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Chapter 1: Introduction

My dissertation focuses on large deviations of stochastic systems with applications to optimal

control and system identification. It encompasses analysis of two-time-scale Markov processes

and system identification.

Applications of Markovian models have emerged from manufacturing systems, wireless

communications, internet traffic modeling, and financial engineering in recent years. Many

such problems involve large-scale systems. An effective way of modeling and computation

is to use a two-time-scale formulation. Previous results in the literature show that under

suitable conditions, one can obtain a limit system. Although the limit is much simpler to

deal with, the results cannot provide a decisive answer to certain probabilistic error bound

in the normal deviation range. The large deviations principles can provide very precise

estimates, but they are mathematically very demanding. Obtaining the desired bounds

turns out to be very challenging that requires delicate and detailed estimates. In addition,

all of the existing results to date dealt with homogeneous Markov processes, whereas in

this dissertation, we consider large deviations of systems driven by nonhomogeneous Markov

processes. Our results help us to substantially reduce the computational effort providing

a systematic approach for reducing a large-scale system to a system with much smaller

dimension.

Traditional system identification concentrates on convergence and convergence rates of

estimates in mean squares, or in distribution, or in a strong sense. For system diagnosis and

complexity analysis, however, it is essential to understand the probability of identification

errors over a finite data window. This dissertation investigates identification errors in a large
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deviations framework. By considering both space complexity in terms of quantization and

time complexity with respect to data window sizes, our study provides a new perspective

to understand the fundamental relationship between probabilistic errors and resources that

represent data sizes in computer algorithms, sample sizes in statistical analysis, channel

bandwidths in communications, etc. This relationship is derived by establishing the large

deviations principle for quantized identification that links binary-valued data at one end and

regular sensors at the other.

When the deviation is beyond the normal range but is not as large as in the “large

deviation regime,” we are in the so-called moderate deviations range. Some applications,

for example observer design of involving stochastic systems need such estimates. Similar

problems also arise in optimal control of stochastic systems. The required mathematical

techniques are different from the large deviations estimates. Our current and future efforts

are devoted to this topic.

The rest of the dissertation is arranged as follows. Chapter 2 give a brief introduction to

large deviations principle. Chapter 3 discusses large deviations of two-time-scale Markovian

switching system. Chapter 4 focuses on large deviations of identification systems with its

applications. A few further remarks are made in Chapter 5.
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Chapter 2: Preliminary of Large Deviations Principle

The theory of large deviations is concerned with the study of the estimates on probabilistic

and moments that are associated with ”rare” events. For example, the description of events

where a sum of random variables deviates from its mean by more than a ”normal” amount,

which beyond the central limit theorem. It has applications in probability theory, statis-

tics, operation research, communication networks, information theory, statistical physics,

financial mathematics and queuing systems. The first rigorous large deviations results were

obtained by Harald Cramer in the late 1930s, who applied them to model the insurance busi-

ness. He gave a large deviation principle (LDP) result for a sum of i.i.d. random variables,

where the rate function is expressed by a power series. Then S.R.S. Varadhan developed

a general framework for the LDP in 1966. In the following, the large deviation studied by

several people, including the work of Schilder (LDP for Brownian motion), Sanov (LDP for

ergodic processes), and Freidlin and Wentzell (LDP for diffusions) with some abstract foun-

dation of LDP. A significant step forward was achieved through a series of papers of Donsker

and Varadhan, starting in the mid 1970s in which they developed a systematic large devia-

tion theory for empirical measures in the i.i.d. and Markov processes, whose contribution is

emphasized by recent award of the Abel prize.

Consider one simple example. Let X1, . . . Xn be i.i.d random variable with finite mean

E[X1] = µ. Then the law of large number states that the sample mean approaches the true

mean, if the sample size n goes to infinity. Define Sn =
∑n
k=1Xk
n

. Then by the law of large

number,

Sn → µ,w.p.1.
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It is of interest to obtain the rate of convergence. To make this precisely, let us fix a number

a > µ. By the law of large number, we know that P (Sn > a) → 0, as n goes to infinity.

In large deviations theory, we are interested in the rate at which the probablity P (Sn > a)

decay to 0.

To demonstrate the concepts, we define the following functions.

ϕ(t) = E[eX1t]

I(β) = sup
t

[tβ − logϕ(t)]
(2.1)

In the above, we see that ϕ(t) is the moment generating function. We assume thatM(t) exists

in a neighborhood of 0. The function I(β) is referred to as a Legendre-Fenchel transform

and is also called rate function. Note that I(β) is always non-negative.

Then we formulate the first basic result of large deviations theory, which goes back to

Cramer (1938). This result identifies the large deviation behavior of the empirical average

1

n
Sn.

Theorem 2.1. Let {Xn} be i.i.d R valued random variable satisfying

ϕ(t) = EetX1 <∞ ∀t ∈ R

Then, for all a > EX1,

lim
n→∞

1

n
logP (Sn ≤ an) = −I(a).

For more general definition of large deviations principle. Let {Xε, ε > 0} be a collection

of random variable defined on a Polish space (i.e., complete separable metric space) (Ω,F , P )

and taking values in a Polish space E . Denote the metric on E as d(·, ·) and expectation

with respect to P by E. The theory of large deviations focuses on random variables {Xε}

for which the probabilities P (Xε ∈ A) converge to 0 exponentially fast for a class of Borel
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sets A. The exponential decay rate of these probabilities is expressed in terms of a function

I mapping E into [0,∞]. This function is called a rate function if it has compact level sets,

i.e, for each M <∞ the level sets {x ∈ E : I(x) ≤M} is a compact subset in E .

Definition 2.2. (Large deviation principle) Let I be a rate function on E . The sequence

{Xε} is said to satisfy the large deviations principle on E , as ε→ 0, with rate function I if

for any Borel set B in E ,

− inf
β∈B◦

I(β) ≤ lim inf
ε→0

ε logP{Xε ∈ B}

≤ lim sup
ε→0

ε logP{Xε ∈ B}

≤ − inf
β∈B

I(β),

(2.2)

where B◦ and B denote the interior of and closure of B.

Remark 2.3. Instead of (2.2), we can say that

1 (Large deviations upper bound.) For each closed subset F of E

lim sup
ε→0

ε logP (Xε ∈ F ) ≤ − inf
x∈F

I(x).

2 (Large deviations lower bound.) For each open subset G of E

lim inf
ε→0

ε logP (Xε ∈ G) ≥ − inf
x∈G

I(x).

Next we introduce a couple of preliminary results on the LDP which we use often in the

following chapters. Lemma 2.4 is a version of the Gärtner-Ellis Theorem (see [27, Lemma

1]), which states the LDP in Rk space. Here and hereafter, we use
〈
a, b
〉

to denote the usual

inner product in Rk for a, b ∈ Rk.
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Lemma 2.4. (Gärtner-Ellis Theorem) Let {Xn} denote a sequence of Rk-valued random

vectors, for which the following limit exists

H(τ) = lim
n→∞

1

n
logE exp{n

〈
τ,Xn

〉
},

where τ ∈ Rk and H(·) is continuously differentiable. Define the dual function I(β) =

supτ∈Rk [
〈
τ, β
〉
− H(τ)]. Then {Xn} satisfies large deviations principle with rate function

I(·).

Next we state the contraction principle , which states that the LDP is preserved by a

continuous mapping, see [9, Theorem 4.2.1, p.126]. In fact, the results in [9] are more general

and can be applied to mappings between Hausdorff topological spaces. But assertion (b) is

sufficient for this brief.

Lemma 2.5. (Contraction Principle) Let f : Rr → Rk be a continuous function. Assume

that a family of random variable {Xn} on Rr satisfies the LDP with rate function I : Rr 7→

[0,+∞]. Then the family of random variable defined by {Yn}, Yn = f(Xn) satisfies the LDP

with rate function Ĩ(y) = inf {I(x) : x ∈ Rr, y = f(x)}.

Proof. The proofs of (a) can be found in [27, Lemma 1] and the proof of (b) is in [9, Theorem

4.2.1, p.126]. 2

To understand large deviations principle, we give some examples in the following.

Example 2.6. Consider a sequence of i.i.d random variable {Xn}, which follows standard

normal distribution. By law of large number

Sn =
1

n

n∑
i=1

Xi → 0.
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Given any number 0 < a, the probability P (Sn > a)→ 0. Then it can be shown that

lim
n→∞

1

n
logP (Sn > a) = −I(a),

where I(a) =
a2

2
. In fact, the rate function can be calculated directly by Gätner-Ellis theorem.

Example 2.7. (Schilder theorem) We consider a rescaled random process

Xε(t) = εW (t), [0, T ]

in Rn. Here W (t) is a Wiener process in Rn. As ε → 0, the trajectory Xε(t) converges in

probability to the solution 0. on every finite time interval. In the path space, the probability

distribution of Xε(t) is nearly degenerate at the path f(·) ≡ 0. Any other event that does

not include 0 and its neighborhood has very small probability. In fact, on the Banach space

C0 = C0([0, T ];Rn) of continuous functions equipped with the supremum norm || · ||∞, the

process satisfy the large deviations principle with rate function I : C0 7→ [0,∞] given by

I(ϕ) =


1

2

∫ T

0

ϕ̇(s)ds, if ϕ ∈ C0,T (Rn) is absolutely continuous,

∞ otherwise,

In other words, for every open set G ⊆ C0 and every closed set F ⊆ C0,

lim sup
ε→0

ε logP (Xε(·) ∈ G) ≤ − inf
ϕ∈G

I(ϕ),

and

lim inf
ε→0

ε logP (Xε(·) ∈ F ) ≥ − inf
ϕ∈F

I(ϕ).
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Chapter 3: LDP of Two-time-scale Markovian Switch-

ing System

3.1 Introduction and Motivation

Randomly varying discrete events exist in many problems arising in manufacturing systems,

production planning, queueing networks, Monte Carlo simulation, and random environment.

These discrete events are often modeled by pure jump processes with the use of Markovian

models. Applications of Markovian models have emerged from wireless communications,

internet traffic modeling, and financial engineering in recent years. The rapid progress

in technology has opened up new domains and provided greater opportunities for further

exploration.

To make the computation affordable and feasible, one often has to contend with finding

approximate solutions. This is particularly true for many control and optimization problems.

An effective modeling and computational step is to use a two-time-scale formulation. Time-

scale separation is often inherent in the underlying problems, for instance, equity investors

in a stock market can be classified as belonging to two categories, long-term investors and

short-term investors. The long-term investors consider a relatively longtime horizon and

make decisions based on weekly or monthly performance of the stock, whereas the short

term investors (such as day traders) focus on returns in short-term, daily or an even shorter

period. Their time scales are in sharp contrast. An effective way to delineate the distinct

rates of changes is to introduce a small parameter ε > 0 into the system. Note that ε is

only used to separate different time scales so that we can provide asymptotic analysis for
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small ε. In the literature, Simon and Ando [33] used such an idea and introduced the so-

called hierarchical decomposition and aggregation. Sethi and Zhang [32] initiated the study

of nearly optimal controls for flexible manufacturing systems. To further investigate the

underlying properties, Khamsminskii, Yin, and Zhang developed asymptotic expansions for

the probability distribution vectors [23,24] using an analytic approach. Subsequently, a more

comprehensive study was launched in [46], which contains scaled sequence of occupation

measures, switching diffusion limits, near-optimal controls of Markovian systems, Markov

decision processes, and numerical methods, among others.

In this dissertation, we furthered our investigation started in [46–48]. We aim at establish-

ing large deviations principles for singularly perturbed systems involving rapidly fluctuating

Markov chains. Let αε(t) be a Markov chain with a finite spaceM = {1, . . . ,m0} generated

by Q(t)/ε, where Q(t) ∈ Rm0×m0 is a generator and ε is a small parameter. Recall that

(see [23]) a Markov chain or its generator Q(t) is irreducible, if the system of equations
ν(t)Q(t) = 0,
m0∑
i=1

νi(t) = 1
(3.1)

has a unique solution such that νi(t) > 0 for each i ∈ M. The unique solution of (3.1),

namely, the row vector ν(t) = (ν1(t), ν2(t), . . . , νm0(t)) is termed a quasi-stationary distri-

bution. When Q(t) = Q independent of t, ν(t) = ν becomes the stationary distribution.

Throughout this dissertation, we assume that Q(t) is irreducible for each t ∈ [0, T ].

In fact, many problems arising in manufacturing, production planning, and networked

systems can be formulated as one that is driven by a two-time-scale Markovian chain, in which

the state space M is large. As a motivational example, consider the following example.



10

Example 3.1. This example is motivated by the linear quadratic Gaussian (LQG) regulator

problem considered in [49]; see also [5] and references therein. Let αε(t) be a continuous-time

Markov chain with state space M and generator Qε(t) = Q(t)/ε, where Q(t) is irreducible.

Consider

ẋε(t) = [A(αε(t))xε(t) +B(αε(t))u(t)],

xε(s) = x, for s ≤ t ≤ T,
(3.2)

where x(t) ∈ Rn1 is the state, u(t) ∈ Rn2 is the control, A(i) ∈ Rn1×n1 and B(i) ∈ Rn1×n2

are well defined and have finite values for each i ∈ M. The objective is to find the optimal

control u(·) so that the expected quadratic cost function

J(s, i, x, u(·)) = E

{∫ T

s

[x′(t)M(αε(t))x(t)

+u′(t)N(αε(t))u(t)]dt+ x′(T )Dx(T )

} (3.3)

is minimized, where E is the expectation given αε(s) = α and x(s) = x, M(i), i = 1, . . . ,m0,

are symmetric nonnegative definite matrices, and N(i), i = 1, . . . ,m0, and D are symmetric

positive definite matrices. Let vε(s, i, x) = infu(·) J
ε(s, i, x, u(·)) be the value function. Then

vε satisfies the following system of HJB equations: for 0 ≤ s ≤ T and i ∈M,

0 =
∂vε(s, i, x)

∂s
+ min

u

{
(A(i)x+B(i)u)′

∂vε(s, i, x)

∂x

+x′M(i)x+ u′N(i)u+Qε(s)vε(s, ·, x)(i)

}
,

(3.4)

with the boundary condition vε(T, i, x) = x′Dx, where

Qε(s)vε(s, ·, x)(i) =
∑
j 6=i

qεij(s)(v
ε(s, j, x)− vε(s, i, x)).

Following the approach in [16] and [49], we write

vε(s, i, x) = x′Kε(s, i)x+ qε(s, i), (3.5)
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for some n1 × n1 matrix Kε and a scalar function qε. Without loss of generality, we may

assumeKε to be symmetric. This yields the following system of Riccati equations forKε(s, i),

K̇ε(s, i) = −Kε(s, i)A(i)− A′(i)Kε(s, i)−M(i)

+Kε(s, i)B(i)N−1(i)B′(i)Kε(s, i)−Qε(s)Kε(s, ·)(i),
(3.6)

with Kε(T, i) = D, and the equations for qε,

q̇ε(s, i) = −Qε(s)qε(s, ·)(i), (3.7)

with qε(T, i) = 0. Similar to [49], it can be shown that the optimal control uε,∗ has the form:

uε,∗(s, i, x) = −N−1(i)B′(i)Kε(s, i)x. (3.8)

To get the optimal control, one must solve the system of corresponding Riccati equations.

The large dimensionality makes the computation difficult. It would be much better if we can

treat a “reduced” system with much less effort. Using the weak convergence methods, xε(·)

converges weakly to x(·). Based on the averaged dynamic system, one can construct controls

leading to near optimality. As ε is getting smaller and smaller, we expect that xε(t) will

hover about x(t). One immediate question is: What can we say about P (|xε(t)− x(t)| ≥ a)

for a > 0? Although our previous results delineate the limit diffusion, they cannot provide

a decisive answer to the question above. We must resort to large deviations principle for a

precise estimate.

Our study will be closely related to singularly perturbed Markov chains. To see this,

let us begin with the following scenario. For a positive integer k, let f : M → Rk be a

well-defined function, and consider the process nε(t) =
∫ t

0
f(αε(s))ds. Assuming either Q(·)

is smooth or measurable, it can be shown (see [46, p. 84 or p. 209]) that nε(t) → n(t) =
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∫ t
0

∑m
i=1 f(i)νi(s)ds in probability as ε→ 0. The above is essentially a law of large numbers

type result. When Q(t) = Q is a constant matrix, the Markov chain αε(·) is homogeneous.

The irreducibility of Q implies that the process is mixing with exponential mixing rate. The

mixing property then implies the convergence is in the sense of almost surely. In addition,

we can also consider [nε(t) − n(t)]/
√
ε. We can prove that the scaled sequence converges

weakly to a diffusion process.

Consider the difference nε(t) − n(t). We ask ourself the question: What can we say

about P (|nε(t) − n(t)| > a) for some a > 0? Now it is clear that neither the law of large

numbers nor the central limit theorem provides us with the desired answers. The law of

large numbers and the central limit theorem only tell us that {|nε(t) − n(t)| > a} is a

event with small probability, but does not quantify how small it is. Concerning such rates

of convergence problems, first, we consider nε(T ) for a fixed T , which turns out to be a

generalized occupation measure of the Markov chain.

