] where the authors show that
the reproduction properties of generating functions are preserved through convolution.
We summarize here their proposition for completeness.

Proposition 2 (Unser and Blu, 2005). Given a generating function ϕα that reproduces
exponential polynomials of exponent α and degree up to N, then, for any ψ such that
∫∞
−∞ e−α tψ(t)dt 6= 0, the composite function

�

ϕα ∗ψ
�

also reproduces exponential poly-
nomials of exponent α and degree up to N.

The formulation proposed by the authors also requires two mild technical conditions over
ψ and

�

ϕα ∗ψ
�

to ensure that moments are well-defined.

Proposition 2 provides a constructive procedure to build generating functions using sim-
pler functions with known reproduction properties. In the next section, we present the
exponential B-splines, which will provide us with the appropriate building blocks to re-
produce exponential polynomials.

3.2.3 Exponential B-Splines

As their name suggests, exponential B-splines are the exponential counterpart of the well-
known polynomial B-splines [124, 125, 126]. They have the property of reproducing
exponential polynomials, polynomials being recovered as a particular case by setting α= 0
in (3.8). An exponential B-spline of order N and poles α = (α1, . . . ,αN ) is defined in the
Fourier domain as

β̂α(ω) =
N
∏

m=1

1− e−(jω−αm)

jω−αm
. (3.12)

Note that the exponential B-splines are entirely specified by the collection α; the ordering
of the poles αm is irrelevant. We illustrate in Figure 3.1 several exponential B-splines,
where we see that a wide range of behaviors can be obtained by varying N and α.

The most relevant properties of exponential B-splines for our purposes are

– The exponential B-splines are always well-defined (i.e., bounded and compactly sup-
ported), and form a Riesz basis if and only if

�

αm1
−αm2

�

/∈ 2π jZ for all pairs such
that m1 6= m2.

– Exponential B-splines of order N are compactly supported within the interval [0, N].

22



3.2. Reproduction of Exponential Polynomials

(a) (b)

(c)

Figure 3.1: Examples of exponential B-splines. (a) First-order exponential B-splines with
α ∈ {(−2), (−1), (− 1

2
), (0), ( 1

2
)}. (b) Second-order exponential B-splines β(α,α) with α ∈

{(−2,−2), (−1,−1), (− 1
2
,− 1

2
), (0, 0), ( 1

2
, 1

2
)}. (c) N -th order exponential B-splines β(α,...,α)

with α=− 1
4

and N ∈ [1 . . . 5].

– The convolution of two exponential B-splines yields another B-spline of augmented
order

βα1
∗ βα2

= βα1∪α2

where
�

α1 ∪α2
�

is the concatenation of the elements of α1 and α2.

– The exponential B-splines of first order with parameter (α) reproduce the exponential
function with exponent α

eα t =
∞
∑

k=−∞

eα k β(α)(t − k).

– Exponential B-splines reproduce exponential polynomials of degree up to
�

Nm1
− 1
�

and exponent αm1
if and only if αm1

appears exactly Nm1
times in α and, for all other

distinct αm2
, we have that

�

αm1
−αm2

�

/∈ 2π jZ.

The three last properties provide us with a constructive procedure for building generating
functions capable of reproducing exponential polynomials of a given degree and exponent.
By construction, the support of the resulting generating functions corresponds to the or-
der of the exponential B-spline. We refer to [124] for additional aspects of exponential
B-splines.
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3. SPLINE BASES FOR REPRESENTATION OF CURVES

3.2.4 Distributional Decomposition

Our first goal is to characterize the functions that reproduce exponential polynomials.
To that end, we are able to prove a converse version of Proposition 2; we prove that
any compact-support function with the required reproduction properties must contain an
exponential B-spline convolution factor with the same reproduction properties.

Theorem 1. Let ϕ be supported within [a, b] and let it reproduce finite linear combinations
of exponential polynomials (3.9) such that

�

αm1
−αm2

�

/∈ 2π jZ for m1 6= m2. That is, ϕ
satisfies (3.10) and (3.11) for each pair (Nm,αm). Then, a distribution ψ exists such that

ϕ = βα ∗ψ, (3.13)

where ψ satisfies (3.10) for all αm, each αm appears Nm times in α, and ψ is compactly
supported within [a, b− N] with N =

∑M
m=1 Nm.

Proof. We proceed by induction over the order Nm1
of each αm1

to show that we can factor
out Nm1

times an exponential B-spline of first order for each αm1
from the generating

function ϕ. The process can be repeated for each exponent until the remaining kernel
cannot reproduce any exponential polynomial anymore. Then, it is enough to show that,
for a given αm2

, there exists a distribution ψ such that

ϕ = β(αm2
) ∗ψ, (3.14)

where ψ satisfies the following properties:

1. it is compactly supported within [a, b− 1];
2. it reproduces exponential polynomials of degree up to

�

Nm2
− 2
�

and exponent αm2
;

3. it reproduces exponential polynomials of degree up to
�

Nm1
− 1
�

and exponent αm1

for all m1 6= m2.

Since the definition ofψ provided in (3.14) is implicit, we need to verify that this distribu-
tional kernel exists and is well-defined. We show this constructively. For a given m2 ≤ M ,
we define the function

ψ(t) =
∞
∑

k=0

eαm2
k (D−αm2

I)ϕ(t − k), (3.15)

where D is the derivative operator in the sense of distributions, and I is the identity. The
infinite sum in (3.15) is well-defined since, for every t, the sum has only a finite number
of elements because ϕ has compact support. From (3.15), we write that

ψ(t)− eαm2 ψ(t − 1) = (D−αm2
I)ϕ(t). (3.16)

Taking the Fourier transform of (3.16) leads to the factorization

ϕ̂(ω) =
1− e−

�

jω−αm2

�

jω−αm2

ψ̂(ω) = β̂(αm2
)(ω) ψ̂(ω)

which corresponds to the implicit definition of ψ given in (3.14).

To prove Point 1), we recall that ϕ reproduces exponential polynomials of degree up
to Nm2

− 1 ≥ 0 and exponent αm2
. Thus, by setting n = 0 in (3.11) and applying the

differential operator
�

D−αm2
I
�

, we have that

∞
∑

k=−∞

eαm2
k
�

D−αm2
I
�

ϕ(t − k) = 0,
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in the distributional sense. Thanks to this last equality and using the explicit formula of ψ
given in (3.15), we can also write that

ψ(t) =−
−1
∑

k=−∞

eαm2
k
�

D−αm2
I
�

ϕ(t − k).

According to this last expression, the support of ψ is contained within (−∞, b− 1]. But,
according to the definition (3.15), we also have that the support of ψ is contained within
[a,+∞). Hence, we conclude that the support of ψ is contained within [a, b− 1].

We deal with a modified version of (3.11) to prove Point 2). By linearity, and since ϕ
reproduces exponential polynomials of degree up to Nm2

− 1 ≥ 0 and exponent αm2
, we

can write that
∞
∑

k=−∞

P(t − k)e−αm2
(t−k)ϕ(t − k) = CP , (3.17)

where P is any polynomial of degree no greater than
�

Nm2
− 1
�

, and CP is a constant that

only depends on the polynomial P and not on t. Then, the application of
�

D−αm2
I
�

to (3.17) leads to

0 =
∞
∑

k=−∞

P(t − k)e−αm2
(t−k)

�

D−αm2
I
�

ϕ(t − k)
︸ ︷︷ ︸

ψ(t−k)−eαm2 ψ(t−k−1)

+
∞
∑

k=−∞

Ṗ(t − k)e−αm2
(t−k)ϕ(t − k)

︸ ︷︷ ︸

CṖ

,

where we have used (3.16) to rewrite the first term, and where the second term is equal
to the constant CṖ since Ṗ is a polynomial of degree no greater than

�

Nm2
− 2
�

. Since ψ
has a compact support, we can rearrange the terms as

∞
∑

k=−∞

Q(t − k)e−αm2
(t−k)ψ(t − k) =−CṖ , (3.18)

where Q(t) = P(t)− P(t + 1).

Since P is a polynomial of degree no greater than
�

Nm2
− 1
�

, it follows that Q is a

polynomial of degree no greater than
�

Nm2
− 2
�

. This also means that, for all poly-

nomials Q of degree no greater than
�

Nm2
− 2
�

, there exists a constant CQ such that
∑∞

k=−∞ Q(t − k)e−αm2
(t−k)ψ(t − k) = CQ. In particular, if P(t) = t, then Q(t) = −1. Be-

cause Ṗ is a polynomial of degree lesser than that of P, it also satisfies (3.17). Then, we
can substitute P by Ṗ = 1 in (3.17), which we combine with (3.18) and Q =−1 to obtain
the system

¨
∑∞

k=−∞ e−αm2
(t−k)ϕ(t − k) = CṖ

−
∑∞

k=−∞ e−αm2
(t−k)ψ(t − k) = −CṖ ,

which leads to

∞
∑

k=−∞

e−αm2
(t−k)ψ(t − k) =

∞
∑

k=−∞

e−αm2
(t−k)ϕ(t − k).
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Integrating the last expression of t over the interval [0, 1], and rearranging the terms,
yields

∫ ∞

−∞
e−αm2

tψ(t)dt =

∫ ∞

−∞
e−αm2

t ϕ(t)dt.

Thus, since ϕ satisfies (3.10), so does ψ. Therefore, ψ reproduces exponential polynomi-
als of degree up to

�

Nm2
− 2
�

and exponent αm2
.

Finally, to prove Point 3), we proceed in the same manner. We recall that, for m1 6= m2,
the function ϕ reproduces exponential polynomials of degree up to Nm1

− 1 ≥ 0 and
exponent αm1

. Thus, if we use (3.17) with parameter αm1
and apply the differential

operator
�

D−αm2
I
�

, then we obtain
�

αm1
−αm2

�

CP =
∞
∑

k=−∞

P(t − k)e−αm1
(t−k)

�

D−αm2
I
�

ϕ(t − k)
︸ ︷︷ ︸

ψ(t−k)−eαm2 ψ(t−k−1)

+
∞
∑

k=−∞

Ṗ(t − k)e−αm1
(t−k)ϕ(t − k)

︸ ︷︷ ︸

C ′
Ṗ

,

where we have used again (3.16) to rewrite the first term, and where the second term
is equal to the constant C ′

Ṗ
since Ṗ is a polynomial of degree no greater than

�

Nm1
− 2
�

.
Since ψ has compact support, we can rearrange the terms to obtain

∞
∑

k=−∞

Q(t − k)e−αm1
(t−k)ψ(t − k) =

�

αm1
−αm2

�

CP − C ′
Ṗ
, (3.19)

where Q(t) = P(t)− eαm2
−αm1 P(t + 1).

Since P is a polynomial of degree no greater than
�

Nm1
− 1
�

, and eαm2
−αm1 6= 1, then Q

is a polynomial of degree
�

Nm1
− 1
�

, too. This also means that, for all polynomials Q
of degree no greater than

�

Nm − 1
�

, there exists a constant CQ such that
∑∞

k=−∞ Q(t −
k)e−αm1

(t−k)ψ(t− k) = CQ. In addition, we see that, if P(t) = 1, then Q(t) = 1−eαm2
−αm1

and C ′
Ṗ
= 0. Now, by setting P(t) = 1 in (3.17) and Q(t) = 1− eαm2

−αm1 in (3.19), we
have the system

¨
∑∞

k=−∞ e−αm2
(t−k)ϕ(t − k) = CP

∑∞
k=−∞

�

1− eαm2
−αm1

�

e−αm1
(t−k)ψ(t − k) =

�

αm1
−αm2

�

CP ,

which leads to
∞
∑

k=−∞

e−αm1
(t−k)ψ(t − k) =

αm1
−αm2

1− e−
�

αm1
−αm2

�

∞
∑

k=−∞

e−αm2
(t−k)ϕ(t − k).

Integrating the last expression of t over the interval [0, 1], and rearranging the terms,
yields

∫ ∞

−∞
e−αm1

tψ(t)dt =
αm1
−αm2

1− e−
�

αm1
−αm2

�

∫ ∞

−∞
e−αm2

t ϕ(t)dt.

Thus, since ϕ satisfies (3.10) for αm2
, so does ψ for αm1

. Therefore, ψ reproduces expo-
nential polynomials of degree up to

�

Nm1
− 1
�

and exponent αm1
.
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3.2.5 Minimal-Support Generating Functions

As a direct consequence of Theorem 1, we show that appropriate combinations of expo-
nential B-splines define the whole family of functions of minimal support that reproduce
exponential polynomials. This family was first identified in [113] by independent means.

Theorem 2. The size of the smallest-support kernel ϕ ∈ L2(R) that reproduces exponential
polynomials of degree up to

�

Nm − 1
�

and parameter αm for m ∈ {1 . . . M} is

N =
M
∑

m=1

Nm, (3.20)

provided that
�

αm1
−αm2

�

/∈ 2π jZ for m1 6= m2. Moreover, every minimal-support function
ϕ can be written as

ϕ(t) =
N−1
∑

n=0

λn
dn

dtnβα(t − a), (3.21)

where a is an arbitrary shift parameter that determines the lower extremity of the support of
ϕ. In (3.21), each αm appears exactly Nm times within the collection α and the collection of
λn satisfies

∑N−1
n=0 λnα

n
m 6= 0.

Proof. By Theorem 1, we can write

ϕ = βα ∗ψ,

where ψ is a distribution with support [a, b− N] that satisfies (3.10) for all αm. Finally,
each αm appears Nm times within the collection α. Conversely, if we take a distribution ψ
that satisfies (3.10) for all αm and is supported within [a, b′], then ϕ = βα∗ψ is supported
within [a, b′+ N] and reproduces exponential polynomials of degree up to

�

Nm − 1
�

and
parameter αm for m ∈ [1 . . . M]. Now, minimizing the support of ϕ means finding the
smallest b such that ψ exists. Of course, this is possible only if b′ = b − N ≥ a, which
yields ψ as a single-point distribution. This shows that the minimum size of the support
of ϕ is b− a = N .

We know from distribution theory that the only distributions that have a support of zero-
measure are finite linear combinations of the Dirac distribution and of its derivatives [127,
Th. XXXV]. Thus, if ϕ has minimal support, then there exist constants λn such that

ψ(t) =
∞
∑

n=0

λn δ
(n)(t − a). (3.22)

This means that

ϕ(t) =
∞
∑

n=0

λn
dn

dtnβα(t − a).

Since we restrict ourselves to L2(R), the summation has to run from 0 to (N − 1).
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Finally, since ψ satisfies (3.10) for all αm, we have that

0 6=
∫ ∞

−∞
e−αm tψ(t)dt by hypothesis

=

∫ ∞

−∞
e−αm t

N−1
∑

n=0

λn δ
(n)(t)dt by (3.22)

=
N−1
∑

n=0

λn

∫ ∞

−∞
e−αm t δ(n)(t)dt by linearity

=
N−1
∑

n=0

λn

¬

δ(n)(t), e−αm t
¶

by definition

=
N−1
∑

n=0

λnα
n
m,

which proves the last result.

3.2.6 Interpolator

It is also possible to constrain ϕ to be an interpolator. That is,

∀ k ∈ Z : ϕ(t)
�

�

t=k = δ[k].

Due to the size of the support ofϕ, the interpolation condition can add up to N constraints,
depending on the value of a. This number of constraints matches the N degrees of freedom
that result from the choice of λn in (3.21). A general study of the appropriate choice of
λn to satisfy the interpolation condition lies out of the scope of this thesis. However, we
propose a case-by-case approach that will be exemplified in Section 3.4.

3.3 Multiresolution and Subdivision

We have characterized the complete family of functions with minimal support that re-
produce exponential polynomials in order to build parametric curves. In this section, we
emphasize the connection with the subdivision world using the classical multiresolution
properties of exponential B-splines. Moreover, we also specify another type of multireso-
lution scheme in terms of reproduction capabilities. In this section we focus on our case
of interest: closed curves.

3.3.1 Classical Multiresolution of Exponential B-Splines

An important observation concerning the family of minimal-support basis functions in
(3.21) is that it is constructed with exponential B-splines and their derivatives of equal
parameter α. Thanks to this property and under appropriate circumstances, the basis
functions in (3.21) inherit the multiresolution properties of the exponential B-splines.
It has been shown in [124, 128] that an exponential B-spline and its derivatives with
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parameter α= (α1, . . . ,αN ) satisfy the nonstationary set of dilation relations

βα(
t

2
) =

∞
∑

k=−∞

hα
2
[k]βα

2
(t − k)

d

dt
βα(

t

2
) = 2

∞
∑

k=−∞

hα
2
[k]

d

dt
βα

2
(t − k)

...
dn

dtnβα(
t

2
) = 2n

∞
∑

k=−∞

hα
2
[k]

dn

dtnβα2
(t − k), (3.23)

where n ≤ (N − 1), α
2
= (α1

2
, . . . , αN

2
) is the collection of roots divided by 2, and hα

2
is the

mask whose symbol is given by

H α
2
(z) =

1

2N−1

N
∏

m=1

�

1+ e
αm
2 z−1

�

.

3.3.2 Subdivision Scheme

We have now all the ingredients in hand to define a multiresolution hierarchy of spaces of
closed curves. We define the spline space at resolution M as

Vα,M =

(

r(t) =
M−1
∑

k=0

cM[k]ϕM ,per(M t − k)

)

,

where M is the number of control points, and ϕM ,per is the M -periodization of (3.21) with
defining parameter α

M
. Note that the parameters {λn}n=0...N−1, which are used to define

ϕM ,per through (3.21) and (3.4), depend on M . In order to find the equivalent scaling
expression for our generating function ϕM , we proceed in the Fourier domain where the
explicit expression of ϕM in terms of exponential B-splines is

ϕ̂M (ω) = ΛM (jω) β̂α
M
(ω)e−jω a. (3.24)

There, the Fourier-domain function ΛM (jω) = λ0[M] +
∑N−1

n=1 λn[M]
�

jω
�n is a polyno-

mial in
�

jω
�

of degree no greater than (N − 1). To derive the scaling relation, we take
ϕM (

t
2
) and ϕ2 M (t) to the Fourier domain. We have that

2 ϕ̂M (2ω)
ϕ̂2 M (ω)

=
2ΛM (j 2ω) β̂α

M
(2ω)e−j 2ω a

Λ2 M (jω) β̂ α
2 M
(ω)e−jω a

. (3.25)

By identifying the Fourier symbol H α
2 M
(ejω), we can rewrite (3.25) as

2 ϕ̂M (2ω)
ϕ̂2 M (ω)

=
ΛM (j 2ω)
Λ2 M (jω)

H α
2 M
(ejω)e−jω a. (3.26)

Using this result, it is straightforward to verify that Vα,M ⊂ Vα,2 M , provided that a in (3.21)

is an integer and ΛM (j 2ω)
Λ2 M (jω)

is a 2π-periodic function. If a is noninteger, a similar multires-
olution embedding space scheme can be achieved by shifting the grid at each refinement
level. In any case, the particular choice of the set of parameters {λn}n=0...N−1 will de-
termine if the basis function is refinable and, therefore, if the multiresolution spaces are
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3. SPLINE BASES FOR REPRESENTATION OF CURVES

nested or not. We analyze in Section 3.4.1.3 how (3.26) applies to the various bases pro-
posed in this chapter. In addition, we illustrate in Section 3.4.1.4 a constructive procedure
to determine a nontrivial set of {λn}n=0...N−1 that satisfies (3.26) and generates refinable
schemes.

In the case where the spaces are nested, the subdivision process for finding the sequence
of coefficients c2 M starting with the sequence cM is then carried out in the following two
steps:

1. up-sampling of the original sequence cM with a factor of 2;

2. filtering of the up-sampled sequence with a smoothing filter h̃α
2

using periodic bound-
ary conditions.

The filter h̃α will depend on the particular choice of the parameters {λn}n=0...N−1, and its
construction will be exemplified in Section 3.4 for the case of centered basis functions.
The sequence c2 M of 2 M coefficients represents exactly the same parametric curve as the
original sequence cM of M coefficients. This process can be repeated indefinitely to obtain
finer representations of the curve in a dyadic fashion.

3.3.3 Multiresolution-Reproduction Capabilities

An alternative multiresolution scheme emerges as we concatenate new elements to α for
fixed M . Since the reproduction of exponential polynomials is fully determined by α, the
incorporation of additional elements does not perturb the reproduction capabilities. This
multiresolution scheme in the reproduction properties will be exemplified in the case of
multiple harmonics in Section 3.4.2.

3.4 Applications

In this section, we make use of Theorem 2 to build basis functions with minimal support
capable of reproducing sinusoids. We start with single-frequency sinusoids that lead to
ellipses, and then we derive the basis functions for generating higher-order harmonics.

3.4.1 Reproduction of Ellipses

Circles and ellipses deserve a special attention since these simple shapes appear frequently
in images in many fields, for example computer graphics and biomedical engineering.
Since all ellipses can be obtained by applying an affine transformation to the unit circle,
we focus on the reproduction of this simple shape. This allows us to take advantage of the
requirement for affine invariance that we stated in Section 3.1.3.

A parametric curve defined by M vectorial coefficients and by an M -dependent generating
function ϕM is said to reproduce the unit circle if there exist two M -periodic sequences
{cc[k]}k∈Z and {cs[k]}k∈Z such that

cos(2π t) =
M−1
∑

k=0

cc[k]ϕM ,per(M t − k) (3.27)

sin(2π t) =
M−1
∑

k=0

cs[k]ϕM ,per(M t − k). (3.28)

We illustrate in Figure 3.2 the reproduction of sinusoids of unit period for each component.
Note that, when (3.27) and (3.28) hold, it is possible to represent any sinusoid of unit
period for an arbitrary initial phase using linear combinations of the two sequences of
coefficients.
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3.4. Applications

(a) (b)

Figure 3.2: Parametric representation of the unit circle (a) and its coordinate functions
(b) with exponential B-splines and M = 10. The dashed lines in (b) indicate the corre-
sponding basis functions.

3.4.1.1 Minimal-Support Basis for Sinusoids with Maximum Smoothness We now particular-
ize Theorem 2 for the case of sinusoids keeping the maximum degree of smoothness for
ϕM . This particular case is of special interest to us. We show in Chapter 4 and Chapter 5
how to build active contours capable of reproducing ellipses and ellipsoids respectively.

Corollary 1. The centered generating function with minimal support and maximal smooth-
ness that satisfies all conditions in Section 3.1.3 and that reproduces sinusoids of unit period
with M coefficients is

ϕS
M (t) =

3
∑

k=0

(−1)k cS
M[k]ςM (t +

3

2
− k), (3.29)

where






ςM (t) =
1
4

sgn(t)
�

sin(π
M

t)

sin π

M

�2

cS
M = [1,1+ 2 cos 2π

M
, 1+ 2 cos 2π

M
, 1].

Proof. Using (3.21), we see that ϕS
M needs to be constructed from combinations of expo-

nential B-splines with parameters α= (0, j 2π
M

,−j 2π
M
), which leaves N = 3. Therefore, we

have

ϕS
M (t) =

2
∑

n=0

λS
n[M]

dn

dtn βα(t − a). (3.30)

This ensures that ϕS
M is the shortest generating function that reproduces constants and

all sinusoids of unit period with M coefficients. The reproduction of constants is a direct
consequence of using α1 = 0, and the sinusoid-reproduction property comes from applying
Euler’s identity to α2 = j 2π

M
and α3 =−j 2π

M
.

In order to maximize the smoothness of the resulting generating function, the coefficients
λS

1[M] and λS
2[M] in (3.30) must vanish. Since ϕS

M reproduces constants, λS
0[M] can be
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3. SPLINE BASES FOR REPRESENTATION OF CURVES

determined by imposing the partition-of-unity condition. From (3.7), we have that

λS
0[M] =

�

sinc
1

M

�−2

.

An exponential B-spline parameterized by α generates a Riesz basis if and only if

αm1
−αm2

/∈ 2π jZ

for all purely imaginary pairs such that m1 6= m2. In our case, it is important to realize
that this condition is satisfied if and only if M ≥ M0 = 3. In other words, at least three
control points are needed to define our parametric curve.

Finally, a closed form for ϕS
M is obtained by computing the inverse Fourier transform of

ϕ̂S
M (ω) = λ

S
0[M]e

j 3ω
2

1− e−jω

jω

1− e−
�

jω−j 2π
M

�

jω− j 2π
M

1− e−
�

jω+j 2π
M

�

jω+ j 2π
M

,

where we have set a =− 3
2

in order to ensure that the basis function is centered.

