244 research outputs found

    Asymptotically Efficient Quasi-Newton Type Identification with Quantized Observations Under Bounded Persistent Excitations

    Full text link
    This paper is concerned with the optimal identification problem of dynamical systems in which only quantized output observations are available under the assumption of fixed thresholds and bounded persistent excitations. Based on a time-varying projection, a weighted Quasi-Newton type projection (WQNP) algorithm is proposed. With some mild conditions on the weight coefficients, the algorithm is proved to be mean square and almost surely convergent, and the convergence rate can be the reciprocal of the number of observations, which is the same order as the optimal estimate under accurate measurements. Furthermore, inspired by the structure of the Cramer-Rao lower bound, an information-based identification (IBID) algorithm is constructed with adaptive design about weight coefficients of the WQNP algorithm, where the weight coefficients are related to the parameter estimates which leads to the essential difficulty of algorithm analysis. Beyond the convergence properties, this paper demonstrates that the IBID algorithm tends asymptotically to the Cramer-Rao lower bound, and hence is asymptotically efficient. Numerical examples are simulated to show the effectiveness of the information-based identification algorithm.Comment: 16 pages, 3 figures, submitted to Automatic

    A new kernel-based approach to system identification with quantized output data

    Full text link
    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo methods to provide an estimate of the system. In particular, we design two methods based on the so-called Gibbs sampler that allow also to estimate the kernel hyperparameters by marginal likelihood maximization via the expectation-maximization method. Numerical simulations show the effectiveness of the proposed scheme, as compared to the state-of-the-art kernel-based methods when these are employed in system identification with quantized data.Comment: 10 pages, 4 figure

    Fixed-order FIR approximation of linear systems from quantized input and output data

    Get PDF
    Abstract The problem of identifying a fixed-order FIR approximation of linear systems with unknown structure, assuming that both input and output measurements are subjected to quantization, is dealt with in this paper. A fixed-order FIR model providing the best approximation of the input-output relationship is sought by minimizing the worst-case distance between the output of the true system and the modeled output, for all possible values of the input and output data consistent with their quantized measurements. The considered problem is firstly formulated in terms of robust optimization. Then, two different algorithms to compute the optimum of the formulated problem by means of linear programming techniques are presented. The effectiveness of the proposed approach is illustrated by means of a simulation example

    Large deviations of stochastic systems and applications

    Get PDF
    This dissertation focuses on large deviations of stochastic systems with applications to optimal control and system identification. It encompasses analysis of two-time-scale Markov processes and system identification with regular and quantized data. First, we develops large deviations principles for systems driven by continuous-time Markov chains with twotime scales and related optimal control problems. A distinct feature of our setup is that the Markov chain under consideration is time dependent or inhomogeneous. The use of two time-scale formulation stems from the effort of reducing computational complexity in a wide variety of applications in control, optimization, and systems theory. Starting with a rapidly fluctuating Markovian system, under irreducibility conditions, both large deviations upper and lower bounds are established first for a fixed terminal time and then for time-varying dynamic systems. Then the results are applied to certain dynamic systems and LQ control problems. Second, we study large deviations for identifications systems. Traditional system identification concentrates on convergence and convergence rates of estimates in mean squares, in distribution, or in a strong sense. For system diagnosis and complexity analysis, however, it is essential to understand the probabilities of identification errors over a finite data window. This paper investigates identification errors in a large deviations framework. By considering both space complexity in terms of quantization levels and time complexity with respect to data window sizes, this study provides a new perspective to understand the fundamental relationship between probabilistic errors and resources that represent data sizes in computer algorithms, sample sizes in statistical analysis, channel bandwidths in communications, etc. This relationship is derived by establishing the large deviations principle for quantized identification that links binary-valued data at one end and regular sensors at the other. Under some mild conditions, we obtain large deviations upper and lower bounds. Our results accommodate independent and identically distributed noise sequences, as well as more general classes of mixing-type noise sequences. Numerical examples are provided to illustrate the theoretical results

    Kernel-based identification using Lebesgue-sampled data

    Full text link
    Sampling in control applications is increasingly done non-equidistantly in time. This includes applications in motion control, networked control, resource-aware control, and event-based control. Some of these applications, like the ones where displacement is tracked using incremental encoders, are driven by signals that are only measured when their values cross fixed thresholds in the amplitude domain. This paper introduces a non-parametric estimator of the impulse response and transfer function of continuous-time systems based on such amplitude-equidistant sampling strategy, known as Lebesgue sampling. To this end, kernel methods are developed to formulate an algorithm that adequately takes into account the bounded output uncertainty between the event timestamps, which ultimately leads to more accurate models and more efficient output sampling compared to the equidistantly-sampled kernel-based approach. The efficacy of our proposed method is demonstrated through a mass-spring damper example with encoder measurements and extensive Monte Carlo simulation studies on system benchmarks.Comment: 16 pages, 8 figure