Large deviations of occupation measures for Markov processes have been studied by many

researchers. In the literature, Donsker and Varadan proved the large deviations principle

(LDP) under the assumption of existence, continuity, and strictly positive transition density,

together with exponential tightness [12]. Their result was improved by Deuschel and Strook

[10] by applying dominating measure method. Subsequently, Ney and Nummelin [31], de

Acosta [1,2] and Jain [21] extended the results to general irreducible Markov processes, and

obtained lower bounds of LDP in its full generality. In their case, the rate function may be

different from the classical one given in [12], as shown in the works of Dinwoodie [11] and

Dupuis and Zeitouni [14]. All the above papers dealt with homogeneous Markov processes,

whereas we consider large deviations of systems driven by nonhomogeneous Markov chains.
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If we take a dynamic system point of view, we may consider the convergence of the process

nε(·) on the interval [0, T ]. In this regard, it is useful to use the tool of the action functional

developed by Freidlin and Wentzell [17]. Here, the limit of nε(t) is the average of f with

respect to the invariant measure ν. In [17], homogeneous Markov processes were considered,

and in [13], Dupuis and Kushner considered large deviations of nonhomogeneous systems by

using averaging principles, in which the systems are perturbed by Gaussian process.

Inspired by many existing works on large deviations, in this work, we use averaging

method to study our problem. In contrast to the aforementioned works, we consider systems

driven by two-time-scale Markov chains. A distinct feature is that we must handle non-

homogeneity. In addition, we use simple conditions. In fact, not more than the irreducibility

of the generator Q(t) is required. Under such simple conditions, we obtain large deviations

upper and lower bounds. Then we use the large deviations results to treat LQ problem in

Example 3.1.

Assumption A. The generator Q(t) is irreducible for each t ∈ [0, T ], and Q(·) is twice

continuously differentiable in [0, T ].

Let us begin with a continuous-time Markov chain with state space M and generator Q

that is irreducible. Then we can obtain the following results. The proof can be found in [46].

In what follows, we use O(y) to denote the function of y satisfying supy |O(y)|/|y| < ∞.

Likewise, o(y) denotes the function of y satisfying |o(y)|/|y| → 0. In particular, g = O(1)

denotes the boundedness of g and g = o(1) indicates g → 0.

Lemma 3.2. Suppose that X(t) is a homogeneous and irreducible Markov chain with gen-
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erator Q and state space M = {1, 2, . . . ,m}. Then for each i, j ∈M,

Ei
( 1√

T

∫ T

0

[I{X(s)=j} − νj]cjds
)2

= O
(

1
)
, (3.9)

where cj is a real number, ν = (ν1, . . . , νm0) is the stationary distribution corresponding to

the generator Q, and Ei denotes the expectation with X(0) = i.

Lemma 3.3. With ci defined in Lemma 3.2, let

zT (t) = (zT (t, 1), . . . , zT (t,m0))′ ∈ Rm
0 ,

zT (t, j) =
1√
T

∫ Tt

0

[I{X(s)=j} − νj]cjds, for t ∈ [0, 1].
(3.10)

Assume the conditions of Lemma 3.2. Then as T → ∞, zT (·) converges weakly to z(·), a

Brownian motion with mean 0 and covariance Σt, where Σ = (σij) ∈ Rm0×m0 with

σij = cicj{νi
∫ ∞

0

[pij(s)− νj]ds+ νj

∫ ∞
0

[pji(s)− νi]ds}, (3.11)

and pij(s) is the ijth entry of the transition matrix P (s).

To proceed, let us define the indecomposability of an arbitrary matrix. Note that many

books also use the term irreducibility. To distinguish it with irreducibility of generators of

Markov chains, we will use the terminology indecomposable throughout.

Definition 3.4. For n ≥ 2, an m0×m0 matrix A is decomposable if there exists an m0×m0

permutation matrix P such that

PAP ′ =

 E G

0 F

 , (3.12)

where E and F are square matrices of appropriate dimensions, P is a permutation ma-

trix, and P ′ denotes the transpose of P . If no such permutation matrix exists, then A is

indecomposable.
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In what follows, for a matrix A = (aij), by A ≥ 0 (resp. A > 0) we mean aij ≥ 0 (resp.

aij > 0). Then by virtue of [45, p. 282, Theorem 8.2], the following lemma holds.

Lemma 3.5. Let A be a real matrix. Then eAt > 0 for all t > 0 if and only if aij ≥ 0 for

all i 6= j and A is indecomposable.

Lemma 3.6. Assume the generator Q is irreducible. Then, e(Q+B)t > 0 for any t > 0 and

any diagonal matrix B = diag(b1, b2, . . . , bm0).

Proof. By virtue of Lemma 4.20, we need only show that Q+B is indecomposable for any

B = diag(b1, b2, . . . , bm0). To this end, suppose the contrary. Assume Q+B is decomposable.

Then there exists permutation matrix P such that

P (Q+B)P ′ =

 E G

0 F

 ,
where E ∈ Rm1×m1 and F ∈ Rm2×m2 with m1 +m2 = m0. Hence,

Q = P ′

 E G

0 F

P −B = P ′
( E G

0 F

− PBP ′)P.

Since PBP ′ is still a diagonal matrix, we can write PBP ′ =

 B1 0

0 B2

, where B1 ∈

Rm1×m1 and B2 ∈ Rm2×m2 are diagonal matrix. So

Q = P ′

 E −B1 G

0 F −B2

P.
This contradicts the irreducibility of Q. 2

Consider a homogeneous Markov chain {X(t) : t ≥ 0} with a generator Q that is irre-

ducible. We have the following result.
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Lemma 3.7. Suppose that τ ∈ Rk is a constant vector and X(t) is stationary Markov chain

with generator Q that is irreducible. Then for each i ∈M, the limit

lim
T→∞

1

T
logEi exp

(∫ T

0

〈
f(X(s)), τ

〉
ds
)

(3.13)

exists, which is denoted by H(τ). The function H(·) is differentiable and convex.

Proof. The proof is similar to [18, p. 235, Theorem 4.2]. However, in the aforementioned

reference, it is required that all qij > 0 for i 6= j. By virtue of Lemma 4.21, we only

need qij ≥ 0 for i 6= j. Define A(τ) to be the matrix whose entries are given by Aij(τ) =

qij + δij
〈
f(i), τ

〉
, where δij = 1 when i = j and 0 otherwise. Then H(τ) exists and is

a real eigenvalue of A(τ), which exceeds the real parts of all other eigenvalues of A(τ).

Furthermore, there exists an eigenvector u(τ) of A(τ), which satisfies u(τ) = (u1, . . . , um)

and 0 < mini≤m ui ≤ maxi≤m ui ≤ 1. The differentiability of H(τ) with respect to τ follows

from the differentiability of the entries of A(τ). Moreover, The convexity of H(τ) follows

from the convexity of the exponential function and the monotonicity and concavity of the

logarithmic function. 2

Remark 3.8. In fact, the H(τ) in the lemma depends on Q, so it may be written as HQ(τ)

if we wish to emphasize the Q dependence. However, for notational simplicity, we suppress

the Q dependence. In view of (3.13), the H(τ) is roughly the limit of the logarithm of

the moment generating function of
∫ T

0
f(X(s))ds. This H(τ) is the so-called H-functional

related to large deviations theory. For necessary background of large deviations, and related

discussions on H-functionals and large deviations rate functions etc., we refer the reader

to [10, 12, 18, 20] among others. The next section is devoted H-functional of two-time-scale
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systems.

3.2 H-Functionals for Two-time-scale Markov Chains

First, let us state our standing assumption to be used throughout the chapter.

Assumption A. The generator Q(t) is irreducible for each t ∈ [0, T ], and Q(·) is twice

continuously differentiable in [0, T ].

In large deviations theory, H-functional plays a crucial role. In our case, this is related

to the following limit

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
f(αε(s)), τ(s)

〉
ds},

where τ(·) : [0, T ] 7→ Rk is a step function, f(·) : M 7→ Rk,
〈
·, ·
〉

denotes inner product on

Rk, and Ei denotes the expectation with αε(0) = i.

We will use Lemma 3.7 to obtain the result for the nonhomogeneous case. For notational

simplicity, we write it H(τ, t) in what follows. The dependence of t is because of H(τ, t) and

in view of Remark 3.8, this could be written as HQ(t)(τ).

Theorem 3.9. Consider αε(·). For ∆ sufficiently small, each t satisfying [t, t+ ∆] ⊂ [0, T ],

and for each i ∈M,

lim
ε→0

ε logEi exp
(1

ε

∫ t+∆

t

〈
f(αε(s)), τ

〉
ds
)

= H(τ, t)∆ + o(∆).

Proof. Let r = s− t and define α̃ε(r) = αε(r + t). Then

Ei exp
(1

ε

∫ t+∆

t

〈
f(αε(s)), τ

〉
ds
)

= Ei exp
(1

ε

∫ ∆

0

〈
f(α̃ε(r)), τ

〉
dr
)
.
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Thus, it reduces to prove that for t = 0,

lim
ε→0

ε logEi exp
(1

ε

∫ ∆

0

〈
f(αε(s)), τ

〉
ds
)

= H(τ, 0)∆ + o(∆).

Define a family of operators T εs,t, for 0 ≤ s ≤ t by

T εs,tw(i) = Eεs,iw(αε(εt)) exp(

∫ t

s

〈
f(αε(εu)), τ

〉
du),

where w is a vector in Rm. It follows that T εs,t has monotone and semigroup properties,

T εs,tw1 ≤ T εs,tw2, if w1 ≤ w2,

T εs,tT
ε
t,p = T εs,p, for s ≤ t ≤ p.

(3.14)

We obtain that

Aεt(τ) = lim
t→0

T εt,t+h − I
h

= (qij(εt) + δij
〈
f(i), τ

〉
), (3.15)

where qij(εs) is the ijth entry of Q(εs). Define A(τ) = (qij(0) + δij
〈
f(i), τ

〉
). From the

result of Lemma 3.7, H(τ, 0) is the real, simple eigenvalue of A(τ) that exceeds the real

parts of all other eigenvalues, and there exists a eigenvector u(τ) of A(τ) that satisfies

u(τ) = (u1, . . . , um) and 0 < c < mini≤m ui ≤ maxi≤m ui ≤ 1. For notation brevity, we use

A and Aεt represent A(τ) and Aεt(τ) respectively. Then Au(τ) = H(τ, 0)u(τ) and eAtu(τ) =

eH(τ,0)tu(τ). Let l be the vector with all components being one. Then by the positivity of

the vector u(τ)

(Aεt − A)u(τ) ≤ |(Aεt − A)u(τ)| l

≤ |(Aεt − A)||u(τ)| l

≤ 1

c
|(Aεt − A)||u(τ)|u(τ).

In the above and hereafter, for two vectors v and ṽ, by v ≤ ṽ, we mean each component of

v is less than or equal to that of ṽ. In addition, |A| and |u(τ)| denote the matrix and vector
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norms, respectively. Similarly, we have

(Aεt − A)u(τ) ≥ −|(Aεt − A)u(τ)| l

≥ −1

c
|(Aεt − A)||u(τ)|u(τ).

Consider T ε0,t, t ∈ [0,
∆

ε
], and let

K(∆) = sup
t∈[0,∆

ε
]

|Aεt − A|
|u(τ)|
c

= sup
t∈[0,∆]

|Q(t)−Q(0)| |u(τ)|
c

.

Then we have the following inequalities,

−K(∆)u(τ) ≤ (Aεt − A)u(τ) ≤ K(∆)u(τ).

Furthermore, by the smoothness of Q(t), lim
∆→0

K(∆) = 0. By virtue of the semigroup property

(3.14) and derivative (3.15),

d(T ε0,t)

dt
= lim

h→0

T ε0,t+h − T ε0,t
h

= T ε0,t lim
h→0

T εt,t+h − T εt,t
h

= T ε0,tA
ε
t.

Since T εs,t is monotonic and u(τ) > 0, we have

(H(τ, 0)−K(∆))T ε0,tu(τ) ≤ T ε0,t[A−K(∆)]u(τ)

≤
d(T ε0,tu(τ))

dt
= T ε0,tA

ε
tu(τ)

= T ε0,t[A+ (Aεt − A)]u(τ)

≤ T ε0,t[A+K(∆)]u(τ) = (H(τ, 0) +K(∆))T ε0,tu(τ).

By applying Gronwall’s inequality , we can conclude that

e(H(τ,0)−K(∆))tu(τ) ≤ T ε0,tu(τ) ≤ e(H(τ,0)+K(∆))tu(τ).

Again, by the monotonicity of T ε0,t,

c(T ε0,tl)(i) ≤ (T ε0,tu(τ))(i) ≤ e(H(τ,0)+K(∆))tu(τ)(i),
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where l is the vector with all component equals one. Note that

lim sup
ε→0

ε logEi exp
(1

ε

∫ ∆

0

〈
f(αε(s)), τ

〉
ds
)

= lim sup
ε→0

ε logEi exp
(∫ ∆

ε

0

〈
f(αε(εs)), τ

〉
ds
)

= lim sup
ε→0

ε log(T ε
0,∆
ε
l)(i)

≤ lim sup
ε→0

ε log
1

c
(T ε

0,∆
ε
u(τ))(i)

≤ lim sup
ε→0

ε log
1

c
eH(τ,0) ∆

ε + lim sup
ε→0

ε log(e
∆
ε
K(∆)u(τ)(i))

= H(τ, 0)∆ + ∆K(∆)

= H(τ, 0)∆ + o(∆).

Hence,

lim sup
ε→0

ε logEi exp
(1

ε

∫ ∆

0

〈
f(αε(s)), τ

〉
ds
)
≤ H(τ, 0)∆ + o(∆).

Similarly, by applying the fact that

(T ε0,tl)(i) ≥ (T ε0,tu(τ))(i) ≥ eH(τ,0)−K(∆)u(τ)(i),

we obtain that

lim inf
ε→0

ε logEi exp
(1

ε

∫ ∆

0

〈
f(αε(s)), τ

〉
ds
)

= lim inf
ε→0

ε logEi exp
(∫ ∆

ε

0

〈
f(αε(εs)), τ

〉
ds
)

= lim inf
ε→0

ε log(T ε
0,∆
ε
l)(i)

≥ lim inf
ε→0

ε log(T ε
0,∆
ε
u(τ))(i)

≥ lim inf
ε→0

ε log eH(τ,0) ∆
ε + lim inf

ε→0
ε log(e−

∆
ε
K(∆)u(τ)(i))

= H(τ, 0)∆ + o(∆).

Thus this lemma is concluded. 2

Theorem 3.10. Assume that f :M→ Rk is a well-defined function, τ(t) is a step function

on [0, T ], and αε(t) is a continuous-time Markov chain with state space M and generator



21

Qε(t) = Q(t)/ε. Then under Assumption A with H(·, ·) defined previously,

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
f(αε(s)), τ(s)

〉
ds} =

∫ T

0

H(τ(t), t)dt.

Proof. Partition [0, T ] into subintervals so that 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = T , where

tk = k∆ for k < n and n = b T
∆
c + 1. Let τk be the value of τ(t) on [tk−1, tk). Then by the

Markov property of αε(t),

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
f(αε(s)), τ(s)

〉
ds}

= lim
ε→0

ε logEi exp{1

ε

∫ t1

t0

〈
f(αε(s)), τ1

〉
ds}Eαε(t1) exp{1

ε

∫ t2

t1

〈
f(αε(s)), τ2

〉
)ds}

× · · · × Eαε(tn−1) exp{1

ε

∫ tn

tn−1

〈
f(αε(s)), τn

〉
ds}

=
n−1∑
k=0

lim
ε→0

ε logEαε(tk) exp{1

ε

∫ tk+1

tk

〈
f(αε(s)), τk

〉
ds},

where Eαε(t0) = Eαε(0) = Ei. By using Theorem 3.9,

lim
ε→0

ε logEαε(tk) exp{1

ε

∫ tk+1

tk

〈
f(αε(s)), τ(s)

〉
ds} = H(τk, tk)(tk+1 − tk) + o(∆)

Letting ε→ 0 and ∆→ 0, we have

lim
∆→0

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
f(αε(s))ds, τ(s)

〉
}

= lim
∆→0

[
n−1∑
k=0

H(τk, tk)(tk+1 − tk) +
T

∆
o(∆)]

=

∫ T

0

H(τ(t), t)dt.

The theorem is thus proved. 2
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3.3 LDP: Fixed Terminal Time

Consider nε(T ) =
∫ T

0
f(αε(t))dt for a fixed time T , a random vector in Rk. We introduce the

Legendre transform I(·) on Rk:

I(γ) = sup
τ∈Rk

[
〈
γ, τ
〉
−
∫ T

0

H(τ, t)dt]. (3.16)

It is readily seen that I(·) is convex and lower semi-continuous.

