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Abstract

In engineering, physics and economics, many dynamical systems involving with

stochastic components and random noise are often modeled by stochastic models.

The stochastic effects of these models are often used to describe the uncertainty

about the operating systems. Motivated by the development of analysis and

theory of stochastic processes, as well as the studies of natural sciences, the

theory of stochastic differential equations in infinite dimensional spaces evolves

gradually into a branch of modern analysis. Many qualitative properties of such

systems have been studied in the past few decades, among which, investigation

of stability of such systems is often regarded as the first characteristic of the

dynamical systems or models.

In general, this thesis is mainly concerned with the studies of the stability

property of stochastic differential equations in Hilbert spaces. Chapter 1 is an

introduction to a brief history of stochastic differential equations in infinite di-

mensions, together with an overview of the studies. Chapter 2 is a presentation

of preliminaries to some basic stochastic analysis. In Chapter 3, we study the sta-

bility in distribution of mild solutions to stochastic delay differential equations

with Poisson jumps. Firstly, we use approximation of strong solutions to pass

on the stability of strong solutions to the mild ones. Then, by constructing a

suitable metric between the transition probability functions of mild solutions, we

obtain the desired stability result under some suitable conditions. In Chapter 4,

we investigate the stochastic partial delay differential equations with Markovian
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switching and Poisson jumps. By estimating the coefficients of energy equality,

both the exponential stability and almost sure exponential stability of energy

solutions to the equations are obtained. In Chapter 5, we study the relationship

among strong, weak and mild solutions to the stochastic functional differential

equations of neutral type. Finally, in Chapter 6, we study the asymptotic sta-

bility of two types of equations, impulsive stochastic delay differential equations

with Poisson jumps and stochastic evolution equations with Poisson jumps. By

employing the fixed point theorem, we derive the desired stability results under

some criteria.
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General Notations

R field of real numbers

C field of complex numbers

R+ nonnegative real numbers

Reλ real part of λ ∈ C

Imλ imaginary part of λ ∈ C

A linear operator

D(A) domain of A

R(A) range of A

B(X) Borel σ-field of X

L(X) the set of all bounded linear operators on X

L(X, Y ) the set of all bounded linear operators from X into Y

L1(X, Y ) the space of all nuclear operators from X into Y

L2(X, Y ) the space of all Hilbert-Schmidt operators from X into Y

C(X, Y ) the space of all continuous functions from X to Y

i.f.f. if and only if

a.s. almost surely

a.e. almost everywhere

Other notations will be explained when they first appear.
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Chapter 1

Introduction

1.1 Brief history

Material on the brief history is based on Da Prato and Zabczyk (1992), Huang

and Yan (2000), Liu (2006) and Luo et al. (1999).

Infinite dimensional analysis as a branch of mathematical sciences was formed

in the late 19th and early 20th centuries. Motivated by problems in mathematical

physics, the early research in this field was carried out by V. Volterra, R. Gâteaux,

P. Lévy and M. Fréchet, among others. Nevertheless, the most fruitful direction

in this field is the infinite dimensional integration theory initiated by N. Wiener

and A. N. Kolomogorov, which is closely related to the developments of the theory

of stochastic processes. In 1923 N. Wiener constructed a probability measure on

the space of all continuous functions (i.e. the Wiener measure), which provided

an ideal mathematical model for Brownian motion.

The next generation of stochastic integration was laid out by A. N. Kol-

mogorov. In the most remarkable of his papers on probability theory, Kolmogorov

(1931), he introduced a class of stochastic process which have since been called

Markov processes. To study their probabilistic parameter (i.e. the transition

probabilities), he proposed using differential equations, which shows that for pro-
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cesses with a finite-dimensional phase space, the transition probabilities satisfy

second-order parabolic partial differential equations. Thus, it revealed the deep

connection between theories of differential equations and stochastic processes.

Following the work of Kolmogorov, K. Itô made an outstanding contribution to

the development of stochastic analysis. The stochastic analysis created by K. Itô

(also independently by I. I. Gihman) in the 1940s is essentially an infinitesimal

analysis for trajectories of stochastic processes. By virtue of Itô stochastic dif-

ferential equations one can construct diffusion processes via direct probabilistic

methods and treat them as functionals of Brownian paths (i.e. the Wiener func-

tionals). This affords a possibility of using probabilistic methods to investigate

deterministic differential equations and many other pure analytical problems.

Itô stochastic equations was introduced in the 1940s by K. Itô (Itô (1942)) and

in a different form by I. I. Gihman (Gihman (1947)). First results on infinite di-

mensional Itô equations started to appear in the mid 1960s, which was motivated

by internal development of analysis and theory of stochastic processes as well as

the needs of describing random phenomena studied in natural sciences. For ex-

ample, physics (wave propagation in random media and turbulence), chemistry,

biological sciences (population biology) and in control theory (early control theo-

retic application). In 1966 and 1967, Daleckii (Daleckii (1966)) and Gross (Gross

(1967)) introduced Hilbert space valued Wiener processes and, more generally,

Hilbert space valued diffusion processes as a tool to investigate Dirichlet problems

and some classes of parabolic equations for functions which depend on infinitely

many variable. In 1978, P. Malliavin (Malliavin (1978)) created the stochastic

calculus of variation (known as Malliavin calculus) by successfully extending the

gradient, divergence and Ornstein-Uhlenbeck operators to infinite dimensional

cases. An infinite dimensional version of an Ornstein-Uhlenbeck process was also

introduced for a stochastic study of regularity of fundamental solutions of deter-

ministic parabolic equations (c.f. Stroock (1981)). In the late 1960s and early
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1970s, in the study of conditional distributions of finite dimensional processes,

Zakai (Zakai (1969)) studied stochastic parabolic type equations in the form of a

linear stochastic equation; while Fujisaki, Kallianpur and Kunita (Fujisaki et al.

(1972)) studied them in the form of the so-called non-linear filtering equation.

Another source of inspiration was provided by stochastic flow defined by ordinary

stochastic equations. Such flows are in fact processes with values in an infinite

dimensional space of continuous or ever more regular mappings acting in a Euclid-

ian space. They are solutions of corresponding backward and forward stochastic

Kolomogorov-like equations; c.f. Carverhill and Elworthy (1983), Krylov and Ro-

zovskii (1981), Kunita (1990).

Stochastic evolution equations in infinite dimensions are natural generaliza-

tions of stochastic ordinary differential equations. Their theory has motivations

coming both from mathematics and the natural sciences: physics, chemistry and

biology. Several motivating examples of stochastic evolution equations have been

presented in Da Prato and Zabczyk (1992), such as examples of purely mathe-

matical motivations (lifts of diffusion processes, Markovian lifting of stochastic

delay equations and Zakai’s equation); examples from physics (random motion

of a string, stochastic equation of the free field and equation of stochastic quan-

tization); examples from chemistry (reaction diffusion equation); and examples

from biology (the cable equation arising in neurophysiology and equation of pop-

ulation genetics). In the 1970s and 1980s, under various sets of conditions, basic

theoretical results on existence and uniqueness of solutions have been obtained

(c.f. Bensoussan and Temam (1972, 1973) and Dawson (1972, 1975)). In par-

ticular, Pardoux (Pardoux (1975)) obtained fundamental results on stochastic

non-linear partial differential equations of monotone type and Viot (Viot (1974))

obtained basic results on weak solutions. However, it is worth mentioning the

existence and uniqueness of solutions are are still of great interest today.

The study of stability originates in mechanics, which can be traced back in the
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early 17th century. A principle called Torricelli’s principle was already introduced

which says that if a system of interconnected heavy bodies is in equilibrium, the

center of gravity is at the lowest point. The principle was applied to the study

of general motion including, but not limited to, mechanical motion. In fact, any

time process in nature can be thought of as motion and to study stability is

actually to study the effect of perturbations to motion. A system or process is

said to be stable if such perturbations does not essentially change it.

The fundamental theory of stability was established by A. M. Lyapunov who

published what is now widely known as the Lyapunov’s direct method for stability

analysis in his celebrated memoir ‘The general problem of stability of motion’ in

1892. Since then, Lyapunov’s direct method has greatly stimulated the research

on stability of motion, and further developments have been made possible through

the efforts of scientists all over the world during the past 120 years. Nowadays,

Lyapunov’s stability theory is an indispensable tool for the study of all systems

whether they are finite or infinite, linear or nonlinear, time-invariant or time

varying, continuous or discrete. It is widely used in system analysis and control

for various systems from electrical systems and mechanical systems to economic

system and solar systems etc.

To illustrate the stability ideas, let us introduce the following example from Liu

(2006). We consider solution Yt(y0) = f(t, Yt)dt, t ≥ 0, to a deterministic differ-

ential equation on the Hilbert space H,
dYt = f(t, Yt)dt, t ≥ 0,

Y0 = y0 ∈ H,

(1.1.1)

where f(·, ·) is some given function. Let Ŷt, t ≥ 0, be a particular solution of

Equation (1.1.1); the corresponding system is thought of as describing a process

without perturbations. The system associated with other solution Yt(y0) is re-
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garded as a perturbed one. When one talks about stability, or stability in the

sense of Lyapunov, of the solution Ŷt(y0), it means that the norm ‖Yt − Ŷt‖H

could be made small enough if some reasonable conditions are imposed, for in-

stance, that the initial perturbation scale ‖Y0 − Ŷ0‖H is very small or time t is

large enough. In practice, it is enough to investigate the stability problem for the

null solution of some relevant system. Indeed, let Xt = Yt− Ŷt, then the equation

(1.1.1) could be change into

dXt = dYt − dŶt = (f(t, Yt)− f(t, Ŷt))dt

= (f(t,Xt + Ŷt)− f(t, Ŷt))dt

:= F (t,Xt)dt, (1.1.2)

where F (t, 0) = 0, t ≥ 0. Therefore, several definitions of stability for the null

solution of Equation (1.1.2) can be established as follows.

Definition 1.1 The null solution of Equation (1.1.2) is said to be stable if for

arbitrary given ε > 0, there exists δ = δ(ε) > 0 such that if ‖x0‖H < δ, then

‖Xt(x0)‖H < ε

for all t ≥ 0.

Definition 1.2 The null solution of Equation (1.1.2) is said to be asymptotically

stable if it is stable and there exists δ > 0 such that ‖x0‖H < δ guarantees

lim
t→∞
‖Xt(x0)‖H = 0.

Definition 1.3 The null solution of Equation (1.1.2) is said to be exponentially

stable if it is asymptotically stable and there exist numbers α > 0, and β > 0 such

that

‖Xt(x0)‖H ≤ β‖x0‖He
−αt

for all t ≥ 0.
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It is worth mentioning that for the stability of stochastic systems, there are at

least three times as many definitions as there are for deterministic ones. This is

because in a stochastic setting, there are three basic type of convergence; conver-

gence in probability, convergence in mean and convergence in almost sure (sample

path, probability one) sense. The above deterministic stability definitions can be

translated into a stochastic setting by properly interpreting the notion of conver-

gence (c.f. Kozin (1965) and Arnold (1974)). The relevant stability definitions

of stochastic systems will be introduced and studied in the following chapters

respectively.

1.2 Overview of the studies

This thesis mainly concentrates on stability of stochastic differential equations

in infinite dimensional spaces, mainly Hilbert spaces. We attempt to investigate

stability properties such as stability in distribution, exponential stability, almost

sure exponential stability and asymptotic stability in mean square. Also, various

types of stochastic differential equations have been considered such as stochas-

tic delay differential equations with Poisson jumps, stochastic delay differential

equations with Poisson jumps and Markovian switching, impulsive stochastic de-

lay differential equations with jumps and neutral stochastic functional differential

equations.

In Chapter 2, we recall some basic concepts of the theory of stochastic dif-

ferential equations in infinite dimensional spaces, mainly Hilbert spaces. This

chapter begins with some basic definitions and preliminaries of stochastic inte-

gration and stochastic differential equations in infinite dimensional spaces. In

this way, such notions as Q-Wiener processes, stochastic integral with respect to

Wiener processes, stochastic integral with respect to compensated Poisson ran-

dom measures, strong and mild solutions to stochastic differential equations will
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be appropriately reviewed in order to help readers gain required knowledge to

understand the following chapters. In addition, some of important mathematical

tools like Burkholder-Davis-Gundy inequalities are stated in the latter part of this

chapter. The book, Liu (2006) contributes to the development of this thesis as

the main source of reference but the reader can find most of theses mathematical

concepts in many fine books related to stochastic analysis such as Da Prato and

Zabczyk (1992), Kuo (2006), Métivier (1982) and Øksendal (1995).

Stochastic evolution equations and stochastic partial differential equations

driven by Wiener processes have been studied by many researchers. However,

there have not been very much studies of stochastic partial differential equations

driven by jump processes. Chapter 3 of this thesis is devoted to an investigation

of the stability of the mild solution to stochastic delay differential equations with

Poisson jumps. We introduce a proper approximating strong solution system of

mild solution to pass on stability of strong solutions to mild ones. The main

result is that by constructing a suitable metric between the transition probability

functions of mild solutions, we are able to give sufficient conditions for stability

in distribution of mild solution.

Many practical systems may experience abrupt changes in their structure and

parameters caused by phenomena such as component failures or repairs, chang-

ing subsystem interconnections and abrupt environmental disturbances. The hy-

brid systems driven by continuous-time Markov chains have been used to model

such systems. The hybrid systems combine a part of the state that takes values

continuously and another part of the state that takes discrete values. Such hy-

brid system have been considered for the modeling of electric power systems by

Wilsky and Levy (Wilsky and Levy (1979)) as well as for the control of a solar

thermal central receiver by Sworder and Rogers (Sworder and Rogers (1983)).

In 1987, Athans (1987) suggested that the hybrid systems would become a ba-

sic framework in posing and solving control-related issues in Battle Management
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Command, Control and Communications (BM/C3) systems. Moreover, one of

the important classes of hybrid systems is the jump linear systems

ẋ(t) = A(r(t)x(t))

where one part of the state x(t) takes values in R+ while the other part of the

state r(t) is a Markov chain taking values in S = {1, 2, · · · ,N}. One of the most

important issues in the study of hybrid systems is the automatic control, with

consequent emphasis being placed on the analysis of stability (c.f. Basak et al.

(1996), Ji and Chizeck (1990), Mao (1999) and Mao et al. (2000).

If the stochastic system in Chapter 3 experiences abrupt changes in their

structure and parameters, and we use the continuous-time Markov chain to model

these abrupt changes, we then need to deal with stochastic partial differential

equation with Markovian switching and Poisson jumps. Therefore, in Chapter 4,

motivated by the hybrid systems, we proceed to the study of stochastic partial

differential equations with Markovian switching and Poisson jumps. By using the

energy equality, we obtain the exponential stability and almost sure exponential

stability of the energy solution to the equations which we are interested under

some suitable conditions.

Chapter 5 is a study of the solutions of stochastic neutral functional differen-

tial equations in infinite dimensions. By introducing the fundamental solutions

(Green’s operator) which firstly introduced in Liu (2008), we established the vari-

ational constants formula of mild solution to the neutral stochastic system. We

then discuss the relationship among strong, weak and mild solutions.

Besides the abrupt changes modeled by continuous-time Markov chain, there

are many real-world systems and natural processes that display some kind of

dynamic behavior in a style of both continuous and discrete characteristics. For

instance, in the field of medicine, biology, electronics and economic, many evo-

lution processes are characterized by abrupt changes of states at certain time
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instants. This is the familiar impulsive phenomenon. Often, sudden and sharp

changes occur instantaneously, in the form of impulsive, which cannot be well

described by using pure continuous or pure discrete models. Taking the environ-

mental disturbances into account, impulsive stochastic systems arise naturally

from a wide variety of applications.

Therefore, in Chapter 6, we firstly study the impulsive stochastic partial dif-

ferential equations, followed by the stochastic evolution equations with Poisson

jumps. By applying the fixed point theorem, we obtain the asymptotic stabil-

ity in mean square for both equations under some suitable criteria. Finally, a

summary of this thesis is presented in Chapter 7.
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Chapter 2

Stochastic differential equations

in infinite dimensions

This thesis deals with the stochastic differential equations in Hilbert spaces. More

specifically, we study the solutions of stochastic differential equations, for which

we need the notion of the stochastic integral.

The aim of this chapter is to introduce the concepts of ‘stochastic integral’

and ‘stochastic differential equation’ in a manner that is general enough to allow

us to study stochastic differential equations driven by Wiener processes or Lévy

processes. In Section 2.1, we introduce some basic definitions and preliminaries

in stochastic analysis. Wiener processes and the stochastic integral with respect

to Wiener processes are defined in Section 2.2. To be able to study equations

driven by jump processes, we introduce Lévy processes and the stochastic integral

with respect to compensated Poisson random measures in Section 2.3. In section

2.4, we describe the notions of strong and mild solutions of stochastic differential

equations in infinite dimensions and mention some preliminary results. Proofs of

the results presented in this chapter are not given as they are widely available in

the existing literature (c.f. Section 2.5).
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2.1 Notations, definitions and preliminaries

A measurable space is a pair (Ω,F) where Ω is a set and F is a σ-field, also called

a σ-algebra, of subsets of Ω. This means that the family F contains the set Ω

and is closed under the operation of taking complements and countable unions

of it elements. If (Ω,F) and (E, E) are two measurable spaces, then a mapping

X from Ω into E such that the set {ω ∈ Ω : X(ω) ∈ A} = {X ∈ A} belongs to

F for arbitrary A ∈ E is called a measurable mapping or random variable from

(Ω,F) into (E, E). A random variable is called simple if it takes on only a finite

number of values.

In this thesis, we shall only be concerned with the case when E is a complete

and separable metric space. In this case, E = B(E), the Borel σ-field of E which

is the smallest σ-field containing all closed (or open) subsets of E. An E-valued

random variable is a mapping X : Ω → E which is measurable from (Ω,F) into

(E,B(E)). If E is a separable Banach or Hilbert space, we shall denote its norm

by ‖ · ‖E and its topological dual by E∗.

A probability measure on a measurable space (Ω,F) is a σ-additive function P

from F into [0, 1] such that P(Ω) = 1. The triplet (Ω,F ,P) is called a probability

space. If (Ω,F ,P) is a probability space, we set

F̄ = {A ⊂ Ω : ∃B,C ∈ F ; B ⊂ A ⊂ C, P(B) = P(C)}.

Then F̄ is a σ-field and is called the completion of F . If F = F̄ , then the

probability space (Ω,F ,P) is said to be complete.

Let (Ω,F ,P) be a complete probability space. A family {Ft}t≥0, for which Ft

are sub-σ-fields of F and form an increasing family of σ-field, is called a filtration

if Fs ⊂ Ft ⊂ F for s ≤ t. With the {Ft}t≥0, one can associate two other filtrations

by setting σ-fields: Ft− =
∨
s<tFs if t > 0, Ft+ =

⋂
s>tFs if t ≥ 0, where

∨
s<tFs

is the smallest σ-filed containing
⋃
s<tFs. The σ-field F0− is not defined and,
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by convention, we put F0− = F0, and also F∞ =
∨
t≥0Ft. An increasing family

{Ft}t≥0 is said to be right-continuous if for every t ≥ 0, Ft+ = Ft.

From now on, we shall always work on a given a complete probability space

(Ω,F ,P) with a filtration {Ft}t≥0 satisfies the usual conditions, i.e. {Ft}t≥0 is

an increasing and right-continuous family of sub-σ-fields of F and F0 contains all

P-null sets in F .

If X is a random variable from (Ω,F) into (E, E) and P a probability measure

on Ω, then by L (X)(·) we denote the image of P under the mapping X:

L (X)(A) = P{ω ∈ Ω : X(ω) ∈ A}, ∀A ∈ E .

The measurable L (X) is called the distribution or law of X.

Definition 2.1 ({Ft}-stopping time) A nonnegative random variable τ(ω) :

Ω→ R+ = [0,∞] is called an {Ft}-stopping time if {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft for

arbitrary t ≥ 0.

Assume now E is a separable Banach space with norm ‖ · ‖E and X is an E-

valued random variable on (Ω,F ,P). We can define the integral
∫

Ω
XdP of X with

respect to the probability measure P by a standard limit argument (c.f. Da Prato

and Zabczyk (1992), Section 1.1).

Definition 2.2 (Bochner integrable) A random variable X is said to be Bochner

integrable or simply integrable if∫
Ω

‖X(ω)‖EP(dω) <∞.

Definition 2.3 (Bochner’s integral) Let the random variable X be integrable,

there exists a sequence {Xn} of simple random variables such that the sequence

{‖X(ω)−Xn(ω)‖E} decreases to 0 as n→∞, for all ω ∈ Ω. It follows that
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∥∥∥∥∫
Ω

Xn(ω)P(dω)−
∫

Ω

Xm(ω)P(dω)

∥∥∥∥
E

≤
∫

Ω

‖X(ω)−Xn(ω)‖EP(dω) +

∫
Ω

‖X(ω)−Xm(ω)‖EP(dω)

↓ 0 as n,m→∞.

Therefore the integral of X can be defined by∫
Ω

X(ω)P(dω) = lim
n→∞

∫
Ω

Xn(ω)P(dω).

The integral
∫

Ω
XdP will be often denoted by E(X). Then integral defined in this

way is called Bochner’s integral.

We denote by L1(Ω,F ,P;E) the set of all equivalence classes of E-valued

random variables with respect to the equivalence relation of almost sure equal-

ity. In the same way as for real random variables, one can be checked that

L1(Ω,F ,P;E), equipped with the norm ‖X‖L1 = E‖X‖E, is a Banach space. In

a similar manner, one can define Lp(Ω,F ,P;E), for arbitrary p > 1 with norms

‖X‖Lp = (E‖X‖pE)1/p, p ∈ (1,∞), and ‖X‖L∞ = ess. supω∈Ω ‖X(ω)‖E. If Ω is

an interval [0, T ], F = B([0, T ]), 0 ≤ T < ∞, and P is the Lebesgue measure on

[0, T ], we also write Lp(0, T ;E) or simply Lp(0, T ), for the spaces defined above

when no confusion arises.

Operator-valued random variables and their integrals are often of great in-

terest to us. Let H and K be two separable Hilbert spaces and we denote by

‖ · ‖H and ‖ · ‖K their norms and by 〈·, ·〉H , 〈·, ·〉K their inner products, respec-

tively. We denote by L(K,H) the set of all linear bounded operators from K

into H, equipped with the usual operator norm ‖ · ‖. We always use the same

symbol ‖ · ‖ to denote norms of operators regardless of the spaces potentially

involved when no confusion may arise. The set L(K,H) is a linear space and

equipped with the operator norm, becomes a Banach space. However if both
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spaces are infinite dimensional, then space L(K,H) is not a separable space. A

direct consequence of this inseparability is that Bochner’s integral definition can

not be applied to L(K,H)-valued functions. To overcome these difficulties, we

introduce the following weaker concept of measurability.

A mapping Φ(·) from Ω into L(K,H) is said to be strongly measurable if for

arbitrary k ∈ K, Φ(·)k is measurable as a mapping from (Ω,F) into (H,B(H)).

Let F(L(K,H)) be the smallest σ-field of subsets of L(K,H) containing all sets

of the form

{Φ ∈ L(K,H) : Φk ∈ A}, k ∈ K, A ∈ B(H),

then Φ : Ω → L(K,H) is a strongly measurable mapping from (Ω,F) into the

space (L(K,H),F(L(K,H))). Elements of F(L(K,H)) are called strongly mea-

surable. Mapping Φ is said to be Bochner integrable with respect to the measure

P if for arbitrary k, the mapping Φ(·)k is Bochner integrable and there exists a

bounded linear operator Ψ ∈ L(K,H) such that∫
Ω

Φ(ω)kP(dω) = Ψk, k ∈ K.

The operator Ψ is then denoted as

Ψ =

∫
Ω

Φ(ω)P(dω)

and called the strong Bochner integral of Φ. This integral has many of the prop-

erties of the Lebesgue integral. For instance, it can be shown that if K and H

are both separable, then ‖Φ(·)‖ is a measurable function and

‖Ψ‖ ≤
∫

Ω

‖Φ(ω)‖P(dω).

The following operator spaces are of fundamental importance. An element

A ∈ L(H,H) is called symmetric if 〈Au, v〉H = 〈u,Av〉H for all u, v ∈ H. In

addition, A ∈ L(H,H) is called nonnegative if 〈Au, v〉H ≥ 0 for all u ∈ H.
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Definition 2.4 (Nuclear operator) An element A ∈ L(K,H) is said to be a

nuclear operator if there exists a sequence {aj}j∈N in H and a sequence {bj}j∈N

in K such that

Ax =
∞∑
j=1

aj〈bj, x〉K for all x ∈ K

and

∞∑
j=1

‖aj‖H · ‖bj‖K <∞.

The space of all nuclear operators from K to H is denoted by L1(K,H). If

K = H, A ∈ L1(K,H) is nonnegative and symmetric, then A is called trace

class. The space L1(K,H) endowed with the norm

‖A‖L1 := inf

{ ∞∑
j=1

‖aj‖H · ‖bj‖K : Ax =
∞∑
j=1

aj〈bj, x〉K , x ∈ K
}

is a Banach space (c.f. Da Prato and Zabczyk (1992), Appendix C).

Let A ∈ L(H,H) and let ek, k ∈ N, be an orthonormal basis of H. Then we

define

Tr A :=
∞∑
k=1

〈Aek, ek〉H

if the series is convergent. If A ∈ L(H,H) then Tr A is well-defined independently

of the choice of the orthonormal basis ek, k ∈ N (c.f. Da Prato and Zabczyk

(1992), Appendix C).

Definition 2.5 (Hilbert-Schmidt operator) A bounded linear operator A :

K → H is called Hilbert-Schmidt if

∞∑
k=1

‖Aek‖2
H <∞

where ek, k ∈ N, is an orthonormal basis of K.

The space of all Hilbert-Schmidt operators from K to H is denoted by L2(K,H).
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The definition of Hilbert-Schmidt operator and the number

‖A‖2
L2 :=

∞∑
k=1

‖Aek‖2
H

are independent of the choice of orthonormal basis ek, k ∈ N. Moreover, ‖A‖L2 =

‖A∗‖L2 . Let S, T ∈ L2(K,H) and ek, k ∈ N, be an orthonormal basis of K,

L2(K,H) is a separable Hilbert space with inner product

〈T, S〉L2 :=
∞∑
k=1

〈Sek, T ek〉H

(c.f. Da Prato and Zabczyk (1992), Appendix C). It can be proved that the spaces

L1(K,H) and L2(K,H) are strongly measurable subsets of L(K,H) (c.f. Da Prato

and Zabczyk (1992), Section 1.2).

Assume that E is a separable Banach space with norm ‖ · ‖E and let B(E) be

the σ-field of its Borel subsets. Let (Ω,F ,P) be a probability space. An arbitrary

family X = {X(t)}t≥0 of E-valued random variable X(t), t ≥ 0, defined on Ω is

called a stochastic process. Sometimes, we also write X(t, ω) = X(t) = Xt(ω) for

all t ≥ 0 and ω ∈ Ω. The functions X(·, ω) are called the trajectories of X.

To this end, we introduce several definitions of regularity for a process X on

[0, T ), where T could be finite or infinite.

(a) X is stochastically continuous at t0 ∈ [0, T ) if, for all ϕ > 0 and δ > 0, there

exists ρ > 0 such that P{‖X(t)−X(t0)‖E ≥ ϕ} ≤ δ, ∀ t ∈ [t0 − ρ, t0 + ρ] ∩

[0, T );

(b) X is stochastically continuous in [0, T ) if it is stochastically continuous at

every point of [0, T );

(c) X is continuous with probability one (or continuous) if its trajectories X(·, ω)

are continuous almost surely;

(d) X is càdlàg (right-continuous and left limit) if it is right-continuous and for
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almost all ω ∈ Ω the left limit X(t−, ω) = lims→tX(s, ω) exists and is finite

for all t > 0.

(e) X is mean square continuous at t0 ∈ [0, T ) if limt→t0 E(‖X(t)−X(t0)‖2
E) = 0.