We show in Figure 3.3 some members of this family of functions for several values of M .
We observe that they are continuous, with finite support of length W = 3, and tend to be
bump-like. Moreover, when M →∞, they converge to the quadratic B-spline. We can see
this by expanding in Maclaurin series ςM . Then, we have that limM→∞ ςM (t) =

1
4

sgn(t) t2

and limM→∞ cS
M = [1, 3,3, 1] immediately implies that limM→∞ϕ

S
M = β

2. This is because
a polynomial B-spline of degree n can be written as

βn(t) =
n+1
∑

k=0

(−1)k
�

n+ 1

k

�

ςn(t +
n+ 1

2
− k),

where ςn(t) = 1
2 n!

sgn(t) tn. Note that the convergence of ϕS
M to β2 is point-wise. A

piecewise expression of ϕS
M can be obtained by expanding (3.29) into

ϕS
M (t) =

1

1− cos 2π
M







cos 2π |t|
M

cos π

M
− cos 2π

M
0≤ |t|< 1

2
�

sin π (3/2−|t|)
M

�2
1
2
≤ |t|< 3

2

0 3
2
≤ |t| .

3.4.1.2 Minimal-Support Interpolating Basis for Sinusoids As was suggested in Section 3.2.6,
the generating function ϕM can be tailored to satisfy the interpolating condition. We
investigate now how this applies to the reproduction of ellipses and other trigonometry-
related curves.

Corollary 2. The centered interpolating generating function with minimal support that sat-
isfies all conditions in Section 3.1.3 and that reproduces sinusoids of unit period with M
coefficients is

ϕI
M (t) =

3
∑

k=0

(−1)k cS
M[k] sec

π

M

�

ςM (t +
3

2
− k)

−
1

16

�

sec
π

2 M

�2

sgn(t +
3

2
− k)

�

. (3.31)
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3.4. Applications

Figure 3.3: Plot of a quadratic B-spline β2 and of the generating functions in (3.29) for
M = 3, 4, 5, and 6. The function with the lowest peak at t = 0 corresponds to M = 3,
and, as M increases, the central peak increases as well.

Proof. Following the same approach as when constructing ϕS
M , we see that ϕI

M needs
to be constructed from combinations of exponential B-splines with α = (0, j 2π

M
,−j 2π

M
).

Therefore, we have that

ϕI
M (t) =

2
∑

n=0

λI
n[M]

dn

dtn βα(t − a). (3.32)

In order to fulfill the interpolating condition, λI
0[M], λ

I
1[M], and λI

2[M] must satisfy a
linear system of equations. If we set a = − 3

2
in order to ensure that the basis function is

centered, we end up with

λI
0[M] = 1

λI
1[M] = 0

λI
2[M] =

�

M

2π

�2�

1− sec
π

M

�

.

In this case, the interpolating ϕI
M is a Riesz basis if and only if M ≥ 3, a condition that we

already encountered in the case of Corollary 1. Finally, a closed form for ϕI
M is obtained

by applying an inverse Fourier transform to

ϕ̂I
M (ω) = λI

0[M]e
j 3ω

2
1− e−jω

jω

1− e−
�

jω−j 2π
M

�

jω− j 2π
M

1− e−
�

jω+j 2π
M

�

jω+ j 2π
M

+λI
2[M]

�

jω
�2 ej 3ω

2
1− e−jω

jω

1− e−
�

jω−j 2π
M

�

jω− j 2π
M

1− e−
�

jω+j 2π
M

�

jω+ j 2π
M

.

We show in Figure 3.4 some members of this family of functions for several values of
M . We observe that they share a finite support of length W = 3. As we increase M , ϕI

M

33



3. SPLINE BASES FOR REPRESENTATION OF CURVES

Figure 3.4: Plot of the third-order I-MOMS (β2 − 1
8
β̈) and of the generating functions

in (3.32) for M = 3, 4, 5, and 6. Among the different ϕI
M , the function with the least

pronounced discontinuity at t = ± 3
2

corresponds to M = 3, and, as M increases, the

jump of the discontinuity increases as well. For M = 3, ϕI
M is continuous at t = ± 1

2
, but

discontinuous at t =± 3
2
.

converges to β2− 1
8
β̈2, which is the third-order I-MOMS described in [129]. A piecewise

expression of ϕI
M can be obtained by expanding (3.31) into

ϕI
M (t) =



































cos 2π t
M
−cos 2π

M

1−cos 2π
M

0≤ |t|< 1
2

�

2 cos π

M
+1
�2

8 cos π

M

�

cos π

M
+1
� |t|= 1

2

cos π

M
−cos 2π (3/2−|t|)

M

2
�

1−cos 2π
M

�

cos π

M

1
2
≤ |t|< 3

2
−1

8 cos π

M

�

cos π

M
+1
� |t|= 3

2

0 |t|> 3
2
.

3.4.1.3 Refinability of the Proposed Bases As discussed in Section 3.3.2, not all members of the
family of functions given by Theorem 2 are refinable. Here, we show the multiresolution
properties of the proposed basis functions that reproduce sinusoids.

When imposing maximal smoothness, it is straightforward to verify that the basis function
ϕS

M is refinable since it is proportional to a refinable exponential B-spline. To build the as-
sociated refinement mask, we have to take into account that a is a half-integer. Therefore,
there is a half-integer shift in the parameterization every time we apply the refinement.
This means that a curve rM built with M coefficients and the same curve expressed with
2 M coefficients satisfy

rM (t) = λS
0[M]

∞
∑

k=−∞

cM[k]βα(M t − k+
3

2
)

= λS
0[2 M]

∞
∑

k=−∞

c2 M[k]βα
2
(2 M t − k+

3

2
−

1

2
).
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The dependency between the two sequences of coefficients can be stated as

c2 M[k] =
λS

0[M]

λS
0[2 M]

∞
∑

l=−∞

cM[l]hα
2
[k+ 2− 2 l]

=

 

sinc 1
2 M

sinc 1
M

!2
�

�

cM
�

↑2 ∗ hα
2

�

[k+ 2],

where
�

cM
�

↑2 is the cM sequence upsampled by a factor of 2. It is interesting to note that
the filter hα

2
is equal to the sequence cS

M in the expression of ϕS
M in (3.29). We identify

the refinement filter h̃α
2

described in Section 3.3.2 as a shifted and scaled version of the
refinement filter hα

2
of the exponential exponential B-spline βα.

When imposing the interpolation property, it can be shown that, for the particular choice
λI

0[M], λ
I
1[M], and λI

2[M] leads to a ratio ΛM (j 2ω)
Λ2 M (jω)

that is not 2π-periodic. Thus, the

multiresolution spaces are not nested, and no refinement mask exists. Meanwhile, ϕI
M

is unique due to the restrictions introduced by the interpolatory condition, and there is
no remaining degree of freedom to be used to increase the regularity or to improve the
multiresolution properties of the basis function.

3.4.1.4 Additional Refinable Bases In this section, we illustrate a constructive procedure to
design new refinable schemes. In particular, we focus on the particular case where the
ratio ΛM (j 2ω)

Λ2 M (jω)
is constant. This can be achieved by imposing scaling conditions over the N ′

roots {γn}n=1...N ′ of the polynomial ΛM (jω). Then, we have that

Λ(jω) = λN ′[M]
N ′
∏

n=1

�

jω− γn[M]
�

,

where N ′ < N and where we have made explicit the dependence of the roots with re-
spect to M . Note that there is a one-to-one dependence between the elements of the
set {λn}n=0...N−1 and the roots of the polynomial {γn}n=1...N ′ , up to a scaling factor. In
particular, if we choose the roots such that

γn[2 M] =
γn[M]

2
(3.33)

for all n, then the quantity

ΛM (j 2ω)
Λ2 M (jω)

=
λN ′[M]

∏N ′

n=1

�

j 2ω− γn[M]
�

λN ′[2 M]
∏N ′

n=1

�

jω− γn[2 M]
�

by definition

=
λN ′[M]2N ′

∏N ′

n=1

�

jω− γn[M]/2
�

λN ′[2 M]
∏N ′

n=1

�

jω− γn[2 M]
�

factoring

= 2N ′ λN ′[M]
λN ′[2 M]

by (3.33)

is independent of ω and the resulting function ϕ is refinable. This particular multiresolu-
tion scheme where the roots of ΛM (jω) satisfy (3.33) is intimately related to the general-
ized exponential B-splines proposed in [130].

To build new refinable basis functions that reproduce sinusoids, we can choose the roots
{γR

n}n=1...N ′ of ΛM (jω) such that γR
n[2 M] = γR

n[M]/2. The number of roots N ′ determines
which is the maximum non-zero element in the sequence {λR

n}n=0...2, and therefore the
smoothness of the resulting basis function.
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Figure 3.5: Plot of the generating functions in (3.34) for M = 3, 4, 5, and 6. Among the
different ϕR

M , the function with the most pronounced discontinuity at t =± 3
2

corresponds
to M = 3, and, as M increases, the jump of the discontinuity decreases.

The particular choice of γR
1[M] =−γ

R
2[M] =

1
M

and a =− 3
2

defines a refinable, centered,
and symmetric generating function with minimal support reproduces sinusoids of unit
period with M coefficients. These roots determine the set of parameters {λR

n}n=0...2 up to
a scaling constant as

λR
0[M] = −

λR
2[M]

M2

λR
1[M] = 0

λR
2[M] = λR

2[M].

Then, the resulting generating function is

ϕR
M (t) =−

λR
2[M]

M2 βα(M t − k+
3

2
) +λR

2[M] β̈α(M t − k+
3

2
). (3.34)

We show in Figure 3.5 some members of this family of functions for several values of M .
We choose λR

2[M] such that the L2 norm of ϕR
M (t) is unitary. We observe that they share

a finite support of length W = 3.

Our choice of {γR
n}n=1...N ′ is arbitrary and corresponds to one particular case where the

resulting generating function is symmetric and non-smooth. Other choices would lead to
asymmetric functions and other degrees of smoothness.

3.4.1.5 Order of Approximation The notion of order of approximation is crucial in approxima-
tion theory since it governs the rate of decrease of the approximation error as the sampling
step vanishes. Specifically, in the periodic stationary case, the approximation order is de-
fined as the exponent L such that the difference between a function f and its projection
PM f onto {ϕ(M · −k)}k∈Z, or equivalently in {ϕper(M · −k)}k=[0...M−1], tends to zero. In
direct analogy with the classical Strang-and-Fix theory of approximation for the nonperi-
odic case, it has been shown in [119] that the error for the periodic case can be bounded
by

‖ f −PM f ‖L2([0,1]) ≤ Cϕ M−L ‖ f ‖L2([0,1]),
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ϕS
M ϕI

M

Parameters λS
0[M] =

�

sinc 1
M

�−2
λI

0[M] = 1
λS

1[M] = 0 λI
1[M] = 0

λS
2[M] = 0 λI

2[M] =
�

M
2π

�2 �
1− sec π

M

�

Smoothness C −1(R) C 1(R)
Order of approximation O (M−3) O (M−3)

Limit (M →∞) β2 β2 − 1
8
β̈2

Refinable YES NO

Table 3.1: Summary of the properties of ϕS
M and ϕI

M .

where Cϕ is a constant that only depends on the particular choice of ϕ. An analogous re-
sult for the nonstationary case can be obtained using the concept of asymptotically equiv-
alent subdivision schemes presented in [100]. We say that ϕM and ϕ̃ define equivalent
multiresolution schemes of order γ if and only if

‖P̃M f −PM f ‖L2([0,1]) = O (M−γ), (3.35)

where PM f denotes the projection of f onto {ϕM (N · −k)}k∈Z with N = M , and P̃M f
denotes the projection of f onto {ϕ̃(M · −k)}k∈Z. In our setting, if we set ϕ̃(t) =
limM→∞ϕM (t) for all t ∈ R, it is straightforward to see that

‖ f −PM f ‖L2([0,1]) ≤ ‖ f − P̃M f ‖L2([0,1]) + ‖P̃M f −PM f ‖L2([0,1]) = O (M−min(L,γ)).

Therefore, if the ϕM and ϕ̃ define multiresolution schemes of order high enough, the rate
of decay of the error is the same for the nonstationary and the stationary case.

By taking the limit M →∞ on ϕS
M and ϕI

M , we can observe that such functions converge
to the classical quadratic B-spline β2 and to the third-order I-MOMS β2 − 1

8
β̈2 derived

in [129], respectively. Both generating functions are known to have the same order of ap-
proximation L = 3. The main difference between them lies in the constant that multiplies
the M−3 factor. This factor is more favorable in the case of the quadratic B-spline than in
the case of the third-order I-MOMS. Thus, in general, the approximation offered by the
quadratic B-spline is more accurate than the one offered by the I-MOMS. This property
carries over to ϕS

M and ϕI
M when M →∞.

3.4.2 Reproduction of Higher-Order Harmonics

We now present a constructive procedure to extend the ellipse-reproduction properties of
our curves to higher-order harmonics. This problem was already approached using Fourier
descriptors [56]. Since our basis functions are capable of perfectly reproducing sinusoids,
the classical family of Fourier descriptors becomes a special class of our construction. It
must be noted, though, that our bases have a finite support, a property which is lacking in
Fourier descriptors.

We say that a parametric curve defined by M vectorial coefficients and by a generat-
ing function ϕM reproduces higher-order harmonics up to order L if there exist two
M -periodic sequences {cl,c[k]}k∈Z and {cl,s[k]}k∈Z for every 1≤ l ≤ L such that

cos (2π l t) =
M−1
∑

k=0

cl,c[k]ϕM ,per(M t − k) (3.36)

sin (2π l t) =
M−1
∑

k=0

cl,s[k]ϕM ,per(M t − k). (3.37)
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Such a curve is able to reproduce all modes up to order L for each component. Like in
the case of the sinusoids, it is possible to represent any initial phase using linear combi-
nations of the two sequences of coefficients in (3.36) and (3.37). We recall that, using
Euler’s identity and the multinomial theorem, related functions such as (cos(2π ·))l and
(sin(2π ·))l , with 1≤ l ≤ L, can also be expressed as linear combinations of elements from
{cos(2π l ·), sin(2π l ·)}1≤l≤L . This ensures that the functions (cos(2π ·))l and (sin(2π ·))l

are expressible with the same basis functions ϕM or ϕM ,per.
3.4.2.1 Minimal-Support Basis for Higher-Order Harmonics

Corollary 3. The centered generating function with minimal support and maximal smooth-
ness that satisfies all conditions in Section 3.1.3 and that reproduces higher-order harmonics
up to order L with M coefficients is

ϕS
M (t) = λ0[M]βα(t +

2 L+ 1

2
), (3.38)

where α contains only {0}, {j 2π
M

k}k∈[1...L], and {−j 2π
M

k}k∈[1...L], and where the value λ0[M]
is an appropriate normalizing constant.

Proof. The proof follows the same strategy as in Corollary 1. The choice of the collec-
tion α and the size of the support N = 2 L + 1 is given by Theorem 2. The parameters
λ1[M], . . . ,λL[M] are set to zero to maximize the smoothness of ϕS

M , and λ0[M] is fixed
in such a way that ϕS

M satisfies the partition-of-unity condition, which yields

λ0[M] =
1

∑2 L−1
k=1 βα(k+

1
2
)
.

We recall that exponential B-splines parameterized by α form a Riesz basis if and only
if
�

αm1
−αm2

�

/∈ 2π jZ for all pairs such that m1 6= m2. In our case, this condition is
satisfied if M ≥ 2 L+ 1. Finally, the shift parameter is set to a =− 2 L+1

2
to ensure that the

generating function is centered.

It should be noted that the smoothest basis function corresponds to a normalized trigono-
metric spline, which was defined as a piecewise trigonometric function by Schoenberg
in [131].

3.4.2.2 Parametric Expansion of Higher-Order Harmonics Here, we determine the sequence
of M vector coefficients that reproduce the higher-order harmonics using the generating
function ϕS

M given in (3.38). We start by recalling the exponential-reproducing property
of the exponential B-splines

eα t =
∞
∑

k=−∞

eα k β(α)(t − k). (3.39)

Setting α= j 2π l
M

with 1≤ l ≤ L, we see that β(j 2π l
M
) reproduces ej 2π l

M
t . If we now convolve

both sides of (3.39) with βα\
�

j 2π l
M

�, we get that

�

βα\
�

j 2π l
M

� ∗ ej 2π l
M
·
�

(t) =
∞
∑

k=−∞

ej 2π l
M

k
�

β(j 2π l
M
) ∗ βα\�j 2π l

M

�

�

(t − k)
︸ ︷︷ ︸

1
λ0[M]

ϕS
M (t−

2 L+1
2
−k)

,

where we have used the definition of ϕS
M from (3.38), along with the fact that the convolu-

tion operator commutes with the shift operator. To simplify the left-hand side, we invoke
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an important property of linear shift-invariant (LSI) systems: complex exponentials are
eigenfunctions of LSI operators. By virtue of this property, if the complex exponential ejα t

is presented at the input of a system specified by the impulse response h, then its output
is given by ĥ(α)ejα t , where ĥ denotes the Fourier transform of h. If we consider βα\

�

j 2π l
M

�

as the impulse response of a LSI system, then
�

βα\
�

j 2π l
M

� ∗ ej 2π l
M
·
�

(t) = β̂α\
�

j 2π l
M

�(ω)
�

�

�

ω= 2π l
M

ej 2π l
M

t .

Therefore, we have that

ej 2π l
M

t =
∞
∑

k=−∞

ej 2π l
M

k 1

λ0[M] β̂α\
�

j 2π l
M

�(ω)
�

�

�

ω= 2π l
M

ϕS
M (t −

2 L+ 1

2
− k).

By flipping the sign of α, we can easily obtain an analogous result for the reproduction of
e−j 2π l

M
t . Finally, by using both results, we have that

cos
�

2π l
�

t +
2 L+ 1

2 M

��

=
∞
∑

k=−∞

c1[k]ϕ
S
M (M t − k) (3.40)

sin
�

2π l
�

t +
2 L+ 1

2 M

��

=
∞
∑

k=−∞

c2[k]ϕ
S
M (M t − k), (3.41)

where

c1[k] =
1

2λ0[M]











ej 2π l
M

k

β̂α\
�

j 2π l
M

�(ω)
�

�

�

ω= 2π l
M

+
e−j 2π l

M
k

β̂α\
�

−j 2π l
M

�(ω)
�

�

�

ω=− 2π l
M











c2[k] =
1

2 jλ0[M]











ej 2π l
M

k

β̂α\
�

j 2π l
M

�(ω)
�

�

�

ω= 2π l
M

−
e−j 2π l

M
k

β̂α\
�

−j 2π l
M

�(ω)
�

�

�

ω=− 2π l
M











.

Note that the sequences c1 and c2 can be considered M -periodic and that the summations
in (3.40) and (3.41) can be reduced to finite ones if we make use of the periodized basis
functions given in (3.4). We have expressed in (3.40) and (3.41) how to compute the
vector coefficients for reproducing sinusoids and initial phase. The appropriate linear
combination of c1 and c2 allows one to change arbitrarily the initial phase.

In order to illustrate the reproduction capabilities of the proposed model, we designed
a basis function capable of reproducing some of the classical harmonic curves [132].
In particular, we tailored ϕS

M in (3.38) with L = 4 and M = 9, which lead to α =
(0, j 2π

9
,−j 2π

9
, . . . , j 8π

9
,−j 8π

9
). We show some members of the Lissajous, Hypotrochoid,

and Epitrochoid families in Figures 3.6, 3.7, and 3.8, respectively. More singular examples
like the Teardrop, the Deltoid, the Astroid, and the Cardioid are shown in Figure 3.9. The
coefficients for each coordinate function can be found in Table 3.2.

3.5 Conclusions

In this chapter we have proposed a new family of basis functions that we use to represent
planar curves. We were able to single out the basis of shortest support that allows one
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(a) (b) (c) (d)

Figure 3.6: Lissajous curves.

(a) (b) (c) (d)

Figure 3.7: Hypotrochoid curves.

(a) (b) (c) (d)

Figure 3.8: Epitrochoid curves.

(a) (b) (c) (d)

Figure 3.9: Other curves: (a) Teardrop, (b) Deltoid, (c) Astroid, (d) Cardioid.
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Curve cx1
cx2

Lissajous (a) c1,s c2,s

Lissajous (b) c1,s c4,s

Lissajous (c) c2,s c3,s

Lissajous (d) c3,s c4,s

Hypotrochoid (a) 2 c1,c + 3 c2,c 2 c1,s − 3 c2,s

Hypotrochoid (b) c1,c + c3,c c1,s − c3,s

Hypotrochoid (c) c1,c + c2,c c1,s − c2,s

Hypotrochoid (d) 3 c1,c + 2 c3,c 3 c1,s − 2 c3,s

Epitrochoid (a) 2 c1,c − 3 c2,c 2 c1,s − 3 c2,s

Epitrochoid (b) c1,c − c3,c c1,s − c3,s

Epitrochoid (c) 2 c1,c − c4,c 2 c1,s − c4,s

Epitrochoid (d) 4 c1,c − 5 c4,c 4 c1,s − 5 c4,s

Teardrop 4 c1,c 2 c1,s − c2,s

Deltoid 2 c1,c + c2,c 2 c1,s − c2,s

Astroid 3 c1,c + c3,c 3 c1,s − c3,s

Cardioid 2 c1,c − c2,c 2 c1,s − c2,s

Table 3.2: Coefficients for the curves shown in Figure 3.6, Figure 3.7, Figure 3.8, and
Figure 3.9.

to reproduce exponential polynomials. Under the appropriate circumstances, these basis
functions may form a natural multiscale hierarchy. In these cases, we specified multires-
olution algorithms and subdivision schemes for the representation of geometric closed
curves. We were able to characterize the order of approximation of such nonstationary
multiresolution schemes. We exemplified our method by constructing minimal-support
bases that reproduce ellipses and higher-order harmonics. In particular we tailored these
bases to obtain maximal-smoothness basis functions, and interpolatory basis functions.
In the forthcoming chapters, we take advantage of the theoretical developments of this
chapter to build efficient active contours in 2D and 3D.
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Chapter 4

2D Spline Snakes

In this chapter, we present a new class of continuously defined parametric snakes using
the basis functions we designed in Chapter 3. While the resulting snakes are versatile
enough to provide a good approximation of any closed curve in the plane, their most
important feature is the fact that they admit ellipses within their span. Thus, they can per-
fectly generate circular and elliptical shapes. These features are appropriate to delineate
cross sections of cylindrical-like conduits and to outline blob-like objects. We illustrate in
Figure 4.1 how our snake can adopt the shape of a perfect ellipse (i.e., reproduces the
ellipse) as well as more refined shapes.

Segmenting circles and ellipses in images is a problem that arises in many fields, for ex-
ample biomedical engineering [133, 134, 135, 136] or computer graphics [137, 138].
In medical imaging in particular, it is usually necessary to segment arteries and veins
within tomographic slices [139]. Because those objects are physiological tubes, their sec-
tions show up as ellipses in the image. Ellipse-like objects are also present at microscopic
scales. For instance, cell nuclei are known to be nearly circular [140] and water drops
are similarly spherical thanks to surface-tension forces [141]. However, these elements
deform and become elliptical when they are subject to stress forces.

In order to efficiently segment elliptical objects, a parametric snake named the Ovuscule
was proposed in [69]. It is a minimalistic elliptical snake defined by three control points.
Its main drawback was that it was unable to represent shapes different from circles and
ellipses. Our goal here is to create a more versatile parametric snake whose basis functions
are short, perfectly reproduce ellipses, and have good approximation properties. Our main
contribution in this chapter is to fulfill this goal by selecting a special kind of exponential
B-splines. We are actually able to prove that our basis functions are the ones with the
shortest support among all admissible functions. Since the computational cost of spline
snakes is determined in part by the size of the support of the basis function, our use of the
shortest possible support favors optimal performance.

The chapter is organized as follows: In Section 4.1 we review the general parametric
snake model, fix the notation, and formalize our design constraints. The main contribu-
tion is described in Section 4.2, where we build an explicit expression for the underlying
basis functions that fulfill our requirements, and we analyze in detail its reproduction
and approximation properties. Implementation details such as energy functionals and dis-
cretization issues are addressed in Section 4.3. Finally, we perform report evaluations in
Section 4.4.

43



4. 2D SPLINE SNAKES

Figure 4.1: Approximation capabilities of the proposed parametric snake. The thin solid
line corresponds to an elliptical fit. The dashed thick line corresponds to a generalized
shape.

4.1 Parametric Snakes

In this section we begin by recalling the formalism of B-spline parametric curves, and fix
the notation for the rest of the chapter, which is a simplification of the one of Chapter 3.

4.1.1 Parametric Representation of Closed Curves

Following our formalism introduced in Section 3.1, a curve r(t) on the plane can be de-
scribed by a pair of Cartesian coordinate functions x1(t) and x2(t), where t ∈ R is a
continuous parameter. The one-dimensional functions x1 and x2 are efficiently parame-
terized by linear combinations of suitable basis functions. Among all possible bases, we
focus on those derived from a compactly supported generator ϕ and its integer shifts
{ϕ(· − k)}k∈Z. This allows us to take advantage of the availability of fast and stable inter-
polation algorithms [116].

We are interested in closed curves specified by an M -periodic sequence of control points
{c[k]}k∈Z, with c[k] = c[k+M]. The parametric representation of the curve is then given
by the vectorial equation

r(t) =
∞
∑

k=−∞

c[k]ϕ(M t − k). (4.1)

The number of control points M determines the degrees of freedom in the model (4.1).
Small numbers lead to constrained shapes, and large numbers lead to additional flexibility
and more general shapes.