By Theorem 3.10, all the conditions in the Gärtner-Ellis (2.2) are satisfied. The following

is the main result.

Theorem 3.11. Under the conditions of Theorem 3.10, we have the following large deviation

estimate. That is, for any B ⊂ Rk

− inf
γ∈B◦

I(γ) ≤ lim inf
ε→0

ε logP{nε(T ) ∈ B}

≤ lim sup
ε→0

ε logP{nε(T ) ∈ B}

≤ − inf
γ∈B

I(γ),

where B◦ and B are interior and closure of B in Rk, respectively.

Let δ(α) = (I{α=1}, . . . , I{α=m}), and put f = δ(α). Then nε(T ) is just the occupation

measure. The results can be strengthened when Q(t) = Q is time homogeneous as following;

see [20, p. 47].

Corollary 3.12. When αε(t) is homogeneous, that is Q(t) = Q, the rate function S which

is defined in (4.13) can be simplified to

I(γ) = sup
τ>0

[−T
m∑
k=1

γk
(Qτ)k
τk

].

If Q is symmetric, the supremum can be evaluated explicitly:

I(γ) = −T
m∑

k,j=1

√
γkQkj

√
γj =

〈√
γ,−Q√γ

〉
.
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3.4 LDP: Time-Varying Processes

For t ∈ [0, T ], nε(t) is a solution of the ordinary differential equation

ṅε(t) = f(αε(t)), nε(0) = 0.

Define f(t) =
∑m

i=1 f(i)νi(t). Then nε(·) converges in probability to n(·), which is a solution

of

ṅ(t) = f(t).

Inspired by [17], we can use the idea of averaging to treat nε(·). However, we need some

modification to fit our nonhomogeneous case. We state one of main results below. In

what follows, denote C0,T (Rk) the set of all the continuous functions ϕ : [0, T ] → Rk, and

Cx
0,T (Rk) = {ϕ :∈ C0,T (Rk), ϕ(0) = x}.

Theorem 3.13. If assumption A holds, then for each set B ⊂ C0
0,T (Rk),

− inf
ϕ∈B◦

I(ϕ) ≤ lim inf
ε→0

ε logP{nε ∈ B}

≤ lim sup
ε→0

ε logP{nε ∈ B}

≤ − inf
ϕ∈B

I(ϕ),

(3.17)

where

I(ϕ) =


∫ T

0

L(ϕ̇(s), s)ds, if ϕ ∈ C0,T (Rk) is absolutely continuous,

∞ otherwise,

L(γ, s) = sup
τ

[
〈
γ, τ
〉
−H(τ, s)],

B◦ and B denote interior and closure of B in C0
0,T (Rk), respectively.

To proceed, we introduce the following equivalent statement of large deviations estimate

(3.17).
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Lemma 3.14. Let Φ(s) = {ϕ ∈ C0
0,T (Rk), I(ϕ) ≤ s}. Then (3.17) in Theorem 3.13 is

equivalent to the following statement :

For each ϕ ∈ C0
0,T (Rk), and each s ≥ 0, h > 0 and δ > 0, there is an ε0 > 0 such that for

ε ≤ ε0,

P{ρ0T (nε, ϕ) < δ} ≥ exp(−1

ε
(I(ϕ) + h)),

P{ρ0T (nε,Φ(s)) > δ} ≤ exp(−1

ε
(s− h)),

(3.18)

where ρ0T is the metric on C0,T (Rk) defined by

ρ0T (ϕ1, ϕ2) = sup
0≤t≤T

|ϕ1(t)− ϕ2(t)|.

Proof. See [18, Theorem 3.3, p.85]. 2

By this lemma, to prove Theorem 3.13, we need only show that (3.18) hold. Note that the

functional I(ϕ) is lower semi-continuous, and the set Φ(s) is compact in C0,T (Rk) [18, Lemma

4.2, p.231].

Lemma 3.15. Suppose Assumption A holds, then as ε → 0, for any s, δ, h > 0 and ϕ ∈

C0
0,T (Rk),

P{ρ0T (nε, ϕ) < δ} ≥ exp{−1

ε
(I(ϕ) + h)}, (3.19)

and

P{ρ0T (nε,Φ(s)) > δ} ≤ exp{−1

ε
(s− h)}, (3.20)

where Φ(s) = {ϕ ∈ C0,T (Rk) : ϕ(0) = 0, I(ϕ) ≤ s}.

Proof. We choose small number ∆ such that T
∆

= n is integer. Let τ1, τ2, . . . , τn ∈ Rk, and

define τ(s) as a piecewise constant function on [0, T ] such that for s ∈ [(i−1)∆, i∆), it takes
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value
n∑
k=i

τk, (i = 1, 2, 3, . . . , n). Denoting the function hε(τ1, . . . , τn) by

hε(τ1, . . . , τn) = ε logE exp{1

ε

n∑
k=1

〈
τk, n

ε(k∆)
〉
}.

Observe that

n∑
k=1

〈
τk, n

ε(k∆)
〉

=
〈 n∑
k=1

τk,

∫ ∆

0

f(αε(s))ds
〉

+
〈 n∑
k=2

τk,

∫ 2∆

∆

f(αε(s))ds
〉

+ · · ·+
〈
τn,

∫ n∆

(n−1)∆

f(αε(s))ds
〉
.

Hence, by the definition of τ(s), we can write

hε(τ1, . . . , τn) = ε logE exp{1

ε

∫ T

0

〈
τ(s), f(αε(s))

〉
}ds.

By virtue of Theorem 3.10, we have the limit

h(τ1, . . . , τn) = lim
ε→0

hε(τ1, . . . , τn) =

∫ T

0

H(τ(s), s)ds.

It can be seen that h(τ1, . . . , τn) is convex and differentiable in the variables τ1, . . . , τn.

Then we define the Legendre transform of h(τ1, . . . , τn). Let γ(s) be a piecewise linear

function on [0, T ] having jumps at integer multiples of ∆ and taking value γk, at k∆ and



26

γ0 = 0. By definition of the Legendre transform and the mean-value theorem,

l(γ1, . . . , γn) = sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−
∫ T

0

H(τ(s), s)ds]

= sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−

n∑
k=1

∫ k∆

(k−1)∆

H(τ(s), s)ds]

= sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−∆

n∑
k=1

H(
n∑
i=k

τi, sk)ds]

= ∆ sup
τ2,...,τn

{sup
τ1

[
〈γ1

∆
, τ1 +

n∑
i=2

τi
〉
−H(τ1 +

n∑
i=2

τi, s1)ds]

+[
n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(
n∑
i=k

τi, sk)ds]}

= ∆ sup
τ2,...,τn

{L(
γ1

∆
, s1) + [

n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(
n∑
i=k

τi, sk)ds]}

= ∆L(
γ1

∆
, s1) + ∆ sup

τ2,...,τn

[
n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(
n∑
i=k

τi, sk)ds]

= · · ·

=
n∑
k=1

L(
γk − γk−1

∆
, sk),

(3.21)

where sk ∈ [(k − 1)∆, k∆).

If we let ηε = (nε(∆), nε(2∆), . . . , nε(n∆)), and τ = (τ1, . . . , τn) ∈ (Rk)n. Then

h(τ1, . . . , τn) = lim
ε→0

ε logE exp{1

ε

〈
τ, ηε

〉
}.

For e = (e1, . . . , en), g = (g1, . . . , gn) ∈ (Rk)n, define

Φ∆(s) = {(e1, . . . , en) : l(e1, . . . , en) ≤ s} for s <∞,

ρ(e, g) = max
1≤i≤n

|ei − gi|.

Then by Lemma 2.4 and Lemma 3.14, it follows that for any a, δ, h > 0 and any γ ∈ (Rk)n

and for sufficiently small ε the following inequalities hold

P{ρ(ηε, γ) < δ} > exp{−1

ε
(l(γ1, . . . , γn) + h)},

P{ρ(ηε,Φ∆(s)) > δ} < exp{−1

ε
(s− h)}.

(3.22)
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Let ϕ ∈ C0,T (Rk), I(ϕ) < ∞, δ > 0. We define ϕ∆ = (ϕ(∆), ϕ(2∆), . . . , ϕ(n∆)) ∈ (Rk)n.

Relying on the fact that the trajectories of nε and ϕ for which I(ϕ) < ∞ are Lipschitz

continuous, it follows that for sufficiently small δ̃ and ∆,

P{ρ0,T (nε, ϕ) < δ} > P{ρ(ηε, ϕ∆) < δ̃}. (3.23)

By (3.21) and the continuity of L(ϕ(s), s) in s, for each
h

2
> 0, we can choose sufficient small

∆ such that

|l(γ1, . . . , γn)−
∫ T

0

L(γ̇(s), s)| < h

2
,

where γ̇(s) = (d/ds)γ(s). Estimating the right-hand side of (3.23), for each h > 0 and for

sufficient small ε, we have

P{ρ0,T (nε, ϕ) < δ} > P{ρ(ηε, ϕ∆) < δ̃}

≥ exp{−1

ε
(l(ϕ∆, . . . , ϕn∆) +

h

2
)}

≥ exp{−1

ε
(

∫ T

0

L(ϕ̇s, s)ds+ h)},

where ϕs is a piecewise linear function having jumps at integer multiples of ∆ and being

identical to ϕ(s) at s = k∆ for k = 1, . . . , n. Next, since ϕ is absolutely continuous and

L(γ, t) is convex with respect to γ, we obtain∫ T

0

L(ϕ̇(s), s)ds =
n∑
k=1

∫ k∆

(k−1)∆

L(ϕ̇(s), s)ds

=
n∑
k=1

L(
1

∆

∫ k∆

(k−1)∆

ϕ̇(s)ds, sk)∆

≤
n∑
k=1

∫ k∆

(k−1)∆

L(ϕ̇(s), sk)ds, where sk ∈ [(k − 1)∆, k∆).

Again, by the continuity of L(ϕ̇(s), s), we can choose sufficient small ∆ such that∫ T

0

L(ϕ̇(s), s)ds ≤
n∑
k=1

∫ k∆

(k−1)∆

L(ϕ̇(s), sk)ds

≤
∫ T

0

L(ϕ̇(s), s)ds+ h

= I(ϕ) + h.
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Then (3.19) follows immediately. To get the second inequality we observe that for sufficiently

small ∆ and δ̃,

{ρ0,T (nε,Φ(s)) > δ} ⊂ {ρ(ηε,Φ∆(s)) > δ̃},

From this inclusion and the estimate of (3.22), we obtain (3.20). The proof of this lemma is

completed. 2

Completion of Proof of Theorem 3.13. Theorem 3.13 follows immediately from the

Lemma above and Lemma 3.14. 2

3.5 LDP for ODEs with Markovian Switching

This section is devoted to dynamic systems represented by ordinary differential equations

with Markovian switching. We consider nonlinear ordinary differential equations involving

a Markov chain. The Markov chain αε(·) is fast varying and can be thought of as a noise

process. The continuous state on the other hand, varies much slowly. As a result, an

averaging takes place. The dynamic system is replaced by an average with respect to the

quasi-stationary measure of the fast varying process. To be more specific, consider the system

of ordinary differential equations

ẋε(t) = b(xε(t), αε(t)), xε(0) = x. (3.24)

Then under simple conditions, we obtain the following result, whose proof is based on the

asymptotic properties of the two-time-scale Markov chains (see [46, Chapters 4 and 5]).

Lemma 3.16. Suppose b(x, i) : Rk ×M 7→ Rk such that for each i ∈ M, b(·, i) grows at
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most linearly and satisfies the Lipschitz condition, i.e.,

|b(x, i)| ≤ K(1 + |x|) for each x ∈ Rk,

|b(x, i)− b(y, i)| ≤ K|x− y| for all x, y ∈ Rk.

Suppose also αε(t) ∼ Q(t)/ε, where Q(t) is irreducible. Then xε(·), the solution of (3.24),

converges weakly to x(·) such that for each T > 0 and for any t ∈ [0, T ],

ẋ(t) = b(x(t)), x(0) = x0, (3.25)

where

b(x) =
m∑
j=1

b(x, i)νi,

and ν(t) = (ν1(t), . . . , νm(t)) is the quasi-stationary distribution associated with Q(t).

Proof. Step 1. Show supt∈[0,T1] E|xε(t)|2 <∞. We simply note that

|xε(t)|2 ≤ 2|x0|2 + 2
∣∣∣ ∫ t

0

b(xε(u), αε(u))du
∣∣∣2.

The desired result then follows from the Cauchy-Schwarz inequality, linear growth on b(·, α)

for each α ∈M, and the Gronwall inequality.

Step 2. Show that {xε(·)} is tight in D([0, T ];Rk), the space of functions that are right

continuous and have left-hand limits endowed with the Skorohod topology. For any δ > 0,

any s, t ≥ 0 with s ≤ δ, the Cauchy-Schwarz inequality, the linear growth of b(·, α) for each

α ∈M, and the moment bound in Step 1 lead to

E|xε(t+ s)− xε(t)|2 = E
∣∣∣ ∫ t+s

t

b(xε(u), αε(u))du
∣∣∣2

≤ sE

∫ t+s

t

|b(xε(u), αε(u))|2du ≤ Ks2 ≤ Kδ2.

Thus, limδ→0 lim supε→0E|xε(t + s) − xε(t)|2 = 0. Thus, {xε(·)} is tight by [25, p. 47]. In

addition, the limit process has continuous sample paths with probability one.
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Step 3. Characterize the limit. Since {xε(·)} is tight, by Prohorov’s theorem, we can

extract a weakly convergent subsequence. Extract such a sequence and still denote it by

{xε(·)} for notational simplicity. Denote the limit by x(·). By Skorohod representation with

a slight abuse of notation, we may assume xε(·) converges to x(·) w.p.1 and the convergence is

uniform on any bounded interval. We proceed to characterize the limit process as a solution

of a martingale problem with operator L, where the operator is defined as

Lf(x) =
〈
∇f(x), b(x)

〉
for any f ∈ C1

0 (collection of C1 functions with compact support).

Note that the martingale problem mentioned above has a unique solution. This is mainly

due to the fact that the associated ordinary differential equation has a unique solution owing

to the Lipschitz continuity of b(·, α) for each α ∈ M. For a detailed proof of a similar but

more complex case, see [46, Lemma 7.18].

To characterize the limit, it suffices to show that

f(x(t))− f(x(0))−
∫ t

0

Lf(x(u))du is a martingale. (3.26)

To this end, let h(·) be any bounded and continuous function, t, s ≥ 0, κ > 0 be an arbitrary

positive integer, tl ≤ t with l ≤ κ. To verify (3.26), it suffices to show

Eh(x(tl) : l ≤ κ)[f(x(t+ s))− f(x(t))−
∫ t

0

Lf(x(u))du] = 0. (3.27)

We begin with the verification with the sequence indexed by ε. By the weak convergence

and the Skorohod representation,

Eh(xε(tl) : l ≤ κ)[f(xε(t+ s))− f(xε(t))]

→ Eh(x(tl) : l ≤ κ)[f(x(t+ s))− f(x(t))] as ε→ 0.
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It is also easily seen that

Eh(xε(tl) : l ≤ κ)[f(xε(t+ s))− f(xε(t))−
∫ t

0

Lεf(xε(u))du] = 0,

where for each V (·, i) ∈ C1
0 ,

LεV (x, i) =
〈
∇V (x, i), b(x, i)

〉
+Qε(t)V (x, ·)(i), i ∈M,

with Qε(t) = (qεij(t)) and

Qε(t)V (x, ·)(i) =
m∑
j=1

qεij(t)V (x, j), i ∈M,

for each V (·, i) ∈ C1
0 and i ∈ M. Since the function f(·) is independent of i ∈ M,∑m

j=1 q
ε
ij(t)f(x) = 0. Thus

Eh(xε(tl) : l ≤ κ)[

∫ t+s

t

Lf(xε(u))du]

= Eh(xε(tl) : l ≤ κ)[

∫ t+s

t

〈
∇f(xε(u)), b(xε(u), αε(u))

〉
du].

Note that ∫ t+s

t

〈
∇f(xε(u)), b(xε(u), αε(u))

〉
du

=
m∑
i=1

∫ t+s

t

〈
∇f(xε(u)), b(xε(u), i)

〉
νi(u)du

+
m∑
i=1

∫ t+s

t

〈
∇f(xε(u)), b(xε(u), i)

〉
[I{αε(u)=i} − νi(u)]du.