(f) X is mean square continuous in [0, T ) if it is mean square continuous at every

point of [0, T ).

Definition 2.6 A stochastic process X on [0, T ), where T could be finite or pro-

cess, is said to be

• measurable if the mapping X(·, ·) : [0, T ) × Ω → E is B([0, T )) × F-

measurable (all stochastic processes considered in this thesis will be assumed

to be measurable);

• {Ft}-adapted if, for every t ∈ [0, T ), X(t) is measurable with respect to

Ft;

• progressively measurable with respect to {Ft} if, for every t ∈ [0, T ),

the mapping [0, t]× Ω→ E, (s, ω)→ X(s, ω), is B([0, t])×Ft-measurable.

The following σ-field P∞ of subsets of [0,∞)×Ω plays an essential role in the

construction of the stochastic integrals with respect to martingales. That is, P∞

is defined as the σ-field generated by sets of the form:

(s, t]× F, 0 ≤ s < t <∞, F ∈ Fs and {0} × F, F ∈ F0.

This σ-field is called predictable and its elements are called predictable sets. The

restriction of the σ-field P∞ to [0, T ] × Ω, 0 ≤ T < ∞, will be denoted by PT .

An arbitrary measurable mapping from ([0,∞)× Ω,P∞) or ([0, T ]× Ω,PT ) into

(E,B(E)) is called predictable process. A predictable process is necessarily an

adapted one. We have the following relationship among the various processes:

predictable processes ⊂ progressive processes ⊂ adapted processes.
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Theorem 2.1

(i) An adapted process Φ(t), t ∈ [0, T ) with values in (L(K,H), F(L(K,H)))

such that for arbitrary k ∈ K and h ∈ H the process 〈Φ(t)k, h〉H , t ∈ [0, T )

has left continuous trajectories, is predictable (L(K,H) and F(L(k,H)) are

defined on Page 13 and 14);

(ii) Assume that Φ(t), t ∈ [0, T ), is an adapted and stochastically continuous

process on the interval [0, T ). Then the process Φ has a predictable version

on [0, T ).

The proof can be found in Da Prato and Zabczyk (1992), Proposition 3.6.

Let E be a separable Banach space with norm ‖ · ‖E and M = M(t), t ∈ (0, T ],

where T could be finite or infinite, an E-valued stochastic process defined on

(Ω,F , {F}t∈[0,T ),P). If E‖M(t)‖E < ∞ for all t ∈ [0, T ), then the process is

called integrable. An integrable and adapted E-valued process M(t), t ∈ [0, T ),

is said to ba a martingale with respect to {F}t∈[0,T ) if

E(M(t)|Fs) = M(s) P− a.s. (2.1.1)

for arbitrary t ≥ s, t, s ∈ [0, T ). If E‖M(t)‖2
E <∞ for all t ∈ [0, T ) then M(t) is

called square integrable.

We also recall that a real-valued integrable and adapted process M(t), t ∈

[0, T ), is said to be a submartingale (resp. a supermartingale) with respect to

{Ft}t∈[0,T ) if

E(M(t)|Fs) ≥M(s) ( resp. E(M(t)|Fs) ≤M(s)), P− a.s.

for any s ≤ t, s, t ∈ [0, T ).

Let [0, T ], 0 ≤ T < ∞, be a sub-interval of [0,∞). A continuous E-valued

stochastic process M(t), t ∈ [0, T ], defined on (Ω,F , {Ft}t∈[0,T ],P), is a continu-

ous square integrable martingale with respect to {Ft}t∈[0,T ] if it is a martingale
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with almost surely continuous trajectories and satisfies, supt∈[0,T ] E‖M(t)‖2
E <∞.

Let us denote by M2
T (E) the space of all E-valued continuous, square inte-

grable martingales M . The spaceM2
T (E), equipped with the norm ‖M‖M2

T (E) =(
E supt∈[0,T ] ‖M(t)‖2

E

)1/2

, is a Banach space (c.f. Da Prato and Zabczyk (1992),

Proposition 3.9).

Denote by L1 = L1(K) = L1(K,K) the space of all nuclear operators from the

separable Hilbert space K into itself, equipped with the usual nuclear norm. Then

L1 is a separable Banach space. An L1-valued process V (·) is said to be increasing

if the operators V (t), t ∈ [0, T ], are nonnegative, denoted by V (t) ≥ 0, i.e., for

any k ∈ K, 〈V (t)k, k〉K ≥ 0, t ∈ [0, T ], and 0 ≤ V (s)−V (t) if 0 ≤ t ≤ s ≤ T . An

L1-valued continuous, adapted and increasing process V (t) such that V (0) = 0 is

said to be a tensor quadratic variation process of the martingale M(t) ∈M2
T (K)

if and only if for arbitrary a, b ∈ K, the process

〈M(t), a〉K〈M(t), b〉K − 〈V (t)a, b〉K , t ∈ [0, T ],

is a continuous Ft-martingale, or equivalently, if and only if the process

M(t)⊗M(t)− V (t), t ∈ [0, T ],

is a continuous Ft -martingale, where (a ⊗ b)k := a〈b, k〉K for any k ∈ K and

a, b ∈ K. One can show that the process V (t) is uniquely determined and can be

denoted therefore by � M(t) �, t ∈ [0, T ] (c.f. Da Prato and Zabczyk (1992),

Proposition 3.12).

On the other hand, if M(t) ∈ M2
T (K) then there exists a real-valued, in-

creasing, continuous process which is uniquely determined up to probability one,

denoted by [M(t)] with [M(0)] = 0, called the quadratic variation of M(t), such

that ‖M(t)‖2
K − [M(t)] is an Ft-martingale (c.f. Da Prato and Zabczyk (1992),

Page 79).

With regard to the relation between �M(t)� and [M(t)] of M(t), we have
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the following:

Theorem 2.2 For arbitrary M(t) ∈ M2
T (K), there exists a unique predictable,

positive symmetric element QM(ω, t) or simply Q(ω, t), of L1(K) such that

�M(t)�=

∫ t

0

QM(ω, s)d[M(s)]

for all t ∈ [0, T ]. In particular, we also call the K-valued stochastic process M(t),

t ≥ 0, a QM(ω, t)-martingale process.

The proof can be found in Métivier (1982), Theorem 21.6.

In a similar manner, one can define the so-called cross quadratic variation for

any M(t) ∈ M2
T (K), N(t) ∈ M2

T (K) as a unique continuous process, denoted

by � M(t), N(t) �, such that M(t) ⊗ N(t)− � M(t), N(t) �, t ∈ [0, T ], is a

continuous Ft-martingale (c.f. Da Prato and Zabczyk (1992), Page 80).

2.2 Wiener processes and the stochastic integral

with respect to Wiener processes

Let K be a real separable Hilbert space with norm ‖ · ‖K and inner product

〈·, ·〉K , respectively. A probability measure N on (K,B(K)) is called Gaussian if

for arbitrary u ∈ K, there exist numbers µ ∈ R and σ ≥ 0 such that

N{x ∈ K : 〈u, x〉K ∈ A} = N(µ, σ2)(A), A ∈ B(R),

where N(µ, σ2) is the usual one dimensional normal distribution with mean µ and

variance σ2. It follows from Da Prato and Zabczyk (1992), Lemma 2.14 that if

N is Gaussian, then there exist an element m ∈ K and a symmetric nonnegative

continuous operator Q such that:∫
K

〈k, x〉KN (dx) = 〈m, k〉K , ∀ k ∈ K,
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∫
K

〈k1, x〉K〈k2, x〉KN (dx)− 〈m, k1〉K〈m, k2〉K = 〈Qk1, k2〉K , ∀ k1, k2 ∈ K,

and, furthermore the characteristic function

N̂ (λ) =

∫
K

ei〈λ,x〉KN (dx) = ei〈λ,m〉K−
1
2
〈Qλ,λ〉K , λ ∈ K.

Therefore, the measure N is uniquely determined by m and Q and denoted also

by N (m,Q). In particular, in this case we call m the mean and Q the covariance

operator of N . Note that, let N be a Gaussian probability measure with mean

0 and covariance Q, then Q is a trace class operator (c.f. Da Prato and Zabczyk

(1992), Proposition 2.15).

Recall that we always assume the probability space (Ω,F ,P) is equipped with

a right-continuous filtration {Ft}t≥0 such that F0 contains all sets of P-measure

zero. We consider two real-valued separable Hilbert spaces H and K, and a

symmetric nonnegative operator Q ∈ L(K) with Tr Q < ∞. Then there exists

a complete orthonormal system ek, k ∈ N in K, and a bounded sequence of

nonnegative real numbers λk such that Qek = λkek, k = 1, 2, · · · .

Definition 2.7 (K-valued Q-Wiener process) A K-valued stochastic process

WQ(t), t ≥ 0, is called a Q-Wiener process if

(i) WQ(0) = 0;

(ii) WQ(t) has continuous trajectories;

(iii) WQ(t) has independent increments;

(iv) L (WQ(t) −WQ(s)) = N (0, (t − s)Q), t ≥ s ≥ 0, i.e. E(WQ(t)) = 0 and

Cov(WQ(t) −WQ(s)) = (t − s)Q, where L (X) denotes the distribution of

X (c.f. Page 12) and Cov(X) denotes the covariance operator of X ∈ H.

(c.f. Da Prato and Zabczyk (1992), Page 26).

Proposition 2.1 Assume that WQ(t) is a Q-Wiener process with Tr Q < ∞.
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Then WQ(t) is a continuous martingale relative to {F}t≥0 and we have the fol-

lowing representation of WQ(t):

WQ(t) =
∞∑
j=1

√
λjβj(t)ej (2.2.1)

where

βj(t) =
1√
λj
〈WQ(t), ej〉, j = 1, 2, · · · , (2.2.2)

are real-valued Brownian motions mutually independent on (Ω,F ,P) and the se-

ries in (2.2.1) is convergent in L2(Ω,F ,P).

The proof can be found in Da Prato and Zabczyk (1992), Proposition 4.1.

Theorem 2.3 For an arbitrary symmetric nonnegative trace class operator Q on

the real separable Hilbert space K, there exists a Q-Wiener process WQ(t), t ≥ 0.

Moreover, the series (2.2.1) is uniformly convergent on [0, T ] almost surely for

arbitrary T ≥ 0.

The proof can be found in Da Prato and Zabczyk (1992), Proposition 4.2 and

Theorem 4.3.

Note that the tensor quadratic variation of a Q-Wiener process in K with

Tr Q < ∞, is given by the formula � WQ(t) �= tQ, t ≥ 0 from the following

theorem.

Theorem 2.4 A continuous martingale M(t) ∈ M2
T (K), M(0) = 0, is a Q-

Wiener process on [0, T ] adapted to the filtration {Ft}t≥0 and with increments

M(t) −M(s), 0 ≤ s ≤ t ≤ T , independent of Fs, for s ∈ [0, T ], if and only if

�M(t)�= tQ, t ∈ [0, T ].

The proof can be found in Da Prato and Zabczyk (1992), Theorem 4.4.

The stochastic integral
∫ t

0
Φ(t)dWQ(s) may be defined in the following ways.

Let us fix T < ∞. An L(K,H)-valued process Φ(t), t ∈ [0, T ], taking only
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a finite number of values is said to be elementary if there exists a sequence

0 = t0 < t1 < · · · < tk = T and a sequence Φ0,Φ1, · · · ,Φk−1 of L(K,H)-valued

random variables taking only a finite number of values such that Φm are Ftm-

measurable and

Φ(t) = Φm, for t ∈ (tm, tm+1], m = 0, 1, · · · , k − 1.

For elementary processes Φ one defines the stochastic integral by the formula∫ t

0

Φ(s)dWQ(s) =
k−1∑
m=0

Φm(WQ(tm+1 ∧ t)−WQ(tm ∧ t)), t ∈ [0, T ] (2.2.3)

We introduce the subspace K0 = Q1/2(K) of K which, endowed with the inner

product

〈u, v〉K0 = 〈Q−1/2u,Q−1/2v〉K , u, v ∈ K0, (2.2.4)

is a Hilbert space, where Q1/2 is a positive square root of Q ∈ L(H,H) and Q−1/2

is the pseudo-inverse of Q1/2 (For definition of positive square root and pseudo-

inverse, please refer to Kreyszig (1989), Page 476 and Prévôt and Röckner (2007),

Appendix C).

In the construction of the stochastic integral for more general processes an im-

portant role will be played by the space of all Hilbert-Schmidt operator L0
2(K0, H)

from K0 into H. The space L0
2(K0, H) is also a separable Hilbert space, equipped

with the norm

‖Ψ‖2
L02

= Tr
(
(ΨQ1/2)(ΨQ1/2)∗

)
for any Ψ ∈ L0

2(K0, H). (2.2.5)

For arbitrarily given T ≥ 0, let Φ(t), t ∈ [0, T ], be an Ft-adapted, L0
2(K0, H)-

valued process. We define the following norms for arbitrary t ∈ [0, T ],
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|Φ|t :=

{
E
∫ t

0

‖Φ(s)‖2
L02
ds

} 1
2

=

{
E
∫ t

0

Tr
(
Φ(s)Q1/2

)(
Φ(s)Q1/2

)∗
ds

} 1
2

. (2.2.6)

In particular, if Φ(t) ∈ L0
2(K0, H), t ∈ [0, T ], is an Ft-adapted, L(K,H)-valued

process, (2.2.6) turns out to be

|Φ|t =

{
E
∫ t

0

Tr
(
Φ(s)QΦ(s)∗

)
ds

} 1
2

.

Proposition 2.2 For arbitrary T ≥ 0, if a process Φ is elementary and |Φ|T <

∞, then the process
∫ t

0
Φ(s)dWQ(s) is a continuous, square integrable H-valued

martingale on [0, T ] and

E
∥∥∥∥∫ t

0

Φ(s)dWQ(s)

∥∥∥∥2

H

= |Φ|2t , t ∈ [0, T ]. (2.2.7)

The proof can be found in Da Prato and Zabczyk (1992), Proposition 4.5.

Note that the stochastic integral is an isometric transformation from the space

of all elementary processes equipped with the norm | · |T into the space M2
T (H)

of H-valued martingales.

For arbitrary T ≥ 0, from (c.f. Da Prato and Zabczyk (1992), Chapter 4), we

are able to extend the definition of stochastic integral
∫ t

0
Φ(s)dWQ(s), t ≥ 0 to all

L0
2(K0, H)-valued predictable process Φ such that |Φ|T <∞. Note that they form

a Hilbert space. We denote all L0
2(K0, H)-valued predictable processes Φ such

that |Φ|T <∞ by W2([0, T ];L0
2). By Da Prato and Zabczyk (1992), Proposition

4.7, elementary processes form a dense set in W2([0, T ];L0
2). By Proposition 2.2,

the stochastic integral
∫ t

0
Φ(s)dWQ(s), is an isometric transformation from that

dense set intoM2
T (H), therefore the definition of the integral can be immediately

extended to all elements ofW2([0, T ];L0
2). As a final step we extend the definition

of the stochastic integral to L0
2(K0, H)-valued predictable processes satisfying the
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even weaker condition

P
{∫ T

0

‖Φ(s)‖2
L02
ds <∞, 0 ≤ t ≤ T

}
= 1. (2.2.8)

Please refer to Da Prato and Zabczyk (1992), Page 94-96 for the details.

We introduce the following properties of the stochastic integral.

Theorem 2.5 Assume that Φ ∈ W2([0, T ];H), then
∫ t

0
Φ(s)dWQ(s) is a contin-

uous square integrable martingale, and its quadratic variation is of the form

�
∫ t

0

Φ(s)dWQ(s)�=

∫ t

0

QΦ(s)ds,

where

QΦ(t) =
(

Φ(t)Q1/2
)(

Φ(t)Q1/2
)∗
, t ∈ [0, T ].

The proof can be found in Da Prato and Zabczyk (1992), Theorem 4.12.

Theorem 2.6 (Burkholder-Davis-Gundy inequality) For arbitrary p > 0,

there exists a constant C = Cp > 0, dependent only on p, such that for any T ≥ 0,

E
{

sup
0≤t≤T

∫ t

0

∥∥∥∥Φ(s)dWQ(s)

∥∥∥∥p
H

}
≤ Cp E

{∫ T

0

‖Φ(s)‖2
L02
ds

}p/2
.

The proof can be found in Da Prato and Zabczyk (1992), Lemma 7.2.

Assume that A is a linear operator, generally unbounded, on H and T (t), t ≥

0, a strongly continuous semigroup of bounded linear operators with infinitesimal

generator A. Suppose Φ(t) ∈ W2([0, T ];L0
2), t ∈ [0, T ], is an L0

2(K0, H)-valued

process such that the stochastic integral∫ t

0

T (t− s)Φ(s)dWQ(s) = WΦ
A (t), t ∈ [0, T ],

is well defined, then the process WΦ
A (t) is called the stochastic convolution of Φ.

In general, the stochastic convolution is no longer a martingale. However, we have
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the following result which could be regarded as an infinite dimensional version of

Burkholder-Davis-Gundy type of inequality for stochastic convolutions.

Theorem 2.7 Let p > 2, T ≥ 0 and assume Φ(s) ∈ W2([0, T ];L0
2) is an

L0
2(K0, H)-valued process such that E

( ∫ T
0
‖Φ(s)‖pL02ds

)
< ∞. Then there exists

a constant C = Cp,T > 0, dependent on p and T , such that

E sup
t∈[0,T ]

∥∥∥∥∫ t

0

T (t− s)Φ(s)dWQ(s)

∥∥∥∥p
H

≤ Cp,T E
(∫ T

0

‖Φ(s)‖pL02ds
)
.

The proof can be found in Tubaro (1984), Theorem 1.

In Theorem 2.7, the case p = 2 is hold if A is assumed to generate a contraction

C0-semigroup T (t), i.e., ‖T (t)‖ ≤ eµt, t ≥ 0, for some µ ∈ R (c.f. Liu (2006),

Theorem 1.2.4).

Definition 2.8 (Fréchet differentiability) Let E be a Banach space or Hilbert

space with norm denoted by ‖ · ‖E and E∗ be the topological dual of E with norm

denoted by ‖ · ‖E∗. Let Ψ : E → R be Borel measurable function. The function Ψ

is said to be Fréchet differentiable at x ∈ E if for each y ∈ E,

Ψ(x+ y)−Ψ(x) = DΨ(x)(y) + o(y),

where DΨ : E → E∗ and o : E → R is function such that o(x)
‖x‖E

→ 0 as ‖x‖E →

0. In this case, DΨ(x) ∈ E∗ is called the Fréchet derivative of Ψ at x ∈ E.

The function Φ is said to be continuously Fréchet differentiable at x ∈ E if its

Fréchet derivative DΨ : E → E∗ is continuous under the operator norm ‖ · ‖E∗.

The function Ψ is said to be twice Fréchet differentiable at x ∈ E if its Fréchet

derivative DΨ : E → R exists and there exists D2Ψ(x) : E × E → R such that

for each y, z ∈ E, D2Ψ(x)(·, z), D2Ψ(x)(y, ·) ∈ E∗ and

DΨ(x+ y)(z)−DΨ(x)(z) = D2Ψ(x)(y, z) + o(y, z).
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Here, o : E × E → R is such that o(y,z)
‖y‖E

→ 0 as ‖y‖E → 0 and o(y,z)
‖z‖E

→ 0 as

‖z‖E → 0. In this case, the bounded bilinear functional D2Ψ(x) : E × E → R is

the second Fréchet derivative of Ψ at x ∈ E.

The function Ψ : E → R is said to be Fréchet differentiable (respectively, twice

Fréchet differentiable) if Ψ is Fréchet differentiable (twice Fréchet differentiable)

at every x ∈ E.

As another important tool, we mention the following infinite dimensional ver-

sion of the classic Itô’s formula which will play an essential role in our study.

For T > 0, suppose that V (t, x) : [0, T ] ×H → R is a continuous function with

properties:

(i) V (t, x) is differentiable in t and V ′t (t, x) is continuous on [0, T ]×H;

(ii) V (t, x) is twice Fréchet differentiable in x, V ′x(t, x) ∈ H and V ′′xx(t, x) ∈ L(H)

are continuous on [0, T ]×H.

Assume that Φ(t) ∈ W2([0, T ];L0
2) is an L0

2(K0, H)-valued process, φ(t) is an

H-valued continuous, Bochner integrable process on [0, T ], and X0 is an F0-

measurable, H-valued random variable. Then the following H-valued process

X(t) = X0 +

∫ t

0

φ(s)ds+

∫ t

0

Φ(s)dWQ(s), t ∈ [0, T ], (2.2.9)

is well defined.

Theorem 2.8 (Itô’s formula) Suppose the above conditions (i) and (ii) hold,

then for all t ∈ [0, T ], Z(t) = V (t,X(t)) has the stochastic differential

dZ(t) =

{
V ′t (t,X(t)) + 〈V ′x(t,X(t)), φ(t)〉H

+
1

2
Tr
[
V ′′xx(t,X(t))

(
Φ(t)Q1/2

)(
Φ(t)Q1/2

)∗]}
dt

+ 〈V ′x(t,X(t)),Φ(t)dWQ(t)〉H .

The proof can be found in Da Prato and Zabczyk (1992), Theorem 4.17.
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2.3 Lévy processes and the stochastic integral

with respect to compensated Poisson ran-

dom measures

The Lévy process, which include the Poisson process and Brownian motion as

special cases, were the first class of stochastic processes to be studied in the mod-

ern spirit by the French mathematician Paul Lévy. They still provide prototypic

examples for Markov processes as well as for semimartingales. In this section, we

will give a brief introduction to Lévy process, the stochastic integral with respect

to compensated Poisson random measures and its relevant properties. We shall

define a Lévy process on the probability space (Ω,F , {Ft}t≥0) satisfying the usual

hypotheses with values in (K,B(K)).

Definition 2.9 (Lévy process) An process Y = (Y (t))t≥0 with state space

(K,B(K)), is an Ft-Lévy process on (Ω,F ,P) if

(i) Y is adapted (to {Ft}t≥0);

(ii) Y (0) = 0 a.s.;

(iii) Y has increments independent of the past, i.e. Y (t) − Y (s) is independent

of Fs if 0 ≤ s < t;

(iv) Y has stationary increments, that is Y (t)− Y (s) has the same distribution

as Y (t− s), 0 ≤ s < t;

(v) Y is stochastically continuous;

(vi) Y is càdlàg.
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Definition 2.10 (Counting process) Let (Tn)n≥0 be a strictly increasing se-

quence of random variables with values in R+, such that T0 = 0. Let

1t≥Tn(ω) = 1 if t ≥ Tn(ω)

= 0 if t < Tn(ω)

(Nt)t≥0 with Nt =
∑

n≥1 1t≥Tn is called the counting process associated to (Tn)n≥0.

T = supn Tn is the explosion time of (Nt)t≥0. If T = ∞ almost surely then

(Nt)t≥0 is a counting process without explosion. The counting process (Nt)t≥0 is

adapted i.f.f. (Tn)n≥0 are stopping times (c.f. Protter (2004), Chapter I, Theorem

22).

A σ-finite measure ν on K − {0} is called a Lévy measure if∫
K−{0}

(‖y‖2
K ∧ 1)ν(dy) <∞.

An alternative convention is to define the Lévy measure on the whole of K via

the assignment ν({0}) = 0.

Let Y (t−) := lims↑t Y (s) , the left limit at t, we define4Y (t) = Y (t)−Y (t−),

the jump of Y at time t. We call that a Lévy process has bounded jumps if there

exists a constant C > 0 with supt≥0 ‖4Y (t)‖K < C.

We can obtain a counting Poisson random measure N on (K − {0}) through

N(t,Λ) := #{0 ≤ s ≤ t : 4Y (s) ∈ Λ} =
∑

0≤s≤t

1Λ(4Y (s)), t ≥ 0,

almost surely for any Λ ∈ B(K − {0}) with 0 /∈ Λ̄, the closure of Λ in K. Here

B(K − {0}) denotes the Borel σ-filed of K − {0}.

Definition 2.11 (Compensated Poisson random measure) We call the ran-

dom measure Ñ(t, dy) := N(t, dy) − tν(dy) the compensated Poisson random

measure of the Lévy process Y .
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Let Λ ∈ B(K − {0}) with 0 /∈ Λ̄, the closure of Λ in K. If f : Λ → K is

measurable, we may define∫
Λ

f(y)N(t, dy) =
∑

0≤s≤t

f((4Y (s))1Λ(4Y (s))

as a random finite sum. We denote νΛ the restriction of the measure ν to Λ, still

denoted by ν, so that νΛ is finite. If f ∈ L2(Λ, νΛ;K), we could define∫
Λ

f(y)Ñ(t, dy) =

∫
Λ

f(y)N(t, dy)− t
∫

Λ

f(y)ν(dy).

We have the following result:

Theorem 2.9 If f ∈ L2(Λ, νΛ;K), and for any t ≥ 0, Λ ∈ B(K − {0}), then

E
[∥∥∥∥ ∫

Λ

f(y)Ñ(t, dy)

∥∥∥∥2

K

]
= t

∫
Λ

‖f(y)‖2
Kν(dy).

The proof can be found in Albeverio and Rüdiger (2005), Theorem 3.25.

Theorem 2.10 (Lévy-Itô decomposition) Let (Y (t))t≥0 be a Lévy process on

(K,B(K)), suppose Ñ(t, dy) := N(t, dy) − tν(dy), then for all c ∈ (0,∞], there

is αc ∈ K such that for all t ≥ 0,

Y (t) = αct+WQ(t) +

∫
‖y‖K≤c

yÑ(t, dy) +

∫
‖y‖K≥c

yN(t, dy), (2.3.1)

where WQ is an K-valued Wiener process which is independent of N .

The proof can be found in Albeverio and Rüdiger (2005), Theorem 4.1.

In (2.3.1),∫
‖y‖K≤c

yÑ(t, dy) = lim
n→∞

∫
1
n
<‖y‖K<c

yÑ(t, dy)

where the limit is taken in L2-sense, and it is a square-integrable martingale. The

convenient parameter c ∈ (0,∞] allows us to specify the ‘small’ and ‘large’ jump

by ‖y‖K < c and ‖y‖K ≥ c, respectively. If we want to put ‘small’ and ‘large’
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jumps on the same footing we let c = ∞ or c → 0 so that the term involving

‘small’ or ‘large’ jumps is absent in Equation (2.3.1). In many situations, the term

in Equation (2.3.1) involving ‘large’ jumps maybe handled by using an interlacing

technique (c.f. Applebaum (2004)). In the remainder of this thesis, for the sake

of simplicity, we proceed by omitting this term and concentrate on the study of

the equation driven by continuous noise interspersed with ‘small’ jumps.

Remark 2.1 (Lévy-Khintchine formula) Let pt be the law of Y (t) for each

t ≥ 0; then (pt, t ≥ 0) is a weakly continuous convolution semigroup of probabil-

ity measures on K. We have the Lévy-Khintchine formula (c.f. Protter (2004),

Theorem 44) which yields for all t ≥ 0, u ∈ K,

E
(
ei〈u,Y (t)〉K

)
= etη(u),

where

η(u) = i〈b, u〉K−
1

2
〈u,Qu〉K +

∫
K−{0}

[
ei〈u,y〉K −1− i〈u, y〉K ·1‖y‖K<1(y)

]
ν(dy),

(2.3.2)

where b ∈ K, Q is a positive, self-adjoint, trace class operator on K and ν is a

Lévy measure on K − {0}. Here we use 1E to denote the characteristic function

on set E ⊂ K. We call the triplet (b,Q, ν) the characteristics of the process Y ,

and the mapping η the characteristic exponent of Y .

We will now study the stochastic integration of predictable processes against

compensated Poisson random measures. As usual the stochastic integral is first

defined for simple functions by an isometry. These simple functions are dense in

a certain space on which the stochastic integral can be defined by L2-limits.