Since the curve r is closed, each coordinate function is periodic, and the period is common
for both. For simplicity, in (4.1) we normalized this period to be unity. Under these con-
ditions, we can reduce the infinite summation in (4.1) to a finite one involving periodized
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basis functions as

r(t) =
M−1
∑

k=0

∞
∑

n=−∞
c[M n+ k]ϕ(M (t − n)− k)

=
M−1
∑

k=0

c[k]
∞
∑

n=−∞
ϕ(M (t − n)− k)

︸ ︷︷ ︸

ϕM (M t−k)

, (4.2)

where ϕM is the M -periodization of the basis function ϕ.

This kind of curve parameterization is general. Using this model, we can approximate
any closed curve as accurately as desired by using a higher number of vector coefficients
M2 > M , provided that ϕ satisfies some mild conditions [119].

4.1.2 Desirable Properties for the Basis Functions

We now enumerate the conditions that our parametric snake model should satisfy and
introduce the corresponding mathematical formalism.
1. Unique and Stable Representation. We want our parametric curve to be defined in

terms of the coefficients in such a way that unicity of representation of the coordinate
functions x1 and x2 is satisfied. Furthermore, for computational purposes, we ask the
interpolation procedure to be numerically stable.
A generating function ϕ is said to satisfy the Riesz basis condition if and only if there
exist two constants 0< A≤ B <∞ such that

A ‖c‖`2
≤
p

M
















∞
∑

k=−∞

c[k]ϕ(M · −k)
















L2

≤ B ‖c‖`2
(4.3)

for all c ∈ `2. A direct consequence of the lower inequality is that the condition
∑∞

k=−∞ c[k]ϕ(M t − k) = 0 for all t ∈ R implies that c[k] = 0 for all k ∈ Z. Thus,
the basis functions are linearly independent and every function is uniquely specified
by its coefficients. The upper inequality ensures the stability of the interpolation pro-
cess [116].
It has been shown in [117] that, due to the integer-shift-invariant structure of the
representation, the Riesz condition has the following equivalent expression in the
Fourier domain:

A≤
∞
∑

k=−∞

�

�ϕ̂(·+ 2π k)
�

�

2 ≤ B,

where ϕ̂(ω) =
∫

R ϕ(x)e
−jω x dx denotes the Fourier transform of ϕ. Once expressed

in the Fourier domain, the Riesz condition provides a practical way to verify if a given
generating function ϕ satisfies (4.3).

2. Affine Invariance. Since we are interested in outlining shapes irrespective of their
position and orientation, we would like our model to be invariant to affine transfor-
mations, which we formalize as

Ar(t) + b=
∞
∑

k=−∞

(Ac[k] + b) ϕ(M t − k), (4.4)

where A is a (2× 2) matrix and b is a two-dimensional vector. From (4.4), it is easy
to show that affine invariance is ensured if and only if

∀t ∈ R :
∞
∑

k=−∞

ϕ(M t − k) = 1. (4.5)
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4. 2D SPLINE SNAKES

In the literature, this constraint is often named the partition-of-unity condition [116].

3. Well-Defined Curvature. The curvature of a parametric curve at a point (x1(t), x2(t))
is given by

κ(x1, x2) =
ẋ1 ẍ2 − ẍ1 ẋ2
�

ẋ2
1 + ẋ2

2

�3/2
,

where the dot denotes the derivative with respect to t. We would like κ to be a
bounded function with respect to t. To do so, each coordinate function (or, equiva-
lently, the basis ϕ) must be at least C 1(R) with bounded second derivative.

4.2 Reproduction of Ellipses

Since every ellipse can be obtained by applying an affine transformation to the unit cir-
cle, we focus on the reproduction of this simpler shape. This simplification is allowed
whenever the affine-invariance requirement stated in Section 4.1.2 is satisfied.

A parametric snake defined by M vectorial coefficients and by a generating function ϕ is
said to reproduce the unit circle if there exist two M -periodic sequences {cc[k]}k∈Z and
{cs[k]}k∈Z such that

cos (2π t) =
∞
∑

k=−∞

cc[k]ϕ(M t − k) (4.6)

sin (2π t) =
∞
∑

k=−∞

cs[k]ϕ(M t − k). (4.7)

That is, we need to be able to reproduce sinusoids of unit period for each component of
the parametric snake, as illustrated in Figure 4.2. Note that, when (4.6) and (4.7) hold,
it is possible to represent any sinusoid of unit period for an arbitrary initial phase using
linear combinations of the two sequences of coefficients.

4.2.1 Minimum-Support Ellipse-Reproducing Basis

We now provide an explicit expression for the minimum-support basis functions that re-
produce sinusoids. These bases are a particular case of the broader family of basis func-
tions investigated in Chapter 3.

By Corollary 1 in Section 3.4.1.1, we know that the centered generating function with
minimal support that satisfies the Riesz basis condition, the partition-of-unity condition,
is C 1(R) with bounded second derivative and reproduces sinusoids of unit period with M
coefficients is

ϕ(t) =
1

1− cos 2π
M







cos 2π |t|
M

cos π

M
− cos 2π

M
0≤ |t|< 1

2
�

sin π (3/2−|t|)
M

�2
1
2
≤ |t|< 3

2

0 3
2
≤ |t| .

(4.8)

This result is a direct consequence of the Minimal-Support Generating Functions Theo-
rem detailed in Section 3.2.5. This theorem provides a complete characterization of the
family of basis functions with minimum-support that reproduce exponential polynomials
expressed as combinations of exponential B-splines.

We recall that the basis function (4.8) form a Riesz basis if and only if M ≥ 3. Therefore,
at least three control points are needed to define our parametric snake. Moreover, they are
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4.2. Reproduction of Ellipses

(a) (b)

Figure 4.2: Parametric representation of the unit circle (a) and its coordinate functions
(b) with exponential B-splines and M = 10. The dashed lines in (b) indicate the corre-
sponding basis functions.

Figure 4.3: Plot of a quadratic B-spline β2 and the resulting generating functions given
in (4.8) for M = 3, 4, 5, and 6. The function with the lowest peak at t = 0 corresponds to
M = 3, and as M increases, the height of the central peak increases as well.

one-time continuously differentiable and the second derivative is bounded. This ensures
the well-definiteness of the curvature of the snake curve.

For the sake of completeness, we also show in Figure 4.3 the function ϕ for several values
of M . We observe that they share with the quadratic B-spline a finite support of length
W = 3, and all of them have a similar bump-like appearance.
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4. 2D SPLINE SNAKES

4.2.2 Approximation Properties

Not only are we interested in reproducing ellipses, but we would also like our snake to
be able to approximate any other shape s. This is achieved by increasing the number
of degrees of freedom afforded by the number M of nodes. In the Fourier domain, it is
easy to see that ϕ converges to a quadratic B-spline as M increases (see Section 3.4.1.1).
Therefore, we expect similar approximation properties for large values of M .

While ϕ leads to integer-shift invariance, the space spanned by the generating function
ϕ is not shift-invariant in general. Hence, the approximation error using M vector coeffi-
cients is dependent upon a shift in the continuous parameter t of the 1-periodic function
s. The minimum-mean-square approximation error for a shifted function is given by

γ(τ, M) =

∫ 1

0

‖s(t −τ)− r(t)‖2 dt

= ‖s(· −τ)− r(·)‖2
L2([0,1]) ,

where r is the best approximation within the span
�

ϕ(M · −k)
	

k∈Z. Since τ is usually
unknown, we measure the error averaged over all possible shifts as

η(M) =

 

∫ 1

0

γ(τ, M)dτ

!
1
2

. (4.9)

We give in Section 4.2.3 the decay of η as M → ∞, following the method described
in [119].

4.2.3 Approximation Order

In this section, we introduce the necessary formalism to compute the order of the approx-
imation error associated to the best-possible approximation of a periodic vector function
s within the span of the basis

�

ϕ(M · −k)
	

k∈Z, where ϕ is given by (4.8).

As explained in Section 4.2.2 about the approximation properties of ϕ, the space spanned
by the generating function ϕ is not shift-invariant in general. Hence, as a metric of dissim-
ilarity between shapes, we use the averaged minimum-mean-square approximation error
η.

Using the main result of [119], we obtain the asymptotic behavior of η as

η2(M) = C2
1 (M) ‖ṡ‖

2
L2([0,1]) M−2

+ C2
2 (M)‖s̈‖

2
L2([0,1])M

−4 +O
�

M−6
�

,

where CL =
1
L!

q

�

∑

k 6=0

�

�ϕ̂(L)(2π k)
�

�

2
�

and ϕ̂(L) is the L-th derivative of the Fourier trans-

form of ϕ. Following lengthy calculations, we get

C1(M) =
1

12π

�

18
�

M0 −M
� �

M0 + 4 M
�

+ 30π2
�

1
2 (4.10)

C2(M) =
1

120π2

�

225
�

2 M4
0 − 7 M2 M2

0 − 15 M3 M0 + 20 M4
�

+ 75
�

8 M2
0 − 29 M2

�

π2 + 170π4
�

1
2 , (4.11)
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where we defined M0 = π cot π

M
. It can be shown that C1(M) = O (M−2) and C2(M) =

O (M−2). Since the curve s does not depend on M , we can also write that

η(M) =
�

O
�

M−6
��

1
2 = O

�

M−3
�

,

which shows that the averaged quadratic mean error decays as M−3—the same rate as the
quadratic B-spline [142].

4.2.4 Best Constant and Ellipse Fitting

Since our snakes have the capability of perfectly reproducing ellipses, it is natural to ask
which is the best ellipse that approximates the parametric curve r defined by the M -
periodic sequence {c[k]}k∈Z. In other words, we are interested in finding the ellipse re
that minimizes





r− re







2
L2([0,1]) =

∫ 1

0





r(t)− re(t)






2
dt.

Since r is continuous and 1-periodic, we can expand it in a Fourier series as

r(t) =
∞
∑

n=−∞
R[n]ej 2πn t . (4.12)

The Fourier-series vector coefficients R in (4.12) are given by

R[n] =

∫ 1

0

r(t)e−j 2πn t dt

=
1

M
ϕ̂(

2πn

M
)

M−1
∑

k=0

c[k]e−j 2π
M

n k, (4.13)

where the parametric expression of r has been used in the second equality.

From the classical theory of harmonic analysis, we know that the best ellipse approxima-
tion (component-wise sinusoids) of r, in the L2([0,1]) sense, is the first-order truncation
of the series (4.12), where only the terms n = −1, n = 0, and n = 1 are kept. Therefore,
we have that

re(t) = R[0] + (R[1] +R[−1]) cos (2π t)
+ j (R[1]−R[−1]) sin (2π t) , (4.14)

where R[0] is the center of gravity of the snake. The Fourier-series vector coefficients
in (4.14) can easily be obtained from (4.13) as

R[0] =
1

M

M−1
∑

k=0

c[k]

R[1] +R[−1] =
M−1
∑

k=0

hc[k]c[k]

j (R[1]−R[−1]) =
M−1
∑

k=0

hs[k]c[k],

where

hc[k] =
2

M
cos

π

M
cos

2π k

M

hs[k] =
2

M
cos

π

M
sin

2π k

M
.
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Since all sinusoids of unit period can be reproduced by the generating function ϕ and
the appropriate M -periodic sequence of coefficients c, the curve re belongs to the span of
ϕ. For the sake of completeness, we provide in the next section an explicit expansion of
sinusoids in terms of ϕ.

4.2.5 Expansion of Sinusoids

Here, we explicitly find the sequence of M vector coefficients that reproduce sinusoids
of unit period using the generating function ϕ given in (4.8). We start by recalling the
exponential-reproducing property of the exponential B-splines as

eα t =
∞
∑

k=−∞

eα k β(α)(t − k). (4.15)

Setting α = j 2π
M

, we see that β(j 2π
M
) reproduces the complex exponential ej 2π

M
t , which is

M -periodic. If we now convolve both sides of (4.15) with β(0,−j 2π
M
), we get that

�

β(0,−j 2π
M
) ∗ ej 2π

M
·
�

(t) =
∞
∑

k=−∞

ej 2π
M

k (β(j 2π
M
) ∗ β(0,−j 2π

M
))(t − k)

︸ ︷︷ ︸

2(1−cos 2π
M )

( 2π
M )

2 ϕ(t− 3
2
−k)

,

where we have used the definition ofϕ from (4.8), along with the fact that the convolution
operator commutes with the shift operator.

To simplify the left-hand side, we invoke an important property of linear shift-invariant
(LSI) systems: complex exponentials are eigenfunctions of LSI operators. By virtue of this
property, if the complex exponential ejα t is presented at the input of a system specified by
the impulse response h, then its output is given by ĥ(α)ejα t , where ĥ denotes the Fourier
transform of h. If we consider β(0,−j 2π

M
) as the impulse response of a LSI system, then

�

β(0,−j 2π
M
) ∗ ej 2π

M
·
�

(t) = β̂(0,−j 2π
M
)(ω)

�

�

�

ω= 2π
M

︸ ︷︷ ︸

λ

ej 2π
M

t .

Therefore, we have that

ej 2π
M

t =
∞
∑

k=−∞

ej 2π
M

k 2
1− cos 2π

M

λ
�

2π
M

�2 ϕ(t −
3

2
− k).

By flipping the sign of α we can easily obtain an analogous result for the reproduction of
e−j 2π

M
t . Finally, by using both results, we have that

cos (2π t) =
∞
∑

k=−∞

cc[k]ϕ(M t − k) (4.16)

sin (2π t) =
∞
∑

k=−∞

cs[k]ϕ(M t − k), (4.17)

where

cc[k] =
2
�

1− cos 2π
M

�

cos π

M
− cos 3π

M

cos
2π k

M

cs[k] =
2
�

1− cos 2π
M

�

cos π

M
− cos 3π

M

sin
2π k

M
.
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Note that the sequences cc and cs are M -periodic and that the summations in (4.16)
and (4.17) can be reduced to finite ones if we make use of the periodized basis functions.

We have expressed in (4.16) and (4.17) how to compute the vector coefficients for repro-
ducing sinusoids of unit period. The appropriate linear combination of cc and cs allows
one to reproduce sinusoids of arbitrary initial phase.

4.3 Energies and Implementation

Since the presented parametric active contour is a spline snake, it is capable of handling
all traditional energies applicable to point-snakes and parametric snakes. However, to
illustrate the behavior of our parameterization in a real implementation, we performed
our experiments with a specific snake energy that we designed to be versatile.

In this section, we first introduce the snake energy that drives the optimization process,
and then we provide a description of the implementation details for the proposed snake.
We construct the energy functional to detect dark objects on a brighter background.

4.3.1 Snake Energy

As it was exposed in Chapter 2, the snake evolution is driven by a chosen energy function.
Thus, the quality of the segmentation depends on the choice of the energy term. In our
model we obviated the constraint energy since we accommodated the user interaction as
a hard constraint allowing the user to leave some control points outside the optimization
routine.

4.3.1.1 Image Energy There are many construction strategies for the image energy. These can
be categorized in two main families: 1) edge-based schemes, which use gradient informa-
tion to detect contours [43, 47, 50] and 2) region-based methods, which use statistical
information to distinguish different homogeneous regions [49, 68]. In order to benefit
from the advantages of both strategies, a unified energy was proposed in [57]. In our
case, we are going to follow a similar approach by using a convex combination of gradient
and region energies, like in

Eimage = α Eedge + (1−α) Eregion (4.18)

where α ∈ [0,1]. The tradeoff parameter α balances the contribution of the edge-based
energy and the region-based energy. Its value depends on the characteristics of each
particular application.

For the gradient-based (or edge) energy, we consider the one described in [68] since it
has the advantage of penalizing the snake when the orientation is inconsistent with the
object to segment. Let r be our parametric snake. The contour energy term is then given
by

Eedge =−
∮

r

kT �∇ f (x1, x2)× dx
�

, (4.19)

where k= (0, 0,1) denotes the outward vector orthonormal to the image plane, where

∇ f (x1, x2) =
�

∂ f (x1,x2)
∂ x1

, ∂ f (x1,x2)
∂ x2

, 0
�

is the within-plane gradient of the image f at (x1, x2)
on the curve, where dx denotes the tangent vector of the curve in the three-dimensional
space formed by the image plane and its orthogonal dimension, and where × is the 3D
cross product. In Figure 4.4, we present the configuration of the various quantities in-
volved. The chirality of the system of coordinates will determine the sign of the integrand,
as discussed in [57, 68].
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4. 2D SPLINE SNAKES

Figure 4.4: Schematic representation of a parametric snake r (dashed line), of its interac-
tion with an object constituted by a gray semicircle (representing low pixel values), of the
vector dx tangent to the curve, and of the gradient vector ∇ f of the image. The vector k,
which is mentioned in the text, is perpendicular to the image plane and points outwards,
towards the reader.

For the region-based energy, we adopt a strategy similar to the Ovuscule in [69]. More
precisely, our region-based energy discriminates an object from its background by building
an ellipse rλ around the snake and maximizing the contrast between the intensity of the
data averaged within the curve, and the intensity of the data averaged over the elliptical
shell Ωλ. When Ω⊂ Ωλ, the region energy term can be expressed as

Eregion =
1

|Ω|

 

∫∫

Ω

f (x)dx1 dx2 −
∫∫

Ωλ\Ω
f (x)dx1 dx2

!

, (4.20)

where |Ω| is given by

|Ω|=−
M−1
∑

k=0

M−1
∑

n=0

c1[k] c2[n]

∫ M

0

ϕM (t − n) ϕ̇M (t − k)dt. (4.21)

The normalization factor |Ω| can be interpreted as the signed area, defined as |Ω| =
−
∮

r
x2 dx1. The sign of the quantity |Ω| depends on the clockwise or anti-clockwise

path followed on the curve r. In this paper, we follow the usual convention whereby
an anti-clockwise path leads to a positive sign. We enforce our criterion to remain neutral
(Eregion = 0) when f takes a constant value, for instance in flat regions of the image. To
achieve this we set

�

�Ωλ
�

�= 2 |Ω|.

The construction of the elliptic shell is performed using the best ellipse re given in (4.14),
and magnifying its axes by a factor λ to achieve

rλ(t) = R[0] +λ (R[1] +R[−1]) cos (2π t)
+ jλ (R[1]−R[−1]) sin (2π t) ,

where λ=
Æ

2 |Ω|/
�

�Ωe

�

� and
�

�Ωe

�

� is the signed area enclosed by the curve re, with

|Ωe|=−
4π

M2 cos
π

M

M−1
∑

k=0

M−1
∑

n=0

c1[k] c2[n] sin
2π (n− k)

M
.

The elliptic shell rλ is fully determined by the sequence of control points {c[k]}k∈Z. Thus,
the optimization of the control points leads to an automatic readjustment of r and rλ.
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Figure 4.5: Representation of the parametric snake r, the best ellipse approximation re,
and the corresponding enclosing shell rλ used in Eregion.

In Figure 4.5, we illustrate how we take advantage of the ideas presented in Section 4.2.4
to build the best ellipse approximation re of an arbitrary snake r.

4.3.1.2 Internal Energy The internal energy is responsible for ensuring the smoothness of the
curve. In the original implementation by Kass et al. [43], the internal energy is com-
posed of a linear combination of the length of the contour and the integral of the square
of the curvature along the contour. This energy is the one that is most widely-used in
applications.

In the framework of parametric snakes, most schemes rely on the smoothness of the repre-
sentation, thus eliminating the need for an explicit internal energy term. However, these
approaches can ensure a low value of the curvature only when the curves are parameter-
ized at constant speed (proportional to arc-length). For example, a spline curve may be
rough if some of the spline control points accumulate at the same position. A practical
workaround is to reparameterize the curve to constant arc-length after each step of the
optimization algorithm, which is quite expensive [143]. Another approach is to substitute
the curvature term of (5.21) by an energy term that penalizes the curve for not being
in the curvilinear abscissa [57]. This energy is called curvilinear reparameterization en-
ergy. Minimizing this energy causes the control points to move tangentially to the snake,
thus bringing it to curvilinear abscissa. The use of this energy yields the same results as
reparameterizing the snake at each step, but with a much lower computational load.

In our implementation we obviated the internal energy term in order to allow our snake to
segment objects with non-smooth boundaries. In Section 4.4.2 we quantify the accuracy
of our snake while segmenting objects with non-smooth boundaries.

4.3.2 Fast Energy Computation

The computational cost is dominated by the evaluation of the surface integrals in (4.20).
An efficient way to implement these operations is the use of pre-integrated images. Let g
be the function we are integrating (∆ f , f , or − f , respectively) and let Γ be the domain
of integration (Ω or Ωλ). Then, by Green’s theorem, we rewrite the surface integrals as
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the line integrals
∫∫

Γ

g(x)dx1 dx2 =

∮

∂ Γ

g1(x1, x2)dx2

= −
∮

∂ Γ

g2(x1, x2)dx1,

where ∂ Γ is the boundary of Γ, and

g1(x1, x2) =

∫ x1

−∞
g(τ, x2)dτ (4.22)

g2(x1, x2) =

∫ x2

−∞
g(x1,τ)dτ. (4.23)

The use of Green’s theorem to rewrite the surface integrals as line integrals reduces dra-
matically the computational load. This can only be achieved if the curve is defined con-
tinuously, like with the curves of Section 4.1.1. By contrast, this acceleration would not
be available to methods such as point-snakes and level-sets, because their implementation
ultimately relies on discretization.

In the interest of space, we show the derivation of the energies using pre-integrated images
in Appendix 4.A.

4.3.3 Sampling

Despite the fact that we are assuming a continuously defined model for our functions, in a
real-world implementation we only have at our disposal a sampled version of the functions
we want to pre-integrate. To solve this inconsistency, we perform a bilinear interpolation
of the sampled data and we store in lookup tables the values of (4.23) or (4.22) at integer
locations.

4.3.4 Optimization

As mentioned before, the active contour extracts the final contour by finding the mini-
mum of the energy functional. For that purpose, we iteratively update the value of the
M free control points {c[k]}k∈[0...M−1] using a generic unconstrained gradient-based op-
timizer. The optimization scheme is efficiently carried out by a Powell-like line-search
method [144]. This method requires the derivatives of the energy function with respect
to the parameters, and converges quadratically to the solution. The algorithm proceeds
as follows: firstly, one direction within the parameter space is chosen depending on the
partial derivatives of the energy. Secondly, a one-dimensional minimization is performed
within the selected direction. Finally, a new direction is chosen using the partial deriva-
tives of the energy function once more, while enforcing conjugation properties. This
scheme is repeated till convergence. Assuming a bilinear interpolation of the original
function f , we were able to derive exact and closed expressions for these derivatives. In
the interest of space, we show the derivation of these expressions in Appendix 4.A.

For spline snakes it has been shown that the evaluation of the partial derivatives of the
energy of the form (4.18) depends quadratically on the number of parameters [57]. In
Figure 4.6, we compare the computational cost of the snake during line minimization (sim-
ple update), and when the energy gradient is required to chose a new direction (gradient
update). For the latter case, we contrast the computation time of an analytical computa-
tion of the gradient to that of a centered finite differences approach. For low values of
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Figure 4.6: Mean time of one iteration in the snake evolution.

M , the simple update and the gradient update using analytical energy gradient lead to a
similar computational load. As the value of M increases, the quadratic behavior of the
computation of the gradient makes the update cost increase. This quadratic behavior can
be easily discerned in the topmost curve of Figure 4.6.

4.4 Experiments and Simulations

We present in this section four experimental setups. In the first one, we compare our
choice in (4.8) against the classical quadratic B-spline when representing sinusoids. We
move away from sinusoids in the second experiment, where we work with synthetic data
and perform an objective validation of the segmentation properties of our snake in noise-
less and noisy environments. In the third setup, we also perform a quantitative evaluation
by segmenting real cardiac MRI data. Finally, in the last experiment, we illustrate some
real applications of our snake where the ground truth is not available.

4.4.1 Approximation of Sinusoids

By design, our basis function ϕ has the property of reproducing sinusoids exactly. By
contrast, the classical polynomial B-splines do not enjoy this property. In this section, we
are focusing on this aspect and exhibit the amount of error committed by B-splines when
attempting to reproduce a sine function.

We start with exact reproduction by our basis. Using the result of Section 4.2.5, we deter-
mine the coefficients for the case M = 3 (smallest possible M). They are given by

sin (2π t) =
p

3
�

ϕ3(3 t − 1)−ϕ3(3 t + 1)
�

,

where ϕ3 corresponds to the 3-periodization of the basis function (4.8), as in (4.2).

We continue with approximate reproduction by B-splines. For fairness, we choose a
quadratic B-spline β2 so that the size of the support of β2 and ϕ is the same. The repro-
duction will be approximate, not because of the limited size of the support, but because
the sine function does not lie in the span of polynomial B-splines of any degree. Never-
theless, we can compute the coefficients that best adjust the sinusoid with unit period in
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(a) (b)

Figure 4.7: Approximations of a sin function with unit period. (a) Parametric representa-
tion (solid line) using ϕ3 (dashed lines). (b) Best parametric approximation (solid line)
using β2 (dashed lines).