(3.28)

We shall show that the last term in (3.28) contributes to a limit zero. To proceed, we par-

tition the interval [t, t+ s] as follows: For 0 < ∆ < 1, let t0 = t < t1 < t2 < · · · < tN ≤ t+ s

such that tk = ε1−∆(k + 1). For simplicity, we let tN = t+ s; the modification is straightfor-

ward otherwise. In addition, it suffices to work on a fixed i ∈ M. Using the partition, and

realize that xε(·) changes relatively slowly compared to αε(·). In each subinterval [tk, tk+1],

we can approximate
〈
∇f(xε(u)), b(xε(u), αε(u))

〉
by
〈
∇f(xε(tk)), b(x

ε(tk), α
ε(tk))

〉
, a piece-

wise constant function. The difference of the about two goes to 0 owing to the smoothness



32

of f(·) and b(·, i) and the selection of the partition [tk, tk+1]. Note that the total number of

subintervals is bs/ε1−∆c, where bzc is the usual floor function and gives the integer part of

z for any z ∈ R. Thus,

lim
ε→0

Eh(xε(tl) : l ≤ κ)

bs/ε1−∆c∑
k=1

∫ t+s

t

〈
∇f(xε(u)), b(xε(u), i)

〉
[I{αε(u)=i} − νi(u)]du

= lim
ε→0

Eh(xε(tl) : l ≤ κ)

bs/ε1−∆c∑
k=1

∫ tk+1

tk

〈
∇f(xε(tk)), b(x

ε(tk), i)
〉
[I{αε(u)=i} − νi(u)]du.

Detailed computation with the use of [46, Theorem 7.2] yields that the limit in the last

expression is nothing but 0. Likewise it can be shown that

lim
ε→0

Eh(xε(tl) : l ≤ κ)

bs/ε1−∆c∑
k=1

∫ tk+1

tk

〈
∇f(xε(u)), b(xε(u), i)

〉
νi(u)du

= lim
ε→0

Eh(xε(tl) : l ≤ κ)

bs/ε1−∆c∑
k=1

∫ tk+1

tk

〈
∇f(xε(tk)), b(x

ε(tk), i)
〉
νi(u)du

= Eh(x(tl) : l ≤ κ)

∫ t+s

t

〈
∇f(x(u)), b(x(u), i)

〉
νi(u)du.

This leads to

lim
ε→0

Eh(xε(tl) : l ≤ κ)

∫ t+s

t

〈
f(xε(u)), b(xε(u), αε(u))

〉
du

= Eh(x(tl) : l ≤ κ)

∫ t+s

t

〈
∇f(x(u)), b(x(u))

〉
du.

Piecing together the arguments used thus far, the desired limit is obtained. 2

Remark 3.17. Strictly speaking, the b(x) above should be written as b(x, t) due to the t-

dependence of the quasi-stationary distribution. Since b(x, i) is not a function that depends

on t explicitly, we use b(x) to represent the average.

Lemma 3.18. Assume the conditions of Lemma 3.16. Then the set of solutions {xε(·) : ε >

0} is a compact subset of C0,T (Rk) a.s.
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Proof. First note that

|xε(t)| ≤ |x0|+
∫ t

0

m0∑
i=1

|b(xε(s), i)I{αε(s)=i}|ds

≤ |x0|+K

∫ t

0

(1 + |xε(s)|)ds

≤ |x0|+K

∫ t

0

(1 + sup
0≤u≤s

|xε(u)|)ds.

Thus,

sup
0≤t≤T

|xε(t)| ≤ |x0|+K

∫ T

0

(1 + sup
0≤u≤s

|xε(u)|)ds.

An application of Gronwall’s inequality implies that sup0≤t≤T |xε(t)| ≤ K < ∞ a.s. Thus

{xε(·)} is uniformly bounded. In the above and hereafter, K is a generic positive constant

whose values may change for different appearances.

It follows that

|xε(t+ s)− xε(t)| ≤
∫ t+s

t

m0∑
i=1

sup
t≤u≤t+s

|b(xε(u), i)I{αε(u)=i}|du

≤ Ks a.s.

Thus, {xε(·)} is equicontinuous a.s. By the well-known Ascoli-Arzelá theorem, the desired

compactness follows. 2

We say that an H functional exist if there is a function H(·, ·, ·) such that

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
b(ϕ(s), αε(s)), β(s)

〉
ds} =

∫ T

0

H(ϕ(s), τ(s), s)ds,

for any step functions ϕ(s) and τ(s) in Rk. Similarly to Theorem 3.10, we have the following

theorem to guarantee the existence of the H functional.

Theorem 3.19. Under the conditions of Lemma 3.16, there exists a function H : Rk×Rk×

[0, T ]→ R such that

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
b(ϕ(s), αε(s)), τ(s)

〉
ds} =

∫ T

0

H(ϕ(s), τ(s), s)ds, (3.29)
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for any step functions ϕ(s) and τ(s) on the interval [0, T ] with values in Rk, and for any

i ∈M. Moreover, H is jointly continuous in its variables and convex in the second argument.

Proof. Let ϕ(s) and τ(s) be step functions and ϕk and τk be their values on interval

[tk−1, tk), for 0 ≤ t0 < t1 < · · · < tn = T, where tk = k∆ for k < n and n = b T
∆
c+ 1. In view

of the Markov property, we can write

limε→0 ε logEi exp{1

ε

∫ T

0

〈
b(ϕ(s), αε(s)), τ(s)

〉
ds}

= lim
ε→0

ε logEi exp{1

ε

∫ t1

0

〈
b(ϕ1, α

ε(s)), τ1

〉
ds}

×Eαε(t1) exp{1

ε

∫ t2

t1

〈
b(ϕ2, α

ε(s)), τ2

〉
ds} × · · ·

×Eαε(tn−1) exp{1

ε

∫ tn

tn−1

〈
b(ϕn, α

ε(s)), τn
〉
ds}.

Applying Theorem 3.10, we obtain

lim
ε→0

ε logEi exp{1

ε

∫ tk

tk−1

〈
b(ϕk, α

ε(s)), τk
〉
ds} = H(ϕk, τk, tk−1)(tk − tk−1) + o(∆).

Estimating the same way on each interval [tk−1, tk) gives us

lim
ε→0

ε logEi exp{1

ε

∫ T

0

〈
b(ϕk, α

ε(s)), τk
〉
ds} =

n∑
k=1

H(ϕk, τk, tk−1)(tk − tk−1) +
T

∆
o(∆).

Letting ∆→ 0, (4.31) is proved. Similar to the proof of Theorem 3.10, it can be shown that

H is jointly continuous and convex in τ. With the existence of H functional we are ready to

present the following theorem. Recall that Cx
0,T (Rk) = {ϕ :∈ C0,T (Rk), ϕ(0) = x}.

Theorem 3.20. Under the conditions of Theorem 3.19, as ε → 0, for any s, δ, h > 0 and

ϕ ∈ Cx
0,T (Rk),

P{ρ0T (xε, ϕ) < δ} ≥ exp{−1

ε
(I(ϕ) + h)},

P{ρ0T (xε,Φx(s)) > δ} ≤ exp{−1

ε
(s− h)},
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where Φx(s) = {ϕ ∈ Cx
0,T (Rk) : I(ϕ) ≤ s}, and

I(ϕ) =


∫ T

0

L(ϕ(s), ϕ̇(s), s)ds, if ϕ ∈ C0,T (Rk) is absolutely continuous,

∞ otherwise,

L(x, γ, s) = sup
τ∈Rk

[
〈
γ, τ
〉
−H(x, τ, s)].

Proof. The proof uses similar approach as that of [18, Theorem 4.1]. The difference is that

we need to deal with nonhomogenous Markov chain, i.e., the H functional and its Legendre

transform are time dependent. Moreover, we treat the linear growth in x of b(x, i) rather

than bounded b(x, i) in [18, Theorem 4.1]. Starting with Lemma 2.4, fix x and ∆ > 0. Let

ψ(·) denote a function that is constant ψi on [(i− 1)∆, i∆). Define the function xψ,εt by

xψ,εt = x+

∫ t

0

b(ψ(s), αε(s))ds.

Let τ1, τ2, . . . , τn ∈ Rk. We define τ(s) as the piecewise constant function on [0, T ] that for

s ∈ [(i− 1)∆, i∆) takes value
n∑
k=i

τk, (i = 1, 2, 3, . . . , n). Denoting the function hxε (τ1, . . . , τn)

by

hxε (τ1, . . . , τn) = ε logE exp{1

ε

n∑
k=1

〈
τk, x

ψ,ε
k∆

〉
}.

Note that
n∑
k=1

〈
τk, x

ψ,ε
k∆

〉
=
〈 n∑
k=1

τk,

∫ ∆

0

b(ψ(s), αε(s))ds
〉

+
〈 n∑
k=2

τk,

∫ 2∆

∆

b(ψ(s), αε(s))ds
〉

+ · · ·+
〈
τn,

∫ n∆

(n−1)∆

b(ψ(s), αε(s))ds
〉

+
〈 n∑
k=1

τk, x
〉
.

Hence, by the definition of τ(s), we can write

hxε (τ1, . . . , τn) = ε logE exp{1

ε

∫ T

0

〈
τ(s), b(ψ(s), αε(s))

〉
}ds+

〈 n∑
k=1

τk, x
〉
.

By virtue of Theorem 3.19, we have the limit

lim
ε→0

hxε (τ1, . . . , τn) = hx(τ1, . . . , τn) +
〈 n∑
k=1

τk, x
〉
,
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and

hx(τ1, . . . , τn) =

∫ T

0

H(ψ(s), τ(s), s)ds.

We can show that hx(τ1, . . . , τn) is convex and differentiable in the variables τ1, . . . , τn.

Then we define the Legendre transform of hx(τ1, . . . , τn). Let γ(s) be a piecewise linear

function on [0, T ] having jumps at integer multiples of ∆ and taking value γk, γ0 = x, at k∆.

If x = 0, then by definition of the Legendre transform and mean-value theorem,

l0(γ1, . . . , γn) = sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−
∫ T

0

H(ψ(s), τ(s), s)ds]

= sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−

n∑
k=1

∫ k∆

(k−1)∆

H(ψ(s), τ(s), s)ds]

= sup
τ1,...,τn

[
n∑
k=1

〈
γk, τk

〉
−∆

n∑
k=1

H(ψk,
n∑
i=k

τi, sk)ds]

= ∆ sup
τ2,...,τn

{sup
τ1

[
〈γ1

∆
, τ1 +

n∑
i=2

τi
〉
−H(ψ1, τ1 +

n∑
i=2

τi, s1)ds]

+[
n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(ψk,
n∑
i=k

τi, sk)ds]}

= ∆ sup
τ2,...,τn

{L(ψ1,
γ1

∆
, s1) + [

n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(ψk,
n∑
i=k

τi, sk)ds]}

= ∆L(ψ1,
γ1

∆
, s1) + ∆ sup

τ2,...,τn

[
n∑
k=2

〈γk − γ1

∆
, τk
〉
−

n∑
k=2

H(ψk,
n∑
i=k

τi, sk)ds]

= · · ·

=
n∑
k=1

L(ψk,
γk − γk−1

∆
, sk), where sk ∈ [(k − 1)∆, k∆).

(3.30)

Observe that

lx(γ1, . . . , γn) = l0(γ1 − x, . . . , γn − x),

we have the same estimates (3.30) for arbitrary x. Furthermore, we can choose sufficient

small ∆ such that

|lx(γ1, . . . , γn)−
∫ T

0

L(ψ(s), γ̇(s), s)ds| < δ, (3.31)
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for any δ > 0. If we let ηε = (xψ,ε∆ , xψ,ε2∆, . . . , x
ψ,ε
n∆), and τ = (τ1, . . . , τn). Then

hx(τ1, . . . , τn) = lim
ε→0

ε logE exp{1

ε

〈
τ, ηε

〉
}.

For ei and gi ∈ Rk, define

Φ∆(s) = {e = (e1, . . . , en) : l(e1, . . . , en) ≤ s} for s <∞,

ρ(e, g) = max
1≤i≤n

|ei − gi|.

Let ϕ(·) denote a continuous function and ϕ∆ denote the vector {ϕ(i∆), i ≤ n}. Define

SψT (ϕ) =

∫ T

0

L(ψ(s), ϕ̇(s), s)ds,

Φψ
x (s) = {ϕ(·) ∈ C0,T (Rk) : ϕ(0) = x, SψT (ϕ) ≤ s},

respectively. It can be shown that SψT (ϕ) is lower semi-continuous in both ϕ and ψ, and Φψ
x (s)

is compact. Applying Lemma 2.4 and Lemma 3.15, we obtain a large deviation estimate for

the samples of xψ,ε and ϕ, with sampling interval ∆,

P{ρ̄(ηε, ϕ∆) < δ} ≥ exp{−1

ε
(lx(ϕ(∆), . . . , ϕ(n∆)) + h)}

P{ρ̄(ηε,Φ∆(s)) > δ} ≤ −(s− h)

ε
.

(3.32)

Then following the same proof as that of Lemma 3.15 and using the Lipschitz continuity

of the trajectories of xε,ψ and ϕ for which I(ϕ) < ∞, we obtain that for each fix ψ and ϕ,

s ≥ 0, h > 0, and δ > 0, there is an ε > 0 such that for ε < ε0

P{ρ0T (xψ,ε, ϕ) < δ} ≥ −(SψT (ϕ) + h)

ε
,

P{ρ0T (xψ,ε,Φx(s)) > δ} ≤ −(s− h)

ε
.

(3.33)

Similar to [18, Lemma 5.2], we can prove that for any step function sequence ψn converging

to some function ϕ ∈ C0,T (Rk), there exists a sequence ϕn ∈ C0,T (Rk), uniformly converging

to ϕ such that

lim sup
n→∞

∫ T

0

L(ψn(s), ϕ̇n(s), s) ≤ ST (ϕ).
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Applying this fact, for any ϕ ∈ C0,T (Rk) and S0T (ϕ) < ∞, and any λ > 0, we can choose

step function ψλ and ϕλ ∈ C0,T (Rk) such that

ρ0T (ϕλ, ϕ) < λ,

sup
0≤t≤T

|ψλ(t)− ϕ(t)| < λ, and∫ T

0

L(ψλ(s), ϕ̇λ(s), s)ds < ST (ϕ) + h.

Then by the Lipschitz continuity of the function b(x, i), we have

|xε(t)− ϕ(t)| ≤ |xε(t)− xϕ,ε(t)|+ |xϕ,ε(t)− xψλ,ε(t)|

+|xψλ,ε(t)− ϕλ|+ |ϕλ − ϕ(t)|

≤ K

∫ t

0

|xε(s)− ϕ(s)|ds+K

∫ t

0

|ϕ(s)− ψλ(s)|ds+ ρ0T (xψ
λ,ε, ϕλ) + λ

≤ ρ0T (xψ
λ,ε, ϕλ) + λ+Ktλ+K

∫ t

0

|xε(s)− ϕ(s)|ds.

Applying Gronwall’s inequality,

P{ρ0T (xε, ϕ) < δ} ≥ P{ρ0T (xψ
λ,ε, ϕλ) < δ̃}

provided that λ and δ̃ are sufficiently small. Directly computation and estimate (3.33) yield

P{ρ0T (xε, ϕ) < δ} ≥ P{ρ0T (xψ
λ,ε, ϕλ) < δ̃}

≥ exp{−S
ψλ(ϕλ) + h

ε
}

≥ exp{−I(ϕ) + 2h

ε
}

for sufficiently small ε. To get the second inequality, by means of Lemma 3.18, the trajectories

of xε forms a compact set in C0,T (Rk). Let us denote it by F. Let F1 be the compact set

obtained from F by omitting the δ/2 neighborhood of the set Φx(s). Then applying the

lower semi-continuity of SψT (ϕ) in both ψ and ϕ, for any h > 0 there exists a δh such that

SψT (ϕ) > s− h/2 if ρ0T (ϕ, ψ) < δh and I(ϕ) > s for any ϕ ∈ F1. Denote δ̃ = δh/(4KT + 2).

By the compactness of F , choose finite δ̃ net of it and let ϕ1, . . . , ϕn be the elements of this
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net which belonging to F1. It can be seen that

P{ρ0T (xε,Φx(s)) > δ} ≤
n∑
i=1

P{ρ0T (xε, ϕi) < δ̃}, if δ̃ < δ.

Again, relying on the Lipschitz continuity of b(x, i), for ρ0T (ϕ, ψ) < δ̃, we obtain that

P{ρ0T (xε, ϕ) < δ̃} ≤ P{ρ0T (xε,ψ, ϕ) < (2KT + 1)δ̃}.

We can choose step functions ψ1, . . . , ψn such that ρ0T (ψi, ϕi) <
δ̃
2
. The above two inequalities

imply that

P{ρ0T (xε,Φx(s)) > δ} ≤
n∑
i=1

P{ρ0T (xε,ψi , ϕi) ≤ (2KT + 1)δ̃}.

Estimating every terms on the right-hand side by (3.33), By Lemma 3.14 and the definition

of δh

P{ρ0T (xε,ψi , ϕi) < (2KT + 1)δ̃} = P{ρ0T (xε,ψi , ϕi) < δh/2}

≤ exp{− inf{SψiT (ϕ) : ρ0T (ϕ, ϕi) < δh/2} − h/4
ε

}

≤ exp{−s− h
ε
}.

Finally, we get the lower estimate

P{ρ0T (xε,Φx(s)) > δ} ≤ exp{−s− h
ε
}.

The desired result thus follows. 2

Applying Lemma 3.14, we have the following large deviation estimate immediately.