Definition 2.12 Let O ∈ B(K − {0}) with 0 /∈ Ō, the closure of O in K and

Let νO denote the restriction of the measure ν to O, still denoted by ν, so that ν

is finite on O. Fix 0 < T <∞ and let P denote the smallest σ-field on [0, T ]×Ω
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with respect to which all mappings L : [0, T ]×O×Ω→ H satisfying (i) and (ii)

are measurable:

(i) for each 0 ≤ t ≤ T the mapping (y, ω)→ L(t, y, ω) is B(O)×Ft-measurable;

(ii) for each y ∈ O, the mapping t→ L(t, y, ω) is left-continuous.

We call P the predictable σ-algebra. A P-measurable mapping L : [0, T ]×O×Ω

is then said to be predictable.

Note that, by (i), if L is predictable then the process t→ L(t, y, ·) is adapted,

for each y ∈ O. If L satisfies (i) and is left-continuous then it is clearly predictable.

Fix T > 0. Let P2([0, T ]×O;H) to be the space of all predictable mappings

L : [0, T ]×O × Ω→ H for which∫ T

0

∫
O
E‖L(t, y)‖2

Hν(dy)dt <∞.

Define S(T,O) to be the space of all simple processes in P2([0, T ]×O;H). L is

simple if, for some m,n ∈ N, there exists 0 = t0 < t1 < t2 < · · · < tm+1 = T and

disjoint Borel subsets A0, A1, · · · , An of O with each ν(Ai) <∞ such that

L :=
m∑
i=0

n∑
j=0

Lij1(ti,ti+1]1Aj
,

where each Lij is a bounded Fti-measurable random variable. S(T,O) is dense

in P2([0, T ] × O;H) (c.f. Applebaum (2004), Section 4.1). To generalize the

construction of stochastic integrals with compensated Poisson random measures,

for each L ∈ S(T,O), 0 ≤ t ≤ T define

It(L) :=
m∑
i=0

n∑
j=0

LijÑ((ti, ti+1], Aj). (2.3.3)

In Applebaum (2006), Section 3.2, it is shown that each It(L), given by (2.3.3)

extends to an isometry from P2([0, T ] × O;H) to L2(Ω,F ,P;H) and we write∫ T
0

∫
O L(s, y)Ñ(ds, dy) := It(L), for each 0 ≤ t ≤ T , L ∈ P2([0, T ]×O;H). The

process (It, t ≥ 0) is a square integrable martingale.
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Proposition 2.3 The process (It(L))t≥0 is an H-valued square-integrable centred

martingale (martingales with property of having mean zero are said to be centred,

c.f. Applebaum (2004), p.73). Furthermore,

E
(∥∥∥∥∫ T

0

∫
O
L(t, y)Ñ(dt, dy)

∥∥∥∥2

H

)
=

∫ T

0

∫
O
E‖L(t, y)‖2

Hν(dy)dt.

The proof of can be found in Applebaum (2004), Section 4.2.

The following stochastic Fubini theorem which was presented in Applebaum

(2006) in a slightly different form is fundamental to our study. Let PT =

P([0, T ] × Ω) denote the predictable σ-field and (Z,Z, µ) be a finite measure

space. Let O ∈ B(K − {0}) and H2(T,O, Z) be the real Hilbert space of all

PT ×B(O)×Z-measurable functions G from [0, T ]×Ω×O×Z → H for which∫
Z

∫ T

0

∫
O
E‖G(s, y, z)‖2

Hν(dy)dsµ(dz) <∞.

The space S(T,O, Z) is dense in H2(T,O, Z), where G ∈ S(T,O, Z) if

G =

N1∑
i=0

N2∑
j=0

N3∑
k=0

Gijk1(ti,ti+1]1Aj
1Bk

,

where N1, N2, N3 ∈ N, A0, . . . , AN1 are disjoint sets in B(O), 0 = t0 < t1 < · · · <

tN1+1 = T , B0, . . . , BN3 is a partition of Z, wherein each Bk ∈ Z and each Gijk

is a bounded Fti-measurable random variable with values in H.

Theorem 2.11 (Fubini Theorem) If G ∈ H2(T,O, Z), then for each 0 ≤ t ≤

T ,∫
Z

(∫ t

0

∫
O
G(s, y, z)Ñ(ds, dy)

)
µ(dz) =

∫ t

0

∫
O

(∫
Z

G(s, y, z)µ(dz)

)
Ñ(ds, dy)

almost surely.

The proof can be found in Applebaum (2006), Theorem 5.

We introduce the following infinite dimensional version of the classic Itô’s

formula from Luo and Liu (2008), which will play a key role in our study.
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Let k > 0 and D := D([−k, 0];H) denote the family of all right-continuous

functions with left-hand limits ϕ from [−k, 0] to H. The space D([−k, 0];H) is as-

sumed to be equipped with the norm ‖ϕ‖D = sup−k≤θ≤0 ‖ϕ(θ)‖H . Db
F0

([−k, 0];H)

denotes the family of all almost surely bounded, F0-measurable, D([−k, 0];H)-

valued random variables. Moreover, Z ∈ B(K − {0}) with 0 /∈ Z̄, the closure of

Z in K and B(K − {0}) denotes the Borel σ-filed of K − {0}.

Consider the following semiliner stochastic functional differential equation

driven by Lévy process on H: for any t > 0,

X(t) = X(0) +

∫ t

0

[AX(s) + F (Xs)]ds+

∫ t

0

G(Xs)dWQ(s)

+

∫ t

0

∫
Z
L(Xs, y)Ñ(ds, dy)

X0(·) = ξ ∈ Db
F0

([−k, 0];H),

where A with D(A) is the infinitesimal generator of C0-semigroup T (t), Xt(θ) :=

X(t + θ), θ ∈ [−k, 0]. The mappings F : D([−k, 0];H) → H, G : D([−k,H]) →

L(K,H) and L : D([−k, 0];H)×K → H are properly defined measurable func-

tions such that the associated integrals make sense.

We denote by C2(H;R+) the family of all real-valued nonnegative functions

V (x) on H which are continuously twice differentiable with respect to x.

Theorem 2.12 (Itô’s formula) Suppose V ∈ C2(H;R+). Then for any

ϕ ∈ D([−k, 0];H), Z(t) = V (X(t)) has the following stochastic differential

dZ(t) = (LV )(X(t))dt+ 〈V ′x(X(t)), G(X(t))dWQ(t)〉H

+

∫
Z
[V (X(t) + L(X(t), y))− V (X(t))]Ñ(t, dy) (2.3.4)

where for all ϕ(0) ∈ D(A),

(LV )(ϕ) = 〈V ′x(ϕ(0)), Aϕ(0) + F (ϕ)〉H +
1

2
Tr [V ′′xx(ϕ(0))G(ϕ)QG∗(ϕ)]

+

∫
Z
[V (ϕ(0) + L(ϕ, y))− V (ϕ(0))− 〈V ′x(ϕ(0), L(ϕ, y))〉H ]ν(dy).
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2.4 Stochastic differential equations

Generally, we are concerned with two ways of giving a rigorous meaning to so-

lution of stochastic differential equations in infinite dimensional spaces, that is,

the variational one (c.f. Pardoux (1975)) and the semigroup one (c.f. Da Prato

and Zabczyk (1992)). Correspondingly, as in the case of deterministic evolution

equations, we have two notions of strong and mild solutions.

2.4.1 Variational approach and strong solutions

Let H is a Hilbert space with norm ‖ · ‖H and a corresponding inner product

〈·, ·〉H . Assume that V ⊂ H is a linear subspace that is dense in H. Assume

that V has its own norm and that V is a real reflexive Banach space (i.e. V ∗∗ =

(V ∗)∗ = V ) with ‖ · ‖V . Assume that the injection V ↪→ H is continuous, i.e.

‖v‖H ≤ C‖v‖V , ∀v ∈ V . [For example, H = L2(0, 1) and V = Lp(0, 1) with

p > 2.] There is a canonical map T : H∗ → V ∗ that is simply the restriction to

V of continuous linear functionals ϕ on H, i.e., 〈Tϕ, v〉V,V ∗ = 〈ϕ, v〉H∗,H , ∀v ∈ V .

Identifying H∗ with H and using T as a canonical embedding from H∗ into V ∗,

one usually writes

V ↪→ H ≡ H∗ ↪→ V ∗, (2.4.1)

where all the injections are continuous and dense. Note that the inner prod-

uct 〈·, ·〉V,V ∗ and 〈·, ·〉H coincide whenever both make sense, i.e., 〈f, v〉V,V ∗ =

〈f, v〉H , ∀f ∈ H and v ∈ V . If V turns out to be a Hilbert space with its inner

product 〈·, ·〉V associated to the norm ‖ · ‖V , the common habit is to identify H∗

with H, to write (2.4.1), and not to identify V ∗ with V . For more details and an

instructive example please refer to Brezis (2011), Page 135-138.

Unless otherwise specified, we always denote by ‖ · ‖V , ‖ · ‖H and ‖ · ‖V ∗ the

norms in V , H and V ∗ respectively; by 〈·, ·〉V,V ∗ the dual product between V and
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V ∗, and by 〈·, ·〉H the inner product in H. Recall that K is a separable Hilbert

space with norm ‖ · ‖K and we assume WQ(t), t ≥ 0, is a K-valued Q-Wiener

process with covariance operator Q ∈ L1(K). Here WQ(t), t ≥ 0, is supposed to

be defined on some complete probability space (Ω,F ,P) equipped with a normal

filtration {Ft}t≥0 with respect to which {WQ(t)}t≥0 is a continuous martingale.

Consider the following nonlinear stochastic differential equation in V ∗:

X(t) = X0 +

∫ t

0

A(s,X(s))ds+

∫ t

0

B(s,X(s))dWQ(s), (2.4.2)

where A(t, ·) : V → V ∗ and B(t, ·) : V → L(K,H), are two families of measurable

nonlinear operators satisfying that t ∈ [0, T ] → A(t, x) ∈ V ∗, t ∈ [0, T ] →

B(t, x) ∈ L(K,H) are Lebesgue measurable for any x ∈ V , T ≥ 0.

Definition 2.13 For arbitrary given numbers T ≥ 0, p > 1 and X0 ∈ H, a

stochastic process X(t), 0 ≤ t ≤ T , is said to be a strong solution of Equation

(2.4.2) if the following conditions are satisfied:

(i) For any 0 ≤ t ≤ T , X(t) is a V -valued Ft-measurable random variable;

(ii) X(t) ∈ Mp(0, T ;V ), where Mp(0, T ;V ) denotes the space of all V -valued

processes X(t), t ∈ [0, T ] which are measurable from [0, T ]× Ω into V and

satisfy∫ T

0

E‖X(t)‖pV dt <∞;

(iii) Equation (2.4.2) in V ∗ is satisfied for every t ∈ [0, T ] with probability one.

In order to obtain the existence and uniqueness of Equation (2.4.2), we shall

impose the following assumptions on A(·, ·) and B(·, ·).

Assumption 2.1 There exist constants α > 0, p > 1 and λ, γ ∈ R such that

(i) (Coercivity)

2〈v,A(t, v)〉V,V ∗+‖B(t, v)‖2
L02
≤ −α‖v‖pV +λ‖v‖2

H+γ, ∀ v ∈ V, 0 ≤ t ≤ T,
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where ‖ · ‖L02 denotes the Hilbert-Schmidt norm

‖B(t, v)‖2
L02

= Tr(B(t, v)QB(t, v)∗);

(ii) (Growth) There exists a constant c > 0 such that

‖A(t, v)‖V ∗ ≤ c(1 + ‖v‖p−1
V ), ∀ v ∈ V, 0 ≤ t ≤ T ;

(iii) (Monotonicity)

−λ‖u− v‖2
H + 2〈u− v,A(t, u)− A(t, v)〉V,V ∗ ≤ ‖B(t, u)−B(t, v)‖2

L02

∀u, v ∈ V, 0 ≤ t ≤ T ;

(iv) (Continuity) The map θ ∈ R→ 〈w,A(t, u+ θv)〉V,V ∗ ∈ R is continuous for

arbitrary u, v, w ∈ V and 0 ≤ t ≤ T ;

(v) (Lipschitz) There exists constant L > 0 such that

‖B(t, u)−B(t, v)‖L02 ≤ L‖u− v‖V ∀u, v ∈ V, 0 ≤ t ≤ T.

Theorem 2.13 Under the Assumption 2.1 above, Equation (2.4.2) has a unique

{Ft}-progressively measurable strong solution X(t), 0 ≤ t ≤ T , which satisfies:

X(·, ω) ∈Mp(0, T ;V ) ∀T ≥ 0,

and X(·, ω) ∈ C([0, T ];H) almost surely where C([0, T ];H) denotes the space of

all continuous functions from [0, T ] into H.

The proof can be found in Pardoux (1975).

Theorem 2.14 (Itô’s formula) Let X(t) ∈ Mp(0, T ;V ), p > 1, be a continu-

ous process with values in V ∗. Suppose there exist X0 ∈ H, φ(·) ∈ M q(0, T ;V ∗),
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1/p+ 1/q = 1, and Φ(·) ∈ W2([0, T ];L0
2) such that

X(t) = X0 +

∫ t

0

φ(s)ds+

∫ t

0

Φ(s)dWQ(s), t ∈ [0, T ].

Then X(·) ∈ C([0, T ];H) almost surely and moreover

‖X(t)‖2
H = ‖X0‖2

H + 2

∫ t

0

〈X(s), φ(s)〉V,V ∗ds+ 2

∫ t

0

〈X(s),Φ(s)dWQ(s)〉H

+

∫ t

0

Tr[Φ(s)QΦ(s)∗]ds

for arbitrary 0 ≤ t ≤ T .

c.f. Liu (2006), Theorem 1.3.3.

2.4.2 Semigroup approach and mild solutions

In most situations, one finds that the concept of strong solutions is too limited

to include important examples. There is a weaker concept, mild solutions, which

is found to be more appropriate for practical purposes.

Consider the following semilinear stochastic differential equation on [0, T ],

T ≥ 0, dX(t) = [AX(t) + F (t,X(t))]dt+G(t,X(t))dWQ(t),

X(0) = X0 ∈ H,
(2.4.3)

where A, generally unbounded, is the infinitesimal generator of a C0-semigroup

T (t), t ≥ 0, of bounded linear operators on the Hilbert space H.

Assumption 2.2 The coefficients F (·, ·) and G(·, ·) are two nonlinear measur-

able mappings from [0, T ] × H → H and [0, T ] × H → L(K,H), respectively,

satisfying the following Lipschitz continuity conditions:

‖F (t, x)− F (t, y)‖H ≤ α(T )‖x− y‖H , α(T ) > 0, x, y ∈ H, t ∈ [0, T ],

‖G(t, x)−G(t, y)‖L02 ≤ β(T )‖x− y‖H , β(T ) > 0, x, y ∈ H, t ∈ [0, T ].
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Definition 2.14 (Mild solution) A stochastic process X(t), t ∈ [0, T ], T ≥ 0,

defined on (Ω,F , {Ft}t≥0,P) is called a mild solution of Equation (2.4.3) if

(i) X(t) is adapted to Ft, t ≥ 0;

(ii) For arbitrary 0 ≤ t ≤ T , P{ω :
∫ t

0
‖X(s, ω)‖2

Hds <∞} = 1 and

X(t) = T (t)X0 +

∫ t

0

T (t−s)F (s,X(s))ds+

∫ t

0

T (t−s)G(s,X(s))dWQ(s),

(2.4.4)

for any X0 ∈ H almost surely.

Definition 2.15 (Strong solution) A stochastic process X(t), t ∈ [0, T ], T ≥

0, defined on (Ω,F , {Ft}t≥0,P) is called a strong solution of Equation (2.4.3) if

(i) X(t) ∈ D(A), 0 ≤ t ≤ T , almost surely and is adapted to Ft, t ∈ [0, T ],

T ≥ 0;

(ii) X(t) is continuous in t ∈ [0, T ], T ≥ 0 almost surely. For arbitrary 0 ≤ t ≤

T , P
{
ω :
∫ t

0
‖X(s, ω)‖2

Hds <∞
}

= 1 and

X(t) = X0 +

∫ t

0

[AX(s) + F (s,X(s))]ds+

∫ t

0

G(s,X(s))dWQ(s),

for any X0 ∈ D(A) almost surely.

By a straightforward argument, it is possible to establish the following result.

Proposition 2.4 Assume the Assumption 2.2 holds, then there exists at most

one mild solution of Equation (2.4.3). In other words, under the Assumption 2.2

the mild solution of Equation (2.4.3) is unique.

The proof can be found in Ichikawa (1982), Proposition 2.2 and Theorem 2.1.

The following stochastic version of the classic Fubini theorem will be fre-

quently used in the thesis and its proof can be found in Da Prato and Zabczyk

(1992).
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Proposition 2.5 (Fubini theorem) Let G : [0, T ] × [0, T ] × Ω → (L(K,H),

F(L(K,H))), T ≥ 0, be strongly measurable in the sense of Section 2.1 such that

G(s, t) is {Ft}-measurable for each s ≥ 0 with∫ T

0

∫ T

0

‖G(s, t)‖2dsdt <∞ a.s.

then ∫ T

0

∫ T

0

G(s, t)dWQ(t)ds =

∫ T

0

∫ T

0

G(s, t)dsdWQ(t) a.s..

The proof can be found in Da Prato and Zabczyk (1992), Theorem 4.18.

The following result gives sufficient conditions for a mild solution to be also

a strong solution.

Proposition 2.6 Suppose that the following conditions hold;

(i) X0 ∈ D(A), T (t − s)F (s, x) ∈ D(A), T (t − s)G(s, x)k ∈ D(A) for each

x ∈ H, k ∈ K and t ≥ s;

(ii) ‖AT (t− s)F (s, x)‖H ≤ f(t− s)‖x‖H , f(·) ∈ L1(0, T ;R+);

(iii) ‖AT (t− s)G(s, x)‖L02 ≤ g(t− s)‖x‖H , g(·) ∈ L2(0, T ;R+).

Then a mild solution X(t), t ∈ [0, T ], T ≥ 0 of Equation (2.4.3) is also a strong

solution with X(t) ∈ D(A), t ∈ [0, T ], T ≥ 0, in the sense of Definition 2.15.

The proof can be found in Luo (2006), Proposition 1.3.5.

By the standard Picard iteration procedure or a probabilistic fixed-point the-

orem type of argument, we can establish an existence theorem for mild solution

of Equation (2.4.3) in the following form.

Theorem 2.15 Suppose Assumption 2.2 holds. Let X0 ∈ H be an arbitrarily

given F0-measurable random variable with E‖X0‖pH < ∞ for some integer p ≥

2. Then there exists a unique mild solution of Equation (2.4.3) in the space

C(0, T ;Lp(Ω,F ,P;H)).
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The proof can be found in Ichikawa (1982), Theorem 2.1.

As we pointed out in Section 2.2, the stochastic convolution in Equation

(2.4.4) is no longer a martingale. A remarkable consequence of this fact is that

we cannot employ Itô’s formula for mild solutions directly on most occasions of our

arguments. We can handle this problem, however, by introducing approximating

systems with strong solutions to which Itô’s formula can be well applied and by

using a limiting argument. In particular, by virtue of Proposition 2.6, we may

obtain an approximation result of mild solutions, which will play an important

role in the subsequent stability analysis.

Let E be a real or complex Banach space. A linear operator A : D(A) ⊂ E →

E is called closed if its graph GA = {(x, y) ∈ E × E : x ∈ D(A), Ax = y}, is

closed in E × E.

Definition 2.16 (Resolvent set and resolvent) If A : D(A) ⊂ E → E is a

closed linear operator on E and I is the identity operator on D(A), then ρ(A) the

resolvent set of A is defined by

ρ(A) = {λ ∈ C, λI − A is one-to-one and onto.}

If λ ∈ ρ(A), then we set R(λ,A) := (λI −A)−1, and call R(λ,A) the resolvent of

A. By the closed graph theorem, R(λ,A) is bounded.

To this end, we introduce an approximating system of Equation (2.4.3) as

follows:

dX(t) = AX(t)dt+R(n)F (t,X(t))dt+R(n)G(t,X(t))dWQ(t),

X(0) = R(n)X0, X0 ∈ H, (2.4.5)

where n ∈ ρ(A), the resolvent set of A and R(n) := nR(n,A), R(n,A) is the

resolvent of A.
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Proposition 2.7 Let X0 be an arbitrarily given random variable in H with

E‖X0‖pH <∞ for some integer p > 2. Suppose the nonlinear terms F (·, ·), G(·, ·)

in Equation (2.4.3) satisfy the Lipschitz condition (Assumption 2.2). Then, for

each n ∈ ρ(A), the stochastic differential equation (2.4.5) has a unique strong

solution X(t, n) ∈ D(A), which lies in Lp(Ω,F ,P;C(0, T ;H)) for all T > 0 and

p > 2. Moreover, there exists a subsequence, denoted by Xn(t), such that for

arbitrary T > 0, Xn(t) → X(t) almost surely as n → ∞, uniformly with respect

to [0, T ].

The proof can be found in Liu (2006), Proposition 1.3.6.

It is worth pointing out that, in general, we cannot conclude directly from

Theorem 2.15 that the mild solution of Equation (2.4.3) has continuous paths,

a fact which makes it justifiable to consider asymptotic stability of its sample

paths. However, Proposition 2.7 allows us to have a modification with continu-

ous sample paths of the mild solution of Equation (2.4.3). In particular, unless

otherwise stated, we will always suppose the mild solution considered have con-

tinuous sample paths in the sequel.

2.5 Notes and remarks

The results of this chapter are not new. For finite dimensional stochastic in-

tegration and differential equations, c.f. Applebaum (2004) and Protter (2004).

The Hilbert space theory is developed in Da Prato and Zabczyk (1992) (for

Wiener processes) and Kallianpur and Xiong (1995), Métivier and Pellaumail

(1980) and Peszat and Zabczyk (2007) (for more general processes). Materials in

Section 2.1, 2.2 and 2.4 are classical and taken mainly from Da Prato and Zabczyk

(1992) and Liu (2006). Materials in Section 2.3 are taken mainly from Albeverio

and Rüdiger (2005) and Applebaum (2006).
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Chapter 3

Stability in distribution of mild

solutions to stochastic delay

differential equations with jumps

3.1 Introduction

In the past few decades, stochastic differential equations (SDEs) in a separable

Hilbert space have been studied extensively by many researchers. Many quan-

titative and qualitative results such as the existence, uniqueness, stability and

invariant measures have been established. For instance, in their book Da Prato

and Zabczyk (Da Prato and Zabczyk (1992)) established a systematic theory of

the existence and uniqueness for infinite dimensional systems; the almost sure

stability and the mean square stability were considered in Caraballo and Real

(1994), Caraballo and Liu (1999), Chow (1982), Govindan (2003, 2005), Hauss-

mann (1978), Ichikawa (1982, 1983), Liu and Mandrekar (1997), Liu and Truman

(2002), Liu (2006), Luo and Liu (2008), Taniguchi (2007) and references therein.

Stochastic differential equations are well known to model problems from many

areas of science and engineering. Quite often the future state of such systems
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depends not only the present state but also on its past history (delay), leading

to stochastic partial/functional differential equations (SPDEs/SFDEs).

Strictly speaking a delay differential equation is a specific example of a func-

tional differential equation, in which the functional part of the differential equa-

tion is the evaluation of a functional on the past of the process. However, we will

freely interchange the terminology ‘delay differential equation’ and ‘functional

differential equation’.

In particular, stochastic partial differential equations with finite or infinite

delays seem very important as models of biological, chemical, physical and eco-

nomical systems. The corresponding stability properties of such systems have at-

tracted a great deal of attention. For example, Liu and Truman (2002) obtained

several criteria for the asymptotic exponential stability of a class of Hilbert space-

valued, non-autonomous stochastic evolution equations with variable delays by

introducing a proper approximating strong solution system. Caraballo and Liu

(1999) and Govindan (2003) studied a semilinear stochastic partial differential

equation with variable delays. The former gave sufficient conditions for the ex-

ponential stability in the p-th mean of mild solutions by using the properties of

the stochastic convolution, while the latter obtained the exponential stability in

mean and asymptotic stability in probability of its sample paths by employing a

comparison principle. Taniguchi (2007) and Wan and Duan (2008) considered the

almost sure exponential stability of the energy solutions to the non-linear stochas-

tic functional partial differential equation with finite delays by energy equality

method.

However, by the development of practical needs, stochastic partial differential

equations driven by jump processes began to draw attentions. For example, there

exists an extensive literature dealing with stochastic differential equations with

discontinuous paths incurred by Lévy process, for instance, c.f. monographs Ap-

plebaum (2004), Bertoin (1996), Protter (2004) and references therein. These
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equations are used as in the study of queues, insurance risks, dams and more re-

cently in mathematical finance. On the other hand, some recent research in auto-

matic control such as Boukas and Liu (2002) and Ji and Chizeck (1990) have been

devoted to stochastic differential equations with Markovian jumps. As a popular

and important topic, the stability property of stochastic differential equations has

always lain at the center of our understanding concerning stochastic models de-

scribed by these equations. Dong and Xu (2007) proved the global existence and

uniqueness of the strong, weak and mild solutions and the existence of invariant

measure for one-dimensional Burgers equation in [0, 1] with a random perturba-

tion of the body forces in the form of Poisson and Brownian motion. Later the

uniqueness of invariant measure is given in Dong (2008). Röckner and Zhang

(2007) established the existence and uniqueness for solutions of stochastic evolu-

tion equations driven both by Brownian motion and by Poisson point processes

via successive approximations. In addition, a large deviation principle is obtained

for stochastic evolution equations driven by additive Lévy noise. Svishchuk and

Kazmerchuk (2002) made a first attempt to study the pth-moment exponential

stability of solutions of linear Itô stochastic delay differential equations asso-

ciated with Poisson jumps and Markovian switching, which was motivated by

some practical applications in mathematical finance. Quite recently, Luo and Liu

(2008) considered a strong solutions approximation approach for mild solutions

of stochastic functional differential equations with Markovian switching driven by

Lévy martingales in Hilbert space. In addition, the sufficient conditions for the

moment exponential stability and almost sure exponential stability of equations

have been established by the Razumikhin-Lyapunov type function methods and

comparison principles.

As far as we notices, most of these papers above are concerned with the

stability of the trivial solution either in probability or moment. i.e. the solution

will tend to zero in probability or in moment. However, such stability is sometimes
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too strong while in many practical situations it is useful to know whether or not

the probability distribution of the solution will converge to some distribution but

not necessarily to zero. The classical example is the Ornstein-Uhlenbeck process

dX(t) = −αX(t)dt+ σdB(t),

where the distribution of the solution X(t) will converge to the normal distribu-

tion N(0, σ2/2α). Gushchin and Küchler (2000) discussed the stochastic differ-

ential delay equation

dX(t) =

(∫
[−τ,0]

X(t+ s)ν(ds)

)
dt+ dB(t)

on t ≥ 0 with initial data X0 = ξ ∈ C([−τ, 0];R), where ν is a finite measure on

a finite interval [−τ, 0], τ ≥ 0. Introduce the delay equation

ẋ(t) =

∫
[−τ,0]

x(t+ s)ν(ds)

on t ≥ 0 with initial data x(0) = 1 and x(u) = 0, u ∈ [−τ, 0]. Gushchin and

Küchler (2000) showed that the distribution ofX(t) converges toN(0,
∫∞

0
x2(s)ds)

as t→∞ if and only if
∫∞

0
x2(s)ds <∞. The convergence described in these ex-

amples is called stability in distribution and the limit distribution is known as the

stationary distribution. For the finite dimensional case, Basak et al. (1996) dis-

cussed such stability for a semi-linear stochastic differential equation with Marko-

vian switching of the form

dX(t) = A(r(t))X(t)dt+ σ(X(t), r(t))dW (t),

where r(t) is a continuous time Markov chain taking values in a finite set

{1, 2, · · · , N}, A(i), i = 1, 2, · · · , N , are d × d matrices. Also, σ(·, ·) is d ×

d matrix and W (·) is a standard d-dimensional Brownian motion. Later, by

using the Lyapunov function methods, Yuan and Mao (2003) generalized the

results from Basak et al. (1996) to a nonlinear stochastic differential equation
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with Markovian switching

dX(t) = f(X(t), r(t))dt+ g(X(t), r(t))dB(t),

where r(t) is a right-continuous Markov chain on the probability space taking

values in a finite state space S = {1, 2, · · · , N} and B(t) is an m-dimensional

Brownian motion. f : Rn × S → Rn and g : Rn × S → Rn×m. On the other

hand, Yuan et al. (2003) investigated the stability in distribution for a more

general stochastic delay differential equation

dX(t) = f(X(t), X(t− τ), r(t))dt+ g(X(t), X(t− τ), r(t))dB(t),

where τ > 0, f : Rn × Rn × S → Rn and g : Rn × Rn × S → Rn×m. More-

over, Bao et al. (2009a) derived sufficient conditions for stability in distribution

and generalized some results of Basak et al. (1996) and Yuan et al. (2003) to

cover a class of much more general neutral stochastic differential delay equations

with Markovian switching

d[X(t)−G(X(t−τ))] = f(X(t), X(t−τ), r(t))dt+g(X(t), X(t−τ), r(t))dB(t),

where G : Rn → Rn, f : Rn × Rn × S → Rn and g : Rn × Rn × S → Rn×m.