Figure 4.8: Sinusoid of period 3, its representation with our basis function (solid line),
and its best quadratic B-spline approximation (dashed line).

the least-squares sense. This yields

sin (2π t)≈
1215

26π2

�

β2
3 (3 t − 1)− β2

3 (3 t + 1)
�

,

where

β2(t) =







3
4
− |t|2 0≤ |t|< 1

2
1
2

�

3
2
− |t|

�2 1
2
≤ |t|< 3

2
0 3

2
≤ |t|

(4.24)

is the quadratic B-spline and the subscript 3 indicates a 3-periodized basis function as
in (4.2).
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We observe in Figure 4.7 that both constructions result in sine-like functions. However,
the reproduction is exact in the left part of Figure 4.7, while it is only approximate in the
right part. This happens even though the support of β2 is identical to the support of ϕ,
even though the asymptotic approximation properties of β2 and ϕ are identical, and even
though β2 and ϕ have the same degree of differentiability. We show in Figure 4.8 the
amount of error committed by the parabolic approximation. We determine that MSE =
1
2
− 98415

208π6 .

4.4.2 Accuracy and Robustness to Noise

In this section, two experiments are carried out. The first one consists in outlining different
synthetic blob-like shapes in a noise-free environment. The second experiment consists in
outlining one specific target within an image, this time, in the presence of noise. In both
experiments we set α = 0, that is, we make use of the region energy only. This particular
choice ensures that the snake is not misled by noisy boundaries in the presence of excessive
noise.

In the first experiment, we generate 10 test images of size (512× 512) by pixel-wise
sampling of our shape of interest, which is built by intersecting or making the union of
two circles of radius 50 pixel units. We illustrate these shapes in the header of Table 4.1.
They are parameterized with the distance d, in pixel units, between the centers of the
circles. For d < 0, the shape is built by the intersection of the two circles. For d ≥ 0,
they are parameterized by their union. The grayscale values of the images are 255 for the
shape, and 0 for the background.

We used the Jaccard distance J = 1 − |Θ∩Ω|/ |Θ∪Ω| to measure as a percentage the
dissimilarity between the two sets. There, Θ corresponds to the ground-truth region, and
Ω corresponds to the region enclosed by the snake. We computed J with a pixel-wise
discretization of the images.

In the simulations of Table 4.1, we investigated the dependence of J on the number M
of coefficients and the distance d between the circles. We denoted with a dash (−) when
the snake did not converge, and therefore, we could not compute the Jaccard distance.
We initialized every snake as a circle with a radius of 75 pixel and a center that lay in
the middle of the shape. We observe that the results in Table 4.1 tend to improve as the
number M of control points is increased, especially for the non-elliptical shapes. However,
the increase in the number of control points does not bring any further improvement when
the shape to segment is a perfect circle. This result is expected since the circular shape is
reproduced exactly for any M ≥ 3. The residual error seen in Table 4.1 for d = 0 can be
attributed to the discretization ofΘ and Ω. We also observe that for d =−80 and d =−64
the Jaccard distance starts increasing severely for M ≥ 7 and for M ≥ 9, respectively. This
is due to the fact that the sharp corners of the shape lead to loops in the curve during the
optimization process. Such self-intersections violate the conditions of Green’s theorem in
Section 4.3.1.

In the second experiment, we investigated the sensitivity to noise of our snake depending
on the number of snake coefficients M . We generated 100 noisy realizations of a circle
of radius 50 pixel units for different signal-to-noise ratios. We computed the power of
the noise over a region of interest of size (200× 200). We illustrate a realization of the
resulting images in the header of Table 4.2.

We show the percentage of success in Table 4.2. We considered that our snake succeeded
in segmenting the circle when the optimization process led to a segmentation with J < 1%.
This criterion is very conservative as shown in Figure 4.9. We observe from the results
that our snake is robust against noise since it is capable of giving a proper segmentation
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M 3 4 5 6 7 8 9 10

5.08 4.85 3.53 2.69 3.63 18.84 − −
d =−80

4.12 4.12 2.64 2.18 1.87 0.58 1.56 1.41

d =−64

3.78 3.84 2.03 2.00 1.63 0.68 0.99 0.93

d =−48

2.84 2.78 1.25 1.13 1.08 0.55 0.72 0.70

d =−32

1.54 1.53 0.58 0.64 0.48 0.32 0.30 0.34

d =−16

0.17 0.15 0.20 0.17 0.17 0.18 0.15 0.17

d = 0

2.18 2.22 1.06 0.91 1.09 0.86 0.55 0.18

d = 16

4.06 4.01 2.27 1.81 1.92 1.92 0.85 0.41

d = 32

6.63 6.64 4.21 2.84 2.50 4.00 1.41 0.80

d = 48

9.49 9.48 6.82 4.36 3.68 5.73 − 1.23

d = 64

Table 4.1: Error percentage of our snake for noiseless synthetic data.

58



4.4. Experiments and Simulations

M 3 4 5 6 7 8 9 10

100 100 99 100 100 99 99 96

SNR = 15dB

100 100 99 99 99 100 98 99

SNR = 10dB

100 100 100 100 100 100 99 97

SNR = 5dB

100 100 100 99 99 98 96 100

SNR = 0dB

99 96 97 98 90 90 92 92

SNR =−5dB

45 33 25 25 20 7 7 11

SNR =−10dB

Table 4.2: Percentage of success rate of our snake for noisy synthetic data.

even for low signal-to-noise ratios. Furthermore, the increased sensitivity to noise as we
increase the number of vector coefficients M corresponds to the appearance of additional
noise-related local minima in the energy of the snake. Therefore, M should be chosen as
small as possible in order to avoid over-fitting of the noise, but large enough to be able to
approximate the shape of interest.

4.4.3 Medical Data

Now, we move away from synthetic data. We compare our snake against other snake
variants in terms of accuracy and speed. We quantify their accuracy at outlining the
endocardial wall of the left ventricle within slices of 3D cardiac MR image sequences.

The data we used are short-axis cardiac MR image sequences from 33 subjects acquired in
the Department of Imaging of the Hospital for Sick Children in Toronto, Canada [145]. For
each subject, data consist of a time-series of 20 volumes. For each volume, the number of
slices varies from 8 to 15. Each slice is a (256× 256) image with a pixel spacing between
0.93 mm and 1.64 mm. The ground truth was obtained by manual annotation. In each
segmented image 1,000 points (named landmark points) define a closed polygon outlining
the endocardial wall.
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(a) (b) (c)

Figure 4.9: Segmentation results for noisy synthetic data with SNR= −5dB. (a) Barely
accepted with J= 0.853%. (b) Rejected with J= 1.001%. (c) Rejected with J= 81.065%.

4.4.3.1 Accuracy For each subject, we selected one slice guided by its anatomical structures
along the long axis and its timing in the cardiac cycle. Since the region of interest is
nearly elliptical, we used the minimalistic elliptical active contour named Ovuscule to
provide a first estimate of the location and orientation of the left ventricle [69]. Then, we
refined the segmentation of the endocardial wall using the general parametric active con-
tour model (4.1) for different values of M and several basis functions. More specifically,
we used linear and quadratic B-splines, our function (4.8) that we refer to as third-order
exponential spline, and an extended version of (4.8) that we refer to as fourth-order
exponential spline. The linear B-spline basis function has a smaller support than our func-
tion (4.8). However, it can only adopt the form of polygons. The quadratic B-spline basis
function has the same support and regularity than (4.8). However, it is unable to repro-
duce ellipses. Finally, the fourth-order exponential spline is an extended version of (4.8),
with one more degree of regularity, but with a support one unit larger. The initialization
provided by the Ovuscule could be carried over to (4.8) and to the fourth-order exponen-
tial spline. In the case of other types of snakes, the perfect ellipse of the Ovuscule cannot
be reproduced but must be approximated. This approximation was achieved by sampling
the outline of the Ovuscule.

In a preprocessing step, the images were magnified four times horizontally and vertically.
Firstly, we evolved the Ovuscule on the magnified image. Secondly, we evolved more
refined snakes, guided exclusively by the edge energy on a smoothed version of the mag-
nified image. The smoothing was Gaussian, with a kernel of variance σ2 = 102. We then
measured the landmark error. We computed this error as the mean distance of the snake
to the landmark points given by the ground truth, as was done in [145].

In Figures 4.10, 4.11, and 4.12, we show the mean, median, and maximum values of the
landmark error, respectively. From these graphs, we validate that the Ovuscule provides a
good and robust starting point to be refined by the snakes investigated in this paper. The
polygonal snake does not reach the accuracy of the Ovuscule till M = 7, and exhibits a
high variance across subject. The quadratic-spline snake and the third-order exponential-
spline snake converge to similar accuracies starting with M = 4. This was expected, since
we showed in Section 4.2.2 that our function does converge to a quadratic B-spline when
M increases. However, for low values of M , the difference is noticeable, and the quadratic-
spline snakes produce shapes that are not compatible with the region of interest. Finally,
the fourth-order exponential-spline snakes produce equivalent results in terms of accuracy
and stability than the third-order one, at a price of a larger support, and therefore, of a
slower convergence.
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Figure 4.10: Mean and variance of the landmark error across all 33 patients.
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Figure 4.11: Median of the landmark error across all 33 patients.
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Figure 4.12: Maximum landmark error among all 33 patients.
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In Figure 4.13b, we illustrate the initialization provided to the Ovuscule, and in Fig-
ure 4.13c the outcome of optimizing the Ovuscule, which will provide the initialization
for further processing. We also show the result of several more elaborated snake variants,
and how they compare with the ground truth. The fourth-order exponential-spline snake
results in an outline that is visually indistinguishable from that of the third-order one, but
comes at an increased computational cost.

4.4.3.2 Speed In terms of speed, we compared our proposed snake to some classic traditional
snakes such as a Kass-like snake [146] and a traditional Geodesic Active Contour (GAC)
model [62].

In this analysis, we used the anatomical structures of the 33 patients of Section 4.4.3.1.
However, we modified our initialization procedure to accommodate for the GAC model,
since it fails unless the initial contour lies totally inside or outside of the boundary of
interest. Therefore, we scaled down the initialization that was provided by the outcome
of optimizing an Ovuscule in Section 4.4.3.1. By doing so, we guarantee that all initial
contours lay inside the endocardial wall to be segmented. Unfortunately, neither the Kass-
like snake nor the GAC model are able to reproduce the initial ellipse perfectly and their
initialization must be approximated. This approximation was achieved by sampling the
outline of the Ovuscule. Finally, we refined the segmentation of the endocardial wall
either using our snake model for different values of M , the Kass-like snake, or the GAC.

This experiment was performed on a MacPro 3.1 with two Quad-Core Intel Xeon pro-
cessors and 8GB of RAM memory running Mac OS X 10.6.8. The implementation of
the Kass-like active contour was taken from [146], and the one of GAC model from the
free open-source image-processing package Fiji 1 implementing the algorithm described
in [62].

In Figure 4.14, we show the mean temporal evolution of the improvement of the Jaccard
distance during the snake evolution process for the 33 patients. We can clearly see that
the proposed snake reaches its optimum earlier than the classical Kass-like snake and the
GAC model. The Kass-like snake has a very costly first step, and then it cannot escape a
local minimum. The GAC is executed with an advection value of 2.20, and a propagation
value of 1. These parameters make the GAC succeed in overcoming the local minimum,
but the convergence rate is still slower than that of the parametric case. It is important to
notice that, for our proposed model, an increase in the number M of control points slows
down the convergence. As pointed out in Section 4.3.4, this is due to the fact that larger
values of M increase the computational load per iteration of the snake.

4.4.4 Real Data

Here, we illustrate the behavior of our snake and provide further insights into its capa-
bilities. In the context of this section, the ground truth is missing, so we must relinquish
quantitative assessments in favor of qualitative ones.

4.4.4.1 HeLa Nuclei We want to evaluate the success of our snake model at outlining ellipse-like
targets in the context of automated time-lapse microscopy. We use (434× 434) images of
HeLa nuclei that express fluorescent core histone 2B on an RNAi live cell array. We show
in Figure 4.15 the result of the optimization process with (4.8) and M = 5. This number
of points is high enough to capture small departures from an elliptic shape.

We initialized every snake as a circle of radius of 25 pixel units, as shown in Figure 4.15.
These initial circles were centered on the locations given by a maxima detector applied
over a version of the image that was smoothed with a Gaussian kernel of variance σ2 =
122 pixel. A total number of 23 maxima were detected. We then proceed with an inverted

1. http://fiji.sc/
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.13: Outlining of the endocardial wall. (a) Raw data. (b) Initialization. (c)
Ovuscule. (d) Ground truth. (e) Polygonal snake with M = 3. (f) Quadratic-spline snake
with M = 3. (g) Third-order exponential-spline snake with M = 3. (h) Fourth-order
exponential-spline snake with M = 4.

63



4. 2D SPLINE SNAKES

0
0.0 0.5 1.0 1.5 2.0

Time [sec]

1

2

3

4

Av
er

ag
e 

la
nd

m
ar

k 
er

ro
r 

[m
m

]
Kass GAC

M = 3 M = 5 M = 7

Figure 4.14: Temporal evolution of the Jaccard distance. During the 2 seconds of snake
evolution, the proposed method with M = 3 performed 1479 iterations, with M = 5
it performed 1406 iterations, and with M = 3 it performed 889 iterations. The Kass
snake performed 17 iterations, the first of which took 370ms, and the GAC performed 34
iterations.

(a) (b)

Figure 4.15: Outline of HeLa nuclei in a fluorescence microscopy image. The parametric
snakes were built with M = 5. (a) The initial contour of the snake. (b) Result provided by
our snake.

version of the original, unsmoothed image to optimize the snakes. The optimization pro-
cess converged in 22 cases. We show in Figure 4.15 the result of the outlining process. We
observe that our snakes were successful in most of the cases.

4.4.4.2 Droplets As a second example, we show the outline of sprayed and deformed water
droplets hitting a surface. The flight and the impact of the droplet was captured by a
high-speed camera (Photron Fastcam) at a rate of 10,000 images/s. The shape of the
droplet is changing during flight, at impact, and while bouncing. After cropping, the size
of the image was (663× 663) pixels.

We analyzed two frames. One was an image taken before the collision took place, the
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(a) (b)

(c) (f)

Figure 4.16: Sprayed droplets. (a) Prior to the impact: The initial contour of the snake
is represented with a black dashed line. (b) After the impact: The initial contour of the
snake is represented with a black dashed line. (c) Prior to the impact: The outline of our
snake with M = 5 is represented with a white dashed line. (d) After the impact: The
outline of the successful snake is represented with a white dashed line (M = 8), while
the configuration with M = 5 is represented with a gray solid line. The droplet edges are
partially out of focus, making them blurry and noisy.

other was taken after the impact. In both cases, we initialized the snake as a circle with a
position and size that we chose manually. These initializations are shown in Figure 4.16.
In the image prior to the impact, which we show in the left part of Figure 4.16, a snake
with M = 5 was used. We selected a small value for M because the droplet is nearly
circular. In the image after the impact, which we show in the right part of Figure 4.16,
five control points did not provide enough freedom to cope with the discontinuity created
by the attachment to the surface. However, the outline was successfully retrieved when
slightly increasing the number of nodes to M = 8.
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4.5 Conclusions

Our contribution in this chapter is a new family of basis functions that we use to describe
parametric contours in terms of a set of control points. We were able to single out the
basis of shortest support that allows one to reproduce circles and ellipses. Those can be
characterized exactly by as few as three control points but, by considering additional ones,
our parametric contours can reproduce with arbitrary precision any planar closed curve.
In particular, we have shown that the mean error of approximation decays in inverse pro-
portion of the cube of the number of control points. We have used our ellipse-reproducing
parametric curves to build snakes driven by a combination of contour and region-based
energies. In the latter case, the energy depends on the contrast between two regions,
one being delineated by the curve itself, and the other by an ellipse of double area. To
determine this ellipse, we showed how to compute the best elliptical approximation, in a
least-squares sense, of a contour described by an arbitrary number of control points. We
were able to accelerate the implementation of our snakes by taking advantage of Green’s
theorem, which was facilitated by the availability of the explicit expressions of our basis.
We have applied our snakes to a variety of problems that involve synthetic simulations
and real data. We achieved excellent objective and subjective performance.

Appendices

4.A Implementation Details

In Section 4.3, we provided the guidelines for an efficient implementation of our energy
functionals. Here, we derive the explicit expressions of our image energies and their par-
tial derivatives. These expressions are needed when implementing the snake optimization
routine.

4.A.1 Image Energy

As described in Section 4.3.1, our image energy is composed of two terms: a contour (or
edge) term and a region term.

4.A.1.1 Contour Image Energy Using Green’s theorem, our contour energy (4.19) can be ex-
pressed as the surface integral

Eedge =−
∫∫

Ω

∆ f (x)dx1 dx2,

where x= (x1, x2) and∆ f is the Laplacian of the image f . We express the surface integral
of g =−∆ f over the region Ω enclosed by the curve r as

Eedge =

∮

r

g1(r)dx2 =

∫ 1

0

g1(r(t))
dx2(t)

dt
dt,

where g1 is the pre-integrated image along the first dimension. Now, by the explicit
parametric description of r, we have

Eedge =

∫ 1

0

g1(r(t))M
M−1
∑

k=0

c2[k] ϕ̇(M t − k)dt,
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where c= (c1, c2). Finally, we approximate the integral by the sum

Eedge ≈
1

R

M R
∑

i=0

g1

�

r
�

i

M R

�� M−1
∑

k=0

c2[k] ϕ̇M

�

i

R
− k
�

,

where R is discretization the sampling rate. Since ϕ̇ is compactly-supported, the number
of non-zero elements of the inner sum is small. We precompute and store in a lookup table
the values of ϕ̇M (i/R− k).

4.A.1.2 Region Image Energy Our region energy (4.20) can be expressed as

Eregion =
1

|Ω|

 

2

∫∫

Ω

f (x)dx1 dx2 −
∫∫

Ωλ

f (x)dx1 dx2

!

,

as long as Ω ⊂ Ωλ. Then, computing the image energy reduces to the evaluation of two
surface integrals over the regions delimited by r and rλ (i.e., Ω and Ωλ respectively).

We express the surface integral of f over Ω as
∮

r

f1(r)dx2 =

∫ 1

0

f1(r(t))
dx2(t)

dt
dt,

where f1 is the pre-integrated image along the first dimension. Now, by the explicit para-
metric description of r, we have

∫ 1

0

f1(r(t))M
M−1
∑

k=0

c2[k] ϕ̇(M t − k)dt.

Analogously, we can express the surface integral of f over the region Ωλ enclosed by the
curve rλ = (xλ,1, xλ,2) as

∮

rλ

f1(rλ)dxλ,2 =

∫ 1

0

f1(rλ(t))
dxλ,2(t)

dt
dt.

Now, by the explicit parametric description of rλ, we have
∫ 1

0

f1(rλ(t))2π

È

2 |Ω|
|Ωe|

M−1
∑

k=0

c2[k]
�

hs[k] cos(2π t)− hc[k] sin(2π t)
�

dt.

We obtain an explicit expression for the region energy by combining both results

Eregion =
1

|Ω|

 

2

∫ 1

0

f1(r(t))M
M−1
∑

k=0

c2[k] ϕ̇(M t − k)

− f1(rλ(t))2π

È

2 |Ω|
|Ωe|

M−1
∑

k=0

c2[k]
�

hs[k] cos(2π t)− hc[k] sin(2π t)
�

dt



 .

Finally, we approximate the integral by the sum

Eregion ≈
1

|Ω|R

 

2
M R
∑

i=0

f1

�

r
�

i

M R

�� M−1
∑

k=0

c2[k] ϕ̇M

�

i

R
− k
�

−
2π

M

È

2 |Ω|
|Ωe|

f1

�

rλ

�

i

M R

�� M−1
∑

k=0

c2[k]
�

hs[k] cos
2π i

M R
− hc[k] sin

2π i

M R

�



 ,

where R is the discretization sampling rate. We precompute and store in lookup tables the
values of ϕ̇M (i/R− k) and

�

hs[k] cos 2π i
M R
− hc[k] sin

2π i
M R

�

.
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4.A.2 Partial Derivatives of the Image Energy

Our optimization scheme requires the partial derivatives of the energy function with re-
spect to the parameters, that is, the sequence of control points {c[k]}k∈[0...M−1].

4.A.2.1 Partial Derivatives of the Contour Image Energy Since the edge-based image energy
can be expressed as a surface integral of a function g =−∆ f , we can compute the partial
derivatives as

∂ Eedge

∂ c1[k]
=

∂

∂ c1[k]

∮

r

g1(r)dx2 (by (4.22))

=
∂

∂ c1[k]

∫ 1

0

g1(r(t))
dx1(t)

dt
dt (line integral)

=

∫ 1

0

∂

∂ x1
{g1(r(t))}

︸ ︷︷ ︸

g(r(t))

∂ x1(t)
∂ c1[k]
︸ ︷︷ ︸

ϕM (M t−k)

dx1(t)
dt

dt (chain rule)

=

∫ 1

0

g(r(t))ϕM (M t − k)M
M−1
∑

i=0

c2[i] ϕ̇M (M t − i)dt (by (4.2))

=
M−1
∑

i=0

c2[i] M

∫ 1

0

g(r(t))ϕM (M t − k) ϕ̇M (M t − i)dt

︸ ︷︷ ︸

Q g[k,i]

(reordering).

Thus, we obtain the simplified expression

∂ Eedge

∂ c1[k]
=

M−1
∑

i=0

c2[i]Q g[k, i].

In a similar manner, we get

∂ Eedge

∂ c2[k]
=−

M−1
∑

i=0

c1[i]Q g[k, i].

To summarize, the computation of the partial derivatives of the edge energy reduces to
the trivial computation of the finite sequence Q g . Since ϕ and ϕ̇ are compactly supported,
Q g[k, i] differ from zero if and only if ϕM (M t − k) and ϕ̇M (M t − i) overlap. Formally,
Q g[k, i] 6= 0 if min{|k− i|, |i − k|} < N , where N is the common support length of ϕ and
ϕ̇. Then, if M is large compared to N or if the length of the support of the basis functions
is short, then most of the elements of Q g[k, i] are zero.

4.A.2.2 Partial Derivatives of the Region Image Energy We compute the partial derivatives of
the region-based image energy as

∂ Eregion

∂ c1[k]
=

∂

∂ c1[k]
1

|Ω|

 

2

∫∫

Ω

f (x)dx1 dx2 −
∫∫

Ωλ

f (x)dx1 dx2

!

.

By using differentiation properties and expanding the expression, we obtain

−
Eregion

|Ω|
∂ |Ω|
∂ c1[k]

+
1

|Ω|

 

2
∂

∂ c1[k]

∫∫

Ω

f (x)dx1 dx2 −
∂

∂ c1[k]

∫∫

Ωλ

f (x)dx1 dx2

!

.

We can expand the first term using (4.21). We obtain,

−
Eregion

|Ω|
∂ |Ω|
∂ c1[k]

=
Eregion

|Ω|

M−1
∑

n=0

c2[n]

∫ M

0

ϕM (t − k) ϕ̇M (t − n)dt

︸ ︷︷ ︸

Q1[k,n]

.
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The second term can be expanded following the strategy used in Section 4.A.2.1. We
obtain

1

|Ω|

 

M−1
∑

i=0

c2[i]
�

2Q f [k, i]− Q̃ f [k, i]
�

!

,

where Q̃ f contains the integration of f along the elliptical shell.

To summarize, the partial derivatives of the region-based image energy can be written as

∂ Eregion

∂ c1[k]
=

Eregion

|Ω|

M−1
∑

n=0

c2[n]Q1[k, n] +
1

|Ω|

 

M−1
∑

i=0

c2[i]
�

2Q f [k, i]− Q̃ f [k, i]
�

!

.

In a similar manner, we get

∂ Eregion

∂ c2[k]
=−

Eregion

|Ω|

M−1
∑

n=0

c1[n]Q1[k, n]−
1

|Ω|

 

M−1
∑

i=0

c1[i]
�

2Q f [k, i]− Q̃ f [k, i]
�

!

.

69





Chapter 5

Extension to 3D Spline Snakes

Many 3D snake variants have been proposed utilizing different types of surface rep-
resentation and various energy terms. Implicit methods based on a level-set formu-
lation of the Chan-and-Vese problem have been investigated extensively over the past
decade [70]. Some effort was invested to obtain semi-parametric approaches using sim-
plex meshes [147] and, more recently, 3D triangular meshes [148]. A first approach to
fully parametric snakes named active geometric functions (AGF) was proposed in [149]
using the variational framework and the Mumford-Shah energy functional. Then, a re-
finement of the AGF method was presented using polynomial B-splines [150].