Theorem 3.21. Under assumption of Lemma 3.16, then for each set B ⊂ Cx
0,T (Rk),

− inf
ϕ∈B◦

I(ϕ) ≤ lim inf
ε→0

ε logP{xε ∈ B}

≤ lim sup
ε→0

ε logP{xε ∈ B}

≤ − inf
ϕ∈B

I(ϕ),



40

where

I(ϕ) =


∫ T

0

L(ϕ(s), ϕ̇(s), s)ds, if ϕ ∈ C0,T (Rk) is absolutely continuous,

∞ otherwise,

L(x, γ, s) = sup
τ∈Rk

[
〈
γ, τ
〉
−H(x, τ, s)],

B◦ and B denote interior and closure of B in Cx
0,T (Rk), respectively.

3.6 Application of LDP in LQ Problem

This section is devoted to the application to the LQ problem given in Example 3.1. As

in [49], we can show that Kε(s, i) → K(s) uniformly on [0, T ] as ε → 0, where K(s) is the

unique solutions to the following differential equation:

K̇(s) = −K(s)A(s)− A′(s)K(s)−M(s) +K(s)BN−1B′(s)K(s), (3.34)

with K(T ) = D, with

A(s) =
m∑
j=1

νj(s)A(j), M(s) =
m∑
j=1

νj(s)M(j) and

BN−1B(s) =
m∑
j=1

νj(s)B(j)N−1(j)B′(j).

Using the idea presented in [49], we will be able to obtain near-optimal control of the system.

The idea is to use the optimal control of the limit system to build controls and apply that

to the original system.

Using the weak convergence method together with (3.8) and similar to Section 3.5, we

are able to show that xε(·) converges weakly to x(·), which is a solution of

ẋ(t) =
(
A(t)x(t)−BN−1B′(t)K(s)

)
x(t). (3.35)

To see how good the approximation is, one can estimate the error ρ0T (xε, x). To do this,
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we can introduce an intermediate process xε(t) defined as follows:

ẋε =
(
A(αε(t))−B(αε(t))N−1(αε(t))B′(αε(t))K(t)

)
xε(t),

with xε(s) = x, Here we used the constructed near optimal control

uε(t, α, x) = −N−1(α)B′(α)K(t)x.

By considering the difference (xε(t)− xε(t))2 and using Gronwall’s inequality,

ρ0T (xε, xε) ≤ C

√
sup
t∈[0,T ]

∫ t

0

(
Kε(αε(r), r)−K(r)

)2

dr = C

√∫ T

0

(
Kε(αε(r), r)−K(r)

)2

dr,

for some constant C. Note that Kε and K are both deterministic functions, the error

(Kε−K) can be determined by simple numerical comparison. Using the triangle inequality

ρ0T (xε, x) ≤ ρ0T (xε, xε) + ρ0T (xε, x),

one remains to estimate ρ0T (xε, x). This can be done with our large deviations result. By

Theorem 3.21, for any δ > 0 there exists d0 > 0 such that

P (ρ0T (xε, x) ≥ δ) ≤ exp(−d0

ε
),

for sufficient small ε. To summarize the discussion up to now, we have the following propo-

sition.

Proposition 3.22. There exist positive constants C and d0 such that

ρ0T (xε, x) ≤ C

√∫ T

0

(
Kε(αε(r), r)−K(r)

)2

dr + exp(−d0

ε
),

for sufficient small ε.
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Chapter 4: LDP of System Identification

Traditional system identification concentrates on convergence and convergence rates of esti-

mates in suitable senses, such as in mean squares, in distribution, or with probability one.

Such asymptotical analysis is inadequate in applications that require a finite data analysis.

Especially, for system diagnosis and its related complexity analysis, it is essential to under-

stand probability of identification errors over a finite data window. For example, in real-time

diagnosis, parameter values must be evaluated to judge if they belong to a “normal” region

or a “fault” has occurred. This set-based identification amounts to a hypothesis testing,

which relies on a probabilistic characterization of parameter estimates.

To address such applications, this work investigates identification errors in a probabilis-

tic framework. By considering both space complexity in terms of signal quantization and

time complexity with respect to data window sizes, this study provides a new perspective to

understand the fundamental relationship between probabilistic errors and resources, which

may represent data sizes in computer usage, computational complexity in algorithms, sample

sizes in statistical analysis, channel bandwidths in communications, etc. This relationship

is derived by establishing large deviations principles for quantized identification which links

binary-valued data at one end and regular sensor at the other. Under some mild conditions,

we obtain both large deviation upper and lower bounds. In addition, our results accommo-

date typical independent and identically distributed noise sequences, as well as more general

classes of mixing-type noise sequences.

Traditional system identification under regular sensors is a mature field with many sig-

nificant results concerning identification errors, convergence, convergence rates, under deter-
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ministic or stochastic noises, and their applications in model validation, adaptive control,

diagnosis, signal processing, etc. Our study departs from the existing literature from several

perspectives. First, rather than concentrating on convergence of the parameter estimates

and/or treating asymptotic distributions of centered and suitably scaled sequence of the

estimates, we investigate large deviations of the parameter estimators, which provide an ac-

curate characterization on dependence of probabilistic identification errors on data window

sizes. Second, this study requires different techniques from traditional tools for identifica-

tion convergence analysis. Third, we are dealing with large deviation principles on quantized

identification, which represents a first attempt in this direction. Finally, our results target

different applications and delineate the rate functions of the estimators that resolve some

intriguing questions defying clarifying answers under other identification frameworks.

To elaborate our motivations, consider the following scenario. Suppose a sequence of

vector-valued estimates {θ̂N} of the true parameter θ has been generated by an identifica-

tion algorithm, and under suitable (and rather broad) conditions, the sequence is strongly

consistent in the sense of convergence with probability one (w.p.1). We may further es-

tablish that
√
N(θ̂N − θ) converge in distribution to a normal random variable with mean

zero and a derived covariance. Such estimates are termed as consistent (convergence to the

true value) with the scaling factor and asymptotic normality providing rates of convergence.

They, however, do not specify errors in probability at a finite time. Suppose that we are

interested in the quality of estimation in terms of P (|θ̂N − θ| > a) for a given a > 0. The

strong consistency or the asymptotic normality can affirm

P (|θ̂N − θ| > a)→ 0 as n→∞, (4.1)
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but cannot give more precise bounds for a finite N . Large deviation principles represent

probabilistic errors as a function of N by deriving a rate function. When both upper and

lower bounds on rate functions are derived, they can be used to characterize guaranteed error

bounds in probability using the upper bound and study complexity issues using the lower

bound. As such they offer distinctive aspects of identification errors beyond conventional

measures of identification accuracy.

In this dissertation, large deviation principles on identification accuracy are developed

under both regular sensors and quantized observations. The setup for identification under

regular sensors follows the persistent identification framework introduced in [38], whereas

system identification with binary and quantized sensors is developed within the quantized

identification setup of [44]. To accommodate common practical scenarios of correlated noises,

this work deals with noises of mixing types. On the other hand, detailed treatments for

uncorrelated noises are also presented separately, due to their relative simplicity and clarity

of the results. Consequently, they allow a clear interpretation of the results and help in

understanding the key issues involved.

4.1 System Setup

Consider a single-input-single-output (SISO) linear time-invariant (LTI) stable discrete-time

system

y(t) =
∞∑
i=0

aiu(t− i) + d(t), t = t0 + 1, . . . , (4.2)

where {y(t)} is the noise corrupted observation, {d(t)} is the disturbance, {u(t)} is the input

with u(t) = 0, t < 0, and a = {ai, i = 0, 1, . . .}, satisfying ‖a‖1 =
∑∞

i=0 |ai| <∞. To proceed,
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we define

θ = (a0, a1, . . . , am0−1)′ ∈ Rm0 , θ̃ = (am0 , am0+1, . . .)
′, (4.3)

where z′ denotes the transpose of z, θ is the vector-valued modeled part of the parameters,

and θ̃ is known as the unmodeled dynamics. Separation of the modeled part and unmod-

eled dynamics is a standard modeling practice to limit model complexity [37, 38, 50], which

enables us to treat parameters within a finite dimensional space; see also related work [?]

and references therein. This model complexity reduction produces model errors, due to the

“truncation.”

Throughout this chapter, we assume that the input u is uniformly bounded ‖u‖∞ ≤

umax. After applying u to the system and taking N output observations in the time interval

t0, . . . , t0 +N − 1, the observation can be rewritten as

y(t) = ϕ′(t)θ + ϕ̃′(t)θ̃ + d(t), (4.4)

where

ϕ(t) = (u(t), u(t− 1), . . . , u(t−m0 + 1))′, and

ϕ̃(t) = (u(t−m0), u(t−m0 − 1), . . .)′,
(4.5)

or, in a vector form

YN(t0) = ΦN(t0)θ + Φ̃N(t0)θ̃ +DN(t0),

where $N(t0) = ($(t0), . . . , $(t0 +N−1))′ for $N(t0) being YN(t0), or DN(t0), or ΦN(t0), or

Φ̃N(t0). Estimates will be derived from this relationship, depending on the sensing schemes

used for y. Large deviations of the estimates will be investigated accordingly.

Remark 4.1. Typical linear finite-dimensional stable systems have rational transfer func-

tions. When represented them by their impulse responses, they are always IIR (infinite
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impulse response), with a decaying tail. Consequently, it is essential that the model struc-

ture (4.2) starts with an IIR expression.

Note a truncation on the IIR is used to reach an FIR (finite impulse response) model plus

an unmodeled dynamics. There are many other approaches to approximate a higher-order

or infinite-dimensional system, including more general base functions, state space model

reduction, Hankel-norm reduction, etc. It turns out that the FIR model allows a much

simpler algorithm development than other approaches. Consequently, we have adopted it

here.

4.2 LDP of System Identification under I.I.D. Noise

We first consider system identification under i.i.d. noises. Extension to correlated noises

will be treated later. We begin by making the following assumptions. We should emphasize

here that since we consider open-loop identification problems, the input signal u is part of

experimental design and can be selected to enhance the identification process.

(A1) (a) {d(t)} is a sequence of independent and identically distributed zero-mean random

variables. Its moment generating function exists and is denoted by g(t). (b) ΦN(t0)

has full column rank. (c) The input signal {u(t)} is periodic with period m0.

Remark 4.2. The condition (b) is a persistent excitation condition, ensuring that the input

is sufficiently rich for parameter estimation. When the input signal is periodic, this condition

can be substantially simplified. The condition (c) is quite unique. In our previous work

[38,41,44], we have demonstrated some key desirable features of periodic inputs: (1) Under

a periodic full-rank input, a complicated identification problem can be decomposed into a



47

finite number of very simple identification problems; (2) Under a periodic full-rank input,

we can identify a rational transfer function under quantized observations without essential

difficulties; (3) Under an externally applied periodic full-rank input, we can identify a system

in the closed-loop setting with guaranteed persistent excitation; (4) For applications of laws

of large numbers, under periodic inputs, estimation errors can be written as direct averages,

leading to possibility of deriving not only upper bounds, but also CR lower bounds. However,

non-periodic signals can certainly be used. In this case, without the above benefits, we can

still derive upper bounds on estimation errors under the persistent excitation condition (b).

But the results will be more conservative and lower bounds are harder to obtain. Since we

aim to investigate complexity issues, tight error bounds are essential. Consequently, this

chapter focuses on periodic full-rank inputs.

4.2.1 LDP of System Identification with Regular Sensors

Consider an m0-periodic signal u, and denote N = km0 with an integer k. To simplify the

expression, we write Φm0(t0) as Φ0. We can write ΦN(t0) and Φ̃N(t0) in (4.5) as

ΦN(t0) = (Im0 , . . . , Im0)′Φ0,

Φ̃N(t0) = (ΦN(t0),ΦN(t0), . . .),

where Im0 denotes the m0 × m0 identity matrix. In what follows, we apply the standard

least squares estimation method. Denote L(t0) = (Φ′N(t0)ΦN(t0))−1Φ′N(t0). Then

L(t0) =
1

k
Φ−1

0 (Im0 , . . . , Im0). (4.6)

Define the estimator θ̂k = L(t0)YN(t0). Then

θ̂k = θ + L(t0)Φ̃N(t0)θ̃ + L(t0)DN(t0). (4.7)
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It follows that the deterministic part of the identification error becomes

ηdk = (Im0 , Im0 , . . .)θ̃. (4.8)

Since ηdk is independent of k, we write it as ηd. It is easily seen from (4.8) that ‖ηd‖1 ≤ ‖θ̃‖1.

The stochastic part of the identification error is

ηsk = Φ−1
0 (U1

k , . . . , U
m0
k )′, where

U i
k =

1

k

k−1∑
l=0

d(t0 + lm0 + i), for i = 1, . . . ,m0.
(4.9)

Since {d(t)} is an i.i.d sequence, ηsk tends to 0 as k → ∞, w.p.1. Hence, lim
k→∞

θ̂k = θ +

ηd, w.p.1., where ‖ηd‖1 ≤ ‖θ̃‖1. In Wang and Yin [38], identification error bounds were

obtained by using a combined approach of stochastic averaging and worst-case identification

methods. To proceed, our task here is to establish probabilistic error bounds on ηsk by the

large deviations principle.

Remark 4.3. Typical probabilistic errors of identification problems only consider the form

P (|θ̂k − θ| ≥ a) for some a > 0. The LDP is a more general and refined property in that it

permits probabilistic characterization of the estimates on any open or closed sets. For ease

of presentation, the statement of the above theorem is concerned with an open set B. It can

be stated in terms of a closed set B. If a closed set B is used, on the left-hand side, replace

B by its interior B0 and on the right-hand side replace B by B. In a more general set, we

can state the result using a Borel set B together with B0 and B used on the left side and

right side of the inequality, respectively.

To proceed, consider Uk = (U1
k , . . . , U

m0
k ) defined in (4.9) and let G be a linear function

on Rm0 defined by G(x) = θ + ηd + Φ−1
0 x, x ∈ Rm0 , where ηd comes from the unmodeled
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dynamics term. Note that θ̂k = G(Uk) and Φ0 is full rank. To establish the LDP on θ̂k, we

will first find the rate function of {Uk} and then apply the contraction principle Lemma 2.5

to derive the rate function of θ̂k. For τ = (τ1, . . . , τm0)′ the H-functional of {Uk} is

H(τ) = lim
k→∞

1

k
logE exp{k

〈
Uk, τ

〉
}

= lim
k→∞

1

k
logE exp{

k−1∑
l=0

m0∑
i=1

d(t0 + lm0 + i)τi}

= logE exp{
m0∑
i=1

d(t0 + i)τi} =

m0∑
i=1

log g(τi).

The Legendre transform of H is

I(β) = sup
τ∈Rm0

[
〈
β, τ

〉
−H(τ)]

= sup
τ1,...,τm0

[

m0∑
i=1

(βiτi − log g(τi))].
(4.10)

Hence, by Lemma 2.4, I(β) is the rate function of {Uk}.

Theorem 4.4. Under Assumption (A1), Ĩ(β̃) = I(G−1(β̃)) = I(Φ0(β̃ − θ − ηd)) is the rate

function for {θ̂k}. That is, for any open set B in Rm0 , (2.2) holds with I(β) replaced by Ĩ(β̃),

Xk = θ̂k, and λk = (1/k), respectively.

Proof. Since θ̂k = G(Uk) and G is bijection and continuous, the result is followed by the

contraction principle Lemma 2.5 . 2

Remark 4.5. If the i.i.d. noise {d(l)} has the standard normal distribution, then the rate

function Ĩ(β̃) has a simple form Ĩ(β̃) =
|Φ0(β̃ − θ − ηd)|2

2
, where | · | is the Euclidian norm.

4.2.2 LDP of System Identification with Binary Sensors

Suppose that the output y is measured by a binary sensor with a known threshold C. That

is, we observe only s(t) = χ{y(t)≤C} =

 1, if y(t) ≤ C

0, otherwise.
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(A2) (a) {d(t)} is a sequence of independent and identically distributed zero-mean random

variables with distribution function F (x), which is a bijection, continuous function

whose inverse F−1 exists and is continuous. The moment generating function of d(t)

exists. (b) ‖θ̃‖1 ≤ η̃.

In [44], Wang, Zhang, and Yin proposed an algorithm to determine θ, obtained its con-

vergence, and studied the corresponding asymptotic distribution of normalized errors. Using

the setup in (4.4), we recall the algorithm.

Algorithm.

Step 1. Define Zk = (Z1
k , . . . , Z

m0
k )′ with

Zi
k =

1

k

k−1∑
l=0

s(t0 + lm0 + i), i = 1, . . . ,m0. (4.11)

Note that the event {y(t0+lm0+i) ≤ C} is the same as the event {d(t0+lm0+i) ≤ c̃i},

where c̃i = C− C̃i and C̃i is the i-th component of Φ0θ+Φ̃0θ̃. Denote c̃ = (c̃1, . . . , c̃m0)′.