For infinite dimensional case, Bao et al. (2010) investigated the following

semi-linear stochastic partial differential equations in a separable Hilbert space

H:

dX(t) = [AX(t) + FX(t)]dt+G(X(t))dW (t),

where W (t) is a Hilbert space valued Wiener process, A is the infinitesimal gen-

erator of a C0-semigroup T (t), t ≥ 0. F : H → H and G : H → L(K,H). By

introducing a suitable metric between the transition probability functions of mild

solutions, they derived sufficient conditions for stability in distribution of mild

solutions. While, Bao et al. (2009b) also generalized the stability in distribution
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results to a stochastic partial differential delay equation with jumps.

In this chapter we will be interested in the stability in distribution property

with infinite dimensional stochastic delay differential equations in Hilbert spaces

of the form:

dX(t) =

[
AX(t) + F

(∫ 0

−r
X(t+ θ)dθ

)]
dt+G

(∫ 0

−r
X(t+ θ)dθ

)
dWQ(t)

+

∫
Z
L

(∫ 0

−r
X(t+ θ)dθ, u

)
Ñ(dt, du) (3.1.1)

See Section 3.2 for details of the equation.

It is worth mentioning that in comparison with stochastic stability in finite

dimensions, the theory for infinite dimensions case is much more complicated.

The standard solution (strong solution) concept turns out to be too strong for

most stochastic partial differential equations in which we are especially interested.

Therefore, as a natural generalization of this aspect, mild solution (c.f. Da Prato

and Zabczyk (1992) for its definition and relevant properties) is introduced which

is more useful from both practical and theoretical purposes. For the model we

considered, since the stochastic convolution is no longer a martingale, therefore

for the treatment of mild solutions, a lot of standard tools in stochastic calculus

like Itô’s formula or Doob’s theorem could not be employed any longer or directly

in most of arguments. To overcome this difficulty, a version of a Burkholder type

of inequality for stochastic convolution driven by a compensated Poisson ran-

dom measures was formulated for our stability purpose. Another difficulty was

that the approaches by the traditional Lyapunov functions in finite dimensions

(c.f. Yuan et al. (2003)) are not available to deal with the stability in distribution

of mild solutions to our model. The key solution to such difficulty was to intro-

duce a proper approximating strong solution system and carry out a limiting type

of argument to pass on stability of strong solutions to mild ones. Moreover, a

suitable metric between the transition probability functions of mild solutions was

constructed to give sufficient conditions for stability in distribution of mild solu-
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tions. Besides, comparing to the model in Bao et al. (2009b), we are interested in

studying a different form of delay term, i.e. continuous time delay, which is more

realistic in practical needs. In addition, we improved the sufficient conditions of

the stability in distribution of mild solutions in Bao et al. (2009b) by improving

the estimations of Burkholder type of inequality for stochastic convolution driven

by a compensated Poisson random measures.

The structure of rest chapter is organized as follows. In Section 3.2, we shall

recall some basic definitions and preliminary results of stochastic delay differential

equations with jumps. We then derive the sufficient conditions for existence and

uniqueness of mild solutions in Section 3.3 and construct a proper approximating

strong solution system in Section 3.4. In Section 3.5 we investigate the stability in

distribution of the studied equations. Finally, we will give an illustrative example

to demonstrate the applicability of our theory in Section 3.6.

3.2 Stochastic delay differential equations with

jumps

Let (Ω,F ,P) be a complete probability space with right-continuous filtration

{Ft}t≥0 such that F0 contains all P-null sets. Let H, K be two real separable

Hilbert spaces and we denote by 〈·, ·〉H , 〈·, ·〉K their inner products and by ‖ · ‖H ,

‖ · ‖K their norms, respectively. We denote by L(K,H) the set of all linear

bounded operators from K into H, which is equipped with the usual opera-

tor norm ‖ · ‖. Let r > 0 and D := D([−r, 0];H) denote the family of all

right-continuous functions with left-hand limits ϕ from [−r, 0] to H. The space

D([−r, 0];H) is assumed to be equipped with the norm ‖ϕ‖D = sup−r≤θ≤0 ‖ϕ(θ)‖H .

Db
F0

([−r, 0];H) denotes the family of all almost surely bounded, F0-measurable,

D-valued random variable. For all t ≥ 0, Xt = {X(t + θ) : −r ≤ θ ≤ 0} is

regarded as a D-valued stochastic process.
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We recall two kinds of stochastic integrals which appear in our studied equa-

tions (c.f. Section 2.2 and Section 2.3).

1. The stochastic integral with respect to Wiener process {WQ(t)}t≥0:

Let Φ : (0,∞) → L0
2 be a predictable, Ft-adapted process such that∫ t

0
E‖Φ(s)‖2

L02
< ∞, ∀ t > 0. Then, we can define the H-valued stochas-

tic integral
∫ t

0
Φ(s)dWQ(s).

2. The stochastic integral with respect to compensated Poisson random mea-

sures Ñ(dt, du): Let p = (p(t)), t ∈ Dp, be a stationary Ft-Poisson point

process with characteristic measure λ, where Dp is a countable subset of

(0,∞). Denoted by N(dt, du) the Poisson counting measure associated with

p, i.e. N(t,Z) =
∑

s∈Dp,s≤t 1Z(p(s)), where Z ∈ B(K − {0}) with 0 /∈ Z̄,

the closure of Z in K and B(K−{0}) denotes the Borel σ-filed of K−{0},

c.f. Section 2.3, Page 29. Let Ñ(dt, du) := N(dt, du) − dtλ(du) be the

compensated Poisson measure that is independent of WQ(t). Denoted by

P2([0, T ]×Z;H) the space of all predictable mappings L : [0, T ]×Z×Ω→ H

for which
∫ T

0

∫
Z E‖L(t, u)‖2

Hdtλ(du) <∞. We may then define theH-valued

stochastic integral
∫ T

0

∫
Z L(t, u)Ñ(dt, du).

Let T (t), t ≥ 0, be some C0-semigroup of bounded linear operator over H which

has its infinitesimal generator A, generally unbounded with domain D(A) ⊂ H.

Consider the following stochastic delay differential equation with jumps: for any

t ∈ [0, T ], T ≥ 0 and arbitrary given r > 0,

dX(t) =

[
AX(t) + F

(∫ 0

−r
X(t+ θ)dθ

)]
dt+G

(∫ 0

−r
X(t+ θ)dθ

)
dWQ(t)

+

∫
Z
L

(∫ 0

−r
X(t+ θ)dθ, u

)
Ñ(dt, du)

X(t) = ξ(t) ∈ Db
F0

([−r, 0];H),−r ≤ t ≤ 0, (3.2.1)
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where the mappings

F : H → H, G : H → L(K,H), L : H × Z→ H

are Borel measurable.

In order to establish the existence and uniqueness of solutions of Equation

(3.2.1), we shall impose the following assumptions.

Assumption 3.1 Assume A : D(A) ⊂ H → H generally unbounded, is the

infinitesimal generator of a C0-semigroup T (t), t ≥ 0, of contraction.

The mappings F : H → H, G : H → L(K,H) and L : H × Z → H satisfy

the following Lipschitz continuity condition and linear growth conditions:

Assumption 3.2 There exists a constant K1 > 0 such that arbitrary x1, x2 ∈ H,

‖F (x1)− F (x2)‖2
H + ‖G(x1)−G(x2)‖2

L02
≤ K1‖x1 − x2‖2

H (3.2.2)

and ∫
Z
‖L(x1, u)− L(x2, u)‖2

Hλ(du) ≤ K1‖x1 − x2‖2
H . (3.2.3)

Moreover, there exists a constant K2 > 0 such that for arbitrary x ∈ H,

‖F (x)‖2
H + ‖G(x)‖2

L02
≤ K2(1 + ‖x‖2

H), (3.2.4)

and ∫
Z
‖L(x, u)‖2

Hλ(du) ≤ K2(1 + ‖x‖2
H). (3.2.5)

For convenience of the reader, we recall two kinds of solutions to Equation

(3.2.1) as follows (c.f. Luo and Liu (2008)).

Definition 3.1 (Strong Solution) A stochastic process X(t), t ∈ [0, T ], T ≥

0, is called a strong solution of Equation (3.2.1) if
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(i) X(t) is adapted to Ft and has càdlàg path on t ≥ 0 almost surely and

(ii) X(t) ∈ D(A) on [0, T ]×Ω with
∫ T

0
‖AX(t)‖Hdt <∞ almost surely and for

all t ∈ [0, T ]

X(t) = ξ(0) +

∫ t

0

[
AX(s) + F

(∫ 0

−r
X(s+ θ)dθ

)]
ds

+

∫ t

0

G

(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du), (3.2.6)

for any X0(·) = ξ(·) ∈ Db
F0

([−r, 0];H), −r ≤ t ≤ 0.

In general, this concept is rather strong and a weaker one described below is

more appropriate for practical purposes.

Definition 3.2 (Mild Solution) A stochastic process X(t), t ∈ [0, T ], T ≥ 0,

is called a mild solution of Equation (3.2.1) if

(i) X(t) is adapted to Ft and has càdlàg path on t ≥ 0 almost surely and

(ii) for arbitrary t ∈ [0, T ], P{ω :
∫ t

0
‖X(t)‖2

Hds <∞} = 1 and almost surely

X(t) = T (t)ξ(0) +

∫ t

0

T (t− s)F
(∫ 0

−r
X(s+ θ)dθ

)
ds

+

∫ t

0

T (t− s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du) (3.2.7)

for any X0(·) = ξ(·) ∈ Db
F0

([−r, 0];H), −r ≤ t ≤ 0.

As a direct application of the properties of semigroup theory, it may be easily

proved that:

Proposition 3.1 For arbitrary ξ(·) ∈ Db
F0

([−r, 0];H) with ξ(θ) ∈ D(A), θ ∈

[−r, 0], assume that X(t) ∈ D(A), t ∈ [0, T ], T ≥ 0, is a strong solution of

Equation (3.2.1); then it is also a mild solution of Equation (3.2.1).
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Proof. Let v(s, h) = T (t − s)h for h ∈ H and 0 ≤ s ≤ t ≤ T , then we have

v′s(s, h) = −T (t − s)Ah, v′h(s, h) = T (t − s) and v′′h(s, h) = 0. By using Itô’s

formula, it can be deduced that for any 0 ≤ t ≤ T ,

v(t,X(t))− v(0, ξ(0)) = X(t)− T (t)ξ(0)

=

∫ t

0

(−T (t− s)AX(s))ds

+

∫ t

0

T (t− s)
[
AX(s) + F

(∫ 0

−r
X(s+ θ)dθ

)]
ds

+

∫ t

0

T (t− s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du),

that is,

X(t) = T (t)ξ(0) +

∫ t

0

T (t− s)F
(∫ 0

−r
X(s+ θ)dθ

)
ds

+

∫ t

0

T (t− s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

Note that the converse statement of Proposition 3.1 is generally not true, i.e.

a mild solution of Equation (3.2.1) is not necessarily a strong one. The following

result gives sufficient conditions for a mild solution to be also a strong solution,

which is quite useful in our stability analysis.

Proposition 3.2 Suppose that the following conditions hold: for arbitrary x ∈

H, t ≥ 0,

(i) ξ(·) ∈ Db
F0

([−r, 0];H) with ξ(θ) ∈ D(A) for any θ ∈ [−r, 0];

(ii) T (t)F (x) ∈ D(A), T (t)G(x)k ∈ D(A), T (t)L(x, u) ∈ D(A) for any k ∈ K,

and u ∈ K;

(iii) ‖AT (t)F (x)‖H ≤ z1(t)‖x‖H , z1(·) ∈ L1(0, T ;R+);
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(iv) ‖AT (t)G(x)‖2
L02
≤ z2(t)‖x‖2

H , z2(·) ∈ L2(0, T ;R+);

(v)
∫
Z ‖AT (t)L(x, u)‖2

Hλ(du) ≤ z3(t)‖x‖2
H , z3(·) ∈ L2(0, T ;R+).

Then a mild solution X(t), t ∈ [0, T ] of Equation (3.2.1) with initial datum

ξ ∈ Db
F0

([−r, 0];H) is also a strong solution such that X(t) ∈ D(A), t ∈ [0, T ],

almost surely.

Proof. It suffices to prove that the mild solution X(t), t ∈ [0, T ], takes values in

D(A) and satisfies (3.2.6). By the above conditions, we have almost surely∫ T

0

∫ t

0

∥∥∥∥AT (t− s)F
(∫ 0

−r
X(s+ θ)dθ

)∥∥∥∥
H

dsdt <∞,

∫ T

0

∫ t

0

tr

[(
AT (t− s)G

(∫ 0

−r
X(s+ θ)dθ

))
×

Q
(
AT (t− s)G

(∫ 0

−r
X(s+ θ)dθ

))∗]
dsdt <∞,

and ∫ T

0

∫ t

0

∫
Z

∥∥∥∥AT (t− s)L
(∫ 0

−r
X(s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)dsdt <∞.

Thus by Fubini theorem and property of semigroup, we have∫ t

0

∫ v

0

AT (v − s)F
(∫ 0

−r
X(s+ θ)dθ

)
dsdv

=

∫ t

0

∫ t

s

AT (v − s)F
(∫ 0

−r
X(s+ θ)dθ

)
dvds

=

∫ t

0

T (t− s)F
(∫ 0

−r
X(s+ θ)dθ

)
ds−

∫ t

0

F
(∫ 0

−r
X(s+ θ)dθ

)
ds.

On the other hand, by the Fubini type of theorems for Q-Wiener processes (c.f.

Proposition 2.5) and for compensated Poisson random measures (c.f. Theo-

rem 2.11), we have
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∫ t

0

∫ v

0

AT (v − s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)dv

=

∫ t

0

∫ t

s

AT (v − s)G
(∫ 0

−r
X(s+ θ)dθ

)
dvdWQ(s)

=

∫ t

0

T (t− s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)−

∫ t

0

G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s).

and ∫ t

0

∫ v

0

∫
Z
AT (v − s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)dv

=

∫ t

0

∫ t

s

∫
Z
AT (v − s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
dvÑ(ds, du)

=

∫ t

0

∫
Z
T (v − s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

−
∫ t

0

∫
Z
L
(∫ 0

−r
X(v + θ)dθ, u

)
Ñ(ds, du).

Hence AX(t) is integrable almost surely and∫ t

0

AX(v)dv

= T (t)ξ(0)− ξ(0) +

∫ t

0

T (t− s)F
(∫ 0

−r
X(s+ θ)dθ

)
ds

−
∫ t

0

F
(∫ 0

−r
X(s+ θ)dθ

)
ds+

∫ t

0

T (t− s)G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

−
∫ t

0

G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

−
∫ t

0

∫
Z
L
(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

= X(t)− ξ(0)−
∫ t

0

F
(∫ 0

−r
X(s+ θ)dθ

)
ds−

∫ t

0

G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

−
∫ t

0

∫
Z
L
(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du).

In other words, X(t) ∈ D(A), t ∈ [0, T ] is a strong solution of Equation (3.2.1).

55



At the moment, we assume that A : D(A) ⊂ H → H, generally unbounded,

is the infinitesimal generator of a C0-semigroup T (t), t ≥ 0 on H satisfying

‖T (t)‖ ≤ eαt from some number α ∈ R. It is well known that (c.f. Liu (2006),

Proposition 2.1.4) in this case, there exists a positive constant α such that

〈Ax, x〉H ≤ α‖x‖2
H . (3.2.8)

for any x ∈ D(A). We are also interested in the following stochastic convolution

with respect to compensated Poisson random measures.

W Ñ
T (t) =

∫ t

0

∫
Z
T (t− s)L(s, u)Ñ(ds, du),

defined for any fixed t ∈ [0, T ]. In particular, we establish below a special case of

Burkholder type of inequality for stochastic convolutions driven by the compen-

sated Poisson random measures Ñ(·, ·).

Lemma 3.1 Let α > 0, T > 0 and assume (3.2.3) and (3.2.8) hold. Then for

any L(·, ·) ∈ P2([0, T ]×Z;H), there exits some positive constant Cα,T , dependent

on α and T , such that

E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)L(s, u)Ñ(ds, du)

∥∥∥∥2

H

]
≤ Cα,T E

∫ T

0

∫
Z
‖L(s, u)‖2

Hλ(du)ds. (3.2.9)

Proof. Step 1 Firstly, we introduce the following approximating systems:

dX(t) = AX(t) +

∫
Z
R(n)L(t, u)Ñ(dt, du), 0 ≤ t ≤ T (3.2.10)

with initial value X(0) = 0, where n ∈ ρ(A), the resolvent set of A and R(n) =

nR(n,A), R(n,A) is the resolvent of A.

Taking (3.2.3) into account, it can be derived that Equation (3.2.10) admits

a unique mild solution X(t), 0 ≤ t ≤ T .

By Pazy (1983), Theorem 2.4 that if L(·, ·) ∈ P2([0, T ] × Z;D(A)), then for

any 0 ≤ s ≤ t ≤ T , we have AT (t − s)R(n)L(·, ·) ∈ D(A). Hence, we can
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show that the mild solution X(t), 0 ≤ t ≤ T , is indeed a strong one on [0, T ].

From Proposition 3.2, we know that the process X(t) also satisfies that for any

t ∈ [0, T ],

X(t) =

∫ t

0

AX(s)ds+

∫ t

0

∫
Z
L(s, u)Ñ(ds, du).

Secondly, applying Itô’s formula to function ‖x‖2
H and strong solution X(t),

0 ≤ t ≤ T , of Equation (3.2.10) yields that

‖X(t)‖2
H = 2

∫ t

0

〈AX(s), X(s)〉Hds+

∫ t

0

∫
Z
‖L(s, u)‖2

Hλ(du)ds

+

∫ t

0

∫
Z
[2〈X(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du).

(3.2.11)

Let us denote

M(t) :=

∫ t

0

∫
Z
[2〈X(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du)

and [M(t)] the corresponding quadratic variation.

By Burkholder-Davis-Gundy inequality (c.f. Protter (2004), Theorem 48), it

follows that there is a constant C > 0 such that

E
(

sup
0≤s≤t

‖M(s)‖2
H

)
≤ C E[M(t)]

1
2 . (3.2.12)

In what follows, we compute

[M(t)]
1
2 =

{ ∑
s∈Dp,0≤s≤t

(2〈X(s), L(s, p(s))〉H + ‖L(s, p(s))‖2
H)2

} 1
2

≤
√

2

{ ∑
s∈Dp,0≤s≤t

‖L(s, p(s))‖4
H

} 1
2

+ 2
√

2

{ ∑
s∈Dp,0≤s≤t

‖X(s)‖2
H‖L(s, p(s))‖2

H

} 1
2
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≤
√

2
∑

s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H

+ 2
√

2 sup
0≤s≤t

‖X(s)‖H

{ ∑
s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H

} 1
2

≤ 1

2C
sup

0≤s≤t
‖X(s)‖2

H + (
√

2 + 4C)
∑

s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H ,

(3.2.13)

where C is the positive constant appearing in the right-hand side of Equation

(3.2.12).

Consequently,

E
(

sup
0≤t≤T

‖X(t)‖2
H

)
≤ 4αE

∫ T

0

‖X(t)‖2
Hdt

+2[1 + (
√

2 + 4C)C]E
∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt

≤ 4α

∫ T

0

E
(

sup
0≤s≤t

‖X(s)‖2
H

)
dt

+2[1 + (
√

2 + 4C)C]E
∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt (3.2.14)

which, combining with Gronwall’s inequality, immediately implies that

E
(

sup
0≤t≤T

‖X(t)‖2
H

)
≤ Cα,T E

∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt,

where

Cα,T = 2[1 + (
√

2 + 4C)C]e4αT > 0.

Step 2: By a straightforward application of the dominated convergence the-

orem, we have Ln = nR(n,A)L(t, u) → L(·, ·) in P2([0, T ] × Z;H), as n → ∞.

Moreover, by Proposition 3.2, we have that Ln ∈ P2([0, T ]× Z;D(A)). Defining

Xn(t) =

∫ t

0

∫
Z
T (t− s)Ln(s, u)Ñ(ds, du),
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we have that Xn(t) → X(t) in L2(Ω,F ,P;H) for any t ∈ [0, T ] as n → ∞

according to Proposition 2.4 in Luo and Liu (2008). On the other hand, we can

apply the inequality (3.2.9) to the difference Xn(t)−Xm(t) with L(·, ·) replaced

by the difference Ln − Lm from which we deduce that

E
(

sup
0≤s≤t

‖X(s)−Xn(s)‖2
H

)
→ 0, as n→∞,

and hence (3.2.9) is true for any L ∈ P2([0, T ] × Z;D(A)). The proof is now

complete.

3.3 Existence and uniqueness

Carrying out a fixed-point theorem type of procedure, we can follow the argu-

ments in Ichikawa (1982) to establish an existence and uniqueness theorem for

mild solutions of Equation (3.2.1).

Theorem 3.1 Assume the conditions in Assumption 3.1 and 3.2 hold and let

ξ ∈ Db
F0

([−r, 0];H) be an arbitrarily given initial datum. Then there exists a

unique mild solution of Equation (3.2.1).

Proof. Denote by H2 the Banach space of all F -adapted processes Y (t, ω) :

[−r, T ] → H, which are almost surely right-continuous functions with left-hand

limits in t for fixed ω ∈ Ω with ‖Y ‖2 <∞, where

‖Y ‖2 :=

(
E
[

sup
0≤t≤T

‖Y (t)‖2
H

])1/2

. (3.3.1)

Moreover, Y (t, ω) = ξ(t) for t ∈ [−r, 0].

59



For any Y ∈ H2, define a mapping K on H2:

K(Y )(t) = T (t)ξ(0) +

∫ t

0

T (t− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

+

∫ t

0

T (t− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
Y (s+ θ)dθ,

)
Ñ(ds, du)

:=
4∑
i=1

Ii(t). (3.3.2)

Then we prove the existence of mild solution to Equation (3.2.1) by finding a fixed

point for the map K. Next we will show by using Banach fixed point theorem

that K has a unique fixed point. We divide the subsequent proof into three steps.

Step 1. For arbitrary Y ∈ H2, K(Y )(t) is mean square continuous on the

interval [0, T ]. Let Y ∈ H2 and |h| be sufficiently small. Then for any fixed

Y ∈ H2, we have that

E‖K(Y )(t1 + h)−K(Y )(t1)‖2
H ≤ 4

4∑
i=1

E‖Ii(t1 + h)− Ii(t1)‖2
H .

By the properties of C0-semigroup, T (t + s) = T (t)T (s), t, s ≥ 0, and strong

continuity of T (t), it is easily to obtain that

E‖I1(t1 + h)− I1(t1)‖2
H = E‖T (t1 + h)ξ(0)− T (t1)ξ(0)‖2

H

= E‖T (t1)[T (h)− I]ξ(0)‖2
H

→ 0 as h→ 0. (3.3.3)

For i = 2, by Lebesgue’s dominated convergence theorem and the strongly

continuity of T (t), it can be shown that

E‖I2(t1 + h)− I2(t1)‖2
H

= E
∥∥∥∫ t1+h

0

T (t1 + h− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

−
∫ t1

0

T (t1 − s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds
∥∥∥2

H
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= E
∥∥∥∫ t1

0

T (t1 + h− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

+

∫ t1+h

t1

T (t1 + h− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

−
∫ t1

0

T (t1 − s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds
∥∥∥2

H

= E
∥∥∥∫ t1

0

[T (t1 + h− s)− T (t1 − s)]F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

+

∫ t1+h

t1

T (t1 + h− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds
∥∥∥2

H

≤ 2E
∫ t1

0

∥∥∥∥[T (t1 + h− s)− T (t1 − s)]F
(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

H

ds

+2E
∫ t1+h

t1

∥∥∥∥T (t1 + h− s)F
(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

H

ds

→ 0 as h→ 0; (3.3.4)

Similarly, for i = 3, we deduce that

E‖I3(t1 + h)− I3(t1)‖2
H

= E
∥∥∥∫ t1+h

0

T (t1 + h− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

−
∫ t1

0

T (t1 − s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

∥∥∥2

H

= E
∥∥∥∫ t1

0

T (t1 + h− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

+

∫ t1+h

t1

T (t1 + h− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

−
∫ t1

0

T (t1 − s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

∥∥∥2

H

≤ 2E
∥∥∥∫ t1

0

[T (t1 + h− s)− T (t1 − s)]G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

∥∥∥2

H

+ 2E
∥∥∥∥∫ t1+h

t1

T (t1 + h− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dWQ(s)

∥∥∥∥2

H

≤ 2

∫ t1

0

E
∥∥∥∥[T (t1 + h− s)− T (t1 − s)]G

(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

L02

ds

+ 2

∫ t1+h

t1

E
∥∥∥∥T (t1 + h− s)G

(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

L02

ds

→ 0 as h→ 0. (3.3.5)
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and for i = 4, we have that

E‖I4(t1 + h)− I4(t1)‖2
H

= E
∥∥∥∫ t1+h

0

∫
Z
T (t1 + h− s)L

(∫ 0

−r
Y (s+ θ)dθ, u

)
Ñ(ds, du)

−
∫ t1

0

∫
Z
T (t1 − s)L

(∫ 0

−r
Y (s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥2

H

≤ 2E
∥∥∥∥∫ t1

0

∫
Z
[T (t1 + h− s)− T (t1 − s)]L

(∫ 0

−r
Y (s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

+ 2E
∥∥∥∥∫ t1+h

t1

∫
Z
T (t1 + h− s)L

(∫ 0

−r
Y (s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

= 2

∫ t1

0

∫
Z
E
∥∥∥∥[T (t1 + h− s)− T (t1 − s)]L

(∫ 0

−r
Y (s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

+ 2

∫ t1+h

t1

∫
Z
E
∥∥∥∥T (t1 + h− s)L

(∫ 0

−r
Y (s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

→ 0 as h→ 0. (3.3.6)

Therefore,

E‖Ii(t1 + h)− Ii(t1)‖2
H → 0, i = 1, 2, 3, 4, as r → 0,

which means K(Y )(t) is mean square continuous on [0, T ], T ≥ 0.

Step 2. We show that K maps H2 into H2. Let Y ∈ H2. Then we have that

E‖K(Y )(t)‖2
H

≤ 4E
[

sup
0≤t≤T

‖T (t)ξ(0)‖2
H

]
+4E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

T (t− s)F
(∫ 0

−r
Y (s+ θ)dθ

)
ds

∥∥∥∥2

H

]
+ 4E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

T (t− s)G
(∫ 0

−r
Y (s+ θ)dθ

)
dW (s)

∥∥∥∥2

H

]
+ 4E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)L

(∫ 0

−r
Y (s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

]
= 4(J1 + J2 + J3 + J4). (3.3.7)
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In view of ξ ∈ Db
F0

([−r, 0];H), we hence obtain by Assumption 3.1 that

J1 = E
[

sup
0≤t≤T

‖T (t)ξ(0)‖2
H

]
≤ E‖ξ‖2

D <∞.