    Sigma-Delta modulation based distributed detection in wireless sensor networks

    Get PDF
    We present a new scheme of distributed detection in sensor networks using Sigma-Delta modulation. In the existing works local sensor nodes either quantize the observation or directly scale the analog observation and then transmit the processed information independently over wireless channels to a fusion center. In this thesis we exploit the advantages of integrating modulation as a local processor into sensor design and propose a novel mixing topology of parallel and serial configurations for distributed detection system, enabling each sensor to transmit binary information to the fusion center, while preserving the analog information through collaborative processing. We develop suboptimal fusion algorithms for the proposed system and provide both theoretical analysis and various simulation results to demonstrate the superiority of our proposed scheme in both AWGN and fading channels in terms of the resulting detection error probability by comparison with the existing approaches

    ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности Π½Π° основС Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования сигналов с использованиСм ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

    Get PDF
    Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· сигналов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· основных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования систСм ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ физичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Π’ условиях статистичСской нСопрСдСлСнности сигналы ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ случайным измСнСниям ΠΈ Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½ΠΈΡΠΌ. Анализ Ρ‚Π°ΠΊΠΈΡ… сигналов ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ нСобходимости оцСнивания ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности (БПМ). На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ для Π΅Ρ‘ оцСнивания ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. ΠžΡΠ½ΠΎΠ²Ρƒ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… этот ΠΌΠ΅Ρ‚ΠΎΠ΄, составляСт дискрСтноС ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π€ΡƒΡ€ΡŒΠ΅. Π’ этих Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ умноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ массовыми опСрациями. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ числа этих ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ умноТСния относятся ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ опСрациям. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… возмоТностСй Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΅Π³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° сниТСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ слоТности вычислСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π—Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° основС использования Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования для прСобразования сигнала Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΠ΅ сигналов осущСствляСтся Π±Π΅Π· систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ. На основС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ дискрСтно-событийного модСлирования, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ рассматриваСтся ΠΊΠ°ΠΊ хронологичСская ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сущСствСнных событий, опрСдСляСмых смСной Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ИспользованиС дискрСтно-событийной ΠΌΠΎΠ΄Π΅Π»ΠΈ для Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования обСспСчило аналитичСскоС вычислСниС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ интСгрирования ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ ΠΊ матСматичСским ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌ Π΅Π΅ вычислСния Π² дискрСтном Π²ΠΈΠ΄Π΅. Π­Ρ‚ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ стали основой для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ опСрациями Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ арифмСтичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ слоТСния ΠΈ вычитания. УмСньшСниС количСства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ умноТСния сниТаСт ΠΎΠ±Ρ‰ΡƒΡŽ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ оцСнивания БПМ. Π‘ Ρ†Π΅Π»ΡŒΡŽ исслСдования Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ числСнныС экспСримСнты. Они ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΈΡΡŒ Π½Π° основС ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования дискрСтно-событийной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСния ΠΎΡ†Π΅Π½ΠΎΠΊ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ряда Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстных ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ использованиС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ частотным Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² условиях присутствия Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ рСализация Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСна Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ модуля. Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² составС комплСксного мСтрологичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° частотного состава слоТных сигналов

    ΠŸΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности Π½Π° основС Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования сигналов с использованиСм ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