Then, Zi
k is the value of the k-sample empirical distribution.

Step 2. Since F is invertible, we can define

γik = F−1(Zi
k), i = 1, . . . ,m0 and

γk = (γ1
k, . . . , γ

m0
k )′ = F−1(Zk),

Lk = C1− γk, where 1 = (1, . . . , 1)′.

(4.12)

Step 3. When the input u is m0-periodic and Φ0 is invertible, we define the estimate

by θ̂k = Φ−1
0 Lk.

Remark 4.6. In [44], the following result was proved. Under Assumption (A2), if the input

u is m0-periodic and Φ0 is invertible, θ̂k → θ̂ w.p.1 as k → ∞. Furthermore, ‖θ̂ − θ‖1 ≤ η̃,
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where θ is the true vector-valued parameter, and η̃ > 0 is given in Assumption (A2)(2),

which represents the size of the unmodeled dynamics.

To proceed, define functions F and F−1 on Rm0 by F (v) = (F (v1), . . . , F (vm0))′ and

F−1(v) = (F−1(v1), . . . , F−1(vm0))′ for v ∈ Rm0 . We now derive the large deviations principle

for the identification problem. Define the function Ĝ : Rm0 → Rm0 by Ĝ(x) = Φ−1
0 [C1 −

F−1(x)] and write θ̂k = Ĝ(Zk). Since F and F−1 are bijection and continuous, we first study

convergence rates of the sequence {Zk} and then apply the contraction principle, Lemma 2.5

, to derive the rate function of the estimates {θ̂k}. First, we find the H-functional of {Zk}

H(τ) = lim
k→∞

1

k
logE exp{k

〈
Zk, τ

〉
}

= lim
k→∞

1

k
logE exp{

k−1∑
l=0

m0∑
i=1

χ{d(t0+lm0+i)≤c̃i}τi}

= logE exp{
m0∑
i=1

χ{d(t0+i)≤c̃i}τi}

=

m0∑
i=1

log[eτibi + (1− bi)],

where bi = P{d(t0) ≤ c̃i}. The Legendre transform of H is given by

I(β) = sup
τ1,...,τm0

[

m0∑
i=1

(βiτi − log(eτibi + 1− bi))]. (4.13)

It is easily seen that I(β) = ∞ if there exists 1 ≤ i ≤ m0 such that βi < 0 or βi > 1. For

0 ≤ βi ≤ 1, i = 1, 2, . . . ,m0, denote H(τ1, . . . , τm0) =
∑m0

i=1(βiτi− log(eτibi + 1− bi)). To find

I(β), setting
∂H(τ1,...,τm0 )

∂τi
= βi − eτibi

eτibi+1−bi = 0, for i = 1, . . . ,m0 leads to

τ ∗i = log
βi(1− bi)
bi(1− βi)

, 0 ≤ βi ≤ 1. (4.14)

Substituting (4.14) into (4.13),

I(β) =

m0∑
i=1

log
ββii (1− bi)βi−1

bβii (1− βi)βi−1
, 0 ≤ βi ≤ 1.
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To summarize,

I(β) =


m0∑
i=1

log
ββii (1− bi)βi−1

bβii (1− βi)βi−1
, 0 ≤ βi ≤ 1, i = 1, . . . ,m0,

∞, otherwise.

Theorem 4.7. The above I(β) is the rate function for the sequence {Zk} defined in (4.11).

For any given open set B in Rm0, (2.2) holds with λk = (1/k) and Xk = Zk, respectively.

Proof. Follows from a direct application of Lemma 2.4, we obtain the result. 2

We now derive explicit solutions to infβ∈B I(β). Without loss of generality, we assume

i = 1. Consider the typical application in which we are interested in P{|Zk − b1| ≥ ε} for

some small ε, namely, B1 = (−∞, b1 − ε]∪ [b1 + ε,∞). Assume that 0 < b1 − ε < b1 + ε < 1.

Since the function

I(β1) =


log

β
β1
1 (1−b1)β1−1

b
β1
1 (1−β1)β1−1

, 0 ≤ β1 ≤ 1,

∞, otherwise

reaches the minimum at b1 and is monotone decreasing in [0, b1] and monotone increasing in

[b1, 1], we have

inf
β1∈B1

I(β1) =


log (b1+ε)(b1+ε)(1−b1)b1+ε−1

b
(b1+ε)
1 (1−(b1+ε))(b1+ε)−1

, b1 ≤ 0.5,

log (b1−ε)(b1−ε)(1−b1)b1−ε−1

b
(b1−ε)
1 (1−(b1−ε))(b1−ε)−1

, b1 > 0.5.

For small ε > 0 and both b1 < 0.5 and b1 > 0.5, infβ1∈B1
I(β) can be approximated using the

Taylor expansion (with respect to ε) by the same expression infβ1∈B1
I(β1) = ε2

2b1(1−b1)
+o(ε2).

As a result, for small ε, the tail probability is dominated by P{|Zk− b1| ≥ ε} ≤ Ke
− ε2

2b1(1−b1)
k

for some K > 0. We point out that E(s(1)− b1)2 = b1(1− b1) is the variance of the binary

sequence and b1(1−b1)/k is the Cramér-Rao lower bound in terms of mean squares estimation

errors of the empirical measure (see [39]). Figure 1 delineates variations on the rate function

I(β) under different values of p.
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Figure 1: Variations of the rate function I(β) with respect to different values of p

Theorem 4.8. Under Assumption (A2), Î(β̂) = I(Ĝ−1(β̂)) = I(F (C1l − Φ0β̂)) is the rate

function for {θ̂k}. That is, for any open set B in Rm0 , (2.2) holds with I(β) replaced by Î(β̂),

Xk = θ̂k, and λk = (1/k), respectively.

Proof. Note that θ̂k = Ĝ(Zk), and Ĝ and Ĝ−1 are bijection and continuous. The result is

obtained by the contraction principle Lemma 2.5.

Remark 4.9. In fact, we can write the rate function Î(·) explicitly as

Î(β̂) =

m0∑
i=1

log
F (C1l− Φ0β̂)

F (C1l−Φ0β̂)i
i (1− bi)F (C1l−Φ0β̂)i−1

b
F (C1l−Φ0β̂)i
i (1− F (C1l− Φ0β̂)i)F (C1l−Φ0β̂)i−1

,

where F (C1l− Φ0β̂)i is the ith component of F (C1l− Φ0β̂).

To illustrate, consider the scaler case m0 = 1. In this case, F (C − Φ0β̂) is reduced to

F (C − ũβ̂) where ũ 6= 0 is a constant. Without loss of generality, assume ũ = 1. Now,
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to obtain P{|θ̂k − θ| ≥ ε}, we select for some small ε, B1 = (−∞, θ − ε] ∪ [θ + ε,∞).

Let λ = F (C − β̂). Since F (·) is a strictly monotone increasing function, β̂ ≤ θ − ε if

and only if λ ≥ F (C − θ + ε) and β̂ ≥ θ + ε if and only if λ ≤ F (C − θ − ε). Denote

B̃ = (−∞, F (C − θ − ε)] ∪ [F (C − θ + ε),∞). It follows that

inf
β̂∈B

Î(β̂) = inf
λ∈B̃

I(λ)

=

 log F (C−θ+ε)F (C−θ+ε)(1−F (C−θ))F (C−θ+ε)−1

F (C−θ)F (C−θ+ε)(1−F (C−θ+ε))F (C−θ+ε)−1 , C − θ ≤ 0,

log F (C−θ−ε)F (C−θ−ε)(1−F (C−θ))F (C−θ−ε)−1

F (C−θ)F (C−θ−ε)(1−F (C−θ−ε))F (C−θ−ε)−1 , C − θ > 0.

For small ε, g(ε) := inf β̂∈B Î(β̂) has g(0) = 0, ġ(0) = 0, g̈(0) = f2(C−θ)
2F (C−θ)(1−F (C−θ)) , where

f(x) = dF (x)/dx is the probability density function. As a result, it can be approximated by

inf
β̂∈B

Î(β̂) =
f 2(C − θ)ε2

2F (C − θ)(1− F (C − θ))
+ o(ε2).

Hence, asymptotically, the tail probability of the estimation error is dominated by

P{|θk − θ| ≥ ε} ≤ Ke−
ε2f2(C−θ)

2F (C−θ)(1−F (C−θ))k

for some K > 0. It is noted that F (C − θ)(1− F (C − θ))/(kf 2(C − θ)) is the Cramér-Rao

lower bound (see [39]) in terms of mean squares estimation errors of θ̂k.

4.2.3 LDP of System Identification with Quantized Data

In this section, we study system identification under quantized observations or equivalently

sensors with multiple thresholds. For clarity and notational simplicity, we develop our results

for the case m0 = 1, namely a gain system. This assumption is not restrictive. General

identification problems can be reduced to a set of identification problems for gains under

periodic full-rank inputs; see [44] for details. Consider the gain system given by

y(l) = u(l)θ + d(l), l = 1, 2, . . . ,
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where u(l) is the input and d(l) is the noise. The output y(l) is measured by a sensor of

m thresholds −∞ < C1 < · · · < Cm < ∞. The sensor can be represented by the indicator

function s(l) = (s1(l), . . . , sm(l))′ where si(l) = χ{Ci−1<y(l)≤Ci}, i = 1, . . . ,m with C0 = −∞

and χA the indicator of the set A. Without loss of generality, assume u(l) ≡ 1 for all l.

Then y(l) = θ + d(l). Under Assumption (A2)(1), {y(l)} is an i.i.d sequence that has the

accumulative distribution function F (·). Let pi = P (Ci−1 < y(l) ≤ Ci) = F (Ci−θ)−F (Ci−1−

θ) := Fi(θ). Consider k measurements on s(l). Then ξik =
1

k

k∑
l=1

si(l), for i = 1, . . . ,m is the

sample relative frequency of y(l) taking values in (Ci−1, Ci]. It follows that ξik is an unbiased

estimator of pi for each k. An estimator θik of θ can be derived from ξik = Fi(θ
i
k). Denote

Gi(x) = F−1
i (x). Consequently, θik = G(ξik) is an estimator for θ. Define Θk = (θ1

k, . . . , θ
m
k )′,

ξk = (ξ1
k, . . . , ξ

m
k )′, and G(v) = (G1(v1), . . . , Gm(vm))′ for v ∈ Rm. It was shown in [39] that

Θk = G(ξk) is an asymptotically unbiased estimator of θ1.

We are interested in the LDP on Θk → θ1. The H-functional of the sequence {ξk} is

H(τ) = lim
k→∞

1

k
logE exp{k

〈
ξk, τ

〉
}∑k

l=1 s
i(l) = log[eτ1p1 + eτ2p2 + · · ·+ eτmpm + 1−

m∑
i=1

pi].

Define τ = (τ1, . . . , τm)′, q(τ) = (eτ1 , . . . , eτm)′, p = (p1, . . . , pm)′, β = (β1, . . . , βm)′. Assume

pi > 0 for i = 1, . . . ,m. Also, define pm+1 = 1 − 1′p and βm+1 = 1 − 1′β. Then H(τ) =

log(p′q(τ)+pm+1). The Legendre transform of H is given by I(β) = supτ∈Rm [
〈
β, τ

〉
−H(τ)] =

supτ∈Rm [β′τ − log(p′q(τ) + pm+1)]. Let D = {β : 0 ≤ βi ≤ 1,
∑m

i=1 βi ≤ 1}. If β 6∈ D, then

I(β) = ∞. To see this, note that β 6∈ D implies that either β has negative component or

component greater than 1. Without loss of generality, let β1 < 0. Then I(β) =∞ by letting

τi = −∞ for i = 1, . . . ,m. If β11, we also get I(β) =∞ by letting τ1 =∞.

Next we consider the case of β ∈ D. To solve for the optimal τ ∗, we consider the equation
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β − Pq(τ)
p′q(τ)+pm+1

= 0, where P = diag(p). Note that 1′P = p′ and p′P−1 = 1′. It follows that

q(τ ∗) = (P − βp′)−1pm+1β. By the matrix inversion lemma,

(P − βp′)−1 = P−1 + P−1β(1− p′P−1β)−1p′P−1

=
1

βm+1

P−1(βm+1I + β1′).

This implies

q(τ ∗) =
1

βm+1

P−1(βm+1I + β1′)pm+1β =
pm+1

βm+1

P−1β,

and τ ∗ = log pm+1

βm+1
1 + log(β1/p1, . . . , βm/pm)′. In addition, p′q(τ ∗) + pm+1 = pm+1

βm+1
. Conse-

quently, I(β) has the explicit expression

I(β) = β′ log
pm+1

βm+1

(β1/p1, . . . , βm/pm)′ − log
pm+1

βm+1

= 1′β log
pm+1

βm+1

− log
pm+1

βm+1

+
m∑
i=1

βi log
βi
pi

=
m+1∑
i=1

βi log
βi
pi
.

To summarize,

I(β) =


m+1∑
i=1

βi log
βi
pi
, β ∈ D

∞, otherwise.

(4.15)

Remark 4.10. Note that the binary-sensor case and quantized-sensor case can also be

derived from Sanov’s theorem of empirical measures (see [9, Theorem 2.1.10, p.16]). The

Sanov theorem states that the rate function of empirical measures is the relative entropy.

In our case, it coincides with our calculation. For any probability vectors v, ṽ ∈ Rm+1 (i.e.,

vi, ṽi ≥ 0 and
∑m+1

i=1 vi = 1,
∑m+1

i=1 ṽi = 1), the relative entropy is defined by H(v|ṽ) =
m+1∑
i=1

vi log(
vi
ṽi

). By the entropy form, the rate function is I(β̄) = H(β̄|p̄), if we define β̄ =
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(β1, . . . , βm+1)′ and p̄ = (p1, . . . , pm+1)′. In fact, for the binary case, we can write

I(β) =

m0∑
i=1

log
ββii (1− bi)βi−1

bβii (1− βi)βi−1

=

m0∑
i=1

(βi log
βi
bi

+ (1− βi) log
1− βi
1− bi

) =

m0∑
i=1

H(β̃i |̃bi),

if we define β̃i = (βi, 1− βi)′, b̃i = (bi, 1− bi)′.

We now establish a monotonicity property in terms of the number of thresholds in quan-

tized observations. This may be viewed as a partition property of relative entropies. Suppose

that starting from the existing thresholds {C1, . . . , Cm} one additional threshold C̃ is added.

Without loss of generality, assume Ci−1 < C̃ < Ci. As a result, pi > 0 is decomposed into

two probabilities p1
i = P (Ci−1 < x ≤ C̃), p2

i = P (C̃ < x ≤ Ci) with p1
i + p2

i = pi. Excluding

the trivial cases, we assume 0 < p1
i < pi. Similarly, βi is decomposed into βi = β1

i + β2
i ,

0 < β1
i < βi. This refinement on the threshold set expands β = (β1, . . . , βi, . . . , βm+1)′,

p = (p1, . . . , pi, . . . , pm+1)′. to β̃ = (β1, . . . , β
1
i , β

2
i , . . . , βm+1)′, p̃ = (p1, . . . , p

1
i , p

2
i , . . . , pm+1)′.

Lemma 4.11. I(β̃) ≥ I(β).

Proof: From (4.15), we need only show f(β1
i ) := β1

i log
β1
i

p1
i

+ (βi − β1
i ) log

βi−β1
i

pi−p1
i
≥ βi log βi

pi
,

for 0 < β1
i < βi. First, on the boundaries of (0, βi), f(0) = βi log βi

pi−p1
i
≥ βi log βi

pi
; f(βi) =

βi log βi
p1
i
≥ βi log βi

pi
. In the interior, the stationarity condition

df(β1
i )

dβ1
i

= log
β1
i

p1
i
− log

βi−β1
i

pi−1
i

= 0

leads to the stationary point
β̂1
i

p1
i

= βi
pi
,
βi−β̂1

i

pi−p1
i

= βi
pi

and f(β̂1
i ) = βi log βi

pi
. Since d2

dβ2f(β̂1
i ) =

1
β1
i

+ 1
βi−β1

i
> 0, β̂1

i is indeed a minimum point. As a result, inf0<β1
i<βi

f(β1
i ) = βi log βi

pi
, which

implies the desired inequality. 2

Applying the Gärtner-Ellis Theorem (Lemma 2.4 (a)), we obtain that I(·) is the rate

function for the sequence {ξk}. Define C = (C1, . . . , Cm)′ and F̂ (v) = (F1(v1), . . . , Fm(vm))′
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for v ∈ Rm. By virtue of the contraction principle Lemma 2.5 , the rate function of Θk is

I(β̂) = inf{I(β) : G(β) = β̂} = I(F̂ (β̂)). (4.16)

Since Θk converges to the vector θ1, we may construct an estimator θ̂k of θ by θ̂k =∑m
i=1 γiθ

i
k = γ′Θk, where γ = (γ1, . . . , γm) with γ1 + · · · + γm = 1. θ̂k is asymptotically

unbiased.