In this chapter, we extend our 2D parametric snakes exposed in Chapter 4 and propose the
first fully 3D spline-based parametric snake for the analysis of images in 3D microscopy in
which we constrain the topology to segment ellipsoid-like objects of the type encountered
in cell biology. Our snake surface is parameterized by few control points and uses as
basis functions a special kind of exponential B-splines from the family investigated in
Chapter 3. The most important feature of our basis is that it allows our 3D snake to
perfectly reproduce ellipsoids. Our bases have the shortest-possible support given the
aforementioned ellipsoid reproduction property. Because they are also refinable, they also
provide a good approximation of any closed surface with a sphere-like topology.

The parameterization based on splines, and more precisely the use of our exponential
B-splines, allows us to derive a fast algorithm for image segmentation. This is crucial
for biological applications such as cell tracking in time-lapse sequences of 3D images,
which produce tremendous amounts of data. We have investigated the efficiency of the
proposed approach with the analysis of several sets of real microscopic images and are
reporting real-time performance. We have designed edge and region energies that admit
a fast implementation thanks to the use of pre-integrated images and Gauss’ theorem. We
also propose a simple method to detect self-intersections of the surface during the snake
evolution.

The class of parametric snakes proposed here lends itself to a semi-automatic segmenta-
tion scheme that allows for user-friendly interaction. Because the snake is fully parame-
terized by only a few 3D control points, the user is able to easily guide and modify it by
interacting with anchors in dedicated 2D and 3D image views. These views feature a live
display of the snake and provides feedback to the user when a control point is modified.
This ability is precious for crowded biological environments which may require user in-
put and feedback. The software implementing our techniques is given as an open-source
library in an effort to provide useful tools for the bioimaging community.

This chapter is organized as follows: In Section 5.1, we present an extension of the curve
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generation framework introduced in Chapter 3 in order to generate parametric surfaces
using B-splines. Then, we formalize the mathematical conditions for the basis functions
in order to make the parametric surfaces suitable for segmentation. Next, we specify
a 3D snake model with a sphere-like topology. Implementation details such as energy
functionals and discretization issues are addressed in Section 5.2. Finally, we illustrate
the capabilities of our snake with synthetic and real data in Section 5.3.

5.1 Spline Surfaces

In this section, we extend the general framework of parametric curve representation inves-
tigated in Chapter 3 to parametric surfaces using B-splines as basis functions, and provide
explicit expressions that characterize the surface points and the tangent spaces. Then,
we provide a formal set of conditions for the basis functions to ensure unique and stable
representation of the surfaces, affine invariance of the model, well-definiteness of the sur-
face curvature, and some reproduction properties. Finally, we specify a 3D snake model
with a sphere-like topology capable of perfectly reproducing ellipsoids irrespective of their
position and orientation.

5.1.1 Parametric Representation of Surfaces

We consider a parametric representation of a surface σ(u, v) in 3D space that is described
by a triplet of Cartesian coordinate functions x1(u, v), x2(u, v) and x3(u, v), where u, v ∈ R
are continuous parameters. The two-dimensional functions x , y and z are represented by
linear combinations of suitable basis functions. Among all possible bases, we focus on
those derived from a compactly supported generator Φ : R2 7→ R and its multi-integer
shifts {Φ(u − k, v − l)}(k,l)∈Z2 . Then, the representation of the surface is given by the
vectorial equation

σ(u, v) =
∞
∑

k=−∞

∞
∑

l=−∞

c[k, l]Φ
�

u

T1
− k,

v

T2
− l
�

, (5.1)

where {c[k, l] ∈ R3}(k,l)∈Z2 are the control points in 3D that define the shape of the surface,
and T1, T2 ∈ (0,∞) are the sampling steps for each parametric dimension. We denote by
S⊂ R3 the set of points of the surface.

In view of the nature of the domain set defined by u and v, a common strategy is to
consider using tensor-products for the construction of the base function Φ. Then, the
generator can be written as

Φ(u, v) = φ1(u)φ2(v). (5.2)

This approach of representing surfaces using bases built on tensor-products of one dimen-
sional functions has been studied by several authors [151, 152, 153], albeit not in the
context of snakes. Various choices of φ1 and φ2 have been considered, such as polyno-
mials, polynomial B-splines and trigonometric B-splines. Moreover, this tensor-product
decomposition choice allows us to take advantage of fast and stable interpolation algo-
rithms [114, 115, 116].

We define the tangent space at any point on the surface p = σ(u0, v0) ∈ S as the vector
space generated by the tangent vectors to S at p

T1 =
∂σ

∂ u
(u, v)|(u0,v0) (5.3)

T2 =
∂σ

∂ v
(u, v)|(u0,v0). (5.4)
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The tangent bundle is usually defined as the disjoint union of all tangent spaces indexed by
the points on the surface p ∈ S. The tangent bundle is said to be well defined if all tangent
spaces have dimension equal to two; that is, they are planes. In this case, the surface S
is said to be regular [154]. Requiring S to be regular implies that the surface should be
smooth, not self-intersect, or have any border. Loosely speaking, S should locally look like
a plane. Under these conditions, a normal vector to S at p = σ(u0, v0) can be computed
by

n= T1 × T2, (5.5)

where × denotes the three-dimensional cross product.

5.1.2 Desirable Properties of Basis Functions

We now enumerate the conditions that our parametric surface model should satisfy for the
purpose of shape segmentation and introduce the corresponding mathematical formalism.
These conditions are the bivariate analogous to the ones we presented in Section 4.1.2 in
the context of parametric curves.

1. Unique and Stable Representation. We want our parametric functions x1, x2 and x3 to
be defined in terms of the coefficients in a unique fashion; that is, x1, x2 and x3 are
uniquely determined by a single sequence of coefficients {c[k, l]}(k,l)∈Z2 for all u, v ∈
R. Furthermore, for computational purposes, we ask the interpolation procedure to
be numerically stable. A bivariate generating function Φ is said to satisfy the Riesz
basis condition if there exist two constants 0< A≤ B <∞ such that

A ‖c‖`2
≤ ‖σ‖L2

≤ B ‖c‖`2
(5.6)

for all c ∈ `2. A direct consequence of the lower inequality of (5.6) is that the
condition

∑∞
k=−∞

∑∞
l=−∞ c[k, l]Φ( u

T1
− k, v

T2
− l) = 0 for all (u, v) ∈ R2 implies that

c[k, l] = 0 for all (k, l) ∈ Z2. Thus, the basis functions are linearly independent and
every function is uniquely specified by its coefficients. The upper inequality ensures
the stability of the interpolation process [116].
It has been shown in [117] that, due to the integer-shift-invariant structure of the
representation, the Riesz basis condition has the following equivalent expression in
the Fourier domain:

A≤
∞
∑

k=−∞

∞
∑

l=−∞

�

�Φ̂
�

ω1 + 2π k,ω2 + 2π l
�

�

�

2 ≤ B (5.7)

for all (ω1,ω2) ∈ R2, where Φ̂(ω1,ω2) =
∫∫

R2 Φ(u, v)e−j(ω1 u+ω2 v) du dv denotes the
two-dimensional Fourier transform of Φ. Once expressed in the Fourier domain, the
Riesz condition provides a practical way to verify whether a given generating function
Φ satisfies (5.6) or not.
Given the fact that Φ is built from the tensor product of two one-dimensional func-
tions, φ1 and φ2, a sufficient condition to satisfy (5.7) is to require φ1 and φ2 to
satisfy the one-dimensional Riesz condition. In particular, they should satisfy

A1 ≤
∞
∑

k=−∞

�

�φ̂1(ω+ 2π k)
�

�

2 ≤ B1

A2 ≤
∞
∑

l=−∞

�

�φ̂2(ω+ 2π l)
�

�

2 ≤ B2,

where φ̂1 and φ̂2 are the one-dimensional Fourier transforms of φ1 and φ2, respec-
tively, and A1, B1, A2 and B2 are the corresponding Riesz bounds.
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2. Affine Invariance. Since we are interested in outlining shapes irrespective of their
position and orientation, we would like our model to be invariant to affine transfor-
mations. We formalize this by requiring

Aσ(u, v) + b=
∞
∑

k=−∞

∞
∑

l=−∞

(Ac[k, l] + b) Φ
�

u

T1
− k,

v

T2
− l
�

,

where A is a (3× 3) matrix and b is a three-dimensional vector. From (5.8), it is easy
to show that affine invariance is ensured if and only if

∞
∑

k=−∞

∞
∑

l=−∞

Φ
�

u

T1
− k,

v

T2
− l
�

= 1 (5.8)

for all (u, v) ∈ R2. In the literature, this constraint is often named the partition-of-
unity condition [118].
Since Φ is built from the tensor product of two one-dimensional functions, φ1 and
φ2, (5.8) holds if and only if

∀u ∈ R :
∞
∑

k=−∞

φ1

�

u

T1
− k
�

= 1

∀v ∈ R :
∞
∑

l=−∞

φ2

�

v

T2
− l
�

= 1,

hold; that is, if both φ1 and φ2 satisfy the one-dimensional partition-of-unity condi-
tion.

3. Well-Defined Gaussian Curvature. The Gaussian curvature of a parametric surface at
a point p can be expressed as the ratio of the determinants of the second and first
fundamental forms at the same point

K(p) =
det II

det I
.

The first fundamental form at a point p is the inner product on the tangent space of
a surface in three-dimensional Euclidean space which is induced canonically from the
dot product of R3. It is usually expressed as a symmetric matrix

I=
�

T1 · T1 T1 · T2
T1 · T2 T2 · T2

�

,

where T1 and T2 are the tangent vectors defined in (5.3) and (5.4) at a point p,
respectively.
The second fundamental form at a point p is a quadratic form on the tangent plane in
the three-dimensional Euclidean space,

II=

 

∂ 2σ
∂ u2 · n̂

∂ 2σ
∂ u∂ v

· n̂
∂ 2σ
∂ u∂ v

· n̂ ∂ 2σ
∂ v2 · n̂

!

,

where n̂ = n
‖n‖ denotes the normal unit vector, which can be computed using (5.5).

Together with the first fundamental form, it serves to define extrinsic invariants of the
surface [154].
We want out parametric surface to have a well-defined Gaussian curvature at every
point on the surface. To do so, each coordinate function (or, equivalently, the functions
φ1 and φ2) must be in C 1 with bounded second derivative.
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4. Reproduction of Particular Shapes. Ellipsoids are particular shapes that appear repeat-
edly in segmentation problems in 3D microscopy. For that reason, it is important that
our surface model (5.1) perfectly reproduces them. Formally, we want a parametric
description of all ellipsoids to lie within the span of (5.1). For than reason the basis
{Φ(u− k, v − l)}(k,l)∈Z2 should reproduce the family of functions that describe any el-
lipsoid. Since our model is vectorial, we can impose this condition component-wise.
In mathematical terms, we say that a bivariate generating function Φ reproduces a
bivariate function f : R2 7→ R if and only if there exists a sequence of coefficients
{c[k, l] ∈ R}(k,l)∈Z2 such that

f (u, v) =
∞
∑

k=−∞

∞
∑

l=−∞

c[k, l]Φ(u− k, v− l)

holds almost everywhere. The analysis is further simplified if the function f is sepa-
rable in u and v, that is, there exists a decomposition such that f (u, v) = f1(u) f2(v).
In this situation, it is sufficient to approach the problem separately for each variable.
Then, we say that Φ reproduces the function f if there exists sequences {c1[k]}k∈Z
and {c2[l]}l∈Z such that

f1(u) =
∞
∑

k=−∞

c1[k]φ1(u− k)

f2(v) =
∞
∑

l=−∞

c2[l]φ2(v− l)

holds almost everywhere. In addition, we say that φ1 reproduces f1 and that φ2
reproduces f2.

5.1.3 3D Snake Model

We are especially interested in the case when S is a closed surface since we want our snake
to segment blob-like objects within 3D images. We define our 3D snake model as a closed
parametric surface σ following the parametric vectorial equation (5.1). Since the surface
is closed, it is not necessary to consider the parameters (u, v) taking all possible values
in R2. It is enough to consider a domain that is a compact set Ω ⊂ R2. By convention,
we normalize the range of the parameters u, v to lie within [0, 1], setting the domain to
Ω = [0,1]2.

As discussed in Section 5.1.1, we consider among all possible bases those derived from
the tensor product of two compactly supported generators φ1,φ2. Then, the parametric
representation of the surface is given by the vectorial equation

σ(u, v) =
∞
∑

k=−∞

∞
∑

l=−∞

c[k, l]φ1(M1 u− k)φ2(M2 v− l), (5.9)

where we have substituted the sampling steps T1 and T2 by the positive integers M1 =
1
T1

and M2 =
1
T2

. The fact that we impose here M1 and M2 to be positive integers guarantees
that the functions x1, x2 and x3 are represented by an integer number of basis functions
within their domain Ω = [0, 1]2. The larger these values are, the more basis functions
come into the domain Ω. In this situation, σ has more degrees of freedom and can repre-
sent a larger variety of shapes. In other words, small numbers lead to constrained shapes
for the snake, and large numbers lead to additional flexibility and more general shapes.
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Figure 5.1: Rendering of the snake surface taking a form of an oblate spheroid flattened
at the poles. The mesh has been obtained by sampling (5.9).

From the desired conditions in Section 5.1.2, the particular choice of φ1 and φ2 deter-
mines the properties of the surface generated by (5.9), such as smoothness, computational
load of the resulting model, or reproduction of particular shapes.

We can force the surface generated by (5.9) to take the topology of an ellipsoid by impos-
ing the appropriate boundary conditions on the sequence of control points {c[k, l]}(k,l)∈Z2 ,
and we can make the snake reproduce all possible ellipsoids with the appropriate choice
of φ1 and φ2.

5.1.3.1 Topology To describe the parameterization, we shall adopt an earth-like cartographic
terminology referring to meridians and circles of latitude. Then, the curves that are ob-
tained when fixing the second parameter in (5.9) correspond to circles of latitude, as
shown in Figure 5.1. Formally, the curves obtained when v is constant in σ must be
closed. As a consequence, the functions of each component of σ in u are 1-periodic when
v is constant. In order to satisfy this condition, it is necessary to apply periodic boundary
conditions along the first index of the sequence of control points. Therefore, the sequence
of coefficients becomes M1-periodic and satisfies c[k, l] = c[k+M1, l]. Under these con-
ditions, we can reorganize the first infinite summation in (5.9) to a finite one involving
periodized basis functions. Then, the parametric representation of the surface is expressed
as

σ(u, v) =
M1−1
∑

k=0

∞
∑

l=−∞

c[k, l]φ1,per(M1 u− k)φ2(M2 v − l), (5.10)

where φ1,per(u) =
∑∞

n=−∞ φ1(u−M1 n) for all u ∈ R. Moreover, continuing with our earth
simile, the curves that are obtained when fixing u in (5.9) correspond to meridians; that
is, open curves starting at the north pole cN and ending at the south pole cS.

5.1.3.2 Reproduction of Ellipsoids We are also interested in our snake being capable of per-
fectly reproducing ellipsoids irrespective of their size, position and orientation. Note that
if φ1 and φ2 are chosen to satisfy the partition-of-unity condition, the snake model will
satisfy the affine invariance property. Then, since every ellipsoid can be obtained by an
affine transformation of a sphere of unit radius, we focus on the reproduction of this
simpler shape.

The classical parametrization of a sphere with unit radius that goes with our earth-like
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description is given by






x1(u, v) = cos (2πu) sin (π v)
x2(u, v) = sin (2πu) sin (π v)
x3(u, v) = cos (π v) ,

(5.11)

where u, v ∈ [0,1].

All parametric equations in (5.11) are separable in u and v, and each part can be efficiently
taken care of with our separable model (5.10). In order Φ to be able to reproduce (5.11)
and satisfy the condition of Section 5.1.2, φ1 must reproduce constants and sinusoids of
unit period, and φ2 must reproduce constants and sinusoids of double period.

We rely once more in the Minimal-Support Generating Functions Theorem detailed in
Section 3.2.5 to determine the optimal choice of φ1 and φ2. More precisely, by using
Corollary 1 in Section 3.4.1.1, we know that the centered generating function with min-
imal support that satisfies the Riesz basis condition, the partition-of-unity condition, is
C 1(R) with bounded second derivative and reproduces sinusoids of unit period with M
coefficients is

ϕM (t) =
1

1− cos 2π
M







cos 2π |t|
M

cos π

M
− cos 2π

M
0≤ |t|< 1

2
�

sin π (3/2−|t|)
M

�2
1
2
≤ |t|< 3

2

0 3
2
≤ |t| .

Therefore, we take φ1(u) = ϕM1
(u) and φ2(v) = ϕ2 M2

(v) in order to be able to reproduce
all sinusoids in (5.11). Note that φ1 and φ2 are equal if and only if M1 = 2 M2.

We show in Figure 5.2 some members of the family of functions Φ indexed by M = M1 =
2 M2. They are continuous, have finite support of area (3× 3), and tend to be bump-
like. Moreover, when M → ∞, they converge to the tensor product of two quadratic
B-splines. These functions allow the snake to perfectly replicate constants and sinusoids
of the appropriate frequency at each component. This means that they can perfectly
reproduce the parametric equations (5.11) with the appropriate configuration of control
points. The most remarkable feature, though, is that the size of the support of these
functions are the shortest possible to satisfy the conditions from Section 5.1.2. This results
in a maximally efficient scheme due to the fact that the computation of each point on the
surface of the snake depends on the minimum possible number of basis functions, and it
also ensures a local control of the surface by modifying single control points.

The explicit expression of the control points that make our snake take the shape of a
perfect a unit sphere is

c[k, l] =







cM1
[k] s2 M2

[l]
sM1
[k] s2 M2

[l]
c2 M2
[l]






,

where

cM[n] =
2
�

1− cos 2π
M

�

cos π

M
− cos 3π

M

cos
2πn

M

sM[n] =
2
�

1− cos 2π
M

�

cos π

M
− cos 3π

M

sin
2πn

M
.

The derivation of the specific coefficients to reproduce the sinusoids is equivalent to the
one obtained in Section 4.2.5.
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(a) (b)

(c) (d)

Figure 5.2: Members of the family of functions Φ indexed by M = M1 = 2 M2. (a) M = 3.
(b) M = 4. (c) M = 5. (d) M → ∞. The function with the lowest peak at the origin
corresponds to M = 3, and, as M increases, the central peak increases as well.

5.1.3.3 Smoothness The chosen basis functions are C 1(R), and their second derivatives are
bounded. However, the parametric model (5.10) has two singular points where the conti-
nuity and smoothness are not guaranteed and require special attention: the poles cN and
cS.

In order for the surface to be well-defined and continuous at the poles, we require the
function σ(u, v) to be independent of u for v = 0 and v = 1. Moreover, to ensure that the
tangent plane varies continuously, we need to make some assumptions about the partial
derivatives of σ. It was shown in [151] that a sufficient condition for continuity of the
tangent plane is that the partial derivatives satisfy

∂σ

∂ v
(u, v)|v=0 = T1,N cos (2πu) + T2,N sin (2πu) (5.12)

∂σ

∂ v
(u, v)|v=1 = T1,S cos (2πu) + T2,S sin (2πu) , (5.13)

where T1,N,T2,N,T1,S,T2,S ∈ R3 are free vectors.

Tensor product polynomial splines on the sphere have already been considered in [155]
in the context of estimation techniques for fitting data on the sphere. However, no at-
tempt was made to deal with the pole problem nor to take full advantage of the use of
B-splines. Then, the sufficient conditions to obtain a continuously varying tangent plane,
or equivalently C 1(R) on the surface, were first formulated in [151] within the same
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context of fitting data on the sphere using polynomial B-splines. However, the proposed
scheme could only fulfill the conditions approximately, the main reason being that the
conditions (5.12) and (5.13) can only be satisfied if the basis function associated to u is
capable of reproducing sinusoids of unit period. An extension of this work was presented
in [153], where the basis function associated to u was substituted by periodic trigono-
metric splines, being able to satisfy (5.12) and (5.13). Here, we use the full potential of
the underlying exponential B-splines within our basis functions, and we can satisfy (5.12)
and (5.13) thanks to the fact that the basis function φ1 that we selected in Section 5.1.3.2
is capable of reproducing sinusoids. To the best of our knowledge, this has not been done
previously.

We would like our parameterization include implicitly the exposed conditions. Now, we
translate them as conditions over the control points. We categorize the required conditions
in two types:

1. Pole Interpolation Conditions. All meridians originate at the north pole if and only if
σ(u, 0) = cN for all u ∈ [0,1]. Likewise, all meridians terminate at the south pole if
and only if σ(u, 1) = cS for all u ∈ [0, 1]. The condition concerning the north pole can
be rewritten in terms of the control points by evaluating (5.10) at v = 0. This yields

cN = c[k, 1]φ2(−1) + c[k, 0]φ2(0) + c[k,−1]φ2(1),

for all k ∈ [0 . . . M1 − 1], where we have used the fact that φ2 satisfies the partition-
of-unity condition and that its support is limited to the interval [− 3

2
, 3

2
]. Likewise, the

condition concerning the south pole can be rewritten in terms of the control points by
evaluating (5.10) at v = 1:

cS = c[k, M2 + 1]φ2(−1) + c[k, M2]φ2(0) + c[k, M2 − 2]φ2(1),

for all k ∈ [0 . . . M1 − 1].

2. Pole Smoothness Conditions. The sufficient conditions (5.12) and (5.13) were stated
for any generic parameterization. For our case, this translates into

T1,N cos (2πu) + T2,N sin (2πu) = M2

M1−1
∑

k=0

∞
∑

l=−∞

c[k, l]φ1,per(M1 u− k) φ̇2(−l)

T1,S cos (2πu) + T2,S sin (2πu) = M2

M1−1
∑

k=0

∞
∑

l=−∞

c[k, l]φ1,per(M1 u− k) φ̇2(M2 − l)

by evaluating the left-hand-side of (5.12) and (5.13). Here, T1,N,T2,N ∈ R3 represent
two free vectors that determine the tangent plane at the north pole, and T1,S,T2,S ∈ R3

are two free vectors that determine the tangent plane at the south pole. The proposed
smoothness conditions can be satisfied if and only if the model can reproduce sinu-
soids of unit period over u with a specified sampling rate. Since φ1 was designed to
reproduce sinusoids of unit period over u with a sampling rate of M1, we are guaran-
teed that smoothness conditions can be satisfied.

In Figure 5.3 we show some surfaces generated by (5.10) that fail to satisfy some of the
conditions on the poles. If the pole interpolation conditions are not satisfied, the surface
may not be completely closed; if the pole smoothness condition is not satisfied, the surface
may have kinks at the poles, leaving an ill-defined tangent plane at these points.

The final step is to incorporate the exposed conditions into the parameterization and to
obtain explicit formulas. We provide an explicit expression of (5.10) with a sphere topol-
ogy and verify the pole interpolation and smoothness conditions.
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(a) (b) (c)

Figure 5.3: Surfaces generated by our snake model. (a) Interpolation conditions are not
satisfied. (b) Smoothness conditions are not satisfied. (c) Interpolation and smoothness
conditions are satisfied.

Proposition 3. A parametric spline-based surface with a sphere-like topology, C 1(R) conti-
nuity, and the capability of reproducing ellipsoids irrespective of their position and orientation
can be expressed as

σ(u, v) =
M1−1
∑

k=0

M2+1
∑

l=−1

c[k, l]φ1,per(M1 u− k)φ2(M2 v− l), (5.14)

restricted to

c[k,−1] = c[k, 1] +
T1,N cM1

[k] + T2,N sM1
[k]

M2 φ̇2(1)
(5.15)

c[k, 0] =
cN

φ2(0)
+
φ2(1) (c[k,−1] + c[k, 1])

φ2(0)
(5.16)

c[k, M2] =
cS

φ2(0)
−
φ2(1)

�

c[k, M2 − 1] + c[k, M2 + 1]
�

φ2(0)
(5.17)

c[k, M2 + 1] = c[k, M2 − 1]−
T1,S cM1

[k] + T2,S sM1
[k]

M2 φ̇2(1)
, (5.18)

where {c[k, l]}k∈[0...M1−1],l∈[1...M2−1], cN, cS, T1,N, T2,N, T1,S, and T2,S are free parameters.
This adds up to a total number of

�

M1 (M2 − 1) + 4
�

free control points.

Proof. First, since the support of φ2 is limited to the interval [− 3
2
, 3

2
] and v lies within

the interval [0,1], the second summation in (5.10) can be restricted to the indices l ∈
[−1 . . . 1].

The restrictions (5.16) and (5.17) are obtained directly from the pole interpolation con-
ditions. We rewrite the condition of the north pole as

c[k, 0] =
cN +φ2(1) (c[k,−1] + c[k, 1])

φ2(0)

for all k ∈ [0 . . . M1 − 1], where we have used the fact that φ2(1) = φ2(−1) since φ2 is
symmetric, giving us (5.16). Likewise, the interpolation condition on the south pole is
rearranged as

c[k, M2] =
cS −φ2(1)

�

c[k, M2 − 1] + c[k, M2 + 1]
�

φ2(0)
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for all k ∈ [0 . . . M1 − 1], giving us (5.17).