    Get PDF
    Spectral analysis of signals is used as one of the main methods for studying systems and objects of various physical natures. Under conditions of a priori statistical uncertainty, the signals are subject to random changes and noise. Spectral analysis of such signals involves the estimation of the power spectral density (PSD). One of the classical methods for estimating PSD is the periodogram method. The algorithms that implement this method in digital form are based on the discrete Fourier transform. Digital multiplication operations are mass operations in these algorithms. The use of window functions leads to an increase in the number of these operations. Multiplication operations are among the most time consuming operations. They are the dominant factor in determining the computational capabilities of an algorithm and determine its multiplicative complexity. The paper deals with the problem of reducing the multiplicative complexity of calculating the periodogram estimate of the PSD using window functions. The problem is solved based on the use of binary-sign stochastic quantization for converting a signal into digital form. This two-level signal quantization is carried out without systematic error. Based on the theory of discrete-event modeling, the result of a binary-sign stochastic quantization in time is considered as a chronological sequence of significant events determined by the change in its values. The use of a discrete-event model for the result of binary-sign stochastic quantization provided an analytical calculation of integration operations during the transition from the analog form of the periodogram estimation of the SPM to the mathematical procedures for calculating it in discrete form. These procedures became the basis for the development of a digital algorithm. The main computational operations of the algorithm are addition and subtraction arithmetic operations. Reducing the number of multiplication operations decreases the overall computational complexity of the PSD estimation. Numerical experiments were carried out to study the algorithm operation. They were carried out on the basis of simulation modeling of the discrete-event procedure of binary-sign stochastic quantization. The results of calculating the PSD estimates are presented using a number of the most famous window functions as an example. The results obtained indicate that the use of the developed algorithm allows calculating periodogram estimates of PSD with high accuracy and frequency resolution in the presence of additive white noise at a low signal-to-noise ratio. The practical implementation of the algorithm is carried out in the form of a functionally independent software module. This module can be used as a part of complex metrologically significant software for operational analysis of the frequency composition of complex signals.Π‘ΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· сигналов ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· основных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² исслСдования систСм ΠΈ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ физичСской ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. Π’ условиях статистичСской нСопрСдСлСнности сигналы ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π°ΡŽΡ‚ΡΡ случайным измСнСниям ΠΈ Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½ΠΈΡΠΌ. Анализ Ρ‚Π°ΠΊΠΈΡ… сигналов ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ нСобходимости оцСнивания ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ плотности мощности (БПМ). На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ для Π΅Ρ‘ оцСнивания ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄. ΠžΡΠ½ΠΎΠ²Ρƒ Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Ρ… Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ², Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ… этот ΠΌΠ΅Ρ‚ΠΎΠ΄, составляСт дискрСтноС ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π€ΡƒΡ€ΡŒΠ΅. Π’ этих Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°Ρ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ умноТСния ΡΠ²Π»ΡΡŽΡ‚ΡΡ массовыми опСрациями. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π²Π΅Π΄Π΅Ρ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ числа этих ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ. ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ умноТСния относятся ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΈΠΌ опСрациям. Они ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… возмоТностСй Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ Π΅Π³ΠΎ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассматриваСтся Π·Π°Π΄Π°Ρ‡Π° сниТСния ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ»ΠΈΠΊΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ слоТности вычислСния ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π—Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π½Π° основС использования Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования для прСобразования сигнала Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ. Π’Π°ΠΊΠΎΠ΅ Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΠ΅ сигналов осущСствляСтся Π±Π΅Π· систСматичСской ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΠΈ. На основС Ρ‚Π΅ΠΎΡ€ΠΈΠΈ дискрСтно-событийного модСлирования, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ рассматриваСтся ΠΊΠ°ΠΊ хронологичСская ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ сущСствСнных событий, опрСдСляСмых смСной Π΅Π³ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ИспользованиС дискрСтно-событийной ΠΌΠΎΠ΄Π΅Π»ΠΈ для Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования обСспСчило аналитичСскоС вычислСниС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ интСгрирования ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΎΡ‚ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ ΠΊ матСматичСским ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌ Π΅Π΅ вычислСния Π² дискрСтном Π²ΠΈΠ΄Π΅. Π­Ρ‚ΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ стали основой для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ°. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ опСрациями Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΡΠ²Π»ΡΡŽΡ‚ΡΡ арифмСтичСскиС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ слоТСния ΠΈ вычитания. УмСньшСниС количСства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ умноТСния сниТаСт ΠΎΠ±Ρ‰ΡƒΡŽ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ оцСнивания БПМ. Π‘ Ρ†Π΅Π»ΡŒΡŽ исслСдования Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π±Ρ‹Π»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ числСнныС экспСримСнты. Они ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΈΡΡŒ Π½Π° основС ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования дискрСтно-событийной ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π±ΠΈΠ½Π°Ρ€Π½ΠΎ-Π·Π½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ стохастичСского квантования. Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ вычислСния ΠΎΡ†Π΅Π½ΠΎΠΊ БПМ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ряда Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстных ΠΎΠΊΠΎΠ½Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚, Ρ‡Ρ‚ΠΎ использованиС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° позволяСт Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΊΠΈ БПМ с высокой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ частотным Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π² условиях присутствия Π°Π΄Π΄ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΎΠ³ΠΎ ΡˆΡƒΠΌΠ° ΠΏΡ€ΠΈ Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ сигнал/ΡˆΡƒΠΌ. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ рСализация Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° осущСствлСна Π² Π²ΠΈΠ΄Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ модуля. Π”Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π² составС комплСксного мСтрологичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° частотного состава слоТных сигналов
    • …
    corecore