By condition (3.2.4) and using the Hölder inequality twice, we get that

J2 ≤ E
[

sup
0≤t≤T

(∫ t

0

∥∥∥∥T (t− s)F
(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥
H

ds

)2]
≤ E

[
sup

0≤t≤T

(∫ t

0

‖T (t− s)‖2ds

)(∫ t

0

∥∥∥∥F(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

H

ds

)]
≤ TK2

∫ T

0

E
[(

1 +

∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

)]
ds

≤ TK2

[
T +

∫ T

0

E
∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

ds

]
≤ TK2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ) · 1‖Hdθ

)2

ds

]
≤ TK2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ)‖2

Hdθ

)(∫ 0

−r
12dθ

)
ds

]
≤ TK2

[
T + r

∫ T

0

∫ 0

−r
E‖Y (s+ θ)‖2

Hdθds

]
≤ TK2

[
T + r

∫ (T+θ)

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

]
≤ TK2

[
T + r

(∫ 0

−r

∫ 0

−r
E‖Y (u)‖2

Hdθdt+

∫ T

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

)]
≤ TK2

[
T + r

(∫ 0

−r

∫ 0

−r
E
[

sup
−r≤u≤0

‖Y (u)‖2
H

]
dθdt

+

∫ T

0

∫ 0

−r
E
[

sup
0≤u≤T

‖Y (u)‖2
H

]
dθdu

)]
≤ TK2[T + r(r2‖ξ‖2

D + rT‖Y ‖2
2)]

≤ TK2[T + r3‖ξ‖2
D + r2T‖Y ‖2

2].

While, by the virtue of Theorem 2.7 Burkholder-Davis-Gundy type of inequality

for stochastic convolutions and condition (3.2.4), we obtain that there exists a

constant C1 > 0 such that

63



J3 ≤ C1E
(∫ T

0

∥∥∥∥G(∫ 0

−r
Y (s+ θ)dθ

)∥∥∥∥2

H

ds

)
≤ C1K2

∫ T

0

E
(

1 +

∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

ds

)
≤ C1K2

(
T +

∫ T

0

E
∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

ds

)
≤ C1K2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ) · 1‖Hdθ

)2

ds

]
≤ C1K2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ)‖2

Hdθ

)(∫ 0

−r
12dθ

)
ds

]
≤ C1K2

[
T + r

∫ T

0

∫ 0

−r
E‖Y (s+ θ)‖2

Hdθds

]
≤ C1K2

[
T + r

∫ (T+θ)

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

]
≤ C1K2

[
T + r

(∫ 0

−r

∫ 0

−r
E‖Y (u)‖2

Hdθdt+

∫ T

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

)]
≤ C1K2

[
T + r

(∫ 0

−r

∫ 0

−r
E
[

sup
−r≤u≤0

‖Y (u)‖2
H

]
dθdt

+

∫ T

0

∫ 0

−r
E
[

sup
0≤u≤T

‖Y (u)‖2
H

]
dθdu

)]
≤ C1K2[T + r(r2‖ξ‖2

D + rT‖Y ‖2
2)]

≤ C1K2(T + r3E‖ξ‖2
D + r2T‖Y ‖2

2).

Similarly, by Lemma 3.1 and condition (3.2.5), there exists a constant C2 > 0

satisfying

J4 ≤ C2E
(∫ T

0

∫
Z

∥∥∥∥L(∫ 0

−r
Y (s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

)
≤ C2K2

∫ T

0

E
(

1 +

∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

ds

)
≤ C2K2

(
T +

∫ T

0

E
∥∥∥∥∫ 0

−r
Y (s+ θ)dθ

∥∥∥∥2

H

ds

)
≤ C2K2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ) · 1‖Hdθ

)2

ds

]
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≤ C2K2

[
T +

∫ T

0

E
(∫ 0

−r
‖Y (s+ θ)‖2

Hdθ

)(∫ 0

−r
12dθ

)
ds

]
≤ C2K2

[
T + r

∫ T

0

∫ 0

−r
E‖Y (s+ θ)‖2

Hdθds

]
≤ C2K2

[
T + r

∫ (T+θ)

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

]
≤ C2K2

[
T + r

(∫ 0

−r

∫ 0

−r
E‖Y (u)‖2

Hdθdt+

∫ T

0

∫ 0

−r
E‖Y (u)‖2

Hdθdu

)]
≤ C2K2

[
T + r

(∫ 0

−r

∫ 0

−r
E
[

sup
−r≤u≤0

‖Y (u)‖2
H

]
dθdt

+

∫ T

0

∫ 0

−r
E
[

sup
0≤u≤T

‖Y (u)‖2
H

]
dθdu

)]
≤ C2K2[T + r(r2‖ξ‖2

D + rT‖Y ‖2
2)]

≤ C2K2(T + r3E‖ξ‖2
D + r2T‖Y ‖2

2).

In consequence, K maps H2 into H2.

Step 3. It remains to verify that K is a contraction on H2. Suppose that Y1,

Y2 ∈ H2, then for any fixed t ∈ [0, T ],

‖K(Y1)−K(Y2)‖2
2

≤ 3E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)
[
F
(∫ 0

−r
Y1(s+ θ)dθ

)
− F

(∫ 0

−r
Y2(s+ θ)dθ

)]
ds

∥∥∥∥2

H

}
+3E

{
sup

0≤t≤T

∥∥∥∥∫ t

0

T (t− s)
[
G
(∫ 0

−r
Y1(s+ θ)dθ

)
−G
(∫ 0

−r
Y2(s+ θ)dθ

)]
dWQ(s)

∥∥∥∥2

H

}
+3E

{
sup

0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)

[
L
(∫ 0

−r
Y1(s+ θ)dθ, u

)
−L
(∫ 0

−r
Y2(s+ θ)dθ, u

)]
Ñ(ds, du)

∥∥∥∥2

H

}
:= S1 + S2 + S3. (3.3.8)
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On one hand, by Hölder inequality and condition (3.2.2), it follows that

S1 = 3E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)
[
F
(∫ 0

−r
Y1(s+ θ)dθ

)
− F

(∫ 0

−r
Y2(s+ θ)dθ

)]
ds

∥∥∥∥2

H

}
≤ 3E

[
sup

0≤t≤T

(∫ t

0

‖T (t− s)‖2ds
)

×
(∫ t

0

∥∥∥∥F(∫ 0

−r
Y1(s+ θ)dθ

)
− F

(∫ 0

−r
Y2(s+ θ)dθ

)∥∥∥∥2

H

ds
)]

≤ 3TK1

∫ T

0

E
∥∥∥∥∫ 0

−r
Y1(s+ θ)dθ −

∫ 0

−r
Y2(s+ θ)dθ

∥∥∥∥2

H

ds

≤ 3rTK1

∫ T

0

E
∫ 0

−r
‖Y1(s+ θ)− Y2(s+ θ)‖2

Hdθds

≤ 3rTK1

∫ T

0

∫ 0

−r
E
(

sup
0≤u≤T

‖Y1(u)− Y2(u)‖2
H

)
dθds

≤ 3r2T 2K1‖Y1 − Y2‖2
2. (3.3.9)

On the other hand, by using Theorem 2.7 and condition (3.2.2), we have for

some constants C3 > 0,

S2 = 3E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)
[
G
(∫ 0

−r
Y1(s+ θ)dθ

)
−G
(∫ 0

−r
Y2(s+ θ)dθ

)]
dWQ(s)

∥∥∥∥2

H

}
≤ 3C3E

∫ T

0

∥∥∥∥G(∫ 0

−r
Y1(s+ θ)dθ

)
−G

(∫ 0

−r
Y2(s+ θ)dθ

)∥∥∥∥2

H

dWQ(s)

≤ 3C3K1

∫ T

0

E
∥∥∥∥∫ 0

−r
Y1(s+ θ)dθ −

∫ 0

−r
Y2(s+ θ)dθ

∥∥∥∥2

H

ds

≤ 3C3r
2TK1‖Y1 − Y2‖2

2. (3.3.10)

Moreover, from Lemma 3.1 and condition (3.2.3), we can show that for some

C4 > 0,

S3 = 3E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)

[
L
(∫ 0

−r
Y1(s+ θ)dθ, u

)
−L
(∫ 0

−r
Y2(s+ θ)dθ, u

)]
Ñ(ds, du)

∥∥∥∥2

H

}
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≤ 3C4E
∫ T

0

∫
Z

∥∥∥∥L(∫ 0

−r
Y1(s+ θ)dθ, u

)
− L

(∫ 0

−r
Y2(s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

≤ 3C4K1

∫ T

0

∫
Z
E
∥∥∥∥∫ 0

−r
Y1(s+ θ)dθ −

∫ 0

−r
Y2(s+ θ)dθ

∥∥∥∥2

H

λ(du)ds

≤ 3C4r
2TK1‖Y1 − Y2‖2

2. (3.3.11)

Hence, substituting (3.3.9)- (3.3.11) into (3.3.8) implies that

‖K(Y1)−K(Y2)‖2
2 ≤ Θ(T )‖Y1 − Y2‖2

2 (3.3.12)

with

Θ(T ) = 3r2T 2K1 + 3C3r
2TK1 + 3C4r

2TK1 < 1, (3.3.13)

then we can take a suitable 0 < T1 < T sufficient small such that Θ(T1) < 1,

and hence K is a contraction on HT1
2 (HT1

2 denotes H2 with T substituted by T1).

Thus, by the well-know Banach fixed point theorem we obtain a unique fixed

point Y ∗ ∈ HT1
2 for operator K, and hence Equation (3.2.7) is a mild solution of

Equation (3.2.1). This procedure can be repeated to extend the solution to the

entire interval [0, T ] in finitely many similar steps, thereby completing the proof

for the existence and uniqueness of mild solutions on the whole interval [0, T ].

3.4 Approximation system

The following version of Itô’s formula Theorem 3.2 has been introduced in Luo

and Liu (2008), which plays an important role in our stability analysis. Let

C2(H;R+) denotes the space of all real-valued nonnegative functions V on H

with properties:

1. V (x) is twice (Fréchet) differentiable in x and

2. V ′x(x) and V ′′xx(x) are both continuous in H and L(H) = L(H,H), respec-
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tively.

Theorem 3.2 Suppose V ∈ C2(H;R+), let X(t), t ≥ 0 be a strong solution of

Equation (3.2.1), then with t ≥ 0,

V (X(t))

= V (ξ) +

∫ t

0

LV
(
X(s),

∫ 0

−r
X(s+ θ)dθ

)
ds

+

∫ t

0

〈
V ′x(X(s)), G

(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

〉
H

+

∫ t

0

∫
Z

[
V

(
X(s) + L

(∫ 0

−r
X(s+ θ)dθ, u

))
− V (X(s))

]
Ñ(ds, du)

where ∀x, y ∈ D(A), the domain of operator A,

LV (x, y) = 〈V ′x(x), Ax+ F (y)〉H +
1

2
Tr (V ′′xx(x)G(y)QG∗(y))

+

∫
Z
[V (x+ L(y, u))− V (x)− 〈V ′x(x), L(y, u)〉H)]λ(du).

Since the mild solutions involve with semigroup, hence they are not martin-

gales. We cannot deal with mild solutions directly in most arguments by the Itô’s

formula.

For any t ≥ 0, we introduce the following approximating system:

dX(t) = AX(t) +R(n)F

(∫ 0

−r
X(t+ θ)dθ

)
dt

+R(n)G

(∫ 0

−r
X(t+ θ)dθ

)
dWQ(t)

+

∫
Z
R(n)L

(∫ 0

−r
X(t+ θ)dθ, u

)
Ñ(dt, du) (3.4.1)

X(t) = R(n)ξ(t) ∈ D(A), −r ≤ t ≤ 0.

Here n ∈ ρ(A), the resolvent set of A and R(n) = nR(n,A), R(n,A) is the

resolvent of A. Similar to operator L defined in Theorem 3.2, the operator Ln
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associated with (3.4.1), for any x, y ∈ D(A), can be defined as follows:

LnV (x, y) = 〈V ′x(x), Ax+R(n)F (y)〉H

+
1

2
Tr [V ′′xx(x)R(n)G(y)Q(R(n)G(y))∗]

+

∫
Z
[V (x+R(n)L(y, u))− V (x)− 〈V ′x(x), R(n)L(y, u)〉H ]λ(du).

Theorem 3.3 Let ξ ∈ Db
F0

([−r, 0];H) be an arbitrarily given initial datum and

assume that the conditions (3.2.2)-(3.2.5) hold. Then the stochastic differential

equation (3.4.1) has a unique strong solution Xn(t) ∈ D(A), which lies in C(0, T ;

L2(Ω,F ,P;H)) for all T > 0. Moreover, Xn(t) converges to the mild solution

X(t) of Equation (3.2.1) almost surely in C(0, T ;L2(Ω,F ,P;H)) as n→∞.

Proof. The existence of a unique strong solution Xn(t) of the kind we desire is

an immediate consequence of Proposition 3.2 and Theorem 3.1 on noting the fact

that AR(n) = AnR(n,A) = n−n2R(n,A) are bounded operators (c.f. Liu (2006),

Proposition 1.3.6). To prove the remainder of the proposition, let us consider

X(t)−Xn(t)

= T (t)[ξ(0)−R(n)ξ(0)]

+

∫ t

0

T (t− s)
[
F
(∫ 0

−r
X(s+ θ)dθ

)
−R(n)F

(∫ 0

−r
Xn(s+ θ)dθ

)]
ds

+

∫ t

0

T (t− s)
[
G
(∫ 0

−r
X(s+ θ)dθ

)
−R(n)G

(∫ 0

−r
Xn(s+ θ)dθ

)]
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)

[
L
(∫ 0

−r
X(s+ θ)dθ, u

)
−R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)]
Ñ(ds, du) (3.4.2)

for any t ≥ 0.

Since |a+ b+ c+ d|2 ≤ 42(|a|2 + |b|2 + |c|2 + |d|2), we thus have that for any

T ≥ 0,
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E
[

sup
0≤t≤T

‖X(t)−Xn(t)‖2
H

]
≤ 42E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

T (t− s)R(n)
[
F
(∫ 0

−r
X(s+ θ)dθ

)
−F
(∫ 0

−r
Xn(s+ θ)dθ

)]
ds

∥∥∥∥2

H

]
+42E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

T (t− s)R(n)
[
G
(∫ 0

−r
X(s+ θ)dθ

)
−G
(∫ 0

−r
Xn(s+ θ)dθ

)]
dWQ(s)

∥∥∥∥2

H

]
+42E

[
sup

0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)R(n)

[
L
(∫ 0

−r
X(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xn(s+ θ)dθ, u

)]
Ñ(ds, du)

∥∥∥∥2

H

]
+42E

{
sup

0≤t≤T

∥∥∥∥[T (t)ξ(0)− T (t)R(n)ξ(0)
]

+

∫ t

0

T (t− s)[I −R(n)]F
(∫ 0

−r
X(s+ θ)dθ

)
ds

+

∫ t

0

T (t− s)[I −R(n)]G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)[I −R(n)]L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

}
:= 16[N1 +N2 +N3 +N4]. (3.4.3)

Note that ‖R(n)‖ ≤ 2 for n > 0 large enough. The Lipschitz continuity

conditions in Assumption 3.2 and Hölder inequality imply that

N1 = E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)R(n)
[
F
(∫ 0

−r
X(s+ θ)dθ

)
−F
(∫ 0

−r
Xn(s+ θ)dθ

)]
ds

∥∥∥∥2

H

]
≤ E

{
sup

0≤t≤T

[ ∫ t

0

‖T (t− s)R(n)‖2ds

]
×
[ ∫ t

0

∥∥∥∥F(∫ 0

−r
X(s+ θ)dθ

)
− F

(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

H

ds

]}
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≤ 4T

∫ T

0

E
∥∥∥∥F(∫ 0

−r
X(s+ θ)dθ

)
− F

(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

H

ds

≤ 4TK1

∫ T

0

E
∥∥∥∥∫ 0

−r
X(s+ θ)dθ −

∫ 0

−r
Xn(s+ θ)dθ

∥∥∥∥2

H

ds

≤ 4rTK1

∫ T

0

∫ 0

−r
E
∥∥∥∥X(s+ θ)−Xn(s+ θ)

∥∥∥∥2

H

dθds

≤ 4r2K1E
∫ T

0

sup
0≤u≤s

‖X(u)−Xn(u)‖2
Hdu

+4rT 2K1E sup
−r≤θ≤0

‖X(θ)−Xn(θ)‖2
H . (3.4.4)

where K1 > 0 is the Lipschitz constant in Assumption 3.2. On the other hand,

by virtue of the Burkholder-Davis-Gundy type of inequality for stochastic con-

volutions in Tubaro (1984), we have for n > 0 large enough that there exists a

number B1(T ) > 0 such that

N2 = E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)R(n)
[
G
(∫ 0

−r
X(s+ θ)dθ

)
−G
(∫ 0

−r
Xn(s+ θ)dθ

)]
dWQ(s)

∥∥∥∥2

H

]
≤ r2TB1(T )K1

∫ T

0

E sup
0≤u≤s

‖X(u)−Xn(u)‖2
Hdu

+rT 2B1(T )K1E sup
−r≤θ≤0

‖X(θ)−Xn(θ)‖2
H . (3.4.5)

and by Lemma 3.1 and (3.2.3), it follows that there exists a number B2(T ) > 0

such that

N3 = E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)R(n)

[
L
(∫ 0

−r
X(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xn(s+ θ)dθ, u

)]
Ñ(ds, du)

∥∥∥∥2

H

]
≤ r2TB2(T )K1

∫ T

0

E sup
0≤u≤s

‖X(u)−Xn(u)‖2
Hdu

+rT 2B2(T )K1E sup
−r≤θ≤0

‖X(θ)−Xn(θ)‖2
H . (3.4.6)
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Also, it can be shown that

N4 ≤ 16

{
E sup

0≤t≤T

∥∥∥∥[T (t)ξ(0)− T (t)R(n)ξ(0)
]∥∥∥∥2

H

+E sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)[I −R(n)]F
(∫ 0

−r
X(s+ θ)dθ

)
ds

∥∥∥∥2

H

+E sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)[I −R(n)]G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

∥∥∥∥2

H

+E sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Z
T (t− s)[I −R(n)]L

(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

}
.

(3.4.7)

By using the dominated convergence theorem and ‖I − R(n)‖ → 0 as n → ∞,

we can obtain

E sup
0≤t≤T

‖T (t)[ξ(0)−R(n)]ξ(0)‖2
H ≤ E‖[I −R(n)]ξ(0)‖2

H → 0, as n→∞, (3.4.8)

and

E sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)[I −R(n)]
[
F
(∫ 0

−r
X(s+ θ)dθ

)
ds

∥∥∥∥2

H

≤
∫ T

0

E
∥∥∥∥[I −R(n)]

[
F
(∫ 0

−r
X(s+ θ)dθ

)
ds

∥∥∥∥2

H

→ 0, as n→∞.

(3.4.9)

In a similar manner, by using the Burkholder-Davis-Gundy type of inequality for

stochastic convolutions in Tubaro (1984), it can be deduced that there exists a

number B3(T ) > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)[I −R(n)]G
(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

∥∥∥∥2

H

≤ B3(T )

∫ T

0

E
∥∥∥∥[I −R(n)]G

(∫ 0

−r
X(s+ θ)dθ

)
ds

∥∥∥∥2

H

→ 0, as n→∞.

(3.4.10)
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and by Lemma 3.1 and the dominated convergence theorem, we deduce that there

exists a number B4(T ) > 0 such that

E sup
0≤t≤T

∥∥∥∥∫ t

0

T (t− s)[I −R(n)]L
(∫ 0

−r
X(s+ θ)dθ, u

)
Ñ(ds, du)

∥∥∥∥2

H

≤ B4(T )

∫ T

0

E
∥∥∥∥[I −R(n)]L

(∫ 0

−r
X(s+ θ)dθ, u

)
ds

∥∥∥∥2

H

→ 0, as n→∞.

(3.4.11)

Hence, N4 → 0 as n → ∞. Combining with (3.4.3)-(3.4.11), we can get that

there exists numbers B(T ) > 0 and ε(0) such that

E
[

sup
0≤t≤T

‖X(t)−Xn(t)‖2
H

]
≤ B(T )

∫ T

0

E
[

sup
0≤u≤s

‖X(u)−Xn(u)‖2
H

]
+ ε(n),

where limn→∞ ε(n) = 0. By the Gronwall inequality,

E
[

sup
0≤t≤T

‖X(t)−Xn(t)‖2
H

]
≤ ε(n)eB(T )T → 0, as n→∞. (3.4.12)

Then the desired assertion has been proved.

It can be observed that the mild solution Xξ(t) of Equation (3.2.1) is not a

Markov process. However, it can be shown that Xξ
t , t ≥ 0 is a time-homogeneous

strong Markov process as in Mohammed (1984). The Markov property will be

used in the proof of inequality (3.5.18).

3.5 Stability in distribution

In this section, we concern the stability in distribution of mild solutions to Equa-

tion (3.2.1). Now, we recall the definition.

Let p(t, ξ, dζ) denote the transition probability of the process y(t) with the

initial state y(0) = ξ. Denoted by P (t, ξ,Γ) the probability of event y(t) ∈ Γ

given initial condition y(0) = ξ, i.e. with Γ ∈ B(H), which denotes the Borel
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σ-algebra of H,

P (t, ξ,Γ) =

∫
Γ

p(t, ξ, dζ).

Denoted by Xξ(t) the mild solution to Equation (3.2.1) with the initial datum

ξ ∈ Db
F0

([−r, 0];H). Correspondingly, Xξ
t = {Xξ(t+ θ),−r ≤ θ ≤ 0}.

Definition 3.3 (Stability in Distribution) The process Xξ
t , t ≥ 0 is said to

be stable in distribution if there exits a probability measure π(·) on D([−r, 0];H)

such that its transition probability p(t, ξ, dζ) converges weakly to π(dζ) as t→∞

for every ξ ∈ Db
F0

([−r, 0];H). In this case, Equation (3.2.1) is said to be stable

in distribution.

Since Xξ
t , t ≥ 0 is a Markov process, using the Kolmogorov-Chapman equation, it

can be shown that the stability in distribution of Xξ
t , t ≥ 0 implies the existence

of a unique invariant probability measure for Xξ
t , t ≥ 0, c.f. Yuan et al. (2003)

and Bao et al. (2009a,b).

We obtain the result of stability in distribution Theorem 3.4 through the

following four Lemmas.

Lemma 3.2 Let the conditions of Theorem 3.3 hold. Assume there exist con-

stants λ1 > λ2 ≥ 0 and β ≥ 0 such that, for any x, y ∈ D(A),

2〈x,Ax+ F (y)〉H + ‖G(y)‖2
L20

+

∫
Z
‖L(y, u)‖2

Hλ(du)

≤ −λ1‖x‖2
H + λ2‖y‖2

H + β. (3.5.1)

Then

sup
0≤t<∞

E‖Xξ
t ‖2

D <∞ ∀ ξ ∈ Db
F0

([−r, 0];H). (3.5.2)

Proof. For simplicity, we denote Xξ(t) by X(t). Firstly, we show that, for any

t ≥ 0,

E‖X(t)‖2
H <∞. (3.5.3)
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For any t ≥ 0, µ > 0, using (3.5.1) and applying the Itô’s formula to the

function V (t, x) = eµtV (x) = eµt‖x‖2
H and the strong solution Xn(t) of Equation

(3.4.1), we have

Eeµt‖Xn(t)‖2
H

= E‖Xn(0)‖2
H +

∫ t

0

Eeµs
[
µ‖Xn(s)‖2

H + LnV
(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)]
ds

= E‖Xn(0)‖2
H +

∫ t

0

Eeµs
[
µ‖Xn(s)‖2

H − LV
(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)]
ds

+

∫ t

0

Eeµs
[
LnV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)
−LV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)]
ds

≤ E‖Xn(0)‖2
H +

∫ t

0

Eeµs
[
µ‖Xn(s)‖2

H − λ1‖Xn(s)‖2
H

+λ2

∥∥∥∥∫ 0

−r
Xn(s+ θ)dθ

∥∥∥∥2

H

+ β

]
ds

+

∫ t

0

Eeµs
[
LnV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)
−LV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)]
ds

≤ E‖Xn(0)‖2
H +

∫ t

0

Eeµs[(µ− λ1)‖Xn(s)‖2
H ]ds

+rλ2

∫ t

0

Eeµs
∫ 0

−r
‖Xn(s+ θ)‖2

Hdθds+
βeµt

µ

+

∫ t

0

Eeµs
[
LnV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)
−LV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)]
ds

≤ E‖Xn(0)‖2
H +

∫ t

0

Eeµs
[(
µ− λ1 + rλ2

(eµr − 1

µ

))
‖Xn(s)‖2

H

]
ds

+rλ2

(eµr − 1

µ

)∫ 0

−r
‖Xn(s)‖2

Hds

+
βeµt

µ
+

∫ t

0

2eµsE
〈
Xn(s), (R(n)− I)F

(∫ 0

−r
Xn(s+ θ)dθ

)〉
H

ds

+

∫ t

0

Eeµs
∥∥∥∥R(n)G

(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

L02

ds
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−
∫ t

0

Eeµs
∥∥∥∥G(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

L02

ds

+

∫ t

0

∫
Z
Eeµs

∥∥∥∥R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

−
∫ t

0

∫
Z
Eeµs

∥∥∥∥L(∫ 0

−r
Xn(s+ θ)dθ, u

)∥∥∥∥2

H

λ(du)ds

Note that for λ1 > rλ2 ≥ 0, the equation

x2 = λ1x− rλ2(exr − 1),

admits a unique positive root denoted by ρ. Letting µ = ρ and using Theorem 3.3

and the dominated convergence theorem, we get

E‖X(t)‖2
H ≤ Eeρt‖X(t)‖2

H

≤ E‖ξ(0)‖2
H + rλ2(

eρr − 1

ρ
)

∫ 0

−r
E‖ξ(s)‖2

Hdθds+
β

ρ
.

Thus, together with ξ ∈ Db
F0

([−r, 0];H), we have E‖X(t)‖2
H <∞.

Next, we intend to show that, for any t ≥ 0,

sup
0<t<∞

E‖Xt‖2
D = sup

0≤t<∞
E
[

sup
−r≤θ<0

‖X(t+ θ)‖2
H

]
<∞. (3.5.4)

Again, applying Itô’s formula to the function V (x) = ‖x‖2
H and the strong solu-

tion Xn(t) of Equation (3.4.1), for any t ≥ r and θ ∈ [−r, 0], we obtain

‖Xn(t+ θ)‖2
H

= ‖Xn(t− r)‖2
H +

∫ t+θ

t−r
LnV

(
Xn(s),

∫ 0

−r
Xn(s+ θ)dθ

)
ds

+ 2

∫ t+θ

t−r

〈
Xn(s), R(n)G

(∫ 0

−r
Xn(s+ θ)dθ

)
dWQ(s)

〉
H

+

∫ t+θ

t−r

∫
Z

[∥∥∥∥R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)∥∥∥∥2

H

+ 2

〈
Xn(s), R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)〉2

H

]
Ñ(ds, du)
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≤ ‖Xn(t− r)‖2
H + λ1

∫ t+θ

t−r
‖Xn(s)‖2

Hds+ λ2

∫ t+θ

t−r

∥∥∥∥∫ 0

−r
Xn(s+ θ)dθ

∥∥∥∥2

H

ds

+ βr + 2

∫ t+θ

t−r

〈
Xn(s), R(n)G

(∫ 0

−r
Xn(s+ θ)dθ

)
dWQ(s)

〉
H

+

∫ t+θ

t−r

∫
Z

[∥∥∥∥R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)∥∥∥∥2

H

+ 2

〈
Xn(s), R(n)L

(∫ 0

−r
Xn(s+ θ)dθ, u

)〉
H

]
Ñ(ds, du)

+ 2

∫ t+θ

t−r

〈
Xn(s), (R(n)− I)F

(∫ 0

−r
Xn(s+ θ)dθ

)〉
H

ds

+

∫ t+θ

t−r

∥∥∥∥R(n)G

(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

L20

ds

−
∫ t+θ

t−r

∥∥∥∥G(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

L20

ds

+

∫ t

0

∫ t+θ

t−r

∥∥∥∥R(n)L

(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

H

λ(du)ds

−
∫ t

0

∫ t+θ

t−r

∥∥∥∥L(∫ 0

−r
Xn(s+ θ)dθ

)∥∥∥∥2

H

λ(du)ds.