Now, we simplify the right-hand-side of the smoothness condition on the north pole to

M1−1
∑

k=0

M2

�

c[k,−1] φ̇2(1)− c[k, 1] φ̇2(1)
�

φ1,per(M1 u− k),

where we have used the fact that φ̇2 is an antisymmetric function. We expand the sinu-
soids of the left-hand-side of the smoothness condition of the north pole using φ1,per. It
results in

T1,N cos (2πu) + T2,N sin (2πu)

= T1,N

M1−1
∑

k=0

cM1
[k]φ1,per(M1 u− k) + T2,N

M1−1
∑

k=0

sM1
[k]φ1,per(M1 u− k)

=
M1−1
∑

k=0

�

T1,N cM1
[k] + T2,N sM1

[k]
�

φ1,per(M1 u− k).

By identification of the coefficients, we obtain

c[k,−1] = c[k, 1] +
T1,N cM1

[k] + T2,N sM1
[k]

M2 φ̇2(1)

for all k ∈ [0 . . . M1 − 1], which gives (5.15). The expression for (5.18) is obtained analo-
gously using the pole smoothness condition in the south pole.

5.2 Energies and Implementation

5.2.1 Snake Energy

As exposed in Chapter 2, the snake evolution is driven by a application-dependent energy
function. Moreover, the quality of the segmentation depends on the choice of the energy
term. In our implementation, we obviated the constraint energy since we accommodated
the user interaction as a hard constraint.

5.2.1.1 Image Energy There are many construction strategies to design the image energy in 3D
snakes. They are usually an extension of their 2D counterparts. As shown in Section 4.3.1
in the context of 2D snakes, image energies can be categorized in two main families: 1)
edge-based schemes [43, 47, 50] and 2) region-based methods [49, 68]. Both families
have their own advantages and disadvantages. The first one gives a better localization
of the contour near the boundaries of the object to segment at expense of a narrower
basin of attraction. We follow the same strategy than in Section 4.3.1 by using a convex
combination of gradient and region energies

Eimage = α Eedge + (1−α) Eregion,

where α ∈ [0,1]. The tradeoff parameter α balances the contribution of the edge-based
energy and the region-based energy. Its value depends on the characteristics of each
application.

For the gradient-based (or edge) energy, traditional snakes rely on edge maps to guide
them. The most popular approach is based on the magnitude ‖∇ f ‖ of the gradient [43].
Mathematically, they minimize

Emag =−
�
S

‖∇ f ‖dS,
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Figure 5.4: 2D schematic representation of two parametric snakes S1 and S2 (dashed
lines), of their interaction with the objects Ω1 and Ω2 constituted by gray circles (repre-
senting high pixel values), of normal vectors n, and of the gradient vectors ∇ f of the
image.

where the integration is performed on the closed surface S, and dS represents the dif-
ferential of area. The major drawback of this approach is that the snake gets distracted
by edges of nearby targets, since it does not distinguish between gradients generated by
different objects in the image.

We solve this issue by considering the direction of the gradient as well and by imposing
that the direction of the gradient and the normals of the surface be aligned. The parame-
terization (5.9) offers us the opportunity to choose the orientation of the normal vectors
at initialization time. From now on, and without loss of generality, we assume it to be out-
wards. If we want to segment a bright object surrounded by a darker region, we expect
the directions of the image gradients to be the same as the directions of the normal vec-
tors when the energy reaches its minimum. We formalize this concept with the following
image energy:

Egrad =−
�
S

∇ f · dS=−
�
S

�

∇ f ·
n

‖n‖

�

dS, (5.19)

where dS represents the vector differential of area.

The advantage of this energy is that it uses the direction of the gradient to discriminate
between edges of the same target and between different targets. Its minimization makes
the surface of the snake stick to edges where the image gradient has similar direction as
the normal vector n and to be repelled from edges with different orientations.

In Figure 5.4, we present a 2D schematic with the configuration of the various quantities
involved in the computation of (5.19) in two different setups. The first one corresponds to
a snake represented by the dashed line S1, segmenting the gray circle (representing high
pixel values) labeled as Ω1. The normal to the surface n and the image gradient ∇ f are
pointing in the same direction, which will add a strong contribution to Egrad. The second
case corresponds to a snake represented by the dashed line S2 segmenting the same gray
circle, but this time the dashed line is closer to the region labeled as Ω2. In this case, the
normal to the surface n and the image gradient ∇ f are pointing in opposite directions,
which adds a strong negative contribution to Egrad.
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For the region-based energy, we adopt a strategy similar to the one we followed in the 2D
case. We first build an enclosing shell Ssh around the snake. Then, our region-based energy
discriminates an object from its background by and maximizing the contrast between the
intensity of the data averaged within the volume V enclosed by the snake, and the intensity
of the data averaged within the volume Vsh enclosed by the shell. When V⊂ Vsh, the region
energy is expressed as

Eregion =
1

|V|

 

∫∫∫

V

f dV −
∫∫∫

Vsh\V
f dV

!

, (5.20)

where |V| is the volume of the snake.

To enforce that the criterion remains neutral when f takes a constant value f0, we build
the enclosing shell such that |Vsh| = 2 |V|. Under these conditions, Eregion| f= f0 = 0 de-
pends neither on the snake nor even on f0. We take full advantage of the affine invariance
property of our snake model; we build the parameterization of the shell σsh as the affine
transformation of the snake surface (5.14) with the same center of gravity and with vol-
ume |Vsh|. The explicit parametric expression is

σsh(u, v) = 3p2σ(u, v) +
�

1− 3p2
�

σg,

where

σg =
M1−1
∑

k=0

M2+1
∑

l=−1

c[k, l]

is the center of gravity of the snake. Since the shell is an affine transformation of the
original snake, it is possible to express σsh with the same basis functions.

The shell σsh is fully determined by the sequence of control points. Thus, any modification
on σ results in a readjustment of σsh.

5.2.1.2 Internal Energy The internal energy is responsible for ensuring the smoothness of the
snake. It was first proposed in [43] in the context of 2D active contours as a linear com-
bination of the length of the contour and the integral of the square of the curvature along
the contour. This smoothness term is the one that is most widely-used in applications. Its
direct extension to active surfaces gives

Eint = λ1 |S|+λ2

�
S

|K |2 dS, (5.21)

where K is the Gaussian curvature of the surface.

This internal energy can also be expressed specifically in terms of the tangent vectors and
the fundamental forms as

Eint = λ1

∫ 1

0

∫ 1

0

‖T1 × T2‖du dv+λ2

∫ 1

0

∫ 1

0

�

�

�

�

det II

det I

�

�

�

�

2

‖T1 × T2‖du dv,

where the first term makes the snake contract and the second favors smooth solutions. In
the framework of active contours, most parametric schemes rely on the smoothness of the
representation, thus eliminating the need for an explicit internal energy term. However,
these approaches can ensure a low value of the curvature only when the curves are pa-
rameterized at constant speed (proportional to arc-length). For example, a spline curve
may be rough if some of the spline knots accumulate at one section of the curve. Similar
problems exist with Fourier and other parametric representations. A practical workaround
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is to reparameterize the curve to constant arc-length after each step of the optimization
algorithm, which is quite expensive [143]. Another approach is to substitute the curvature
term of (5.21) by an energy term that penalizes the curve for not being in the curvilin-
ear abscissa [57]. This energy is called curvilinear reparameterization energy. Minimizing
this energy causes the curve knots to move tangentially to the snake, thus bringing it to
curvilinear abscissa. The use of this energy yields the same results as reparameterizing
the snake at each step, but with a much lower computational load. We adopt a similar
approach and modify the internal energy (5.21) to

Eint = λ1 |S|+λ2

∫ 1

0

∫ 1

0

(|det I| − |S|)2 du dv. (5.22)

Evolving the curve with such an energy term will cause the control points to distribute
uniformly over the snake surface and avoids accumulation.

5.2.2 Fast Energy Computation

The computational cost of the evolution of the snake is dominated by that of the volume
integrals in (5.20). An efficient way to implement these operations is the use of pre-
integrated images. Let g be the function we are integrating, and let Ω be the domain of
integration (V or Vsh). Then, by Gauss’ theorem, we rewrite the volume integral as the
surface integral in different ways

∫∫∫

Ω

g dV =

�
∂Ω

g1 dx2 ∧ dx3

=

�
∂Ω

g2 dx3 ∧ dx1

=

�
∂Ω

g3 dx1 ∧ dx2,

where ∧ is the wedge product, ∂ V is the boundary of V, and

g1(x1, x2, x3) =

∫ x1

−∞
g(τ, x2, x3)dτ

g2(x1, x2, x3) =

∫ x2

−∞
g(x1,τ, x3)dτ

g3(x1, x2, x3) =

∫ x3

−∞
g(x1, x2,τ)dτ.

All three possibilities are equivalent and can be stored in lookup tables to speed up the
access to the data. The translation of volume integrals into surface integrals reduces
the computational load dramatically. This can only be achieved if the surface is defined
continuously, as in (5.1).

In the interest of space, we show the exact expressions of the energies using pre-integrated
images in Appendix 5.A.

5.2.3 Sampling

Despite the fact that we are describing our surface continuously, in a real-world imple-
mentation we only have at our disposal a sampled version of the functions we want to
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pre-integrate. We therefore perform a trilinear interpolation of the sampled data and
store the result in lookup tables.

5.2.4 Optimization

As mentioned before, the snake extracts the boundary of an object by finding the mini-
mum of the energy functional. For that purpose, we iteratively update the value of the
free control points {c[k, l]}k∈[0...M1−1],l∈[1...M2−1], cN, cS, and the free control vectors T1,N,
T2,N, T1,S, and T2,S using a generic unconstrained gradient-based optimizer. The opti-
mization scheme is efficiently carried out by a Powell-like line-search method [144]. This
method requires the derivatives of the energy function with respect to the parameters,
and converges quadratically to the solution. The algorithm proceeds as follows: firstly,
one direction within the parameter space is chosen depending on the partial derivatives
of the energy. Secondly, a one-dimensional minimization is performed within the selected
direction. Finally, a new direction is chosen using the partial derivatives of the energy
function once more, while enforcing conjugation properties. This scheme is repeated un-
til convergence. This powerful optimization method is used here because the number of
parameters that define the shape of the snake is very small. Assuming a trilinear interpo-
lation of the original function f , we were able to derive exact and closed expressions for
the energy functions. In the interest of space, we show the derivation of these expressions
in Appendix 5.A.

5.2.5 Self-Intersection Detection

The optimization process can sometimes lead to self-intersecting surfaces. However, the
probability of self-intersection is greatly reduced by the introduction of the new inter-
nal energy (5.22). Without this term, the control points can bunch together, eventually
resulting in self-intersection.

Despite this refinement, self-intersection may still arise occasionally when the image en-
ergy forces some control points to move faster than others. This compromises our ap-
proach since we use Gauss’ theorem, which assumes non self-intersecting closed surfaces.
An extensive body of research can be found on the intersection problem, with numer-
ous articles presenting different approaches for the intersection of freeform curves and
surfaces [156]. Unfortunately, these methods are excessively time-consuming for our pur-
pose.

As an alternative, we devised a fast method for self-intersection detection using the Gauss-
Bonnet formula. This formula states that the Euler characteristic χ of a closed, non-
intersecting surface S can be computed by integrating the Gaussian curvature as follows:

χ (S) =
1

2π

�
S

|K |2 dS. (5.23)

The Euler characteristic is a number that describes a topological space’s shape or structure
regardless of the way it is bent or deformed, as long as it does not self-intersect. In the
case of sphere-like topologies, we have χ (S) = 2. Therefore, we know that the snake
self-intersects if χ (S) 6= 2.

Note that our criterion can give a correct value χ even if the surface is self-intersecting,
which implies that it is not completely foolproof. In principle, it is possible to detect these
cases by splitting the integral (5.23) over a series of smaller intervals and checking if there
is a self-intersection in each of the subintervals. However, such cases are unlikely to occur
in practice, and it was not necessary to implement such a finer level of detection.
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5.2.6 User Interaction

By contrast with many other implicit and global parametric snakes, our snake is fully
parameterized by only a few control points, which eases the interactions with the user.
This has encouraged us to develop a dedicated graphical user interface that lets the user
initialize the 3D snake position and refine it even after the optimization process. The user
can intuitively manipulate the position of any point by selecting it in either the 2D or 3D
mesh representations of the snake. The 2D view also provides 3D cues, as we color the
mesh depending on the depth and set its transparency proportional to the distance of the
slice displayed in the 2D viewer. With this strategy, only parts of the snake which are close
to the displayed image are revealed. Editing the points is performed with simple mouse
actions. The live update of the 2D and 3D views is very fast. This is due to the fact that
the change in one control point affects the structure locally. Thus, just a limited region
of the snake’s surface has to be recomputed. As a result, a fast, user-friendly, and semi-
automatic segmentation procedure, that loops between snake initialization, optimization,
and correction, is made possible.

5.2.7 Initialization

Our method can be operated in an automated fashion. For that, the algorithm only re-
quires an initial position. Like in all segmentation problems, this initialization is strongly
dependent on the imaging modality. For example, in fluorescence microscopy, a blurring
or a DoG filter followed by the detection of local maxima/minima suffices to provide an
initial position (see Chapter 4 for examples of automatic initializations of 2D parametric
snakes). In medical imaging, refined methods based on atlases can also be used [157].

When choosing the initial position of the snake, one must ensure that the object of inter-
est is within the basin of attraction of the chosen image energy. The conditions for the
convergence of our image energies are the following:

– Egrad is only responsive to image gradients. Therefore, the snake surface must be ini-
tialized close to the boundary of the object. This basin of attraction is usually extended
by preprocessing the input image with a smoothing or a distance transform.

– Eregion is responsive to image contrasts between the snake core and the snake shell.
Therefore, the snake surface must be initialized such that the core intersects the object
and the shell intersects the background.

5.3 Experiments and Simulations

We present in this section five experiments. In the first one, we deform our snake to show
how the self-intersection is detected by monitoring the Euler characteristic. In the sec-
ond experiment, we investigate the sensitivity of our snake to the presence of noise. In
the third setup, we perform a quantitative evaluation of our algorithm when segmenting
neighboring targets; there the preservation of topology plays a crucial role. We move
away from simulated data in the fourth experiment where we investigate the approxima-
tion properties of our snake with medical data of a spleen from a CT-scan. In the last
experiment, we illustrate the application to real microscopic data where the ground truth
is not available.

The calculations were performed on a MacPro 3.1 with two Quad-Core Intel Xeon proces-
sors, 12GB of RAM memory, and an NVIDIA GeForce 8800 GT with 512 MB running Mac
OS X 10.8.2
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Deformation of our snake from a perfect sphere by rotating the central layer
of control points by an angle θ , thereby creating a twist in the center of the structure:
(a) θ = 0; (b) θ = π

5
; (c) θ = 2π

5
; (d) θ = 3π

5
; (e) θ = 4π

5
; (f) θ = π.

5.3.1 Twisting the Snake

We deformed the snake away from a perfect sphere by rotating the central layer of control
points by an angle θ , thereby creating a twist in the center of the structure. In particular,
we set the snake control points to

c[k, l] =







cM1
[k] s2 M2

[l]
sM1
[k] s2 M2

[l]
c2 M2
[l]






,

for k ∈ [0 . . . M1 − 1] and for all l 6= bM2

2
c, and we set

c[k, l] =







cM1
[k] s2 M2

[l] cosθ − sM1
[k] s2 M2

[l] sinθ
cM1
[k] s2 M2

[l] sinθ + sM1
[k] s2 M2

[l] cosθ
c2 M2
[l]






,

for k ∈ [0 . . . M1 − 1] and for l = bM2

2
c.

We show in Figure 5.5 different surface configurations as a function of the rotation angle
θ . We see that for small angles, the surface is slightly twisted but not self-intersecting.
However, as we approach θ = π, the central part of the structure collapses in two points,
producing two self-intersections. We show in Figure 5.6 how the Euler characteristic,
computed by the use of (5.23), varies in terms of θ . The predicted value is correct for
θ ≤ 7π

9
and starts increasing when the snake starts self-intersecting. Hence the conditions

of the Gauss-Bonnet theorem are violated.
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Figure 5.6: Value of the Euler characteristic χ(S) of the snake surface, computed using
the Gauss-Bonnet formula when applying a rotation on the central layer of control points.
As the layer rotates, the structure deforms and loses its sphere-like topology.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.7: Cross-sections of the test images used in the assessment of robustness. Only
one realization is shown for each PSNR value. (a) PSNR = 20dB. (b) PSNR = 15dB.
(c) PSNR = 10dB. (d) PSNR = 5dB. (e) PSNR = 0dB. (f) PSNR = −5dB. (g) PSNR =
−10dB.

5.3.2 Robustness to Noise

Next, we investigate the sensitivity of our method to the presence of noise. We generated
100 realizations of a noisy sphere for each one of seven different peak-signal-to-noise ra-
tios (PSNRs). Our test images were obtained by on-voxel-wise sampling a sphere of radius
of 30 voxel units on a regular grid of (256× 256× 256) voxels. We show in Figure 5.7
one cross-section of the noisy volumes for every PSNR value.

The initial shape is a sphere with a fixed radius of 50 voxel centered at a distance of 25
voxel from the real center of the object to segment. We constrained the number of control
points to its minimum (M1 = M2 = 3). Then, we ran the optimization process until
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PSNR [dB] J[%] σJ[%]
20 0.20 0.16
15 0.44 0.26
10 0.61 0.35
5 2.16 2.68
0 12.16 10.05
− 5 22.74 11.29
− 10 34.69 9.82

Table 5.1: Jaccard distance when segmenting noisy spheres.

convergence using exclusively the region-based energy (i.e., we set the tradeoff parameter
α= 0).

We used the Jaccard distance J = 1− |Θ∩Ω|/ |Θ∪Ω| to quantify, as a percentage, the
quality of the segmentation. This distance provides a measure of dissimilarity between
two binary objects where a low value reflects an accurate segmentation. In the definition
of the Jaccard distance, Θ corresponds to the ground-truth region and Ω corresponds to
the region enclosed by the snake. We computed J following a on-voxel discretization of
the data.

We show in Table 5.1 the value of J and its standard deviation σJ across all noisy realiza-
tions. We observe from the results that our snake is robust against noise since it is capable
of giving a proper segmentation even for low PSNRs. The quality of the segmentation
deteriorates quickly when PSNR≥ 0 due to the presence of too much noise.

5.3.3 Segmentation of Overlapping Objects

In this section, we compare our snake against other segmentation methods in terms of ac-
curacy and speed at the task of delineating different configurations of overlapping objects.

We generated 4 volumetric images (256× 256× 256) by voxel-wise sampling the union
of two spheres of radius 50 pixel. We show a rendering of these shapes in Figure 5.8. They
are parameterized with the distance d, in pixel units, between the centers of the spheres.
For d < 100, the spheres intersect; for d = 100, the spheres share one single pixel; for
d > 100, the spheres are disjoint. The grayscale values of the images are 255 for the
shape and 0 for the background. We are interested in isolating each sphere. Without loss
of generality, we focus on segmenting one of them.

We compared our snake to a traditional level-set method based on the formulation of
Chan-and-Vese [70], and to the 3D active meshes of [148]. The implementation of the
level-set method was taken from the free open-source image-processing package Fiji 1

implementing the algorithm described in [62]. The implementation of the active-meshes
method was taken from the free open-source image-processing package Icy. 2

We initialized the level-set method by providing a point seed (the only possible initial-
ization afforded by the Fiji plug-in). The initial positions were determined by a detector
of local maxima applied over a version of the image that was smoothed with a Gaussian
kernel of with σ = 10. A total number of 2 local maxima were detected in all images.
We discarded the rightmost detection since we are interested in segmenting the leftmost

1. http://fiji.sc/
2. http://icy.bioimageanalysis.org/
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(a) (b) (c) (d)

Figure 5.8: Renderings of the test images used in the analysis of performance when seg-
menting overlapping objects. (a) d = 80. (b) d = 90. (c) d = 100. (d) d = 110.

object. We initialized our snake as a perfect sphere of radius 60 pixel units. Finally, the
active meshes cannot take the form of an ideal sphere but can approximate it. We initial-
ized this method using the automatic tessellation of the sphere of radius 60 provided by
the plug-in.

We chose M1 = M2 = 3, which are low values that favor ellipsoid-like shapes during the
segmentation process. Then, we ran the optimization process until convergence using the
edge-based energy (i.e., we set the tradeoff parameter α = 1) and our internal energy
with λ1 = 0.1 and λ2 = 0.01.

We executed the level-set with an advection value of 220 and a propagation value of 100.
These values were chosen to accelerate the propagation of the evolving level-set front and
to obtain a faster convergence without loosing accuracy.

For the active meshes, we set the time-evolution step to 0.01, the window size to 100,
and we evolved the snake using the gradient criterion with weight 0.5 and regularization
weight 0.01.

We show in Table 5.2 a comparison across all mentioned methods of the Jaccard distance
J reached at the end of the optimization process as well as the time it took the algorithms
to converge for the different test datasets. The times shown in Table 5.2 exclude the
preprocessing stages of the three methods.

Clearly, the level-set method is the slowest. This is in agreement with the results shown
in Chapter 4 for the 2D case. Meanwhile, our snake and the active meshes demonstrate
a similar level of performance in terms of speed and accuracy, even though the active-
meshes method takes advantage of the GPU present in the hardware, while our snake and
the level-set method do not.

We can also see from Table 5.2 that the level-set method extracts a merged version of the
two spheres as long as there exists a single pixel that connects them. This is due to the
fact that the level-set method does not have any constraint on the topology and can leak
though holes. On the other hand, the active meshes and our snake succeed in segmenting
the left sphere alone even in the presence of some overlap, being the proposed method
the most robust and the fastest.

5.3.4 Approximation of Shapes

In this section, we move away from numerical simulations, and we investigate the capa-
bilities of our snake when approximating realistic shapes as a function of M1 and M2. We
quantify its accuracy at outlining the wall of a spleen within slices of a 3D CT-scan image
sequence.

The data we used are part of the 3D-IRCADb (3D image reconstruction for comparison of
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Method J [%] Time [s] Segmented shape
d = 80

Spline Snake 3.06 0.93 Left sphere
Level-Set 48.66 2808.00 Merged spheres

Active Meshes 48.91 6.32 Merged spheres
d = 90

Spline Snake 2.61 0.91 Left sphere
Level-Set 49.69 2862.03 Merged spheres

Active Meshes 50.11 6.01 Merged spheres
d = 100

Spline Snake 0.83 0.93 Left sphere
Level-Set 50.00 2889.13 Merged spheres

Active Meshes 2.79 3.96 Left sphere
d = 110

Spline Snake 0.71 0.93 Left sphere
Level-Set 0.25 1412.09 Left sphere

Active Meshes 1.98 4.44 Left sphere

Table 5.2: Accuracy and efficiency of the mentioned segmentation algorithms when seg-
menting overlapping objects.

algorithm database). It includes several sets of medical images of patients and the manual
segmentation of the various structures of interest, performed by clinical experts. 3 For
every patient under analysis, the ground truth is available as a triangular mesh where the
vertex locations correspond to pixel positions. Moreover, the database provides a 3D voxel
mask with the interior of the mesh. In the case of the mask, the volume consists of 166
slices with a spacing between slices of 1.8 mm. Each slice is a (512× 512) image with a
pixel spacing of 0.961 mm.

To approximate the spleen with our snake, we first detect the boundary pixels of the spleen
mask for each slice. Then, for each slice, we fit a spline corresponding to a circle of latitude
of σ. Using this approach we obtain a snake σ aligned in the vertical direction. The north
pole is located at the apex of the spleen, and the south pole is located at its bottom. The
circles of latitude are adapted to the shape of the spleen in the X Y plane. Then, we refine
the final fit with a global 3D optimization led by the edge-based energy (i.e., we set the
tradeoff parameter α= 1), and our internal energy with λ1 = 0.1 and λ2 = 0.01.

In the simulations of Figure 5.9, we investigated the dependence of the Jaccard distance
J on M1 = M2 = M . Our results show that the error decreases quadratically, which
demonstrates the ability of the proposed model to segment objects with an ellipsoid-like
topology. In Figure 5.10, we show the voxelized mask we used as ground truth and the
successive approximations of our snake for different values of M . We see that, for small
values M (such as M = 3), the snake takes an almost ellipsoidal shape and is not capable
of capturing every detail of the spleen structure. As we increase the number of control
points, the snake captures the structure of the organ while providing a smooth surface.

5.3.5 Segmentation of 3D Confocal Microscopic Images

We finally illustrate the behavior of our snake and provide further insights into its capa-
bilities in real-world applications. In this section, the ground truth is missing, so we must

3. http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php
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Figure 5.9: Evolution of the Jaccard distance as a function of M = M1 = M2 when approx-
imating a spleen.

