37,769 research outputs found

    S-asymptotically ω-periodic solutions in the p-th mean for a Stochastic Evolution Equation driven by Q-Brownian motion

    Get PDF
    International audienceIn this paper, we study the existence (uniqueness) and asymptotic stability of the p-th mean S-asymptotically ω-periodic solutions for some non-autonomous Stochastic Evolution Equations driven by a Q-Brownian motion. This is done using the Banach fixed point Theorem and a Gron-wall inequality

    One and two-phase cell cycle models

    Get PDF
    In this review paper we present deterministic and stochastic one and two-phase models of the cell cycle. The deterministic models are given by partial differential equations of the first order with time delay and space variable retardation. The stochastic models are given by stochastic iterations or by piecewise deterministic Markov processes. We study asymptotic stability and sweeping of stochastic semigroups which describe the evolution of densities of these processes. We also present some results concerning chaotic behaviour of models and relations between different types of models

    Stability of stochastic differential equations in infinite dimensions

    Get PDF
    In engineering, physics and economics, many dynamical systems involving with stochastic components and random noise are often modeled by stochastic models. The stochastic effects of these models are often used to describe the uncertainty about the operating systems. Motivated by the development of analysis and theory of stochastic processes, as well as the studies of natural sciences, the theory of stochastic differential equations in infinite dimensional spaces evolves gradually into a branch of modern analysis. Many qualitative properties of such systems have been studied in the past few decades, among which, investigation of stability of such systems is often regarded as the first characteristic of the dynamical systems or models. In general, this thesis is mainly concerned with the studies of the stability property of stochastic differential equations in Hilbert spaces. Chapter 1 is an introduction to a brief history of stochastic differential equations in infinite dimensions, together with an overview of the studies. Chapter 2 is a presentation of preliminaries to some basic stochastic analysis. In Chapter 3, we study the stability in distribution of mild solutions to stochastic delay differential equations with Poisson jumps. Firstly, we use approximation of strong solutions to pass on the stability of strong solutions to the mild ones. Then, by constructing a suitable metric between the transition probability functions of mild solutions, we obtain the desired stability result under some suitable conditions. In Chapter 4, we investigate the stochastic partial delay differential equations with Markovian switching and Poisson jumps. By estimating the coefficients of energy equality, both the exponential stability and almost sure exponential stability of energy solutions to the equations are obtained. In Chapter 5, we study the relationship among strong, weak and mild solutions to the stochastic functional differential equations of neutral type. Finally, in Chapter 6, we study the asymptotic stability of two types of equations, impulsive stochastic delay differential equations with Poisson jumps and stochastic evolution equations with Poisson jumps. By employing the fixed point theorem, we derive the desired stability results under some criteria

    Trait evolution in two-sex populations

    Full text link
    We present an individual-based model of phenotypic trait evolution in two-sex populations, which includes semi-random mating of individuals of the opposite sex, natural death and intra-specific competition. By passing the number of individuals to infinity, we derive the macroscopic system of nonlinear differential equations describing the evolution of trait distributions in male and female subpopulations. We study solutions, give criteria for persistence or extinction, and state theorem on asymptotic stability, which we apply later to particular examples of trait inheritance

    Stochastic collective dynamics of charged--particle beams in the stability regime

    Full text link
    We introduce a description of the collective transverse dynamics of charged (proton) beams in the stability regime by suitable classical stochastic fluctuations. In this scheme, the collective beam dynamics is described by time--reversal invariant diffusion processes deduced by stochastic variational principles (Nelson processes). By general arguments, we show that the diffusion coefficient, expressed in units of length, is given by λcN\lambda_c\sqrt{N}, where NN is the number of particles in the beam and λc\lambda_c the Compton wavelength of a single constituent. This diffusion coefficient represents an effective unit of beam emittance. The hydrodynamic equations of the stochastic dynamics can be easily recast in the form of a Schr\"odinger equation, with the unit of emittance replacing the Planck action constant. This fact provides a natural connection to the so--called ``quantum--like approaches'' to beam dynamics. The transition probabilities associated to Nelson processes can be exploited to model evolutions suitable to control the transverse beam dynamics. In particular we show how to control, in the quadrupole approximation to the beam--field interaction, both the focusing and the transverse oscillations of the beam, either together or independently.Comment: 15 pages, 9 figure
    • …
    corecore