By Theorem 3.3 together with the dominated convergence theorem, we thus get

E
[

sup
−r≤θ<0

‖X(t+ θ)‖2
H

]
≤ E‖X(t− r)‖2

H + λ1

∫ t

t−r
E‖X(s)‖2

Hds+ λ2

∫ t

t−r

∥∥∥∥∫ 0

−r
Xn(s+ θ)dθ

∥∥∥∥2

H

ds

+βr + 2E
[

sup
−r≤θ<0

∫ t+θ

t−r

〈
X(s), G

(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

〉
H

]
+E
{

sup
−r≤θ<0

∫ t+θ

t−r

∫
Z

[∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, u

)∥∥∥∥2

H

+2

〈
X(s), L

(∫ 0

−r
X(s+ θ)dθ, u

)〉
H

]
Ñ(ds, du)

}
. (3.5.5)

Now, by virtue of Burkholder-Davis-Gundy’s inequality (c.f. Ichikawa (1982)

Proposition 1.6), we derive for some positive constant K1 such that

2E
[

sup
−r≤θ<0

∫ t+θ

t−r

〈
X(s), G

(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

〉
H

]
≤ K1E

(
sup
−r≤θ<0

∫ t+θ

t−r
‖X(t+ θ)‖2

H

∫ t

t−r

∥∥∥∥G(∫ 0

−r
X(s+ θ)dθ

)∥∥∥∥2

L20

ds

) 1
2

,
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which, immediately yields for certain K2 > 0,

2E
[

sup
−r≤θ<0

∫ t+θ

t−r

〈
X(s), G

(∫ 0

−r
X(s+ θ)dθ

)
dWQ(s)

〉
H

]
≤ 1

2
E
[

sup
−r≤θ<0

‖X(s+ θ)‖2
H

]
+K2

∫ t

0

E
∥∥∥∥G(∫ 0

−r
X(s+ θ)dθ

)∥∥∥∥2

L20

ds.

(3.5.6)

Next, we shall estimate the last term of (3.5.5). The method used is similar

to that of the proof Röckner and Zhang (2007) Proposition 3.1. Let

M(t, θ) =

∫ t+θ

t−r

∫
Z

[∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, u

)∥∥∥∥2

H

+2

〈
X(s), L

(∫ 0

−r
X(s+ θ)dθ, u

)〉
H

]
Ñ(ds, du)

and [M(t, 0)] denotes the quadratic variation of the process M(t, 0). Then, from

Burkholder-Davis-Gundy’s inequality (c.f. Applebaum (2004)), there exists a pos-

itive constant K3 such that

E
[

sup
−r≤θ<0

|M(t, θ)|
]
≤ K3E

(
[M(t, 0)]1/2

)
. (3.5.7)

By the definition of quadratic variation,

[M(t, 0)]1/2

=

{ ∑
s∈Dp, t−r≤s≤t

(∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

+ 2

〈
X(s), L

(∫ 0

−r
X(s+ θ)dθ, p(s)

)〉
H

)2
}1/2

≤
√

2

{ ∑
s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥4

H

}1/2

+
√

2

{
4

∑
s∈Dp, t−r≤s≤t

∣∣∣∣〈X(s), L

(∫ 0

−r
X(s+ θ)dθ, p(s)

)〉
H

∣∣∣∣4
}1/2
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≤
√

2

{ ∑
s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥4

H

}1/2

+ 2
√

2

{ ∑
s∈Dp, t−r≤s≤t

‖X(s)‖2
H

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

}1/2

≤
√

2
∑

s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

+ 2
√

2 sup
−r≤θ<0

‖X(t+ θ)‖H

{ ∑
s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

}1/2

≤ 1

4K3

sup
−r≤θ<0

‖X(t+ θ)‖2
H

+ (8K3 +
√

2)
∑

s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

.

Hence, in (3.5.7)

E
[

sup
−r≤θ<0

|M(t, θ)|
]

≤ 1

4
E
[

sup
−r≤θ<0

‖X(t+ θ)‖2
H

]
+K3(8K3 +

√
2)E

[ ∑
s∈Dp, t−r≤s≤t

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

]

≤ 1

4
E
[

sup
−r≤θ<0

‖X(t+ θ)‖2
H

]
+K3(8K3 +

√
2)E

[∫ t

t−r

∫
Z

∥∥∥∥L(∫ 0

−r
X(s+ θ)dθ, p(s)

)∥∥∥∥2

H

]
(3.5.8)

Substituting (3.5.3), (3.5.6), (3.5.8) into (3.5.5) and combining (3.2.5), directly

we have that (3.5.4) holds. Therefore, the desired assertion (3.5.2) follows.

By the well-known Chebyshev inequality, for any positive number l, we have

P (‖Xξ
t ‖D ≥ l) ≤ E‖Xξ

t ‖2
D

l2
.

Let l → ∞, (3.5.2) implies that the right-hand side tends to 0. We assume, for

any ε > 0, there is a compact subset K = K(ξ, ε) of D([−r, 0];H) such that
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P (t, ξ,K) ≥ 1− ε. That is, the family {p(t, ξ, dζ) : t ≥ 0} is tight.

In what follows, we consider of two mild solutions that start from different

initial conditions, namely

Xξ(t)−Xη(t)

= T (t)ξ(0)− T (t)η(0)

+

∫ t

0

T (t− s)
[
F

(∫ 0

−r
Xξ(s+ θ)dθ

)
− F

(∫ 0

−r
Xη(s+ θ)dθ

)]
ds

+

∫ t

0

(T − s)
[
G

(∫ 0

−r
Xξ(s+ θ)dθ

)
−G

(∫ 0

−r
Xη(s+ θ)dθ

)]
dWQ(t)

+

∫ t

0

∫
Z
T (t− s)

[
L

(∫ 0

−r
Xξ(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xη(s+ θ)dθ, u

)]
Ñ(ds, du).

(3.5.9)

Furthermore, we introduce an approximating system in correspondence with

(3.5.9) in the following form:

d[Xξ(t)−Xη(t)]

=

{
A(Xξ(t)−Xη(t))

+R(n)

[
F

(∫ 0

−r
Xξ(s+ θ)dθ

)
− F

(∫ 0

−r
Xη(s+ θ)dθ

)]}
dt

+R(n)

[
G

(∫ 0

−r
Xξ(s+ θ)dθ

)
−G

(∫ 0

−r
Xη(s+ θ)dθ

)]
dWQ(t)

+

∫
Z
R(n)

[
L

(∫ 0

−r
Xξ(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xη(s+ θ)dθ, u

)]
Ñ(ds, du) (3.5.10)

where n ∈ ρ(A), the resolvent set of A and R(n) = nR(n,A), R(n,A) is the

resolvent of A.

For given U ∈ C2(H;R+), define an operator LnU : H4 → R associated
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with (3.5.10) by for any x, y, z1 and z2 ∈ D(A)

LnU(x, y, z1, z2)

= 〈U ′x(x− y), A(x− y) +R(n)[F (z1)− F (z2)]〉H

+
1

2
Tr (U ′′xx(x− y))R(n)[G(z1)−G(z2)]Q(R(n)[G(z1)−G(z2)])∗

+

∫
Z

[
U(x+ y +R(n)[L(x, u)− L(y, u)])− u(x− y)

−〈U ′x(x− y), R(n)[L(z1, u)− L(z2, u)]〉H
]
λ(du).

Lemma 3.3 Suppose the conditions of Theorem 3.3 hold. Assume also that there

are constants λ3 > λ4 ≥ 0 such that, for any x, y, z1, and z2 ∈ D(A),

2〈x− y, A(x− y) + F (z1)− F (z2)〉H + ‖G(z1)−G(z2)‖2
L02

+

∫
Z
‖L(z1, u)− L(z2, u)‖2

Hλ(du)

≤ −λ3‖x− y‖2
H + λ4‖z1 − z2‖2

H . (3.5.11)

Then, for any compact subset K of D([−r, 0];H),

lim
t→∞

E‖Xξ
t −X

η
t ‖2

D = 0 uniformly in ξ, η ∈ K. (3.5.12)

Proof. For integer N ∈ R+ and the strong solution Xξ
n(t) − Xη

n(t) to approxi-

mating system (3.5.10), we define stopping time as follows:

τN = inf{t ≥ 0 : ‖Xξ
n(t)−Xη

n(t)‖H > N}.

Clearly, τN → ∞ almost surely as N → ∞. Let TN = τN ∧ t. Using the Itô’s

formula to the strong solution Xξ
n(t)−Xη

n(t) of (3.5.10), for any t ≥ 0 and λ > 0,
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we derive

Eeλt‖Xξ
n(TN)−Xη

n(TN)‖2
H

= E‖R(n)ξ −R(n)η‖2
H +

∫ TN

0

Eeλs
[
λ‖Xξ

n(s)−Xη
n(s)‖2

H

+Ln
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
ds

= E‖R(n)ξ −R(n)η‖2
H

+

∫ TN

0

Eeλs
[
λ‖Xξ

n(s)−Xη
n(s)‖2

H

+L
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
+

∫ TN

0

Eeλs
[
Ln
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)
−L
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
ds

≤ E‖R(n)ξ −R(n)η‖2
H +

∫ TN

0

Eeλs
[
λ‖Xξ

n(TN)−Xη
n(TN)‖2

H

−λ3‖Xξ
n(s)−Xη

n(s)‖2
H + λ4

∥∥∥∥∫ 0

−r
Xξ
n(s+ θ)−

∫ 0

−r
Xη
n(s+ θ)

∥∥∥∥2

H

]
ds

+

∫ TN

0

Eeλs
[
Ln
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)
−L
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
ds

≤ E‖R(n)ξ −R(n)η‖2
H +

∫ TN

0

Eeλs(λ− λ3)‖Xξ
n(s)−Xη

n(s)‖2
Hds

+

∫ TN

0

Eeλsλ4

∥∥∥∥∫ 0

−r
Xξ
n(s+ θ)dθ −

∫ 0

−r
Xη
n(s+ θ)dθ

∥∥∥∥2

H

ds

+

∫ TN

0

Eeλs
[
Ln
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)
−L
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
ds

≤ E‖R(n)ξ −R(n)η‖2
H + rλ4

(eλr − 1

λ

)∫ 0

−r
E‖Xξ

n(s)−Xη
n(s)‖2

Hds
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+

(
λ− λ3 + rλ4

(eλr − 1

λ

))
E
∫ TN

0

eλs‖Xξ
n(s)−Xη

n(s)‖2
Hds

+

∫ TN

0

Eeλs
[
Ln
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)
−L
(
Xξ
n(s), Xη

n(s),

∫ 0

−r
Xξ
n(s+ θ)dθ,

∫ 0

−r
Xη
n(s+ θ)dθ

)]
ds

≤ E‖R(n)ξ −R(n)η‖2
H + rλ4

(eλr − 1

λ

)∫ 0

−r
E‖Xξ

n(s)−Xη
n(s)‖2

Hds

+

(
λ− λ3 + rλ4

(eλr − 1

λ

))
E
∫ TN

0

eλs‖Xξ
n(s)−Xη

n(s)‖2
Hds

+2E
∫ TN

0

eλs
〈
Xξ
n(s)−Xη

n(s), (R(n)− I)

[
F

(∫ 0

−r
Xξ
n(s+ θ)dθ

)
−F
(∫ 0

−r
Xη
n(s+ θ)dθ

)]〉
H

ds

+E
∫ TN

0

eλs
∥∥∥∥R(n)G

(∫ 0

−r
Xξ
n(s+ θ)dθ

)
−G

(∫ 0

−r
Xη
n(s+ θ)dθ

)∥∥∥∥2

L02

ds

−E
∫ TN

0

eλs
∥∥∥∥G(∫ 0

−r
Xξ
n(s+ θ)dθ

)
−G

(∫ 0

−r
Xη
n(s+ θ)dθ

)∥∥∥∥2

L02

ds

+E
∫ TN

0

∫
Z
eλs
∥∥∥∥R(n)

[
L

(∫ 0

−r
Xξ
n(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xη
n(s+ θ)dθ

)]∥∥∥∥2

H

λ(du)ds

−E
∫ TN

0

∫
Z
eλs
∥∥∥∥[L(∫ 0

−r
Xξ
n(s+ θ)dθ, u

)
−L
(∫ 0

−r
Xη
n(s+ θ)dθ

)]∥∥∥∥2

H

λ(du)ds. (3.5.13)

Note that for λ3 > rλ4 ≥ 0, the equation

x2 = λ3x− rλ4(exr − 1),

admits a unique positive root denoted by δ. In (3.5.13), letting λ = δ and using

Theorem 3.3 and the dominated convergence theorem, it thus follows:

Eeδt‖Xξ(t)−Xη(t)‖2
H ≤

(
1 + r2λ4

(eδr − 1

δ

))
E‖ξ − η‖2

D.
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That is,

E‖Xξ(t)−Xη(t)‖2
H ≤

(
1 + r2λ4

(eδr − 1

δ

))
E‖ξ − η‖2

De
−δt.

Hence, for any ε > 0, there exists a δ > 0 such that for ‖ξ − η‖D < δ

E‖Xξ(t)−Xη(t)‖2
H ≤

ε

9
(3.5.14)

and

lim
t→∞

E‖Xξ(t)−Xη(t)‖2
H = 0. (3.5.15)

Since K is compact, there exist ξ1, ξ2, ξ3 such that K ⊆ ∪kj=1ρ(ξi, δ), where

ρ(ξi, δ) = {ξ ∈ D([−r, 0];H) : ‖ξ − ξi‖D < δ}. By (3.5.15), there exists a T1 > 0

such that for t ≥ T1 and 1 ≤ u, v ≤ k,

E‖Xξu(t)−Xξv(t)‖2
H ≤

ε

9
. (3.5.16)

For any ξ, η ∈ K, we can find l, m such that ξ ∈ ρ(ξl, δ), η ∈ ρ(ξm, δ). By (3.5.14)

and (3.5.16), we derive that for all t ≥ T1,

E‖Xξ(t)−Xη(t)‖2
H ≤ 3

(
E‖Xξ(t)−Xξl(t)‖2

H + E‖Xη(t)−Xξm(t)‖2
H

+E‖Xξl(t)−Xξm(t)‖2
H

)
≤ ε.

Consequently, for any compact subset K of D([−r, 0];H),

lim
t→∞

E‖Xξ(t)−Xη(t)‖2
H = 0 uniformly in ξ, η ∈ K.

Under the conditions of Lemma 3.3, we can show that for any ε > 0 and any

compact subset K of D([−r, 0];H), there is a T = T (ε,K) > 0 such that for any
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ξ, η ∈ K,

P(‖Xξ(t)−Xη(t)‖H < ε) ≥ 1− ε, ∀ t ≥ T.

Actually, it is sufficient to show that there exists T = T (ε,K) > 0 such that for

any t ≥ T

P(‖Xξ(t)−Xη(t)‖H ≥ ε) ≤ ε.

By the Chebyshev inequality,

P(‖Xξ(t)−Xη(t)‖H ≥ ε) ≤ E‖Xξ(t)−Xη(t)‖2
H

ε2
.

However, by virtue of Lemma 3.3, it follows that there exists T = T (ε,K) > 0

such that for any t ≥ T

E‖Xξ(t)−Xη(t)‖2
H ≤ ε3,

then the required assertion follows.

Let P(D([−r, 0];H)) denote all probability measures on D([−r, 0];H). For

P1,P2 ∈ P(D([−r, 0];H)) define metric dL as follows:

dL(P1,P2) = sup
f∈L

∣∣∣∣ ∫
H

f(x)P1(dx)−
∫
H

f(x)P2(dx)

∣∣∣∣
and

L = {f : P(D([−r, 0];H))→ R : |f(x)− f(y)| ≤ ‖x− y‖D and |f(·)| ≤ 1}.

By the definition of stability in distribution, we need to show that there exists

a probability measure π(·) such that for any ξ ∈ Db
F0

([−r, 0];H), the transition

probabilities {p(t, ξ, ·) : t ≥ 0} converge weakly to π(·) . It is known that the weak

convergence of probability measures is equivalent to a metric concept (c.f. Ikeda

and Watanabe (1989), Proposition 2.5). Meanwhile, according to Theorem 5.4

in Chen (2004), P(D[−τ, 0];H) is a complete metric space under metric dL.
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Lemma 3.4 Let (3.5.2) and (3.5.12) hold. Then, {p(t, ξ, ·) : t ≥ 0} is Cauchy

in the space P(D([−r, 0];H)) for any ξ ∈ Db
F0

([−r, 0];H).

Proof. Fix ξ ∈ Db
F0

([−r, 0];H). We need to show that, for any ε > 0, there

exists a T > 0 such that

dL(p(t+ s, ξ, ·), p(t, ξ, ·)) ≤ ε, ∀ t ≥ T, s > 0,

which is equivalent to show that for any f ∈ L

sup
f∈L
|Ef(Xξ

t+s)− Ef(Xξ
t )| ≤ ε, ∀ t ≥ T, s > 0. (3.5.17)

We thus compute for any f ∈ L and t, s > 0

|Ef(Xξ
t+s)− Ef(Xξ

t )| = |E[Ef(Xξ
t+s)|Fs]− Ef(Xξ

t )|

=

∣∣∣∣ ∫
H

Ef(Xζ
t )p(s, ξ, dζ)− Ef(Xξ

t )

∣∣∣∣
≤

∫
H

E|f(Xζ
t )− Ef(Xξ

t )|p(s, ξ, dζ), (3.5.18)

where for the first equality we used the property of conditional expectation, while

the second equality we used the Markov property of Xξ
t . From Page 80, there

exists a compact subset K of D([−r, 0];H) for any ε > 0 such that

p(s, ξ,K) > 1− ε

8
. (3.5.19)

Using (3.5.17) and (3.5.18), we obtain

|Ef(Xξ
t+s)− Ef(Xξ

t )| ≤
∫
H

E|f(Xζ
t )− f(Xξ

t )|p(s, ξ, dζ)

=

∫
K
E|f(Xζ

t )− f(Xξ
t )|p(s, ξ, dζ) +

∫
H−K

E|f(Xζ
t )− f(Xξ

t )|p(s, ξ, dζ)

≤
∫
K
E|f(Xζ

t )− f(Xξ
t )|p(s, ξ, dζ) +

ε

4
. (3.5.20)

Furthermore, from (3.5.12), we derive that there is a T > 0 for the given ε > 0
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such that

sup
f∈L
|Ef(Xζ

t )− Ef(Xξ
t )| ≤ 3ε

4
, ∀ t ≥ T, (3.5.21)

which, in addition to (3.5.20), implies

|Ef(Xξ
t+s)− Ef(Xξ

t )| ≤ ε, ∀ t ≥ T, s > 0.

Since f ∈ L is arbitrary, the desired inequality (3.5.17) is obtained.

Lemma 3.5 Let (3.5.12) hold. Then for any compact subset K of D([−r, 0];H),

lim
t→∞

dL(p(t, ξ, ·), p(t, ζ, ·)) = 0 uniformly in ξ, ζ ∈ K.

Proof. We need to show that, for any ε > 0 and ξ, ζ ∈ K, there is a T > 0 such

that

dL(p(t, ξ, ·), p(t, ζ, ·)) ≤ ε, ∀ t ≥ T,

which is equivalent to, for any ξ, ζ ∈ K,

sup
f∈L
|Ef(Xξ

t )− Ef(Xζ
t )| ≤ ε, ∀ t ≥ T.

As a matter of fact, for any f ∈ L,

|Ef(Xξ
t )− Ef(Xζ

t )| ≤ E(2 ∧ ‖Xξ
t −X

ζ
t ‖D).

From (3.5.12), for any ξ, ζ ∈ K, there exists a T > 0 satisfying

E‖Xξ
t −X

ζ
t ‖2

D ≤ ε2, ∀ t ≥ T.

Since f ∈ L is arbitrary, we obtain that

sup
f∈L
|Ef(Xξ

t )− Ef(Xζ
t )| ≤ ε, ∀ t ≥ T.
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The desired result is now proved.

We are now in a position to present our main result.

Theorem 3.4 Under the conditions of Lemmas 3.2 and 3.3, the mild solution

Xξ(t) to Equation (3.2.1) is stable in distribution.

Proof. By the definition of stability in distribution, we need to show that there

exists a probability measure π(·) such that for any ξ ∈ Db
F0

([−r, 0];H), the tran-

sition probabilities {p(t, ξ, ·) : t ≥ 0} converge weakly to π(·). As we know, the

weak convergence of probability measures is equivalent to a metric concept, we

then need to show that, for any ξ ∈ Db
F0

([−r, 0];H),

lim
t→∞

dL(p(t, ξ, ·), π(·)) = 0.

By Lemma 3.4, {p(t, 0, ·) : t ≥ 0} is Cauchy in the space P(D([−r, 0];H))

with metric dL. Since P(D([−r, 0];H)) is a complete metric space under metric

dL (c.f. Theorem 5.4 in Chen (2004)), there is a unique probability measure

π(·) ∈ P(D([−r, 0];H)) such that

lim
t→∞

dL(p(t, 0, ·), π(·)) = 0. (3.5.22)

Moreover,

lim
t→∞

dL(p(t, ξ, ·), π(·)) ≤ lim
t→∞

dL(p(t, ξ, ·), p(t, 0, ·)) + lim
t→∞

dL(p(t, 0, ·), π(·)).

Therefore, apply Lemma 3.5 yields that

lim
t→∞

dL(p(t, ξ, ·), π(·)) = 0.
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3.6 An illustrative example

Consider the stochastic process Z(t, x) with Passion jumps describe by

dZ(t, x) =

[
a
∂2

∂x2
+ b

∫ 0

−r
Z(t+ θ, x)dθ

]
dt+ f

(∫ 0

−r
Z(t+ θ, x)dθ

)
dB(t)

+

∫ ∞
1

∫ 0

−r
Z(t+ θ, x)dθyÑ(dt, dy), t ≥ 0, a > 0, 0 < x < π

Z(t, 0) = Z(t, π) = 0, t ≥ 0; Z(θ, x) = φ(θ, x), 0 ≤ x ≤ π, θ ∈ [0, π]

φ(θ, ·) ∈ H = L2(0, π), φ(·, x) ∈ C([−r, 0];R),

where B(t), t ≥ 0, is a real standard Brownian motion and Ñ(·, ·) is a compen-

sated Poisson random measure on [1,∞]×R+ with parameter λ(dy)dt such that∫∞
1
y2λ(dy) <∞.

Assume moveover that B(t) is independent of Ñ(·, ·), f is a real Lipschitz

continuous function on L2(0, π) satisfying for u, v ∈ L2(0, π)

|f(u)| ≤ c(‖u‖H + 1), |f(u)− f(v)| ≤ k‖u− v‖H ,

with some positive constant c, k. In this example, we take H = L2(0, π) and

A = a(∂2/∂x2) with domain

D(A) =

{
u ∈ H = L2(0, π) :

∂u

∂x
,
∂2

∂x2
∈ L2(0, π), u(0) = u(π) = 0

}
.

It can be shown that for arbitrary u ∈ D(A)

〈u,Au〉 ≤ −a‖u‖2
H .

Moreover, for any u ∈ D(A),

2〈u,Au+ bv〉H + |f(v)|2 +

∫ ∞
1

‖uy‖2
Hλ(dy)

≤ −
(

2a− 1 +

∫ ∞
1

y2λ(dy)

)
‖u‖2

H + (b2 + 2c2)‖v‖2
H + 2c2.
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Similarly, for u, v ∈ D(A),

2〈u− v, A(u− v) + b(z1 + z2)〉H |f(z1)− f(z2)|2

+

∫ ∞
1

‖(u− v)y‖2
Hλ(dy)

≤ −
(

2a− 1 +

∫ ∞
1

y2λ(dy)

)
‖u− v‖2

H + (k2 + b2)‖z1 − z2‖2
H .

Therefore, if 2a > 1 + k2 + b2 −
∫∞

1
y2λ(dy) is hold, by Theorem 3.4, we then

immediately observe that the mild solution process Z(t, x) is stable in distribu-

tion.

3.7 Conclusion

To sum up, in this chapter we have focussed on stability in distribution of mild

solutions to stochastic delay differential equations with Poisson jumps in Hilbert

spaces. Thus, we have first proved that the existence and uniqueness to our

SDDEs with jumps. However, in order to obtain the stability in distribution, we

cannot directly deal with the mild solutions because the mild solutions are no

longer martingales. Therefore, convergence property of strong solutions to mild

solutions has been established by approximation of strong solutions. Finally, we

have obtained some sufficient conditions for the stability in distribution to our

SDDEs and an example is given to demonstrate the applicability of our work. As

a consequence, we certainly generalized the stability results of finite dimensions

such as in Basak et al. (1996) and Yuan and Mao (2003) to infinite dimensional

cases.
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Chapter 4

Exponential stability of energy

solutions to stochastic partial

differential equations with

Markovian switching and jumps

4.1 Introduction

So far, there exists an extensive literature dealing with stochastic partial differ-

ential equations in a separable Hilbert space. Researchers have obtained fruitful

results on the existence, uniqueness and the stability behavior; e.g. Caraballo

et al. (2002b), Kwiecinska (2002), Leha et al. (1999), Maslowski (1995) and refer-

ences therein. In particular, the exponential stability of the strong solutions and

mild solutions has been studied frequently. Various methods have been applied to

obtain the exponential stability by different researchers, for instance, the method

of coercivity condition has been used in Caraballo and Liu (1999); the Lyapunov

method has been applied in Liu and Mao (1998) and the method of estimate of

solutions has been employed in Taniguchi (1995).
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Whereafter, the stochastic partial differential equations with delays have been

discussed by several researchers; for example, Caraballo et al. (2000, 2002a) and

Taniguchi (1995). The exponential stability of these type of equations was also

discussed, for instance, in Taniguchi (1998), the exponential stability of the semi-

linear stochastic delay evolution equations was obtained by the estimate of the

mild solutions, while in Liu (1998), the result was derived by using the Lyapunov

functionals. In addition, stochastic delay differential equations with Markovian

switching also have been studied. These can be regarded as the result of several

stochastic differential delay equations switching among each other according to

the movement of a Markov chain. For example, the exponential stability of these

equations have been presented in Mao (1999), Mao et al. (2000), Mao and Yuan

(2006) and the almost surely asymptotic stability have been discussed in Mao

et al. (2008). On the other hand, some researchers have studied another type

of stochastic delay differential equations which driven by jump processes. For

example, the existence and uniqueness of stochastic evolution equations of jumps

was established in Röckner and Zhang (2007).

However, in recent studies, researchers start to show interests in a type of

stochastic differential equations driven both by Markovian switching and Poisson

jumps. For example, Svishchuk and Kazmerchuk (2002) are the first to study

the pth moment exponential stability of solutions of linear Itô stochastic delay

differential equations with Poisson jump and Markovian switching. Luo (2006)

established the comparison principle for the nonlinear Itô stochastic differential

delay equations with Poisson jump and Markovian switching, using this com-

parison principle, stability criteria including stability in probability, asymptotic

stability in probability, stability in the pth mean, asymptotic stability in the pth

mean and the pth moment exponential stability of such equations have been ob-

tained. Later, Luo and Liu (2008) have generalized and improved the results

of Svishchuk and Kazmerchuk (2002) using Razumikhin-Lyapunov type function
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methods and comparison principles as a special case of their theory. To the best

of our knowledge to date, there is not much literature dealing with these kind of

equations, especially for infinite dimensional case.