(a) (b) (c)

(d) (e)

Figure 5.10: Approximation of a 3D CT-scan spleen for different values of M = M1 = M2.
(a) Rendering of the spleen. (b) Approximation with M = 3. (c) Approximation with
M = 5. (d) Approximation with M = 7. (e) Approximation with M = 10.
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(a) (b)

(c) (d)

Figure 5.11: Segmentation of a cell in a 3D confocal image of a murine brain (courtesy
of Sabine Scheibe and Sebastian Rhode at TILL Photonics). (a) 3D view of the segmented
brain cell with the full snake mesh overlaid. From (b) to (d): 2D views of different slices of
the dataset at different x3-axis positions. The snake mesh changes color and transparency
depending on the position of the grid points to the displayed slice.

relinquish quantitative assessments in favor of qualitative ones. Here, we initialized our
snake manually using the interaction capabilities of our software.

5.3.5.1 Cell-Body Segmentation We processed a stack (576× 504× 200) of confocal (×60
magnification) images from the brain cortex of a rat, with YFP labeling for the neurons
and GFP for the microglia. 4 The challenge was to segment the body of the neuronal cells,
despite their non-spherical shape, the lack of clear borders, and the presence of several
surrounding objects. We set M1 = M2 = 7, roughly initializing the snake position around
each cell body as a sphere, and ran the optimization process until convergence using ex-
clusively the edge-based energy (i.e., we set the tradeoff parameter α = 1). One example
of the resulting segmentation is shown in Figure 5.11. We observe that the snake was
able to adapt well to the 3D cell shape: the surface is accurately fitted despite the limited
degrees of freedom of the model, while irregularities are properly smoothed out. The op-
timization process took only 0.74 s, which is faster than the duration of the acquisition of
such data (usually, much longer than 1 s).

4. http://www.cellimagelibrary.org/images/27155/
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(a) (b)

(c) (d)

Figure 5.12: Segmentation of an olfactory glomerulus in a 3D confocal image stack
(256× 256× 67) of a mouse brain (image courtesy of Lisa Roux at the Collège de France).
(a) 3D view of the segmented glomeruli with the full snake mesh overlaid. From (b) to (d):
2D views of different slices of the dataset (inverted colors) at different x3-axis positions
(x3 = 10, 17 and 24 µm). The snake mesh changes color and transparency depending on
the position of the grid points to the displayed slice.

5.3.5.2 Segmentation of Glomeruli We investigated the segmentation of olfactory glomeruli
in the mouse brain which represent neuroglial functional units in olfactory information
processing [158]. With Topro staining, glomeruli correspond to the dark areas delimited
by fluorescent cell bodies. In Figure 5.12, they are visualized as bright areas with an
inverted look-up-table. However, the surrounding fluorescent cells do not form continuous
boundaries. This penalizes nonparametric active contours, as the snake may ‘leak out’
between the neighboring cells. By contrast, we show in Figure 5.12 that the proposed
snake method (with M1 = M2 = 7) is able to accurately identify the glomerulus border.
This is a key advantage of the proposed parametric model, as it allows one to exert a
priori control over the regularity and topology of the snake. Here again, the optimization
process was performed using the edge-based energy exclusively (i.e., α= 1). Convergence
was reached after 1.74 s, which is remarkably fast.

94



5.4. Conclusions

5.4 Conclusions

Our contribution in this chapter is a new fully parametric snake with a sphere-like topol-
ogy. It is constructed using the basis functions we investigated in Chapter 3, and it is
therefore capable of reproducing any ellipsoid, irrespective of its position or orientation.
Our snake is characterized by fewer control points than nonparametric snakes and can
approximate any blob-like structure with arbitrary precision. The modification of one
control point affects a limited region of the snake surface, which favors intuitive interac-
tions with the user. Since our shape model is fully characterized by few control points, the
design of customized shapes becomes possible by simple manipulation of these points in
the same way that control points are used in the NURBS meshes typical of computer-aided
industrial designs [55]. Moreover, the control points may be used to perform statistical
learning/analysis of the segmented objects [159].

We designed an edge-based energy that is capable of maintaining the consistency of the
segmentation in the presence of clutter. This is accomplished by penalizing mismatches
in the directions of the image gradients. Furthermore, we combined it with a robust
region-based energy. We were able to accelerate the implementation by taking advantage
of Gauss’ theorem, which was facilitated by the availability of explicit expressions of our
bases. Moreover, we introduced a novel technique to detect self-intersection in order to
know when the snake loses the sphere-like topology. We have applied our snakes to a va-
riety of problems that involve synthetic simulations and challenging real datasets, where
the object contours were not well defined. As a result, various experiments have shown
that the proposed 3D snake can approximate blob-like objects with good accuracy. More-
over, the optimization process is remarkably fast as we have designed our bases to have
the shortest-possible support.

Appendices

5.A Implementation Details

In Section 5.2, we provided the guidelines for an efficient implementation of our energy
functionals. Here, we derive the explicit expressions of our image energies. These expres-
sions are needed when implementing the snake optimization routine. We approximated
the partial derivatives of the energy functionals using centered finite differences. How-
ever, it is possible to obtain analytic close-form expressions following the same strategy as
in Appendix 4.A

5.A.1 Image Energy

As described in Section 5.2.1.1, our image energy is composed of two terms: a contour
(or edge) term and a region term.

5.A.1.1 Contour Image Energy By Gauss’ (or divergence) theorem, our edge energy (5.19) can
also be expressed as the volume integral

Egrad =−
∫∫∫

V

div
�

∇ f
�

dV =−
∫∫∫

V

∆ f dV,

where V is the volume enclosed by S, dV represents the differential of volume, and ∆ f is
the Laplacian of the image f . We express the volume integral of g =−∆ f over the region
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V enclosed by S as

Egrad =
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where g1 is the pre-integrated image along the first dimension. Now, by the explicit
parametric description of σ, we have

∂σ

∂ u
(u, v) = M1

M1−1
∑

k=0

M2+1
∑

l=−1

c[k, l] φ̇1,per(M1 u− k)φ2(M2 v− l) (5.25)
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where ∂σ
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) and ∂σ

∂ v
= ( ∂ x1

∂ v
, ∂ x2

∂ v
, ∂ x3

∂ v
). Finally, we approximate the double

integral (5.24) by a double sum by sampling u and v at a fixed sampling rate. Since the
basis functions and their derivatives are compactly-supported, the number of non-zero
elements in the sum is small. Moreover, we precompute their samples and store them in
lookup tables .

5.A.1.2 Region Image Energy Our region energy (5.20) can be expressed as

Eregion =
1

|V|

 

2

∫∫∫

V

f dV −
∫∫∫

Vsh

f dV

!

,

as long as V ⊂ Vsh. Then, computing the image energy reduces to the evaluation of two
volume integrals over the regions delimited by σ and σsh (i.e., V and Vsh respectively).

We express the volume integral of f over V as�
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where f1 is the pre-integrated image along the first dimension. Analogously, we can ex-
press the surface integral of f over the region Vsh as�
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We obtain an explicit expression for the region energy by combining both results
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Finally, we approximate the double integral by a double sum by sampling u and v at a fixed
sampling rate. Since the basis functions and their derivatives are compactly-supported,
the number of non-zero elements in the sums is small. Moreover, we precompute their
samples and store them in lookup tables .
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Chapter 6

Snake-Based Algorithm for Tracking
Mitotic Cells

Because biological systems are dynamic, it is highly desirable to quantify their evolu-
tion through time in order to improve our understanding of their behavior. Large-scale
time-lapse imaging of cells is nowadays performed routinely thanks to the automatization
achieved in the field of light microscopy. The obtained datasets are such that it is not
possible to analyze them manually within any tolerable amount of time.

Present-day efforts in cell tracking are mostly application-oriented and depend on different
methodological approaches [3, 19, 160]. Among them, two paradigms can be identified:
the Bayesian framework and variational methods. The former involves a probabilistic
reasoning grounded in a motion model [161, 162, 163]. The latter localizes the target
accurately at each frame by optimizing a cost function that depends exclusively on the
current image, often employing a standard minimization algorithm [164, 165, 166, 167].
The most straightforward technique is to link each detected target in one frame with
the closest one in the subsequent frame, where the used distance may include similarity
measures. It has also been proposed to use graph-theoretic approaches. In this case, the
solution is obtained using standard graph optimization algorithms on a weighted graph
composed of the detected targets and all possible correspondences [168, 169].

The variational approach is usually preferred in bioimaging, while the Bayesian framework
is quite popular in the Computer Vision. Nonetheless, several attempts have been made in
the Computer Vision community to take advantage of Bayesian and variational methods
simultaneously. Most of these methods make use of parametric active contours and rely
on kernel density estimators, which incorporate many parameters that can degrade the
overall performance of the algorithm [170, 171]. By using active contours of the geodesic
variety the use of such estimators was avoided in [172]. This resulted in a significantly
slower algorithm than their parametric counterparts due to the high computational load
inherent to geodesic active contours.

In this chapter we make use of the active contours of the previous chapters to design a
segmentation and tracking method that performs large-scale time-lapse analysis of mitotic
cells. The demonstrated efficiency of our active contours allows us to use them as building
blocks in a highly parallelizable image analysis toolkit.

This chapter is organized as follows: In Section 6.1, we present a tracking algorithm
that combines our active contours with the Bayesian tracking framework. As a result we
obtain a parallelizable single cell tracking algorithm capable of handling cell mitosis, and
multiple changing motion cell behaviors. Then, we describe a refinement algorithm in
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Figure 6.1: Belief network representation of a first-order state-space belief network with a
layer of hidden variables. Round nodes denote that the variables are continuously defined,
and shaded nodes indicate that the variable is latent/hidden.

Section 6.2 in order to deal with imaging conditions where the cells are densely packed
and interact with each other.

6.1 Single Mitotic Cell Tracker

Among the Bayesian methods, our interest lies in the particle filter, which performs a
multimodal random search guided by a motion model [173]. The fact that the search
is multimodal is important when modeling uncertainties of association in dividing tar-
gets. In the role of the parametric contours, we can use any of the methods developed in
Chapter 4 or Chapter 5. We embed the snakes in the particle filter in a way that the im-
portance sampling of the particle filter is defined implicitly by the optimization algorithm
of the variational method, and the particle weights correspond to the optimal values of
the energy function of each individual particle. This construction drastically reduces the
number of particles needed to have an accurate description of the target. We make use of
the shape information provided by the snake in order to detect the start and end of the
mitotic stage within a simplified cell cycle, and use different motion models accordingly.

This section is structured as follows: We first recall elements of the particle-filter frame-
work in Section 6.1.1. Then, we describe our algorithm in Section 6.1.2, and illustrate its
capabilities by tracking mitotic HeLa cells and outlying their nuclei in Section 6.1.3.

6.1.1 Particle-Filter Framework

The Bayesian-tracking framework provides a methodology to infer the sequence of hidden
states of a dynamic system x1:t = {x1, . . . ,xt}, using a sequence of noisy measurements
z1:t = {z1, . . . ,zt}. Bayesian estimation is used to recursively compute a time-evolving pos-
terior distribution p(xt |z1:t). This distribution can be estimated by assuming a Markovian
model of the state evolution, D(xt |xt−1), and a likelihood that relates the noisy measure-
ments to the hidden state L(zt |xt).

In the statistical signal processing community, this framework for modeling time-series
data that uses a latent, unobserved variables x t , from which the observations zt are gen-
erated, takes different names: latent Markov models, state-space models or HMMs [174].
We show in Figure 6.1 the corresponding belief network representation of a first-order
Markov model. Each node is associated with a probability function that takes as input
a particular set of values for the node’s parent variables and gives the probability of the
variable represented by the node. The round nodes indicate that the variables are continu-
ous, the shaded nodes indicate latent/hidden variables and the absence of arrows indicate
independence relationships [175].
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Then, the probability density function (pdf) p(xt |z1:t) is estimated in two steps: prediction
of the state and update after the new measurement zt is available.

In the prediction step, the system model and the estimated posterior density from the
previous frame are combined in the Chapman-Kolmogorov equation to obtain the prior
density

p(xt |z1:t−1) =

∫

D(xt |xt−1) p(xt−1|z1:t−1)dxt−1. (6.1)

Next, in the update step, Bayes’ rule is used to modify the prior density and obtain the
desired posterior

p(xt |z1:t)∝ L(zt |xt) p(xt |z1:t−1). (6.2)

The solution of the problem defined by (6.1) and (6.2) is analytically tractable in a lim-
ited number of cases (e.g., linear Gaussian models). For most practical models, sequential
Monte Carlo methods are used as an efficient approximation. In these methods, the pos-
terior p(xt |z1:t) is represented with a set of Ns random weighted samples, usually referred
as particles, {x(i)t , w(i)t }

Ns
i=1 as

p(xt |z1:t)≈
Ns
∑

i=1

w(i)t δ(xt − x(i)t ),

where δ is the Dirac delta and the sum of the weights is normalized to the unity.

In the classical approach, the particles are chosen using the principle of importance sam-
pling. This principle relies on the availability of an importance function q(xt |xt−1,zt) that
describes the state space. The idea is to sample the areas of the state space where the
importance function is large and to avoid generating samples with low weights, since they
provide a negligible contribution to the posterior. Thus, we generate a set of new particles
using the importance function, that is

x(i)t ∼ q(xt |x
(i)
t−1,zt). (6.3)

Generally, the importance function can be chosen arbitrarily. The only requirements are
the possibility to easily draw samples from it, and to have the same support as p(xt |z1:t).
When using the importance density function q(xt |xt−1,zt), the expectation of any function
f (xt) with respect to the probability p(xt |z1:t) can be rewritten as

∫

f (xt) p(xt |z1:t)dxt =

∫

f (xt)
p(xt |z1:t)

q(xt |xt−1,zt)
q(xt |xt−1,zt)dxt ,

where the integration is performed only over the common support of the probability
p(xt |z1:t) and q(xt |xt−1,zt). By drawing Ns samples as in (6.3), the expectation can be
approximated as

∫

f (xt) p(xt |z1:t)dxt ≈
Ns
∑

i=1

f (x(i)t )w
(i)
t , (6.4)

where

w(i)t ∝
p(x(i)t |z1:t)

q(x(i)t |x
(i)
t−1,zt)

,

and
∑Ns

i=1 w(i)t = 1. Thus, the Chapman-Kolmogorov equation can be approximated using
the right hand side of (6.4). Taking advantage of the fact that we have a robust observa-
tion model given by our snakes, we propose to replace the classical importance sampling
function by the optimizer of the variational scheme. This novel approach drives the parti-
cles towards regions in the state space with high probability.
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6.1.2 Variational Importance Sampling

In our setting, the snakes developed in Chapter 4 and Chapter 5 provide an accurate
observation model that can be used to describe the shape of any blob-like cell. In such
circumstances, the state vector x(i)t corresponds to control points of the snake, i.e., x(i)t =
(c(i)[0], . . . ,c(i)[Mi − 1]), and the measurement vector corresponds to the pixel values
zt = {It} of the image within the boundaries of the snake. Note that each particle can
have a different number of control points.

At each frame, we propagate each particle from the previous frame following the state evo-
lution model, which generates the predicted set of particles {x̃(i)t }

Ns
i=1. Since each particle

x̃(i)t is built from a snake, it can be associated with an energy value E(i)snake(c
(i)) measuring

the goodness of fit of the snake to the target being tracked. We optimize the energy value
of the predicted set of particles following the gradient-based optimizer of the snake. This
defines the optimized set of particles {x(i)t,opt}

Ns
i=1 with an optimized set of snake energies

{E(i)snake(c
(i)
opt)}

Ns
i=1. Following the principle of maximum entropy, we assume that Esnake(c) is

a random variable with exponential distribution, which leads to assign the particle weights
w(i)t to

w(i)t ∝ e−λ E(i)snake(c
(i)),

where λ is a parameter that controls the sharpness of p(xt |z1:t).

Using the proposed scheme, the importance sampling of the particle filter, usually per-
formed by (6.3), is given implicitly by the optimization algorithm used in the variational
method. This interpretation arises naturally since the role of the optimizer is to attract
the snakes, and therefore the particles, to the target under inspection. As a consequence,
the weights of the particles within the region of convergence of the optimizer will gain
importance compared to the ones that are not. Therefore, a much smaller set of particles
is necessary to describe the high-probability regions of the state space.

Finally, we perform a resampling step to eliminate particles that have small weights and to
focus on particles with large weights. The resampling step involves generating a new set
by sampling (with replacement) Ns times from {x(i)t,opt}

Ns
i=1, which leads to the equiprobable

set of particles {x(i)t , 1
Ns
}Ns

i=1. The estimation at each frame of the location and shape of the
target being tracked at each frame can be carried out efficiently with the MAP estimator
as follows:

x̂t = arg max
xt

{p(xt |z1:t)} ≈ argmax
i
{w(i)t }.

Thus, the maximum a posteriori (MAP) estimation of the target corresponds to the opti-
mized particle with highest weight. All these operations are summarized in Algorithm 1.

6.1.3 Application to Time-Lapse Microscopy

In this section, we use our snake-based particle filter to construct the lineage of migrating
HeLa cells, and outline their nuclei. We used the 2D spline-based snake from Chapter 4
with M = 3 and region energy only.

6.1.3.1 Biphasic Motion Model The HMM is a classical signal processing model that is not capa-
ble of handling the different behavior that the cells exhibit during the cell division process.
A more complex model is the switching linear dynamical systems (SLDS) which breaks the
time series into segments, each modeled by a potentially different motion model. We show
in the associated belief network in Figure 6.2.
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Algorithm 1: Snake-based particle filter

input: Particle set {x(i)t−1}
Ns
i=1 and current image It

output: MAP estimation x̂t and particle set {x(i)t }
Ns
i=1

for i← 1 to Ns do
x̃(i)t ← Propagate x(i)t−1 with the motion model;

{x(i)t,opt, E(i)snake(c
(i)
opt)} ← Adjust the snake to It ;

w(i)t ← e−λ E(i)snake(c
( i)opt);

end
for i← 1 to Ns do

w(i)t ← w(i)t /
∑

j w( j)t ;
end

x̂t ← arg maxi{w
(i)
t }

{x(i)t }
Ns
i=1←Resampling({x(i)t,opt, w(i)t }

Ns
i=1);

Figure 6.2: Belief network representation of the SLDS. Square nodes denote discrete
switch variables st ; x t are continuous latent/hidden variables and zt continuous ob-
served/visible variables. The discrete state st determines which linear dynamical systems
(LDS) is operational at time t.

For our particular application, two different motion models are considered depending on
the state of the cell cycle. Both models are considered to be linear, with

x̃t = xt−1 + nt(st), (6.5)

where nt is a random vector that depends on the state of the cell st at time t. The two
cell states are:

– Non-mitotic, where the nuclei are essentially circular, and move and deform without
any preferred direction, as shown in Figure 6.3a and Figure 6.3b;

– Mitotic, where nuclei are more elongated and brighter than in the non-mitotic state,
and where the movement during the splitting is fast and perpendicular to the main
axis of the cell, as shown in Figure 6.3c and Figure 6.3d.

For the non-mitotic stage, the natural choice in (6.5) is to assume Gaussianity and inde-
pendence for each component of nt . For the mitotic stage, we adopt a purely translational
model perpendicular to the main orientation axis. A cell is considered to enter in the
mitotic state if its MAP estimation is brighter and more eccentric than a certain threshold
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(a) (b) (c) (d)

Figure 6.3: Migrating HeLa cell nuclei: (a) non-mitotic state at time (t − 1), (b) non-
mitotic state at time t, (c) mitotic state at time (t − 1), (d) mitotic state at time t.

(a) (b) (c) (d)

Figure 6.4: Different steps of Algorithm 1 with non-mitotic motion model. (a) Initial.
(b) Propagated. (c) Optimized. (d) Resampled.

values. At that point, the motion model switches to the mitotic one, and eventually re-
turns to the non-mitotic one once the values of the brightness and eccentricity get below
the thresholds.

6.1.3.2 Experimental Results To illustrate our method, we applied our algorithm to a time-
lapse sequence of images of HeLa nuclei expressing fluorescent core histone 2B on an
RNAi live cell array. 1 We focused on building the cell lineage of a single cell. We only
used a total of 20 particles. The thresholds, λ, and the standard deviations for nt were
chosen empirically.

In Figure 6.4, we show the behavior of Algorithm 1 when a non-mitotic motion model
is used. In particular, we observe in Figure 6.4a the outlines of the snakes representing
the particles from the previous frame. These particles are propagated following the non-
mitotic motion model to the locations shown in Figure 6.4b. After optimizing the snakes,
we obtained the particles shown in Figure 6.4c, and, finally, after the resampling, the
particles in Figure 6.4d. Note that, after the optimization, one snake converged to a local
minima, but its weight was negligible compared to the others. Therefore, it was eliminated
in the resampling step. In Figure 6.5, we show the behavior of Algorithm 1 when a
mitotic motion model is used and when the cell division occurs. In particular, we observe
in Figure 6.5a the outlines of the snakes representing the particles from the previous
frame located at the same position. These particles are propagated following the mitotic
motion model to the locations shown in Figure 6.5b. After running the snake optimizer
we obtained the particles shown in Figure 6.5c, and after the resampling we obtained the
particles shown in Figure 6.5d. Note that, after the optimization, some snakes converged
to different targets, and this information was preserved in the resampling step.

We show in Figure 6.6 and Figure 6.7 the temporal evolution of the mean brightness inten-

1. Courtesy of D. Gerlich, Institute of Biochemistry, ETHZ, Zürich.
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(a) (b) (c) (d)

Figure 6.5: Different steps of Algorithm 1 with mitotic motion model. (a) Initial. (b) Prop-
agated. (c) Optimized. (d) Resampled.

sity and the eccentricity of a single nucleus respectively. We can observe a simultaneous
peak in both graphs between frames 180 and 188, which corresponds to the mitotic stage
of the cell.

The use of our biphasic motion model would not have been possible if we had not used the
optimized snake to obtain an accurate estimation of the orientation of the cell during the
mitotic stage with a reasonable number of particles. Moreover, due to the capability of the
particle filter to describe multimodal distributions, our algorithm is capable of building
the cell lineage, which the snake could not have achieved on its own.

The computation time is usually directly related to the number of particles used in the
particle filter. Since our variational importance sampling provides a better description
of the high-probability regions of p(xt |z1:t), a reduced number of particles is necessary.
Moreover, the optimization of each snake during the variational importance sampling
stage can be carried out independently, which makes the algorithm fully parallelizable.

6.2 High-Throughput Multi-Target Tracker

The simplicity of tracking one cell is lost when tracking a whole population of densely
packed cells. Joint optimization tracking techniques provide good results in such cases,
but the computational complexity increases dramatically [161, 176]. This is partly due to
the fact that the cells all interact with each other, and no independence relations in the
probability model can be easily established. Therefore, the joint probability space of all
targets must be used for tracking every single cell within the whole population.

Here, we consider high-density crowd scenes. It has been observed, in the context of
human crowd tracking, that the locomotive behavior of an individual in a crowded scene
is a function of collective patterns evolving from the space-time interactions of individuals
among themselves [177].

In this section, we present a fast algorithm which is specialized for tracking biological
cells within crowds. It relies on graph-theoretic techniques to minimize a cost functional
that models the characteristic motion in highly packed scenes and imposes a certain level
of coherence in the displacement field while being capable of handling large movements
(i.e., coarse temporal resolution). The output of this algorithm can be easily incorporated
as a base displacement field in a motion model for the tracker introduced in Section 6.1.

6.2.1 Notation

We denote Mk = {mk
j } j=1...Nk

the set of measurements mk
j = (x

k
j , s

k
j ) at frame k, where each

measurement contains information about the position xk
j and features sk

j of each target.
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Figure 6.6: Mean intensity within the elliptical MAP estimation. Three stages can be
clearly differentiated. The first one prior to frame 180 in which the cell is not in mitotic
stage. The second one occurs between Frame 180 and 188 in which the cell becomes
brighter and undergoes mitosis.Finally, the third one in which the cell returns to a non-
mitotic stage.
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Figure 6.7: Eccentricity of the elliptical fit of the MAP estimation. Three stages can be
clearly differentiated. The first one prior to frame 180 in which the cell is not in mitotic
stage. The second one occurs between Frame 180 and 188 in which the cell becomes
more elongated and undergoes mitosis.Finally, the third one in which the cell returns to a
non-mitotic stage.
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(a) (b) (c)

Figure 6.8: Bipartite graph representation of the sets Mk−1 (left side), Mk (right side) with
(a) all possible correspondences given by Ω, (b) the most likely correspondences given by
G, and (c) a possible pairing Ak.

In our snake framework, the features sk
j contain, but are not limited to, shape descriptors

from the snake control points. Analogously, we define the set of positions and features at
a given frame by Xk = {xk

j } j=1...Nk
and Sk = {sk

j } j=1...Nk
.