To find the LDP for the estimator θ̂k, we apply the contraction principle Lemma 2.5 to

derive the rate function Iγ(β) = inf{I(β̂) : γ′F̂ (β̂) = β}. For the typical case of characterizing

the error probability P{|θ̂k − θ| ≥ ε}, the set of interest is B = (−∞, θ − ε] ∪ [θ + ε,∞). To

calculate Î(ε) = infβ∈B Iγ(β), we solve two constrained optimization problems

Î+(ε) = inf
m+1∑
i=1

βi log
βi
pi

s.t. 0 < βi < 1, i = 1, . . . ,m
m+1∑
i=1

βi = 1 and
m∑
i=1

γiFi(βi) ≥ θ + ε

Î−(ε) = inf
m+1∑
i=1

βi log
βi
pi

s.t. 0 < βi < 1, i = 1, . . . ,m
m+1∑
i=1

βi = 1 and
m∑
i=1

γiFi(βi) ≤ θ − ε.

Then, Î(ε) = min{Î+(ε), Î−(ε)}. Although we do not expect to obtain closed-form solutions

generally, the above constrained optimization problem characterizes the desired solution.

4.3 Examples and Discussions

We will present several simulation examples to demonstrate the large deviations principle for

the estimates and illustrate complexity relationship among binary, quantized, and regular
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sensors by showing the monotonicity property of the corresponding rate functions.

Binary Sensors. We shall start with system identification under binary sensors. In this

example, θ′ = (1.75, 1.75, 2.75) is the true parameter vector and for simplicity assume

θ̃ = 0, i.e., no unmodelled dynamics. Select a 3-periodic input with one period values

(u(1), u(2), u(3)) = (3, 4, 5), which is full rank, and Φ0 =


3 4 5

4 5 3

5 3 4

 . The noise is an i.i.d.

sequence of random variables with the standard normal distribution. The binary sensor has

a threshold C = 25. For ε = 1, we compare empirical measures of P (|θ̂k − θ| > ε), with the

calculated large deviations principle bound, exp (−k inf
|x−θ|>ε

I(x)).

Step 1. For each k = 5, . . . , 50, the identification algorithm is repeated 1000 times and

the sample frequencies of the event |θ̂k − θ| > ε are then calculated as an approximation to

P (|θ̂k − θ| > ε).

Step 2. From Remark 4.9, compute

Î(β̂) =

m0∑
i=1

log
F (C − Φ0β̂)

F (C−Φ0β̂)i
i (bi − 1)F (C−Φ0β̂)i−1

b
F (C−Φ0β̂)i
i (F (C − Φ0β̂)i − 1)1−F (C−Φ0β̂)i

,

where F (C − Φ0β̂)i is the ith component of F (C − Φ0β̂) and bi = P{d(l) ≤ C − (Φ0θ)i}. It

is calculated inf
|x−θ|>ε

I(x) = −0.16, and the LDP exponential decaying curve is exp(−0.16k).

These are shown in Figure 2. For sufficiently large k, these two curve match very well.

Regular Sensors. We consider the same example of system identification under regular

sensor with ε = 0.5. In this case we aim to find the convergence rate of

θ̂k = θ + ηks = θ + Φ−1
0 (U1

k , U
2
k , U

3
k )′,

where U j
k =

1

k

k−1∑
l=0

d(t0 + lm0 + j), for j = 1, 2, 3 and Φ0 is as in the last example.
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Figure 2: Comparison of the empirical errors and the LDP bound under a binary sensor.

By virtue of Theorem 4.4, the rate function is Ĩ(β̃) = I(G−1(β̃)) = I(Φ0β̃ − θ), where

I(β) = sup
τ1,...,τm0

[

m0∑
i=1

(βiτi − log g(τi))], where g(·) is the moment generating function given in

(A1). Since the noise dl is a standard normal random variable, we get I(β) =
|β − θ|2

2

by Remark 4.5. Hence, Ĩ(β̃) = I(G−1(β̃)) =
|Φ0β̃ − θ|2

2
. We simulate the probability

P (|θ̂k−θ| > 0.5), and then compare with the large deviations result, in which this probability

is approximated by K exp (−k inf
|x|>1

Ĩ(x)) for some K > 0.

Step 1. For each k = 5, . . . , 100, taking 1000 samples and use the proportion of the

number of times of |θ̂k − θ| > 0.5 to approximate P (|θ̂k − θ| > 0.5).

Step 2. By calculating the value inf
|x−θ|>0.5

Ĩ(x) = inf
|x−θ|>0.5

|Φ0(x− θ)|2

2
= 0.375, the expo-

nential decay curve is exp(−0.375k).
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Figure 3: Comparison of the empirical errors and the LDP bound under a regular sensor.

4.3.1 Space Complexity: Monotonicity of Rate Functions with respect to Num-

bers of Sensor Thresholds.

The LDP indicates that P (|θ̂k − θ| ≥ ε) ≤ K exp(− inf |β−θ|≥ε I0(β)k), for some K > 0 where

I0 is the rate function depending on the sensor types. Comparison of the rates functions

under different sensor types will demonstrate complexity and benefits relationships in sensor

design. Let y(l) = θ + d(l) for l = 1, 2, . . . , where d(l) is the i.i.d. noise with the standard

normal distribution. We assume that θ = 3, C1 = 2, and C2 = 4. We want to find the

probability P (|θ̂k − θ| > 1).

a. Observations under Binary Sensors. Under a binary sensor of threshold C1 = 2, we

have the estimator θ̂bk = C1−F−1(ξ1
k), where ξ1

k =

∑k
l=1 χ{d(l)≤C1−θ}

k
. By Remark 4.9, θ̂bk has
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the rate function

Ib(β) = log
F (C1 − β)F (C1−β)(b1 − 1)F (C1−β)−1

b
F (C1−β)
1 (F (C1 − β)− 1)1−F (C1−β)

,

where b1 = P (d(l) ≤ C1 − θ). Hence the estimator Θb
k = (θ̂bk, θ̂

b
k)
′ has the rate function

Ib(β̂) = inf{Ib(β) : (β, β)′ = β̂}. Applying the LDP and the contraction principle Lemma 2.5

, with Θ = (θ, θ)′, we obtain

lim
k→∞

1

k
logP (|Θb

k −Θ| > 1) = − inf
|β̂−Θ|>1

Ib(β̂)

= − inf
(β−3)2> 1

2

Ib(β) = −0.0658.

b. Observations under Quantized Sensors. Consider a quantized sensor with two

thresholds C1 = 2 and C2 = 4. The estimator for Θ = (3, 3)′ is Θq
k = (C1 − F−1(ξ1

k), C2 −

F−1(ξ2
k))
′, where ξik =

∑k
l=1 χ{d(l)≤Ci−θ}/k for i = 1, 2. By (4.16), the rate function for Θq

k is

Iq((β1, β2)′) = sup
τ1,τ2

[τ1F (C1 − β1)

+τ2F (C2 − β2)−H(τ1, τ2)],

where H(τ1, τ2) = log[eτ1+τ2p1 + eτ2(p2 − p1) + (1 − p2)], and pi = P{d(l) ≤ Ci − θ}, i =

1, 2. Applying the large deviations principle, we obtain limk→∞ logP (|Θq
k − Θ| > 1)/k =

− inf |β̂−Θ|>1 I
q(β̂) = −0.1014.

c. Observations under Regular Sensors. When we use regular sensors, the estimator

of θ is given by θ̂rk =
∑k
l=1 yl
k

. By Remark 4.5, the rate function of θ̂rk is Ir(β) =
(β − 3)2

2
.

Hence the rate function of the two dimensional estimator Θr
k = (θ̂rk, θ̂

r
k)
′ is Ir(β̂) = inf{Ir(β) :

(β, β)′ = β̂}. Applying the LDP and contraction principle Lemma 2.5 , we have

lim
k→∞

1

k
logP (|Θr

k −Θ| > 1) = − inf
|β̂−Θ|>1

Ir(β̂)

= − inf
(β−3)2> 1

2

(β − 3)2

2
= −0.25.
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From the above discussions on the three different sensors, it is clear that there is a mono-

tonicity of the rate functions when the sensor complexity increases, which can be summarized

as

P (|θk − θ| > 1) =


exp(−0.0658k) binary sensor,

exp(−0.1014k) quantized sensor,

exp(−0.25k) regular sensor,

(4.17)

where the quantized sensor has two threshold values. Figure 4 displays the comparison

results. In view of the study in [42], the two-threshold quantized sensor design is a refinement
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Figure 4: Comparison of convergence rates among different sensors.

of the binary sensor case, and the regular sensor is an infinite refinement of quantized sensors.

The large deviations rate functions give precise descriptions on convergence rates, hence can

be used in selecting sensor complexity levels.
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4.4 LDP of System Identification under Mixing Noises

Up to this point, the random sequences considered are uncorrelated, i.e., white noises. In

this section, we demonstrate that a much larger class of noise processes can be treated.

LDP for Empirical Means under φ-Mixing Conditions. It is natural to consider

noise sequence {d(l)} under mixing conditions. In this section we consider stationary φ-

mixing random sequences with sufficiently fast convergence rates. Let {Xk} be a stationary

sequence. Denote by F ba the σ-algebra generated by {Xk : a ≤ k ≤ b}, and let φ(k) =

sup{|P (B|A)−P (B)| : A ∈ F l0, P (A) > 0, B ∈ F∞k+l, l ∈ Z+}. {Xk} is said to be φ-mixing if

φ(k)→ 0 as k →∞. Throughout this section we will need the following assumption.

(A3) (a) {Xk} is a stationary φ-mixing random sequence and φ(k) satisfies φ(k) ≤ exp(−kr(k)),

where r(k)→∞ as k →∞, and
∞∑
k=1

r(k)

k(k + 1)
<∞. (b) {Xk} takes values in a compact

set Kc ⊂ Rd.

Mixing processes are those whose remote past and distant future are asymptotically

independent. For general reference on mixing processes, we refer the reader to [?]. Under

Assumption (A3), we derive the following Theorem.

Theorem 4.12. If {Xk} is a stationary φ-mixing sequence satisfying (A3), then

Ŝk =
X1 +X2 + · · ·+Xk

k
, k ≥ 1,

satisfies the LDP. That is, there is a rate function I : Rd → [0,∞] that is convex and lower

semicontinuous, and that for any B ⊂ Rd,

− inf
γ∈B◦

I(γ) ≤ lim inf
k→∞

1

n
logP{Ŝk ∈ B}

≤ lim sup
k→∞

1

k
logP{Ŝk ∈ B} ≤ − inf

γ∈B
I(γ),
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where B◦ and B denote the interior and closure of B, respectively. Moreover, the rate

function is given as

I(γ) = sup
β∈Rd

[
〈
γ, β

〉
− Λ(β)], (4.18)

where Λ(β) = limk→∞ k
−1 logE exp(k

〈
β, Ŝk

〉
).

Remark 4.13. Dealing with empirical measures, a large deviations principle for a class of

stationary processes under certain mixing conditions was proved in [9]. Their condition is

different from ours and is implied by the so-called ψ-mixing processes. The large devia-

tions principle for arithmetic means of a φ-mixing process under Assumption (A3) without
∞∑
k=1

r(k)

k(k + 1)
<∞ was proved in [6]. However, the proof is a bit complicated. Here, we use a

similar approach as that of [9] to derive an alternative proof of the LDP for a sample mean

under φ-mixing assumptions. Our large deviations for the identification is then based on the

large deviations for the sample mean. In order to prove the desired result, we need a number

of preparatory results. They are stated in the following proposition. The first part in the

proposition is the approximate sub-additivity ( [9, Lemma 6.4.10, p.282]), and the second

and the third parts are in [9, Lemma 4.4.8, Theorem 4.4.10, p.143], respectively.

Proposition 4.14. The following results hold.

(a) Let h : N → R and assume that all k, l ≥ 1, h(k + l) ≤ h(k) + h(l) + ε(k + l), where

ε(k) is a non-decreasing sequence satisfying
∑∞

k=1
ε(k)

k(k+1)
< ∞. Then lim

k→∞

h(k)

k
exists

and is finite.

(b) Let {Xk} be a sequence of random variables taking values in a compact subset Kc ⊂ Rd,

and for any concave, bounded above, and continuous function g, Λg = limk→∞ logEekg(Xk).
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Then Λf exists for all f belongs to Cb(Rd), which is the space of all bounded and con-

tinuous function on Rd. Furthermore, {Xk} satisfies the LDP with the rate function

I(x) = supf∈Cb(Rd)[f(x)− Λf ].

(c) Assume that {Xk} satisfies the LDP with a rate function I(·) that is convex, and

lim sup
k→∞

1

k
logEek

〈
λ,Xk

〉
< ∞,∀λ ∈ Rd. Then I(x) = supλ∈Rd [

〈
λ, x
〉
− Λ(λ)], where

Λ(λ) = lim
k→∞

1

k
logEek

〈
λ,Xk

〉
.

With the proposition above, we are ready to prove Theorem 4.12.

Proof of Theorem 4.12. We carry out the proof by adapting and modifying the proof

of [9, Theorem 6.4.4,p.279]. Choose concave continuous function g : Rd → [−B, 0]. Since

Xk take values on a compact subset Kc ⊂ Rd, g is Lipschitz continuous on Kc. Assume

|g(x)− g(y)| < G|x− y| for all x, y ∈ K. Denote C = supx∈Kc g(x), and

Ŝmk =
Xm+1 + · · ·+Xk

k −m
.

Observe that

|Ŝk+m − (
k

k +m
Ŝk +

m

k +m
Ŝk+l
k+m+l)| ≤

2lC

k +m
.

By Lipschitz continuity of g,

|g(Ŝk+m)− g(
k

k +m
Ŝm0 +

m

k +m
Ŝk+l
k+m+l)| ≤

2lCG

k +m
.

Since g is concave,

(m+ k)g(Ŝm+k) ≥ kg(Ŝk) +mg(Ŝk+l
k+m+l)− 2lCG. (4.19)

Denote W = ekg(Ŝk), Z = emg(Ŝ
k+l
k+m+l). By virtue of Assumption (A3),



67

EWEZ − EWZ ≤ e−r(l)l. (4.20)

Noting that EWEZ ≥ −(m+ k)B and let l = m+ k, from (4.20),

logEWZ ≥ logEWEZ + log(e(B−r(m+k))(m+k)). (4.21)

Since r(k +m)→∞ as m, k →∞, we can choose m, k large enough such that logEWZ ≥

logEWEZ + 1
2
. Let h(k) = logEekg(Ŝk), by the above inequality and (4.19)

h(m+ k) ≤ h(m) + h(k) +
1

2
+ 2r(m+ k)CG. (4.22)

Applying Assumption (A3), Λg = limk→∞
1
k

logEekg(Xk) exists and hence by Proposition 4.14

(a), {Ŝk} satisfies the LDP with the rate function I(x) = supf∈Cb(Rd)[f(x)−Λf ].Next, we need

to show that I(·) is convex to reduce the form of I(·) to (4.18) by means of Proposition 4.14

(c). To show that I(·) is convex, we need only show that if for some M < ∞ and fix open

sets G and G̃ P (Ŝk ∈ G)P (Ŝk ∈ G̃) ≥ exp (−Mk) for all k large enough, then

lim inf
η↓0

lim inf
k→∞

ρ(k, η) ≥ 0, (4.23)

where

ρ(k, η) =
1

k
log

P (Ŝk ∈ G, Ŝk+ηk
2k+ηk ∈ G̃)

P (Ŝk ∈ G)P (Ŝk+ηk
2k+ηk ∈ G̃)

.

Applying Assumption (A3) again,

P (Ŝk ∈ G, Ŝk+ηk
2k+ηk ∈ G̃)

P (Ŝk ∈ G)P (Ŝk+ηk
2k+ηk ∈ G̃)

≥ 1− e(M−r(kη)kη). (4.24)

Thus

lim inf
η↓0

lim inf
k→∞

ρ(k, η)

≥ lim inf
η↓0

lim inf
k→∞

1

k
log(1− e(M−r(kη)kη)) = 0.

(4.25)
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The proof of the theorem is completed. 2

LDP for System Identification with Regular Sensors under Mixing Noises. Ap-

plying Theorem 4.12 directly to the identification with regular sensors.

Theorem 4.15. Assume that the noise sequence {d(l)} satisfies Assumption (A3). Then

{ηsk} satisfies the LDP with the rate function Ĩ(β̃) = I(G−1(β̃)) = I(Φm0(t0)β̃)), where

I(β) = sup
λ∈Rd

[
〈
λ, β

〉
− Λ(λ)],

Λ(λ) = lim
k→∞

logEek
〈
λ,Xk

〉
.

(4.26)

Proof. Let Yi = (d(t0+(i−1)m0+1), . . . , d(t0+(i−1)m0+m0))′. Then Xk = (Y1+· · ·+Yk)/k.