It is noticed that the above literature discussed the exponential stability be-

havior of strong or mild solution to the different kinds of stochastic differential

equations. However, by estimating the coefficients functions in the stochastic

energy equality, the exponential stability and almost sure exponential stability of

energy solutions can be obtained. For example, Taniguchi (2007) discussed the

following stochastic delay differential equation with finite delays:

dX(t) = A[(t,X(t)) + f(t)]dt+ h(t,X(t− ρ(t)))dt+ g(t,X(t− τ(t)))dW (t)

where ρ, τ : [0,∞) → [0, r] be differentiable functions with ρ′(t) ≤ M < 1,

τ ′(t) ≤ M < 1 with M ≥ 0 and r > 0 is a constant; the mappings A, f , h and

G are similar to Equation (4.3.1). Then, Wan and Duan (2008) also discussed

the same kind of equations and obtained the exponential stability under some

suitable conditions. Compared to Taniguchi (2007), the advantage in Wan and

Duan (2008) is that ρ(t) and τ(t) are no longer required to be differentiable

functions. Later, Hou et al. (2010) generalized the results from Taniguchi (2007)

and Wan and Duan (2008) to cover a class of more general stochastic partial

delay differential equations with jumps.

In this chapter, we consider the exponential stability and almost sure expo-

nential stability of energy solutions to stochastic partial functional differential

equations with Markovian switching and Poisson jumps of the form:

dX(t) = [A(t,X(t)) + F̄ (t,Xt, r(t))]dt+ Ḡ(t,Xt, r(t))dWQ(t)

+

∫
Z
L̄(t,Xt, r(t), u)Ñ(dt, du), t ≥ 0, (4.1.1)

See Section 4.2 for details of this equation.

As it is well known, in the case without delay, Lyapunov’s method is pow-
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erful and in general available to obtain sufficient conditions for the stability of

solutions. However, the construction of Lyapunov functionals turns out to be

more difficult for functional differential equations such as differential equations

with memory, even with constant delays, since the history of the process must be

taken into account. The advantage of this study is that we do not make use of

general methods such as traditional Lyapunov methods, Itô’s formula methods

and so forth, unlike earlier studies. As mentioned, it is well known that the con-

struction of the Lyapunov functionals is very difficult in stability analysis, thus

we use the estimate of the coefficients functions in the stochastic energy equality

to overcoming it. In addition, for the case of L = 0 or λ = 0, Equation (4.1.1)

has been studied by Taniguchi (2007) and Wan and Duan (2008); for the case

of r = 0, Equation (4.1.1) has been studied by Hou et al. (2010). We derive

sufficient conditions for the exponential stability by the energy equality method

and improve the existing results to cover a class of more general stochastic partial

delay differential equations with Markovian switching and Poisson jumps. More-

over, unlike Taniguchi (2007) we need not require the functions ρ1(t), ρ2(t) and

ρ3(t) to be differentiable.

The contents of this chapter are as follows. In Section 4.2 we give preliminar-

ies of stochastic functional differential equations with Markovian switching and

Poisson jumps together with some basic definitions. In Section 4.3 we consider

the existence of energy solution (c.f. Definition 4.1). In Section 4.4 we discuss

the exponential stability theorems of the energy solution to Equation (4.3.1) by

using the energy equality, while the almost sure exponential stability is discussed

in Section 4.5. In Section 4.6, we present an example which illustrates the main

theorem in this Chapter.
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4.2 Stochastic partial differential equations with

Markovian switching and jumps

Let {Ω,F ,P} be a complete probability space equipped with some filtration

{Ft}t≥0 satisfying the usual conditions, i.e., the filtration is right-continuous and

F0 contains all P-null sets. Let V , H and K be separable Hilbert spaces such

that V is continuously, densely embedded in H. Identifying H with its dual, we

have the following relation (c.f.Brezis (2011), Page 135-138):

V ↪→ H ≡ H∗ ↪→ V ∗,

where V ∗ is the dual of V and the injections ‘↪→’ are continuous and dense. Let

L(K,H) be the space of all bounded linear operators from K to H. We denote

by ‖ · ‖V , ‖ · ‖V ∗ , ‖ · ‖H , ‖ · ‖K and ‖ · ‖ the norms in V , V ∗, H, K and L(K,H),

respectively; by 〈·, ·〉V,V ∗ the duality product between V and V ∗ and 〈·, ·〉H the

inner product of H. Furthermore, assume that for λ > 0,

λ‖v‖2
H ≤ ‖v‖

2
V , λ > 0, v ∈ V. (4.2.1)

Let k > 0 and D := D([−k, 0];H) denote the family of all right-continuous

functions with left-hand limits ϕ from [−k, 0] to H. The space D([−k, 0];H) is as-

sumed to be equipped with the norm ‖ϕ‖D = sup−k≤θ≤0 ‖ϕ(θ)‖H . Db
F0

([−k, 0];H)

denotes the family of all almost surely bounded, F0-measurable, D([−k, 0];H)-

valued random variables. Given k > 0 and T > 0, we denote by M2(−k, T ;V )

the space of all V -valued processes {X(t)}t∈[−k,T ] which is Ft measurable and

satisfies
∫ T
−k E‖X(t)‖2

Hdt <∞.

Let {r(t), t ∈ R+}, R+ = [0,∞), be a right-continuous Markov chain on the

probability space {Ω,F ,P} taking values in a finite state space S = {1, 2, · · · , N}
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with generator Γ = (γij)N×N given by

P{r(t+ h) = j |r(t) = i} =

 γij h+ o(h), if i 6= j,

1 + γii h+ o(h), if i = j,

for any t ≥ 0 and small h > 0. Here γij ≥ 0 is the rate of transition from i to j

if i 6= j, while γii = −
∑

j 6=i γij. It is well know that almost every sample path

of r(t) is a right-continuous step function with a finite number of jumps in any

finite sub-interval of R+.

Let WQ(t) be a Wiener process and
∫ t

0
Φ(s)dWQ(s) be the stochastic integral

with respect to WQ(t), which is a continuous square-integrable martingale (c.f.

Section 2.2). Let Ñ(dt, du) := N(dt, du) − dtλ(du) be the compensated Poisson

random measures and
∫ T

0

∫
Z L(t, u)Ñ(dt, du) the stochastic integral with respect

to Ñ(dt, du) which is a centered square-integrable martingale, where Z ∈ B(K −

{0}) with 0 /∈ Z̄, the closure of Z in K and B(K −{0}) denotes the Borel σ-filed

of K − {0} (c.f. Section 2.3). We always assume in this chapter that WQ, r(·)

and Ñ are independent of the F0 and of each other.

We introduce the following stochastic functional partial differential equations

with Markovian switching and Poisson jumps:

dX(t) = [A(t,X(t)) + F̄ (t,Xt, r(t))]dt+ Ḡ(t,Xt, r(t))dWQ(t)

+

∫
Z
L̄(t,Xt, r(t), u)Ñ(dt, du), t ≥ 0, (4.2.2)

with the initial datum X(θ) = ξ(θ) ∈ L2(Ω, D([−k, 0];H)), r(0) = r0, θ ∈ [−k, 0],

where A : [0,∞]× V → V ∗, F̄ : [−k,∞)×D × S→ V ∗, Ḡ : [−k,∞)×D × S→

L(K,H) and L̄ : [−k,∞)×D × S× Z→ H.

Now, we introduce the definition of energy solution to Equation (4.2.2) fol-

lowing from Taniguchi (2007).

Definition 4.1 (Energy solution) An Ft-adapted stochastic process X(t) on

(Ω,F ,P) is said to be the energy solution to Equation (4.2.2) if the following
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conditions are satisfied:

(i) X(t) ∈M2(−k, T ;V ) ∩ L2(Ω;D(−k, T ;H)), T > 0,

(ii) the following equation holds in V ∗ almost surely, for t ∈ [0, T ),

X(t) = X(0) +

∫ t

0

[
A
(
s,X(s)

)
+ F̄ (s,Xs, r(s))

]
ds

+

∫ t

0

Ḡ(s,Xs, r(s))dWQ(s)

+

∫ t

0

∫
Z
L̄(s,Xs, r(s), u)Ñ(ds, du), t ≥ 0, (4.2.3)

X(t) = ξ(t), t ∈ [−τ, 0];

(iii) the following stochastic energy equality holds:

‖X(t)‖2
H

= ‖X(0)‖2
H +

∫ t

0

N∑
j=1

γij‖X(s)‖2
Hds+

∫ t

0

‖Ḡ(s,Xs, r(s))‖
2

L02
ds

+2

∫ t

0

〈X(s), A(s,X(s)) + F̄ (s,Xs, r(s))〉V,V ∗ds

+2

∫ t

0

〈X(s), Ḡ(s,Xs, r(s))dWQ(s)〉H

+

∫ t

0

∫
Z
‖L̄(s,Xs, r(s), u)‖2

Hλ(du)ds

+

∫ t

0

∫
Z
[‖L̄(s,Xs, r(s), u)‖2

H + 2〈Xs−, L̄(s,Xs, r(s), u)〉H ]Ñ(ds, du).

(4.2.4)

For convenience, we need to introduce the following two concepts from Taniguchi

(2007). Assume the term F (t, 0, i) ≡ 0, G(t, 0, i) ≡ 0 and L(t, 0, i, u) ≡ 0 for

any i ∈ S, u ∈ Z, then Equation (4.2.2) has a trivial solution X(t, 0) ≡ 0 only if

ξ = 0.

Definition 4.2 The trivial solution of Equation (4.2.2) or the equation (4.2.2)

is said to be exponentially stable in mean square if there exist η > 0 and B =
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B(X(0)) > 0, such that

E‖X(t)‖2
H ≤ Be−ηt, t ≥ 0.

Definition 4.3 The trivial solution of Equation (4.2.2) or the equation (4.2.2)

is said to be exponentially stable almost surely if there exist positive constants

B = δ(ε), η > 0, a subset Ω0 ⊂ Ω with P(Ω0) = 0, and for each ω ∈ Ω−Ω0, there

exists a positive random number T (ω) such that

‖X(t)‖2
H ≤ Be−ηt, t ≥ T (ω).

4.3 Existence of energy solutions

In this section we consider the existence of the energy solutions to the following

stochastic partial functional differential equation with Markovian switching and

Poisson jumps.

For k > 0, let ρ1(t), ρ2(t) and ρ3(t) be continuous functions from [0,∞] →

[0, k], assume that

A : [0,∞)× V → V ∗ with A(t, 0) = 0,

F : [0,∞)×H × S→ H,

G : [0,∞)×H × S→ L(K,H)

and

L : [0,∞]×H × Z× S→ H

are Lebesgue measurable.

We investigate the following stochastic partial differential equation with Marko-

vian switching and jumps:
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dX(t) = A
(
t,X(t)

)
dt+ F

(
t,X(t− ρ1(t)), r(t)

)
dt

+G
(
t,X(t− ρ2(t)), r(t)

)
dWQ(t),

+

∫
Z
L
(
t,X(t− ρ3(t)), r(t), u

)
Ñ(dt, du) t ≥ 0, (4.3.1)

with the initial condition

X(t) = ξ(t) ∈ L2(Ω, D([−k, 0];H)), t ∈ [−k, 0] (4.3.2)

and r(0) = r0, r0 is an S-valued, Ft0-measurable random variable.

Set F̄ (t, φ, r(t)) = F (t, φ(−ρ1(t)), r(t)), Ḡ(t, φ, r(t)) = G(t, φ(−ρ2(t), r(t))

and L̄(t, φ, r(t)) = L(t, φ(−ρ3(t), r(t))) for any φ ∈ D. Then Equation (4.3.1)

can be regarded as a stochastic partial functional differential equation (4.2.2).

Furthermore, we impose the following conditions:

Conditions 4.1 (Monotonicity and coercivity) There is a pair of constants α > 0

and λ1 ∈ R such that for a.e. t ∈ (0, T ) and for all x, y ∈ V and i ∈ S

−2〈A(t, x)− A(t, y), x− y〉V,V ∗ + λ1‖x− y‖2
H ≥ α‖x− y‖2

V .

Conditions 4.2 (Measurability) For all x ∈ V , the map t ∈ (0, T ) → A(t, x) ∈

V ∗ is measurable.

Conditions 4.3 (Hemicontinuity) The map ξ ∈ R → 〈A(t, u + ξv), w〉 ∈ R is

continuous for all u, v, w ∈ V and a.e. t ∈ (0, T ).

Conditions 4.4 (Boundedness) There exists a constant c > 0 such that for any

x ∈ V and a.e t ∈ (0, T ),

‖A(t, x)‖V ∗ ≤ c‖x‖V .
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Conditions 4.5 (Lipschitz condition and linear growth condition) There exists

a pair of positive constants c1, c2 satisfying that for all x, y ∈ V , and i ∈ S

‖F (t, x, i)− F (t, y, i)‖2
V ∗ + ‖G(t, x, i)−G(t, y, i)‖2

L02

+‖L(t, x, i, u)− L(t, y, i, u)‖2
H

≤ c1‖x− y‖2
D

and

‖F (t, x, i)‖2
V ∗ + ‖G(t, x, i)‖2

L02
+ ‖L(t, x, i, u)‖2

H ≤ c2(1 + ‖x‖2
D).

Theorem 4.1 Under Conditions 4.1- 4.5, Equation (4.3.1) with the given initial

data (4.3.2) has a unique energy solution X(t) on t ∈ [−k, T ]. Moreover, it holds

that

d

dt
E‖X(t)‖2

H = 2E
〈
X(t), A

(
t,X(t)

)
+ F

(
t,X(t− ρ1(t)), r(t)

)〉
V,V ∗

+E
∥∥∥∥G(t,X(t− ρ2(t)), r(t)

)∥∥∥∥2

L02

+ E
N∑
j=1

γij‖X(t)‖2
H

+E
∫
Z

∥∥∥∥L(t,X(t− ρ3(t)), r(t), u
)∥∥∥∥2

H

λ(du) (4.3.3)

Proof. Let T > 0 be arbitrary number. It is sufficient to show that Equation

(4.3.1) has a unique solution on [−k, T ]. Recall that almost every sample path of

r(·) is a right-continuous step function with a finite number of simple jumps on

[0, T ]. Also, it is known (c.f. Skorokhod (1989)) that there is a sequence {τk}k≥0,

0 = τ0 < τ1 < · · · < τk → ∞ of stopping times such that r(t) is a constant on

every interval [τk, τk+1), that is, for every k ≥ 0,

r(t) = r(τk) on τk ≤ t < τk+1.

We first consider Equation (4.3.1) on t ∈ [0, τ1 ∧ T ] which becomes
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dX(t) =
[
A
(
t,X(t)

)
+ F

(
t,X(t− ρ1(s)), r(0)

)]
dt

+G
(
t,X(t− ρ2(s)), r(0)

)
dWQ(t)

+L
(
t,X(t− ρ3(t)), r(0), u

)
Ñ(dt, du) (4.3.4)

with initial data X(0) = ξ. This is a stochastic partial differential equation

without Markovian switching. By following the argument from Proposition 3.1

and Theorem 3.2 in Röckner and Zhang (2007), it can be shown that Equation

(4.3.4) has a unique solution on [−k, τ1 ∧ T ].

We next consider Equation (4.3.1) on t ∈ [τ1 ∧ T, τ2 ∧ T ] which becomes

dX(t) =
[
A
(
t,X(t)

)
+ F

(
t,X(t− ρ1(s)), r(τ1 ∧ T )

)]
dt

+G
(
t,X(t− ρ2(s)), r(τ1 ∧ T )

)
dWQ(t)

+L
(
t,X(t− ρ3(t)), r(τ1 ∧ T ), u

)
Ñ(dt, du) (4.3.5)

with initial data X(t ∧ τ1) given by the solution of Equation (4.3.1). Again, by

following the argument from Proposition 3.1 and Theorem 3.2 in Röckner and

Zhang (2007), we know Equation (4.3.1) has a unique solution on [τ1∧T−k, τ2∧T ].

Repeating this procedure, it can be shown that Equation (4.3.1) has a unique

solution X(t) on t ∈ [−k, T ]. Since T is arbitrary, the existence and uniqueness

have been proved.

Under Conditions 4.1- 4.5, the Equation (4.3.3) is proved in Hou et al. (2010),

Theorem 2.1 and Röckner and Zhang (2007), Theorem 3.2.

4.4 Exponential stability in mean square

In this section we consider the exponential stability theorem in mean square

and almost sure exponential stability theorem of an energy solution to Equa-
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tion (4.3.1). First we present some sufficient conditions for an solution X(t) to

Equation (4.3.1) to be exponentially stable in mean square.

Theorem 4.2 Suppose that Conditions 4.2 - 4.4 holds. Moreover, Equation

(4.3.1) satisfies the following conditions:

Conditions 4.6 There exists constants a1 > 0 and continuous, integrable func-

tions α1(t) > 0 such that for a.e. t ∈ [0,∞) and for all x, y ∈ V ,

−2〈A(t, x)− A(t, y), x− y〉V,V ∗ + α1(t)‖x− y‖2
H ≥ a1‖x− y‖2

V ; (4.4.1)

Conditions 4.7 There exist integrable functions α2, β2 : [0,∞)→ R+ such that

for certain constant a2 ≥ 0, x ∈ H and i ∈ S,

‖F (t, x, i)‖2
H ≤

(
a2 + α2(t)

)
‖x‖2

H + β1(t); (4.4.2)

Conditions 4.8 There exist integrable functions α3, β3 : [0,∞)→ R+ such that

for certain constant a3 ≥ 0, x ∈ H and i ∈ S,

‖G(t, x, i)‖2
L02
≤
(
a3 + α3(t)

)
‖x‖2

H + β2(t); (4.4.3)

Conditions 4.9 There exist integrable functions α4, β4 : [0,∞)→ R+ such that

for certain constant a4 ≥ 0, x ∈ H and i ∈ S,∫
Z
‖L(t, x, u, i)‖2

Hλ(du) ≤
(
a4 + α4(t)

)
‖x‖2

H + β3(t); (4.4.4)

Conditions 4.10 There exist σ > 0 such that∫ ∞
0

eσtβk(t)dt <∞, k = 1, 2, 3; (4.4.5)

Conditions 4.11 For given λ defined by (4.2.1),

λa1 > 2
√
a2 + a3 + a4. (4.4.6)
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Then for any energy solution X(t) to Equation (4.3.1), there exist δ ∈ (0, σ) and

B ≥ 1 such that

E‖X(t)‖2
H ≤ Be−δt, t ≥ 0. (4.4.7)

In other words the energy solution X(t) to Equation (4.3.1) is exponentially stale

in mean square.

Proof. By Theorem 4.1 we have unique energy solution X(t) to Equation (4.3.1).

Now by elemental inequality 2ab ≤ εa2 + 1
ε
b2 for all a, b ∈ R and ε > 0, we can

take γ obeying

a1λ > γ +
a2

γ
+ a3 + a4 > 2

√
a2 + a3 + a4.

Furthermore, there exists a δ ∈ (0, σ) sufficiently small such that

a1λ > δ + γ + eδk
a2

γ
+ eδka3 + eδka4. (4.4.8)

Now, in view of (4.4.1) and (4.2.1), we derive that, for any x ∈ V and t ≥ 0,

2〈x,A(t, x)〉V,V ∗ ≤ −δ1‖x‖2
V + α1(t)‖x‖2

H

≤ [−λδ1 + α1(t)]‖x‖2
H . (4.4.9)

For convenience, we denote

µ(t) = α1(t) + eδk
α2(t)

γ
+ eδkα3(t) + eδkα4(t),

β(t) =
β1(t)

γ
+ β2(t) + β3(t).

Since αi(t), i = 1, 2, 3, 4 is integrable, together with Condition 4.10, this yields

that

R1 =

∫ ∞
0

µ(s)ds <∞, R2 =

∫ ∞
0

β(s)ds ≤ R3 =

∫ ∞
0

eσsβ(s)ds <∞. (4.4.10)
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Let us define the following function

K(t) = E‖X(t)‖2
He

δt exp

(
−
∫ t

0

[µ(s) + eδsβ(s)]ds

)
, if t ≥ 0, (4.4.11)

K(t) = E‖X(t)‖2
He

δt, if − k ≤ t ≤ 0. (4.4.12)

K(t) is continuous on [−k,∞) and we have,

dK(t)

dt
= eδt exp

(
−
∫ t

0

[µ(s) + eδsβ(s)]ds

){
δE‖X(t)‖2

H

− [µ(t) + eδtβ(t)]E‖X(t)‖2
H + 2E〈X(t), A(t,X(t))〉V,V ∗

+ 2E
〈
X(t), F

(
t,X(t− ρ1(s)), r(t)

)〉
V,V ∗

+E
∥∥∥∥G(t,X(t− ρ2(t)), r(t)

)∥∥∥∥2

L02

+ E
N∑
j=1

γij‖X(t)‖2
H

+E
∫
Z

∥∥∥∥L(t−X(t− ρ3(t), r(t), u)
)∥∥∥∥2

H

λ(du)

}
. (4.4.13)

From Conditions 4.7 - 4.9 and (4.4.9), it immediately follows that for t ≥ 0,

dK(t)

dt
≤ eδt exp

(
−
∫ t

0

[µ(s) + eδsβ(s)]ds
){

δE‖X(t)‖2
H

− [µ(t) + eδtβ(t)]E‖X(t)‖2
H + [−λδ1 + α1(t)]E‖X(t)‖2

H

+ γ2E‖X(t)‖2
H +

E
∥∥∥∥F(t,X(t− ρ1(t)), r(t)

)∥∥∥∥2

H

γ2

+E
∥∥∥∥G(t,X(t,X(t− ρ2(t)), r(t)

)∥∥∥∥2

L02

+ E
N∑
j=1

γij‖X(t)‖2
H

+E
∫
Z

∥∥∥∥L(t,X(t− ρ3(t)), r(t), u
)∥∥∥∥2

H

λ(du)

}
≤ eδt exp

(
−
∫ t

0

[µ(s) + eδsβ(s)]ds
){

δE‖X(t)‖2
H

− [µ(t) + eδtβ(t)]E‖X(t)‖2
H + [−λa1 + α1(t)]E‖X(t)‖2

H

+ γE‖X(t)‖2
H +

a2 + α2(t)

γ
‖X(t− ρ1(t))‖2

H + β1(t)

+
(
a3 + α3(t)

)
‖X(t− ρ2(t))‖2

H + β2(t)

+
(
a4 + α4(t)

)
‖X(t− ρ3(t))‖2

H + β3(t)

}
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≤ [δ − µ(t) + α1(t)− λa1 + γ]K(t) + eδtβ(t)− eδtβ(t)K(t)

+ eδt exp
(
−
∫ t

0

[µ(s) + eδsβ(s)]ds
)a2 + α2(t)

γ
E‖X(t− ρ1(t))‖2

H

+ eδt exp
(
−
∫ t

0

[µ(s) + eδsβ(s)]ds
)(
a3 + α3(t)

)
E‖X(t− ρ2(t))‖2

H

+ eδt exp
(
−
∫ t

0

[µ(s) + eδsβ(s)]ds
)(
a4 + α4(t)

)
E‖X(t− ρ3(t))‖2

H .

(4.4.14)

In what follows, we justify that for any t ≥ 0

K(t) ≤M := 1 + sup
−k≤t≤0

E‖X(t)‖2
H . (4.4.15)

We show (4.4.15) by contradiction. If (4.4.15) is not true, then there must exists

some t1 > 0 such that for all ϕ > 0,

K(t) < M, 0 ≤ t < t1, K(t1) = M, K(t) > M, t1 < t ≤ t1 +ϕ. (4.4.16)

Since dK(t)/dt exists by (4.4.13), in addition to (4.4.16), immediately implies

that

d

dt
K(t1) ≥ 0. (4.4.17)

Substituting (4.4.16) into (4.4.14) and combining M ≥ 1 from (4.4.15) to note

that the term eδt1β(t)− eδ1tβ(t)K(t) ≤ 0, it yields

d

dt
K(t1) ≤ [δ − µ(t1) + α1(t1)− λa1 + γ]K(t1)

+ eδt1 exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)a2 + α2(t1)

γ
E‖X(t1 − ρ1(t1))‖2

H

+ eδt1 exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)(
a3 + α3(t1)

)
E‖X(t1 − ρ2(t1))‖2

H

+ eδt1 exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)(
a4 + α4(t1)

)
E‖X(t1 − ρ2(t1))‖2

H .

(4.4.18)

Next, we consider the following different cases to derive the desired assertion.
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Case 1: Suppose that t1−ρ1(t1) ≥ 0, t1−ρ2(t1) ≥ 0 and t1−ρ3(t1) ≥ 0. Then

we have t1 > t1 − ρ1(t1) ≥ 0, t1 > t1 − ρ2(t1) ≥ 0 and t1 > t1 − ρ3(t1) ≥ 0, which

implies that K(t1 − ρ1(t1)) < M , K(t1 − ρ2(t1)) < M and K(t1 − ρ3(t1)) < M .

By (4.4.11) the definition of K(t), we then have from (4.4.8) and (4.4.16) that

d

dt
K(t1) ≤ [δ − µ(t1) + α1(t1)− λa+ γ]K(t1)

+ eδρ1(t1) exp
(
−
∫ t1

t1−ρ1(t1)

[µ(s) + eδsβ(s)]ds
)a2 + α2(t1)

γ
K(t1 − ρ1(t1))

+ eδρ2(t1) exp
(
−
∫ t1

t1−ρ2(t1)

[µ(s) + eδsβ(s)]ds
)(
a3 + α3(t1)

)
K(t1 − ρ2(t1))

+ eδρ2(t1) exp
(
−
∫ t1

t1−ρ3(t1)

[µ(s) + eδsβ(s)]ds
)(
a4 + α4(t1)

)
K(t1 − ρ2(t1))

≤ [δ − µ(t1) + α1(t1)− λa1 + γ]M + eδk
a2 + α2(t1)

γ
M

+ eδk(a3 + α3(t1))M + eδk(a4 + α4(t1))M

≤ [δ − λa1 + γ + eδk
a2

γ
+ eδka3 + eδka4]M

< 0,

which contradicts with (4.4.17). That is, the desired assertion (4.4.15) must hold.

Case 2: Suppose that t1 − ρ1(t1) ≤ 0, t1 − ρ2(t1) ≤ 0 and t1 − ρ3(t1) ≤ 0.

Then −k ≤ t1 − ρ1(t1) ≤ 0, −k ≤ t1 − ρ2(t1) ≤ 0 and −k ≤ t1 − ρ3(t1) ≤ 0.

Taking into account (4.4.12) the definition of K(t), it follows that

d

dt
K(t1) ≤ [δ − µ(t1) + α1(t1)− λa1 + γ]K(t1)

+ eδρ1(t1) exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)a2 + α2(t1)

γ
K(t1 − ρ1(t1))

+ eδρ2(t1) exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)(
a3 + α3(t1)

)
K(t1 − ρ2(t1))

+ eδρ3(t1) exp
(
−
∫ t1

0

[µ(s) + eδsβ(s)]ds
)(
a4 + α4(t1)

)
K(t1 − ρ3(t1))

(4.4.19)
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Putting (4.4.8), (4.4.15) and (4.4.16) into (4.4.19) gets

d

dt
K(t1) ≤ [δ − λa1 + γ + eδk

a2

γ
+ eδka3 + eδka4]M < 0,

by contradiction, we must have (4.4.15) holds for any t ≥ 0.

For other cases, suppose that:

Case 3: t1 − ρ1(t1) ≤ 0, t1 − ρ2(t1) ≥ 0 and t1 − ρ3(t1) ≥ 0.

Case 4: t1 − ρ1(t1) ≤ 0, t1 − ρ2(t1) ≤ 0 and t1 − ρ3(t1) ≥ 0.

Case 5: t1 − ρ1(t1) ≤ 0, t1 − ρ2(t1) ≥ 0 and t1 − ρ3(t1) ≤ 0.

Case 6: t1 − ρ1(t1) ≥ 0, t1 − ρ2(t1) ≤ 0 and t1 − ρ3(t1) ≤ 0.