We are interested in finding the best pairing between two consecutive frames given the
measurements in these frames. Formally, a pairing is as a subset

Ak ⊂ Ω = {1 . . . Nk−1} × {1 . . . Nk},

where (i, j) ∈ Ak indicates that the measurement mk−1
i in frame (k−1) corresponds to the

measurement mk
j in frame k. We restrict the admissible solution by disallowing multiple

assignments to the same measurement. Given (i, j), (l, n) ∈ Ak, then mk−1
i = mk−1

l if and
only if mk

j = mk
n (see Figure 6.8). Note that the cell-tracking problem is equivalent to

finding the corresponding Ak at each transition interval.

6.2.2 Probabilistic Graph Formulation

We consider the measurement sets as random variables. This implies that we are also
looking for a pairing which is a random element within the space of all possible pairings.
We are interested in finding a pairing that maximizes its conditional probability given the
known information, that is, the measurements

Ak
opt = argmax

Ak⊂Ω
{P(Ak|Mk−1, Mk)}, (6.6)

where P(Ak|Mk−1, Mk) is the probability associated to the pairing Ak conditioned to the
sets of measurements Mk−1 and Mk.

Using an approach similar to the one in the Bayesian filtering framework, and assuming
mutual independence between the positions and the features, we restate the maximization
criteria (6.6) as

Ak
opt = arg max

Ak⊂Ω
{P(Ak) P(Xk|Xk−1, Ak) P(Sk|Sk−1, Ak)}, (6.7)

where P(Ak) is the marginal probability of Ak, and reflects our prior knowledge about
the preferred pairings, P(Xk|Xk−1, Ak) corresponds to a measure of likelihood of the posi-
tions given that we know the position in the previous frame through the pairing Ak, and
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P(Sk|Sk−1, Ak) corresponds to a measure of how likely the feature values are given the
knowledge of the feature values in the previous frame through the pairing Ak.

Using the maximum-entropy principle, we finally model the probabilities as

P(Xk|Xk−1, Ak)∝ e−
∑

v∈Ak µX (v,Xk−1,Xk ,Ak)

P(Sk|Sk−1, Ak)∝ e−
∑

v∈Ak µS(v,Sk−1,Sk ,Ak),

where µX is a compatibility measure of the joint movement and µS is a feature compati-
bility measure.

6.2.3 Efficient Graph-Based Algorithm

We now cast the problem of finding the best pairing Ak
opt in (6.7) as a global graph-

optimization problem. First of all, we consider the complete bipartite graph whose nodes
represent the measurement sets Mk−1 and Mk, and whose edges are represented by Ω.
Our goal is to select a subgraph such that the sum of the weights wi j of the edges is
maximized subject to the restriction that all vertices in this graph have a degree less or
equal to one, so that each target detection from set Mk−1 is assigned to at most one target
detection on Mk and vice versa. This set of edges receives the name of matching [178].
It exactly corresponds to the pairing Ak if we appropriately choose the edge weights wi j .
Despite the fact that we are maximizing a criterion based on graph edges, we are not bi-
asing the solution toward high connectivity, as is usually the case for non-weighted graph
matchings [179, 180].

This graph-optimization problem corresponds to a known problem in graph theory called
maximum weighted bipartite graph matching [179, 180], which can easily be expressed in
the context of binary linear programming (BLP). In this framework, the objective func-
tional to maximize is

Nk−1
∑

i=1

Nk
∑

j=1

wi j χi j (6.8)

subject to
∑Nk−1

i=1 χi j ≤ 1,
∑Nk

j=1χi j ≤ 1, and χi j ∈ {0,1}.

The solution to the BLP would be either χi j = 0 or χi j = 1, where χi j = 0 denotes
(i, j) /∈ Ak and χi j = 1 denotes (i, j) ∈ Ak.

In our case, we know beforehand that many pairings between measurements of Mk−1 and
Mk are unlikely. These incompatibilities are usually known when designing the experi-
mental setup (e.g., a cell will not be able to move more than a certain distance, the shape
of a target cannot change through time).

In our formulation, the probability of any matching that includes one of these unlikely
edges is set to P(Ak) = 0. Therefore, the solution has to be found in a sparse-graph G (see
Figure 6.8b), where the edges only connect possible correspondences (i.e., measurements
located within a certain region). For all possible matchings within this sparse graph, we
can chose a non-zero value for P(Ak) such that the solution of (6.7) corresponds to the
solution in (6.8) with

wi j =−µS((i, j), Sk−1, Sk, Ak)−λµX ((i, j), Xk−1, Xk, Ak),

where λ is a positive tradeoff parameter between the compatibility measure of the joint
movement and the feature compatibility measure. For λ = 0 the solution of the pairing is
totally based on target features, and for high values of λ, the solution is dominated by the
joint movement criteria. Note that the compatibility measure of the joint movement acts
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as a regularization term; that is, modifies the optimal solution of the problem given our
prior knowledge of the flow behavior. Therefore, the compatibility measure of the joint
movement cannot act independently and should always work together with the feature
compatibility measure.

Note that it is necessary to have a pairing Ak to compute the edge weights wi j . This is
resolved by the following iterative algorithm:

Algorithm 2: Iterative multi-target tracker

Initialization of G, Ak;
repeat
µS ,µX ← Ak (update compatibility measures);
wi j ← µS ,µX (update edge weights);
Ak ←Maximum Weighted Graph Matching

�

G, wi j

�

;
until convergence;
return Ak

The most costly part of the algorithm corresponds to the execution of the Maximum
Weighted Graph Matching function. Some graph algorithms can perform this function
in O (N E + N2 log(N)) steps, where N = Nk−1 + Nk, and E is the number of edges, or
equivalently, the number of possible correspondences.

Note the parallelism with the widely used Expectation-Maximization algorithm. The edge-
weight update plays the role of the Expectation step, and the graph-optimization step is
the counterpart of the Maximization step.

6.2.4 Motion Model

Blocks of cells often tend to move together in heavy populated environments, so that
the cells preserve a certain spatio-temporal continuity in their movement. We model this
behavior using a displacement model in the compatibility measure of the joint movement
µX , as follows:

µX ((i, j), Xk−1, Xk, Ak) =
1

N k−1
i

∑

xk−1
l ∈N k−1

i

‖ (A (xk−1
l )− xk−1

l )
︸ ︷︷ ︸

neighbor l displacement

− (xk
j − xk−1

i )
︸ ︷︷ ︸

i→ j displacement

‖, (6.9)

where N k−1
i is the non-empty set of neighbors of the detected cell at xk−1

i , and where A
is a mapping induced by Ak that satisfiesA (xk−1

i ) = xk
j whenever (i, j) ∈ Ak.

The regularization term µX measures the average relative displacement of the neighboring
targets given a pairing Ak. As shown in Figure 6.9, the minimization of (6.9) imposes that
neighboring target detections go to neighboring target detections. This term becomes
crucial when all targets look alike, which is the case when imaging living cells.

6.2.5 Application to Time-Lapse Microscopy

In order to validate the efficacy of the method in tracking individual cells in large crowds,
the algorithm was applied to a sequence of images obtained from yeast cell populations.

S. cerevisiae strains (ATCC 201388) were grown within a microfluidic chamber in YPD
medium at 30◦C. Monolayer-grown cell crowds were imaged with a Nikon Ti-E microscope
(Nikon instruments inc., Melville, U.S.A.), a 60× objective (plan apo, 1.4 oil), and a 1.5×
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Figure 6.9: Schematic representation of the optimal configuration when pairing a set of
neighboring targets from frame (k − 1) (left) to frame k (right) using the compatibility
measure µX favouring joint displacements. Given an initial pairing Ak mapping the shaded
targets, the optimal configuration is reached when xk−1

i is paired to xk
j .

scope, resulting in a total 90× magnification. An iXonEM camera (Andor technology plc.,
Belfast, U.K.) controlled by a VB6 based software was used to acquire 14-bit images of
(1024× 1024) pixel with an exposure time of 50ms, an analogical gain of 2.4, and an EM
gain of 2.

We used a watershed transform to split the image domain in non-overlapping regions
and serve to us an automatic initialization for our active contours. This segmentation
provides us with several important parameters for the construction of our graph G. In
particular we identify the centroid of each watershed region as the position xk−1

i , and the
grayscale values within a bounding box covering the watershed region as the features sk−1

i .
The watershed segmentation also gives information about neighboring regions: regions
that share dams with other regions are considered neighbors. We use this information to
determine the non-empty sets of neighbors in (6.9). For the watershed region detector
to succeed, we need dense areas of targets within crowds. Otherwise, some heuristic
methods can be applied to eliminate regions that do not represent cells.

We define the similarity criteria µS between two targets as the mean-squared error of the
grayscale values between the two corresponding cell shapes. In order to avoid misalign-
ments of the images when computing the MSE, we used the Three-Step Search (TSS)
block-matching algorithm [181]. Some typical results are presented in Figure 6.10. In
the simulations presented in this section we used an initial matching Ak based on features
only (i.e., we run the Maximum Weighted Graph Matching function once with λ= 0).

To illustrate the adequacy of our motion model, we compared in Figure 6.11 the use of
µS alone to the joint use of µS and µX . In this setup, all targets look very similar, and the
µS measure is not able to discriminate well between all possible pairings. Introducing µX
notably improves the solution even after one single iteration.

For the purpose of assessing tracking performances, we manually identified cell trajecto-
ries within an area of interest with an average population of 120 yeast cells over a span
of 50 frames. We quantified the quality of the pairing process by computing the rate of
successful connections made by the algorithm over the total number of connections in
each frame. We summarize the results obtained by our method in Table 6.1.
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Figure 6.10: Flow-like behavior of the constrained movement of a crowd of cells. The red
lines point towards the position in the subsequent frame.

λ Max. rate [%] Min. rate [%] Average rate [%]
0 100.0 67.0 95.5

50 100.0 72.0 97.6
100 100.0 90.0 98.6

Table 6.1: Success rate when tracking yeast cells.

(a) (b)

Figure 6.11: Pairing between two consecutive frames. The red lines point towards the
location of the corresponding region in the subsequent frame. (a) Pairing obtained us-
ing only on the similarity measure µS (λ = 0). (b) Pairing obtained using a weighted
combination of both measures after one iteration using (a) as initial matching (λ= 100).

The similarity measure µS is sufficient for obtaining a correct pairing when cell movements
are small (i.e., past and present positions overlap). However, when pressure inside the
device exceeds a critical level, cells tend to displace in clusters pushing the neighboring
ones. This situation cannot be appropriately handled by using µS alone, and tracking is
then improved with the introduction of µX . The appropriate choice of λ strongly depends
on the behavior of the motion vector field and should be further investigated.
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6.3 Conclusions

In the first part of this chapter, we have proposed a new methodology that fuses in a single
tracker the two major tracking philosophies and that retains the advantages of both. We
showed that, by using a robust variational method, it is possible to replace the importance
sampling function of the particle filter and obtain an alternative scheme. The resulting
algorithm is capable of creating an accurate segmentation of elliptic targets with a reduced
number of particles, and capable of detecting and tracking cells undergoing mitosis.

In the second part of the chapter, we have presented a new algorithm for multi-cell track-
ing in crowded areas. It is fast and easy to implement. It runs in real time and is able
to deal with thousands of cells. We have specifically designed model-based cost functions
that take account of multiple cell interactions. The parameter λ of the algorithm needs
to be chosen so as to strike a balance between the frequently conflicting goals of having
flow-like trajectories and enforcing the similarity of individual cells across frames.
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Chapter 7

Conclusion

In this chapter, we first recap all the technical contributions presented in this thesis. Then,
we briefly show some life-sciences research projects in which our tools have been incorpo-
rated within larger image analysis pipelines. Finally, we comment on the future research
possibilities.

7.1 Technical Contributions

Our schemes are centered on shape models that ease feature extraction of blob-like shapes.
We have optimized the computational efficiency and have provided a quantitative and
qualitative assessment of our methods. The main technical contributions of this thesis
grouped by topic are as follows:

Contributions in the fields of approximation and spline theory.

– We fully characterized a new family of basis functions with shortest support that allows
one to reproduce exponential polynomials.

– We provided nonstationary multiresolution algorithms and subdivision schemes based
on these functions.

– We characterized the order of approximation of such nonstationary multiresolution
schemes.

– We used these minimum-supported basis functions to design spline curve models that
reproduce ellipses and higher-order harmonics. In particular, we tailored these bases
to obtain maximal-smoothness basis functions, and interpolatory basis functions.

Contributions in the field of 2D image segmentation.

– We used the minimum-supported bases that reproduce ellipses to construct parametric
active contours. These models can be characterized exactly by as few as three control
points, but they can reproduce any planar closed curve, with arbitrary precision, by
adding a sufficient number of nodes.

– We also provided closed expressions to compute the best elliptical approximation, in a
least-squares sense, of a contour described by an arbitrary number of control points.

– We applied our snakes to a variety of problems that involve synthetic simulations and
real data.

– Our active contours are general, and compatible with any traditional energy func-
tional. To exemplify our method, we designed a combination of contour and region-
based energies. The former uses the gradient direction in order to impose consistency
constraints during the segmentation process. This has proved to be very useful when
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segmenting or tracking cells in crowded environments. In the second case, the energy
depends on the contrast between two regions, one being delineated by the curve itself,
and the other by an ellipse of double area.

– We accelerated the implementation of our snakes by taking advantage of Green’s the-
orem. This was possible thanks to the availability of explicit expressions for the basis
functions.

Contributions in the field of 3D image segmentation.

– We extended our planar parametric snake to a fully 3D spline-based parametric snake
with a sphere-like topology. Our snake can approximate any blob-like structure with
arbitrary precision. Thanks to the underlying B-spline representation, the modification
of one control point affects a limited region of the snake surface, which results in
intuitive interactions with the user. This is made possible by a parameterization based
on splines.

– We have applied our snakes to a variety of problems that involve synthetic simulations
and challenging real datasets, where the object contours were not well defined.

– We designed an edge-based energy that is capable of maintaining the consistency of the
segmentation in the presence of clutter. This is accomplished by penalizing mismatches
in the directions of the image gradients. Furthermore, we combined it with a robust
region-based energy.

– We accelerated the implementation of our snakes by taking advantage of Gauss’ the-
orem in 3D. Again, this was possible thanks to the availability of explicit B-spline
expressions.

– We introduced a novel technique to detect self-intersection in order to know when
our 3D snake loses the sphere-like topology based on the computation of the Euler
characteristic.

Contributions in the field of spatio-temporal object tracking.

– We have designed a new methodology that combines in a single algorithm the two
major tracking philosophies and that retains the advantages of both using our snakes
as building blocks. We were able to handle object division and track a large number of
cells in crowded environments.

7.2 Contributions to Research Projects in Life Sciences

The design of the segmentation and tracking algorithms presented in this thesis was ini-
tially motivated for the analysis of blob-like biological objects. However, our algorithms
are general enough to be applicable in a wider range of situations. Now, we show some
research projects in life sciences where our tools have been incorporated within larger
analysis pipelines. Some of the projects required particular customizations to the charac-
teristics of each problem (e.g., specific energy functionals for the snakes). These modifica-
tions are just briefly described in order not to overload this thesis, and they will result in
future joint publications.

7.2.1 The DynamiX Project

As it was mentioned in the introduction, the design of algorithms in this thesis had been
motivated by the DynamiX Project (see Section 1.3 for a detailed description).

The microfluidic live cell imaging platform designed in the project can generate a large
quantity of images in a short time. For example, an experiment with 1152 strains, running
for 12 hours, generates more than 40000 images, grouped in 1152 time-lapse sequences
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of 36 frames [182]. Single cell analysis is not possible under such conditions within any
reasonable amount of time. Thus, an efficient fully automated image analysis scheme is
required. To respond to the specific needs of the datasets of the project, we implemented
the custom image analysis pipeline shown in Figure 7.1.
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Figure 7.1: Schematic of the image analysis pipeline in the DynamiX project for computing
single-cell protein abundance and protein localization.

In order to minimize the acquisition mechanism, two distinct cell chambers were imaged
at the same time. The drift in the position of the chambers and the separation of the two
chambers was performed in a preprocessing step. Then, the active contours described
in Chapter 4 were used to obtain an accurate representation of the boundaries of the
cells. This was performed in a multiresolution fashion: first an elliptic fit was performed,
and then a refinement was obtained by increasing the number of control parameters of the
model. The ellipse-reproducing property and the inherent properties of the basis functions
designed in Chapter 3 were crucial in order to perform the refinement efficiently. At the
next step of the analysis, the segmented objects were filtered based on several shape
descriptors in order to remove dead cells and segmentation errors (i.e., size, circularity,
snake energy). Then, the filtered set of cell boundaries were used for statistical single cell
analysis and feature extraction. In particular, the protein abundance and localization were
computed based on the amount and spatial distribution of the fluorescence. Finally, a few
sequences were manually annotated in order to provide a cross validation set of features
for the automatic algorithm.

This analysis pipeline can record protein abundance and noise, cell size and protein local-
ization of the 40000 images (12 hours experiment) in less than a day.

7.2.2 The WingX Project

The WingX project is also part of the SystemsX.ch consortium. The aim of this project
is to quantify the genetic program that governs the growth and shape of the wing of the
Drosophila fly. This organ is a model uniquely suited for a systems biology study.

Advances in developmental genetics provide us today with the toolkit of organogenesis
(e.g., morphogens, transcription factors). This toolkit will be used to build the Drosophila
wing, in a reproducible fashion, determining the size and form. For that purpose, an in-
teraction between the computational and the experimental stages of the project is crucial.

The goal is to provide a quantitative description of wing development at a multiscale
systems level as determined by the interaction of processes at the molecular, cellular, and

113



7. CONCLUSION

tissue level.

We embedded the active contours exposed in Chapter 4 within an image analysis tool
specifically developed to automatically quantify morphological properties of the wing and
gene expression information on fluorescent confocal images. The parametric model of the
snakes provides a convenient way to describe the structural properties of the wing and
offers the final user an intuitive mechanism to edit the segmentation through manipulation
of the control points of the snake (see Figure 7.2). Here, the snake model presented in
Chapter 4 was modified by adding an internal cross-like structure to better fit the anatomy.

Evaluating the effect of a single mutation on the gene expression requires to analyze
around 30 wings in order to obtain statistically meaningful results. We note that there
are thousands of genes expressed in a biological system like the Drosophila fly. So far,
hundreds of wings have been analyzed.

Figure 7.2: Segmentation of the wing pouch structure of the Drosophila fly using fluores-
cent confocal images of the gene expression Wg-Ptc-AB. The snake contour is shown as a
smooth curve, while the ’+’ elements are the spline control points connected by a control
polygon.

7.2.3 Drosophila Fly Locomotion Study

The aim of this project is to understand how voluntary locomotion is orchestrated by
the brain. Addressing this fundamental question requires studying voluntary motion in
an animal that can be experimentally manipulated to generate and test hypotheses. In
the project, the Drosophila fly is used as a model due to its relatively simple nervous
system and complex locomotor behaviour. It is possible to activate, inhibit, and kill specific
neurons of interest in the fly to dissect their role in locomotor neural circuits. Furthermore,
one can sequence and manipulate the entire genome of the fly to see what role genes play
in behavior.

In order to study locomotion in Drosophila, one must be able to quantify their walking
behaviors with high precision. This allows to measure the effects of experimental per-
turbations such as neuron activation or knockdown as well as genetic manipulations on
walking. Such experiments allow to test models of how the fly can produce complicated
and robust locomotor sequences (e.g., traversing cluttered environments, escaping from
traps).
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Currently the state-of-the-art for Drosophila behavioral image processing is Ctrax (The
Caltech Multiple Walking Fly Tracker), which can only determine the position and orien-
tation of the body. We incorporated the active contours exposed in Chapter 4 within a new
image analysis tool specifically developed for automatically segmenting and tracking the
bodies of the Drosophila flies as well as their legs. The mechanism of modifying the snake
curve through the manipulation of control points was a key feature to design prior shapes
adapted to the flies (see Figure 7.3). Our tracking algorithms exposed in Chapter 6 are
also being introduced in order to consider several motion models.

(a) (b)

Figure 7.3: (a) Prior-shape model of the body of the Drosophila fly. (b) Segmentation of
the body of the Drosophila fly. The snake contours are shown as smooth curves, while the
’+’ elements are the spline control points connected by a control polygon.

7.2.4 Estimation of Local Aortic Elastic Properties with MRI

The aim of this project was to use a non-invasive technique to measure elasticity prop-
erties of the aorta. More precisely, the parameters of interest were the the Pulse Wave
Velocity (PWV) and the aortic compliance. These parameters are considered as important
determiners of heart load and clinically useful indices of cardiovascular risk.

For that purpose, we used 3D time-lapse sequences of flow-sensitive magnetic resonance
imaging (MRI). In these sequences we obtain two different kind of measurements: the
magnitude and the phase. The former provided us anatomical information that can be
used to segment the aorta, and the latter provided us information concerning the blood
flow through the imaged cross-section (see Figure 7.4).

We used the active contours exposed in Chapter 4 to segment and track a cross-section
of the aorta. The ellipse-reproducing property of our snakes showed to be very useful for
reducing the number of parameters involved in the model, increasing the performance of
the segmentation and the tracking.

7.2.5 Assessment of Chromosomal Size Variation in CHO Cells

The aim of this project was to analyze metaphase chromosome length in Chinese hamster
ovary (CHO) cells. CHO cells are widely used for the production of recombinant proteins.
Currently, the pharmaceutical industry relies on stable CHO cell clones for therapeutic
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(a) (b)

Figure 7.4: Segmentation of the cross-section of the aorta in a flow-sensitive MRI. (a) Mag-
nitude image with the contour of the snake overlying the ascending aorta. (b) Phase image
with the contour of the snake overlying the ascending aorta.

protein production. Most of the currently used methods to analyze clonality and stability
in recombinant cell lines only take into consideration the cellular phenotype. However,
few methods are available to study clonality and genomic stability in recombinant cell
populations.

We customized the active contours exposed in Chapter 4 within an image analysis tool
to segment the chromosomes, sort them according to size, and extract different length
patterns. Again, the mechanism of modifying the snake curve through the manipulation
of control points was a key feature to provide biologists with an user-friendly and agile
platform to work with. Moreover, the explicit expression of our active contours made pos-
sible to introduce prior-shapes and enforce topology. This is necessary when interaction
of chromosomes occur (e.g., chromosomes touching or even laying on top of each other).

The method was applied to parental and recombinant CHO cells. Metaphase chromo-
some spreads were prepared from growth-arrested cells and visualized with a confocal
microscope after fluorescence staining. In studies of seven different CHO cell lines (20
metaphase spreads for each cell line), it was noticed that the average chromosome num-
ber was not homogenous and each cell line had a specific chromosomal length pattern.
This pattern can be used to identify the CHO cell lines and to assess the degree of homo-
or heterogeneity in clonal populations [183].

7.3 Outlook for Future Research

The research presented here opens several interesting avenues for future investigations.
Some of them are listed below.

– Interpolatory basis functions: The family of minimum-support basis functions intro-
duced in Chapter 3 focuses on computational efficiency and reproduction properties,
while leaving the interpolation property aside. This is not an issue when dealing with
2D curves due to the usage of control polygons. However, the interaction feels less
natural for the 3D snakes. We would like to investigate the set of interpolatory and C k

smooth basis functions with certain reproduction properties while maintaining a short
support.

– Snakes with singularities: We can find in nature cells that are mostly smooth, but
present some sharp kinks. This can be handled in our current model by stacking several
control points at the place where kink is located. We would like to investigate how the
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multiplicity of control points affects the convergence of the optimization algorithm,
and how this can be handled efficiently.

– Prior shapes and atlases: In regular biomedical segmentation problems, the shape of
the target to segment is usually known up to some extend. We would like to provide
a library with several shapes that our snake can use as reference models. The natural
way to use the reference model would be by the introduction of an energy function
that penalizes deformations from the reference shapes.

– Extend the supported snake topologies: We have limited ourselves to blob-like objects
in this thesis. Therefore, the 2D snake curves presented in Chapter 4 are closed curves,
and the 3D snake surfaces presented in Chapter 5 exhibit a sphere-like topology. We
would like to account for other kind of topological properties such as open curves in
2D, or tori in 3D.

– Usage of GPUs: With the recent explosion of computation power provided by GPUs,
we think it would be interesting to move part of the computation load to these kind of
devices. Specially the part related to the user display.

– Application of the snakes to more projects in life-sciences: Our active contours have
shown a remarkable capability to adapt to many different biomedical structures: en-
docardial heart walls, aorta cross sections, HeLa cell nuclei, water droplets, spleens,
murine brain cells, olfactory glomerulus, yeast cells, and Drosophila wings and bodies.
We believe that our active contours can be still used in many more applications by
designing customized the energy functions.

– Moving on from on-line tracking: The current tracking algorithms used in bioimag-
ing and computer vision are based in earlier algorithms from the radar community,
where targets are tracked in real-time. This had led to the bioimaging community to
believe that real-time on-line tracking is the only possibility. However, in biology, the
acquisition and analysis stages take place in different moments in time. Therefore, all
the time-lapse sequences of images are usually available at the time of the analysis.
We would like to investigate the implications of using the whole time-lapse sequence
during the tracking.
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