Since {di} satisfies Assumption (A3), so is {Yi}. By theorem 4.12, {Xk} satisfies the LDP

with rate function I. Then by the contraction principle Lemma 2.5, {ηsk} satisfies the LDP

with the rate function Ĩ(β̃) = I(G−1(β̃)) = I(Φ0β̃). The proof is completed. 2

LDP for Identification with Binary Sensors under Mixing Conditions. Recall the

notation in Section 4.1 and apply theorem 4.12.

Theorem 4.16. Assume that the noise sequence {d(l)} satisfies the first part of Assumption

(A3). Then {θ̂k} satisfies the LDP with the rate function Î(β̂) = I(F (C−Φ0β̂)), where I(β)

and Λ(λ) are given by (4.26).

Proof. Let

Yi = (χ{d(t0+(i−1)m0+1)}, . . . , χ{d(t0+(i−1)m0+m0)})
′.

Then Xk = (Y1 + · · · + Yk)/k. Since {d(l)} satisfies the first part of Assumption (A3) and

|Yi| ≤ m0, {Yi} satisfies Assumption (A3). By Theorem 4.12 and the fact that {Xk} satisfies
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the LDP with rate function I. By virtue of the contraction principle Lemma 2.5, {θ̂k} satisfies

the LDP with rate function Î(β̂) = I(F (C − Φ0β̂)). The proof is concluded. 2

4.5 Discussions on Non-Periodic Inputs

For clarity, this brief assumes that the input is designed to be periodic. Advantages of using

full rank and periodic inputs in quantized identification problems have been extensively

discussed in [43]. However, such a choice is not a fundamental limitation and non-periodic

inputs can also be used. As a first attempt of using LDPs in complexity analysis, we will not

explore this direction in detail here, but only highlight the main steps. To illustrate the basic

ideas and computational processes for quantized identification under non-periodic inputs, we

should use the basic case of a binary sensor with threshold C and gain identification problems.

In this case, the system is y(t) = θu(t) + d(t), for t = 0, 1, . . . , and s(t) = I{y(t)≤C}, where θ

is to be identified. The empirical measure on the basis of k measurements is

ξk =
1

k

k−1∑
t=0

s(t).

Denote

Gk(θ) = Eξk =
1

k

k−1∑
t=0

Es(t) =
1

k

k−1∑
t=0

F (C − θu(t)).

Then, the estimate θk of θ is θk = G−1
k (ξk). Although explicit expressions for G(·) and G−1(·)

may be difficult to obtain, its numerical solutions are straightforward. Note that

εk = ξk − Eξk =
1

k

k−1∑
t=0

(s(t)− F (C − θu(t))) and

ek = θk − θ = G−1(ξk)−G−1(Eξk),
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which may be approximated for small εk by

ek ≈
(
∂G(θ)

∂θ

)−1

εk := gk(θ)εk, where

∂Gk(θ)

∂θ
=

1

k

k−1∑
t=0

∂F (C − θu(t))

∂θ

=
1

k

k−1∑
t=0

ṽ(y)

ṽ(t) = −u(t)f(C − θu(t)).

Since the LDP is preserved by a continuous mapping, we need only concentrate on εk

(and whose rate function can be easily modified by gk(θ) to obtain the rate function of ek).

However, εk is a convex combination of independent variables. Hence, the rate function of εk

can be obtained from these of s(t)−F (C−θu(t)). When u(t) is periodic (in this special case,

it is a constant), these variables become also identically distributed, rendering a substantial

simplification on computation. This, however, does not alter the fundamental properties

of LDPs and rate function expressions. In the special case of uniform distributions, more

explicit expressions and much easier computations can be obtained. Indeed, if d(t) is i.i.d.,

uniformly distributed in [−δ, δ], we have F (x) = 1
2δ

(x + δ) and f(x) = 1
2δ
, x ∈ [−δ, δ].

Consequently, assuming C − θu(t) ∈ [−δ, δ] for all t, we have with uk =
∑k−1

t=0 u(t)/k,

Gk(θ) =
1

k

k−1∑
t=0

1

2δ
(C − θu(t) + δ)

=
C + δ

2δ
−

1
k

∑k−1
t=0 u(t)uk

2δ
θ,

θk =
C+δ
2δ
− ξk

uk
1
k

∑k−1
t=0 u(t)

2δ

,
∂Gk(θ)

∂θ

= − 1

2δ

1

k

k−1∑
t=0

u(t)uk,

ek ≈ −
2δ

uk
1
k

∑k−1
t=0 u(t)

εk.

Consequently, the rate function computation becomes straightforward.
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4.6 Escape from A Domain

In this section, we concentrate on the identification problem with binary observations. Dif-

ferent from the study in the previous sections, rather than dealing with the discrete processes

directly, we take a continuous-time interpolation. Thus here we provide an alternative view

point for the study of large deviations on the parameter estimates. Consider the algorithm

Zi
k =

1

k

k−1∑
l=0

χ{y(lm0+i)≤C}. (4.27)

For ease of discussion, assume that there is no unmodeled dynamics. Thus, Yl = Φ0θ + Dl.

Denote χik = χ{d(km0+i)≤C−(Φ0θ)i} and

Sk = (χ1
k, . . . , χ

m0
k )′,

Z∗ = (F (C − (Φ0θ)1), . . . , F (C − (Φ0θ)m0))′,
(4.28)

and define Zk = (Z1
k , . . . , Z

m0
k )′. We can then write (4.27) recursively as

Zk+1 = Zk −
1

k + 1
Zk +

1

k + 1
Sk


χ{d(km0+1)≤C−(Φ0θ)1}

...

χ{d(km0+m0)≤C−(Φ0θ)m0}

 . (4.29)

Rather than directly analyzing the sequence of iterates, we use the method of ordinary

differential equations for stochastic approximation; see Kushner and Yin [28, Chapters 5

and 6]. Define tk =
∑k−1

l=0 1/(l + 1) and m(t) = max{k : tk ≤ t}, where tk connect the

discrete iteration number with continuous time, and m(t) serves as its inverse. Define the

piecewise constant interpolation

Z{0}(t) = Zk for t ∈ [tk, tk+1) and Z{k}(t) = Z{0}(t+ tk).

Suppose for simplicity, {dk} is an i.i.d. sequence with zero mean and finite variance. We can

verify that w.p.1, Z{k}(·) is uniformly bounded and equicontinuous in the extended sense (see
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[28, p. 102]). The Arzela-Ascoli Theorem [28, p. 102] yields that any convergent subsequence

of Z{k}(·) has a limit Z(·), which is a solution of the ordinary differential equation

Ż(t) = −Z(t) + Z∗


F (C − (Φ0θ)1)

...

F (C − (Φ0θ)m0)

 .. (4.30)

Moreover, as k → ∞, Z{k}(· + Tk) → Z∗ w.p.1, where {Tk} is any sequence of positive real

numbers satisfying Tk →∞.

We proceed to study the asymptotic properties of Z{k}(·). Of particular interest are

estimates of the probabilities of Z{k}(·) escape from a fixed neighborhood of the stable point

Z∗ of (4.30). To be precise, let G be a neighborhood of Z∗ and define

τ̃ kG = min{t : Z{k}(t) 6∈ G}.

By the w.p.1 convergence, the probability P k
x {τ̃ kG ≤ T} tends to zero as k → ∞, and it is

natural to look for the rate of convergence. In particular, we seek a sequence λk → 0 and

0 < V2 < V1 <∞ such that the following limit exists,

−V1 ≤ lim inf
k→∞

λk logP k
x {τ̃ kG ≤ T}

≤ lim sup
k→∞

λk logP k
x {τ̃ kG ≤ T}

≤ −V2,

where P k
x denotes the probability conditioned on the event that Z{k}(0) = x ∈ G. To this

end, we need the following assumption.

Assume that there exists a function H(·, ·, ·) : Rm0 × Rm0 × [0, T ] → R and a sequence

λk → 0 such that for any x ∈ Rm0 and piecewise constant function α(·) : [0, T ]→ Rm0 ,

∫ T

0

H(x, α(s), s)ds = lim
k→∞

λk logE exp(
1

λk
Π̃k), (4.31)
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where

Π̃k =
N−1∑
i=0

〈
α′(i∆),

m(tk+i∆+∆−1)∑
j=m(tk+t)

1

j + 1
(−x+ Sj)

〉
with Sj defined in (4.28) and T = N∆, and α(·) is constant on the interval [k∆, (k + 1)∆).

Let Cx[0, T ] denote the space of Rm0-valued continuous function on [0, T ] with initial value x,

and with uniform convergence topology. Denote the interior and closure of set A ⊂ Cx[0, T ]

by A◦ and A, respectively. Then by [27, Theorem 1] we have the large deviations estimate.

Theorem 4.17. Under the above assumption, for each set A ⊂ Cx[0, T ],

− infϕ∈A◦ S(T, ϕ) ≤ lim inf
k→∞

λk logPx{Z{k}(·) ∈ A}

≤ lim sup
k→∞

λk logPx{Z{k}(·) ∈ A}

≤ − inf
ϕ∈A

S(T, ϕ),

where

S(T, ϕ) =

∫ T

0

L(ϕ(s), ϕ̇(s), s)ds,

L(x, β, s) = sup
α∈Rm0

[
〈
α, β

〉
−H(x, α, s)].

To get the escape time estimate, set

A = {ϕ(·) : ϕ(0) = x, ϕ(t) 6∈ G, some t ≤ T}.

Then by Theorem 4.17,

− infϕ∈A◦ S(T, ϕ) ≤ lim inf
k→∞

λk logPx{τ̃ kG ≤ T}

≤ lim sup
k→∞

λk logPx{τ̃ kG ≤ T}

≤ − inf
ϕ∈A

S(T, ϕ).

To bring out the dynamic system aspect of the problem, we further examine the escape

probability of the iterates away from a neighborhood of the true parameter θ. To do so, we
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define

Ẑ{k}(t) = Φ−1
0 C1l


1

...

1

− Φ−1
0 F−1(Z{k}(t)),

where

F−1(Z{k}(t)) =


F−1(Z

{k}
1 (t))

...

F−1(Z
{k}
1 (t))

 ,
where F−1(·) is the inverse of F (·). It is easy to see that Ẑ{k} → θ as k → ∞. Given a

neighborhood Ĝ of θ, define

τ̂ k
Ĝ

= min{t : Ẑ{k}(t) 6∈ Ĝ},

then

Px{τ̂ kĜ ≤ T} → 0.

Recall that

A = {ϕ(·) : ϕ(0) = x, ϕ(t) 6∈ G, some t ≤ T},

and define

F (v) =


F (v1)

...

F (vm0)


for any for v ∈ Rm0 . By applying the contraction principle Lemma 2.5 , we have the following

estimates of rate of convergence for the escape from a domain problem.

− infϕ∈B◦ S(T, ϕ) ≤ lim inf
k→∞

λk logPx{τ̂ kĜ ≤ T}

≤ lim sup
k→∞

λk logPx{τ̂ kĜ ≤ T}

≤ − inf
ϕ∈B

S(T, ϕ),
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where

B = {F (C − Φ0ϕ(·)), ϕ(·) ∈ A}.

In the previous sections, we have taken a direct approach for getting the large deviations

bounds. This section provides an alternative for the large deviations study.



76

Chapter 5: Further Remarks

This dissertation derived large deviations for two-time-scale Markov chains and examined

the associated LQ control problems. For future study, an interesting and important problem

is to examine the large deviations of two-time-scale Markov chains with generator Qε(t) =

Q̃(t)/ε + Q̂(t), where Q̃(t) = diag(Q̃1(t), . . . , Q̃l(t)) such that each Q̃i(t) is an irreducible

generator and Q̂(t) is another generator; see [46, Chapter 6]. This is known as a nearly

decomposable model. One of the main difficulties is that we no longer have a mixing process

and the associated limit is not a diffusion but a switching diffusion. It deserves further

investigation.

Another important problem is concerned with moderate deviations. Consider the system

of ordinary differential equations

ẋε(t) = b(xε(t), αε(t)), xε(0) = x,

where αε(t) ∼ Q(t)/ε, Q(t) is irreducible. Then xε(·), converges weakly to x(·) such that for

each T > 0 and for any t ∈ [0, T ],

ẋ(t) = b(x(t)), x(0) = x0,

where

b(x) =
m∑
j=1

b(x, i)νi,

and ν(t) = (ν1(t), . . . , νm(t)) is the quasi-stationary distribution associated with Q(t). Define

yε(t) =
1

εγ
(xε(t)−x(t)). When γ = 0, this is the Large deviation problem. When γ = 1

2
, this

becomes the Central limit problem. What will happen if γ ∈ [0, 1
2
]? This is in the framework

of moderate deviations. We have already established the large deviations and central limit
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type results. To fill the gap between large deviation and central limit, it is natural to the

consider moderate deviations problem.

For system identification problem, there is also an issue concerning moderate deviations

problem. Recently, Thanh, Yin and Wang [36] considered the state observers with ran-

dom sampling under double-indexed and randomly weighted sums of mixing process. They

considered a multi-input-single-output linear-time-invariant system ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A,B,C are known system matrices. Using stochastic analysis, the study of this system

reduces to the convergence analysis of the following sequence,

1

nr

n∑
i=1

αj(ti − tn)di,

where αj(ti − tn) is a random process and 1/2 < r < 1, rendering a randomly weighted

triangular array of noise driven by mixing process. Thanh, Yin and Wang [36] proved the

strong laws of large number and ascertained the convergence rate. On the other hand,

analysis from the aspect of moderate deviation may provide a tighter error bounds.
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Systems, Birkhäuser, Boston, MA, 1994.

[33] H.A. Simon and A. Ando, Aggregation of variables in dynamic systems, Econometrica,

29 (1961), 111–138.

[34] A.V. Skorohod, Studies in the Theory of Random Processes, Dover, New York, 1982.

[35] V. Solo and X. Kong, Adaptive Signal Processing Algorithms, Prentice-Hall, Englewood

Cliffs, NJ, 1995.

[36] L.V. Thanh, G. Yin, and L.Y. Wang, State observers with random sampling times

and convergence analysis of double-indexed and randomly-weighted sums of mixing

processes, SIAM Journal on Control and Optimization, 49 (2011), 106-124.

[37] S. R. Venkatesh and M. A. Dahleh, “Identification in the presence of classes of un-

modelled dynamics and noise”, IEEE Trans. Automatic Control, vol. 42, pp. 1620-1635,

1997.

[38] L.Y. Wang and G. Yin, Persistent Identification of Systems with Unmodeled Dynamics

and Exogenous Disturbances, IEEE Trans. Automat. Control, 45 (2000), 1246–1256.

[39] L.Y. Wang and G. Yin, Asymptotically efficient parameter estimation using quantized

output observations, Automatica, 43 (2007), 1178–1191.



82

[40] L.Y. Wang and G. Yin, Quantized identification with dependent noise and Fisher in-

formation ratio of communication channels, IEEE Trans. Automat. Control, 53 (2010),

674–690.

[41] L.Y. Wang, G. Yin, and J.F. Zhang, Joint identification of plant rational models and

noise distribution functions using binary-valued observations, Automatica, 42 (2006),

535–547.

[42] L.Y. Wang, G. Yin, J.F. Zhang, and Y.L. Zhao, Space and time complexities and sensor

threshold selection in quantized identification, Automatica, 44 (2008), 3014–3024.

[43] L.Y. Wang, G. Yin, J.-F. Zhang, and Y.L. Zhao, System Identification with Quantized

Observations: Theory and Applications, Birkhäuser, Boston, 2010
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This dissertation focuses on large deviations of stochastic systems with applications to

optimal control and system identification. It encompasses analysis of two-time-scale Markov

processes and system identification with regular and quantized data. First, we develops

large deviations principles for systems driven by continuous-time Markov chains with two-

time scales and related optimal control problems. A distinct feature of our setup is that the

Markov chain under consideration is time dependent or inhomogeneous. The use of two-

time-scale formulation stems from the effort of reducing computational complexity in a wide

variety of applications in control, optimization, and systems theory. Starting with a rapidly

fluctuating Markovian system, under irreducibility conditions, both large deviations upper

and lower bounds are established first for a fixed terminal time and then for time-varying

dynamic systems. Then the results are applied to certain dynamic systems and LQ control

problems.
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Second, we studied large deviations for identifications systems. Traditional system iden-

tification concentrates on convergence and convergence rates of estimates in mean squares, in

distribution, or in a strong sense. For system diagnosis and complexity analysis, however, it

is essential to understand the probabilities of identification errors over a finite data window.

This paper investigates identification errors in a large deviations framework. By considering

both space complexity in terms of quantization levels and time complexity with respect to

data window sizes, this study provides a new perspective to understand the fundamental

relationship between probabilistic errors and resources that represent data sizes in computer

algorithms, sample sizes in statistical analysis, channel bandwidths in communications, etc.

This relationship is derived by establishing the large deviations principle for quantized iden-

tification that links binary-valued data at one end and regular sensors at the other. Under

some mild conditions, we obtain large deviations upper and lower bounds. Our results ac-

commodate independent and identically distributed noise sequences, as well as more general

classes of mixing-type noise sequences. Numerical examples are provided to illustrate the

theoretical results.
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