Case 7: t1 − ρ1(t1) ≥ 0, t1 − ρ2(t1) ≤ 0 and t1 − ρ3(t1) ≥ 0.

Case 8: t1 − ρ1(t1) ≥ 0, t1 − ρ2(t1) ≥ 0 and t1 − ρ3(t1) ≤ 0.

In the same way as case 1 and 2, we get

d

dt
K(t1) ≤ [δ − λa1 + γ + eδk

a2

γ
+ eδka3 + eδka4]M < 0.

Thus, one obtains

d

dt
K(t1) < 0,

which contradicts with (4.4.17). By contradiction, we have (4.4.15) holds true for

any t ≥ 0. Thus we obtain from (4.4.15) that

E‖X(t)‖2
H ≤Me−δt exp

(∫ t

0

[µ(s) + eδsβ(s)]ds
)
,

which, combining (4.4.10), immediately implies that with B = eR1+R3

E‖X(t)‖2
H ≤MBe−δt, t ≥ 0.

Consequently, the exponential stability in mean square of energy solution to Equa-

tion (4.3.1) follows.
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4.5 Almost sure exponential stability

In this section, we consider the almost sure exponential stability of energy solu-

tion to Equation (4.3.1). First of all, we recall the Borel-Cantelli lemma from Kuo

(2006) which play a key role in the analysis for almost sure exponential stabil-

ity of energy solution to Equation (4.3.1). Then we recall an important result

Lemma 4.2 from Röckner and Zhang (2007) which deals with the term of jumps

in Equation (4.3.1).

Let {An}∞n=1 be a sequence of events in some probability space. Consider the

event A given by A = ∩∞n=1 ∪∞k=n Ak. It can be shown that ω ∈ A if and only if

ω ∈ An for infinitely many n’s. Thus we can think of event A as the event that

An’s occur infinitely often. We will use the following notation:

{An i.o.} = {An infinity often } =
∞⋂
n=1

∞⋃
k=n

Ak.

Lemma 4.1 (Borel-Cantelli lemma) Let {An}∞n=1 be a sequence of events such

that
∑∞

n=1 P(An) <∞. Then P{An i.o.} = 0.

The complement of {An i.o.} is the event {An f.o.} = {An finitely often } that

An’s occur finitely often.

Lemma 4.2 Let X(t) ∈ M2(−k, T ;V ) ∩ L2(Ω;D(−k, T ;H)) and T > 0. Then

for any t ≥ 0, there exists a constant C > 0 such that

E sup
0≤s≤t

∣∣∣∣ ∫ s

0

∫
Z
[‖L(l, X(l − δ(l)), u)‖2

H

+ 2〈X(l−), L(l, X(l − δ(l)), u)〉H ]Ñ(dl, du)

∣∣∣∣
≤ CE

∫ t

0

∫
Z
‖L(s,X(s− δ(s)), u)‖2

Hλ(du)ds+
1

4
E sup

0≤s≤t
‖X(s)‖2

H .(4.5.1)

Theorem 4.3 Assume that all the conditions of Theorem 4.2 are satisfied. Fur-

thermore, we impose the following condition:

Both αi(t), i = 1, 2, 3, 4 and eδtβk(t), k = 1, 2, 3 are bounded functions . (4.5.2)
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Then there exists T (ω) > 0 such that for all t > T (ω),

‖X(t)‖2
H ≤ eδ/2e−δt/2

with probability one.

In other words, the energy solution X(t) to Equation (4.3.1) is almost sure

exponentially stable.

Proof. Let N1, N2 and N3 be positive integers such at

N1 − ρ1(N1) ≥ N1 − k ≥ 1, N2 − ρ2(N2) ≥ N2 − k ≥ 1

and

N3 − ρ3(N3) ≥ N3 − k ≥ 1.

Set N = max{N1, N2, N3} and IN = [N,N + 1].

Furthermore, we denote

α(t) = 1 + α1(t) + γ +
a2 + α2(t)

γ
eδk + 33

(
a3 + α3(t)

)
eδk

+(C + 1)(a4 + α4(t))eδk,

β(t) =
β1(t)

γ
+ 33β2(t) + (C + 1)β3(t),

where C is the given constant in Lemma 4.2.

Since X(t) is the energy solution to equation (4.3.1), it follows that for any

t ∈ [N,N + 1],

‖X(t)‖2
H = ‖X(N)‖2

H +

∫ t

N

N∑
j=1

γij‖X(s)‖2
Hds

+

∫ t

N

‖G
(
s,X(s− ρ2(s)), r(s)

)
‖2

L02
ds

+2

∫ t

N

〈
X(s), A

(
s,X(s)

)
+ F

(
s,X(s− ρ1(s)), r(s)

)〉
V,V ∗

ds

+ 2

∫ t

N

〈
X(s), G

(
s,X(s− ρ2(s)), r(s)

)
dW (s)

〉
H

109



+

∫ t

N

∫
Z
‖L(s,X(s− ρ3(s)), r(s), u)‖2

Hdsλ(du)

+

∫ t

N

∫
Z

[
‖L(s,X(s− ρ3(s), r(s), u))‖2

H

+2〈X(s−), L(s,X(s− ρ3(s)), r(s), u)〉H
]
Ñ(ds, du).

This implies that

E sup
t∈IN
‖X(t)‖2

H ≤ E‖X(N)‖2
H + E sup

t∈IN

∫ t

N

‖X(s)‖2
Hds

+2E sup
t∈IN

∫ t

N

〈X(s), A
(
s,X(s)

)
〉
V,V ∗

ds

+ 2E sup
t∈IN

∫ t

N

〈X(s), F
(
s,X(s− ρ1(s)), r(s)

)
〉
H
ds

+

∫ N+1

N

E‖G
(
s,X(s− ρ2(s)), r(s)‖2

L02
ds

+2E sup
t∈IN

∫ t

N

〈
X(s), G

(
s,X(s− ρ2(s)), r(s)

)
dW (s)

〉
V,V ∗

+

∫ N+1

N

∫
Z
E‖L(s,X(s− ρ3(s), r(s), u))‖2

Hλ(du)ds

E sup
t∈IN

∫ t

N

∫
Z

[
‖L(s,X(s− ρ3(s), r(s), u))‖2

H

+2〈X(s−), L(s,X(s− ρ3(s)), r(s), u)〉H
]
Ñ(ds, du).

(4.5.3)

From (4.4.9), it can be shown that

2E sup
t∈IN

∫ t

N

〈X(s), A
(
s,X(s)

)
〉
V,V ∗

ds ≤
∫ N+1

N

α1(s)E‖X(s)‖2
Hds. (4.5.4)

On the other hand, derived by virtue of Condition 4.7,

2E sup
t∈IN

∫ t

N

〈
X(s), F

(
s,X(s− ρ1(s)), r(s))

)〉
V,V ∗

ds

≤
∫ N+1

N

[
γE‖X(s)‖2

H +
E‖F

(
s,X(s− ρ1(s)), r(s)

)
‖2

H

γ

]
ds

≤
∫ N+1

N

[
γE‖X(s)‖2

H +
a2 + α2(t)

γ
E‖X(s− ρ1(s))‖2

H +
β1(s)

γ

]
ds.

(4.5.5)
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Now, according to Burkhölder-Davis-Gundy inequality (Da Prato and Zabczyk

(1992)), it can be estimated that

E
[

sup
t∈IN

∣∣∣2∫ t

N

〈
X(s), G

(
s,X(s− ρ2(s)), r(s)

)〉
H

∣∣∣]
≤ 2E

[ ∫ N+1

N

‖X(s)‖H‖G(s,X(s− ρ2(s)), r(s)
)
‖L02ds

]
≤ K1E

[ ∫ N+1

N

‖X(s)‖2
H‖G(s,X(s− ρ2(s)), r(s)

)
‖2

L02
ds

]1/2

≤ K1E
[

sup
t∈IN
‖X(t)‖H

(∫ N+1

N

‖G(s,X(s− ρ2(s)), r(s)
)
‖2

L02

)1/2
]

≤ 1

2
E
[

sup
t∈IN
‖X(t)‖2

H

]
+K2

∫ N+1

N

E‖G(s,X(s− ρ2(s)), r(s)
)
‖2

L02
ds,

where K1 and K2 denote some proper positive constants. Taking K2 = 32 for the

convenience of estimation later, the Burkholder-Davis-Gundy inequality yields

holds:

E
[

sup
t∈IN

∣∣∣2∫ t

N

〈
X(s), G(s,X(s− ρ2(s)), r(s)

)〉
H

∣∣∣]
≤ 1

2
E
[

sup
t∈IN
‖X(t)‖2

H

]
+ 32

∫ N+1

N

E‖G(s,X(s− ρ2(s)), r(s)
)
‖2

L02
ds.

(4.5.6)

Applying Lemma 4.2, for any t ≥ 0 and certain positive constant C we can yield

that

E sup
t∈IN

∫ t

N

∫
Z

[
‖L(s,X(s− ρ3(s), r(s), u))‖2

H

+2〈X(s−), L(s,X(s− ρ3(s)), r(s), u)〉H
]
Ñ(ds, du)

≤ CE
∫ N+1

N

∫
Z
‖L(s,X(s− ρ3(s), r(s), u))‖2

Hλ(du)ds+
1

4
E sup
t∈IN
‖X(t)‖2

H .

(4.5.7)

Substituting (4.5.4), (4.5.6) and (4.5.7) into (4.5.3), we have

111



E sup
t∈IN
‖X(t)‖2

H

≤ E sup
t∈IN
‖X(t)‖2

H + E sup
t∈IN

∫ t

N

‖X(s)‖2
Hds+

∫ N+1

N

α1(s)E‖X(s)‖2
Hds

+

∫ N+1

N

[
γE‖X(s)‖2

H +
a2 + α2(t)

γ
E‖X(s− ρ1(s))‖2

H + β1(s)

]
ds

+

∫ N+1

N

E‖G(s,X(s− ρ2(s), r(s)))‖2
L02
ds

+
1

2
E sup
t∈IN
‖X(s)‖2

H + 32

∫ N+1

N

E‖G(s,X(s− ρ2(s)), r(s))‖2
L02
ds

+

∫ N+1

N

∫
Z
E‖L(s,X(s− ρ3(s), r(s), u))‖2

Hλ(du)ds

+CE
∫
Z
‖L(s,X(s− ρ3(s)), r(s), u)‖2

Hλ(du)ds+
1

4
E sup
t∈IN
‖X(t)‖2

H .

(4.5.8)

Now, combining Condition 4.8 and 4.9, multiplying both sides of (4.5.8) by 4

gives

4E sup
t∈IN
‖X(t)‖2

H

≤ 4E‖X(N)‖2
H + 4

∫ N+1

N

(1 + α1(s))E‖X(s)‖2
Hds

+ 4

∫ N+1

N

[
γE‖X(s)‖2

H +
a2 + α2(t)

γ
E‖X(s− ρ1(s))‖2

H + β1(s)

]
ds

+ 4

∫ N+1

N

[(a3 + α3(s))E‖X(s− ρ2(s))‖2
H + β2(s)]ds

+ 2E sup
t∈IN
‖X(t)‖2

H + 128

∫ N+1

N

[(a3 + α3(s))E‖X(s− ρ2(s))‖2
H + β2(s)]ds

+ 4

∫ N+1

N

[(a4 + α4(s))E‖X(s− ρ3(s))‖2
H + β3(s)]ds

+ 4CE
∫ N+1

N

[(a4 + α4(s))E‖X(s− ρ3(s))‖2
H + β3(s)]ds+ E sup

t∈IN
‖X(t)‖2

H .

(4.5.9)

This together with Theorem 4.2, the energy solution X(t) to equation (4.3.1)

satisfies E‖X(t)‖2
H ≤Me−δt, immediately yields the following:
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E sup
t∈IN
‖X(t)‖2

H

≤ 4E‖X(N)‖2
H + 4

∫ N+1

N

(1 + α1(s))E‖X(s)‖2
Hds

+ 4

∫ N+1

N

[
γE‖X(s)‖2

H +
a2 + α2(t)

γ
E‖X(s− ρ1(s))‖2

H + β1(s)

]
ds

+ 132

∫ N+1

N

[(a3 + α3(s))E‖s− ρ2(s)‖2
H + β2(s)]ds

+ 4(1 + C)E
∫ N+1

N

[(a4 + α4(s))E‖X(s− ρ3(s))‖2
H + β3(s)]ds

≤ 4Me−δN + 4

∫ N+1

N

[
β1(s)

γ
+ 33β2(s) + (1 + C)β3(s)

]
ds

+ 4

∫ N+1

N

[
(1 + α1(s) + γ)E‖X(s)‖2

H +
a2 + α2(s)

γ
E‖X(s− ρ1(s))‖2

H

+ (a3 + α3(s))E‖X(s− ρ2(s))‖2
H + (a4 + α4(s))E‖X(s− ρ3(s))‖2

H

]
ds

≤ 4Me−δN + 4

∫ N+1

N

β(s)ds+ 4

∫ N+1

N

[
(1 + α1(s) + γ)Me−δs

+
a2 + α2(s)

γ
eδrMe−δs + (a3 + α3(s))eδrMe−δs + (a4 + α4(s))eδrMe−δs

]
ds

≤ 4Me−δN + 4

∫ N+1

N

[β(s) + α(s)Me−δs]ds

≤ 4Me−δN + 4

∫ N+1

N

Me−δs[α(s) + eδs]ds (4.5.10)

It follows from Condition (4.5.2) that there exists a certain constant B1 > 0

satisfying

α(t) + eδkβ(t) ≤ B1.

This, in addition to (4.5.10), yields that

E sup
t∈IN
‖X(t)‖2

H ≤ 4Me−δN + 4MB1

∫ N+1

N

e−δsds

≤ 4Me−δN
(

1 +
B1

δ

)
.
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By the Chebyshev inequality, for any fixed positive real number εN , then we

get that

P

{
sup
t∈IN
‖X(t)‖2

H > ε2N

}
≤

E supt∈IN ‖X(t)‖2
H

ε2N
≤

4Me−δN
(

1 + B1

δ

)
ε2N

.

Since εN is arbitrary, letting ε2N = e−δN/2, obtain

P

{
sup
t∈IN
‖X(t)‖2

H > ε2N

}
≤ 4Me−δN/2

(
1 +

B1

δ

)
.

Since
∑

N 4Me−δN/2(1 + B1

δ
) ≤ ∞, by Lemma 4.1 the Borel-Cantelli lemma, we

have

P
{

sup
t∈IN
‖X(t)‖2

H > e−δN/2 i.o.

}
= 0.

Take the complement of the event
{

supt∈IN ‖X(t)‖2
H > e−δN/2 i.o.

}
to get

P
{

sup
t∈IN
‖X(t)‖2

H > e−δN/2 f.o.

}
= 1.

Hence there exists an event Ω−Ω0 such that P(Ω−Ω0) = 1 with P(Ω0) = 0 and

for each ω ∈ Ω− Ω0, there exists a positive integer T (ω) such that

sup
t∈IN
‖X(t)‖2

H < e−δN/2, ∀N > T (ω).

Consequently, we have the following result

‖X(t)‖2
H ≤ sup

t∈IN
‖X(t)‖2

H < e−δN/2 ≤ e−δ/2(t−1),

i.e.

‖X(t)‖2
H ≤ eδ/2e−δt/2.

In other words, the energy solution to Equation (4.3.1) is almost surely exponen-

tially stable.
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4.6 An illustrative example

In this section, we construct an example to illustrate the main results. As-

sume B(t), t ≥ 0, is a real standard Brownian motion and Ñ(·, ·) is a com-

pensated Poisson random measure on [1,∞] with parameter λ(dy)dt such that∫∞
1
y2λ(dy) <∞. Let ρ1(t), ρ2(t) and ρ3(t) be non-differentiable function defined

by

ρ1(t) =
1

1 + | sin t|
, ρ2(t) =

1

1 + | cos t|
, ρ3(t) = | sin t|.

Consider the following stochastic partial differential equation with with finite

memory ρ1(t), ρ2(t) and ρ3(t) with Poisson jump:

dY (t, x) = µ
∂2

∂x2
Y (t, x)dt+

[
(b1 + k1(t))Y

(
t− ρ1(t), x

)
+ e−ktp

]
dt

+ (b2 + k2(t))bY
(
t− ρ2(t), x

)
dB(t)

+

∫ ∞
1

(b3 + k3(t))Y (t− δ(t), x)yÑ(dt, dy),

t ≥ 0, µ > 0, x ∈ (0, π),

Y (t, 0) = Y (t, π) = 0, t ≥ 0;

Y (t, x) = φ(t, x), x ∈ [0, π], t ∈ [−1, 0],

φ(t, ·) = L2(0, π); φ(·, x) = C([−1, 0];R). (4.6.1)

where k1, k2, k3 : [0,∞) → R+ are continuous functions, b1, b2, b3 and k are

positive real numbers. We can set this problem in our formulation by taking

H = L2(0, π), K = R and V = H1
0 (0, π), which is a Hilbert space (c.f. Brezis

(2011), Page 287).

Let A = µ ∂2

∂x2
be the one dimensional Laplace operator with domain D(A) =

H1
0 (0, π) ∩H2(0, π), where

H1
0 (0, π) =

{
u ∈ L2(0, π) :

∂u

∂x
∈ L2(0, π), u(0) = u(π) = 0

}
,
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and

H2(0, π) =
{
u ∈ L2(0, π) :

∂u

∂x
,
∂2u

∂x2
∈ L2(0, π)

}
.

In this example, the norm and inner product of H and V are defined by

‖ξ‖2
H =

∫ π

0

ξ2(x)dx, 〈ξ, η〉H =

∫ π

0

ξ(x)η(x)dx, for any ξ, η ∈ H,

and

‖u‖2
V =

∫ π

0

(∂u
∂x

)2

dx, 〈u, v〉V =

∫ π

0

∂u

∂x

∂v

∂x
dx, for any u, v ∈ V.

It is known that for arbitrary u ∈ V

〈u,Au〉V,V ∗ ≤ −µ‖u‖
2
H .

We can also show that for p ∈ H with ‖p‖H <∞ that

‖(b1 + k1(t))Y
(
t− ρ1(t), x

)
+ e−ktp‖2

H

≤ 4(b2
1 + k2

1(t))‖Y (t− ρ1(t), x)‖2
H + 2e−2kt‖p‖2,

‖(b2 + k2(t))Y
(
t− ρ2(t), x

)
‖2

L02
≤ 4(b2

2 + k2
2(t))‖Y (t− ρ2, x)‖2

H ,∫ ∞
1

‖(b3 + k3(t))Y (t− ρ3(t), x)y‖2
Hλ(dy)

≤ 2(b2
3 + k2

3(t))

∫ ∞
1

y2λ(dy)‖Y (t− ρ3(t), x)‖2
H .

Note that, λ = 1, a1 = 2µ, a2 = 4b2
1, a3 = 4b2

2, a4 = 2b2
3

∫∞
1
y2λ(dy), α2(t) =

4k2
1(t), α3(t) = 4k2

2(t), α4(t) = 2
∫∞

1
y2(dy)k2

3(t), β1(t) = 2e−2kt‖p‖2
H , β2(t) = 0,

β3(t) = 0. Let

µ > 2b1 + 2b2
2 + b2

3

∫ ∞
1

y2λ(dy),

and take α1(t) = 1, σ = k. By Theorem 4.2 and 4.3, the energy solution X(t) to

equation (4.6.1) is exponentially stable and almost surely exponentially stable.
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4.7 Conclusion

The stochastic partial differential equation driven both by Markovian switching

and Poisson jumps for modeling systems in many science subjects gives more

generalized formula of the SDDEs model (3.2.1). We treated this type of SPDEs

with Markovian switching and Poisson jumps within a variational formulation

and the concept of energy solution. Therefore, we have first proved that this type

of equation admits a unique energy solution. Then, estimation of the coefficients

functions in the stochastic energy equality has been established to show the expo-

nential stability and almost sure exponential stability of our equations. Finally,

an applicable example is provided for illustration.
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Chapter 5

The fundamental solution of

stochastic neutral functional

differential equations

5.1 Introduction

Many dynamical systems not only depend on present and past states but also

involve derivatives with delays. This kind of system is often described by neutral

functional differential equations (NFDEs). NFDEs and their stability have been

studied by many authors. For example, Hale (1977), Hale and Verduyn Lunel

(1993) (and reference therein). In general, an n-dimensional NFDE can take the

following form. For τ > 0 and T > 0,

d

dt
[x(t)−D(xt)] = f(xt), 0 ≤ t ≤ T ;

x(t) = ξ(t) ∈ C([−τ, 0];Rn), t ∈ [−τ, 0], (5.1.1)

where D and f are functionals from C([−τ, 0];Rn) to Rn.

Taking the environmental disturbances into account led to a stochastic neu-

tral functional differential equations (SNFDEs) which was motivated by chemical
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engineering systems as well as the theory of aeroelasticity. For instance, Kol-

manovskii and Myshkis (1992) and Mao (1997) have studied the following n-

dimensional SNFDEs: let τ > 0 and C([−τ, 0];Rn) denotes the family of con-

tinuous function ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0 ‖ϕ(θ)‖Rn .

Let B(t) be an m-dimensional Brownian motion defined on a complete prob-

ability space (Ω,F ,P) with the filtration {Ft}t≥0 satisfying the usual condi-

tion. For each t ≥ 0, denote by L2
Ft

([−τ, 0];Rn) the family of all Ft-measurable

C([−τ, 0];Rn)-valued random variables φ = {φ(θ) : −τ < θ ≤ 0} such that

sup−τ≤θ≤0 E‖φ(θ)‖2
Rn <∞. For τ > 0,

d[x(t)−D(xt)] = f(t, xt)dt+ g(t, xt)dB(t), t ≥ 0;

x(t) = ξ(t) ∈ L2
F0

([−τ, 0];Rn), t ∈ [−τ, 0], (5.1.2)

where D : C([−τ, 0];Rn) → Rn, f : R+ × C([−τ, 0];Rn) → Rn, and g : R+ ×

C([−τ, 0];Rn)→ Rn×m are all continuous functionals.

Kolmanovskii and Myshkis (1992) has established the theory of existence and

uniqueness of the solution to Equation (5.1.2) and investigated the stability and

asymptotic stability of the equations. Furthermore, Mao (1995) and Mao (1996)

have studied the exponential stability and the almost sure exponential stability by

the Razumikhin argument. So far, the theory of SNFDEs in finite dimensional

spaces have been extensively studied in the literature, many important results

have been reported in Bao and Hou (2010), Huang and Deng (2008), Kolmanovskii

and Myshkis (1992), Kolmanovskii et al. (2003), Liu and Xia (1999), Mao (1995,

1996, 1997) and Ren and Xia (2009).

However, SNFDEs in infinite dimensional spaces began to receive a great deal

of attention recently. Meanwhile, various results on the existence and unique-

ness and the stability of SNFDEs have been obtained in Boufoussi and Hajji

(2010a,b), Caraballo et al. (2007), Chen (2009), Govindan (2005) and Govindan

(2009). In Bao and Hou (2010), under a non-Lipschitz condition with the Lips-
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chitz condition being considered as a special case and a weakended linear growth

condition, the existence and uniqueness of mild solutions to a class of stochastic

neutral partial functional differential equations (SNPFDEs) on the Hilbert space

H is investigated. The following form of SNPFDE is studied in Bao and Hou

(2010): for τ > 0,

d[X(t) +G(t,Xt)] = [AX(t) + F (t,Xt)]dt+ L(t,Xt)dW (t), t ≥ 0 (5.1.3)

with the initial condition X(t) = ξ(t) ∈ Cb
F0

([−τ, 0];H), which denotes the family

of all almost surely bounded, F0-measurable, C([−τ, 0];H)-valued random vari-

ables. C([−τ, 0];H) denotes the family of continuous function ϕ from [−τ, 0] to

H with norm sup−τ≤θ≤0 ‖ϕ(θ)‖H . The mapping G, F : R+ × C([−τ, 0];H)→ H

and L : R+ × C([−τ, 0];H)→ L(K,H) are measurable, respectively.

In this chapter, we are concerned with a stochastic neutral functional dif-

ferential equations (SNFDEs) in Hilbert spaces, with the mild solutions to such

equations can be represented by the so-called fundamental solutions. The funda-

mental solutions (Green’s operator) was firstly introduced and constructed in Liu

(2008)) for a class of stochastic retarded evolution equations, c.f. Liu (2009, 2010,

2011) and Section 5.2. Our main objective is to investigate the solution processes

(strong, weak and mild) of Equation (5.2.1) by obtaining some necessary criteria.

In particular, we generalized the results in Liu (2008) (the case when D = 0 in

Equation (5.2.1)) to a neutral type.

The contents of this chapter are as follows. In Section 5.2 we recall some

preliminaries on stochastic functional differential equations of neutral types with

some basic definitions. In Section 5.3 we investigate the relationships between

strong, weak and mild solutions to Equation (5.2.1).
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5.2 Stochastic functional differential equations

of neutral type

Let H and K be two separable Hilbert spaces with norm ‖ · ‖H and ‖ · ‖K , inner

products 〈·, ·〉H and 〈·, ·〉K . We use L(K,H) to denote the space of all bounded

linear operators from K into H with domain K. Every operator norm is simply

denoted by ‖ · ‖ when there is no danger of confusion. The adjoint space of H

which consists of all bounded linear functionals on H is denoted by H∗. Unless

otherwise stated, in this chapter we always identity H with its adjoint space H∗

according to the well-known Riesz’s representation theorem. For a closed linear

operator A on a dense domain D(A) ⊂ H into H, its adjoint operator is denoted

by A∗.

For any fixed constant r > 0 and the Hilbert space H, we denote by L2
r =

L2([−r, 0];H) the usual Hilbert space of all H-valued equivalence classes of mea-

surable functions which are square integrable on [−r, 0]. LetH denote the Hilbert

space H × L2
r, with the norm

‖φ‖H =
√
‖φ0‖2

H + ‖φ1‖2
L2
r
, for all φ = (φ0, φ1) ∈ H.

Note that φ0 is not necessarily equal to φ1(0) here.

Let WQ(t) be a Wiener process and
∫ t

0
Φ(s)dWQ(s) be the stochastic integral

with respect to WQ(t), which is a continuous square-integrable martingale. Recall

thatW2([0, T ];L0
2) denote all L0

2(K0, H)-valued predictable processes Φ such that

|Φ|T <∞ (c.f. Section 2.2).

In this chapter, we shall consider a class of stochastic neutral functional dif-

ferential equations on the Hilbert space H which are defined by:
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for any T > 0,

d

[
y(t)−

∫ 0

−r
D(θ)y(t+ θ)dθ

]
= Ay(t)dt+

∫ 0

−r
dη(θ)y(t+ θ)dt+B(t)dWQ(t),

t ∈ (0, T ],

y(0) = φ0, y0 = φ1, φ = (φ0, φ1) ∈ H, (5.2.1)

where A : H → H with domain D(A) ⊂ H is the infinitesimal generator of a

C0-semigroup {T (t) : t ≥ 0} on H, B(t) ∈ W2([0, T ];L0
2); and yt(θ) := y(t + θ)

for any θ ∈ [−r, 0] and t ≥ 0. Here η is the Stieltjes measure given by

η(τ) = −
m∑
i=1

χ(−∞,−ri](τ)Ai −
∫ 0

τ

F (θ)dθ, τ ∈ [−r, 0].

It is assumed that 0 < r1 < r2 < · · · < rm ≤ r, Ai ∈ L(H), i = 1, · · · ,m, the

family of all bounded, linear operators on H and D(·), F (·) ∈ L2([−r, 0];L(H)),

the space of all L(H)-valued equivalent class of square integrable functions on

[−r, 0]. The delay term
∫ 0

−r dη(θ)y(t+ θ) can be written by

m∑
i=1

Aiy(t− ri) +

∫ 0

−r
F (θ)y(t+ θ)dθ.

To this end, we further assume that for each i = 1, · · · ,m and θ ∈ [−r, 0],

R(D(θ)) ⊂ D(A) such that AD(·) ∈ L2([−r, 0];L(H)).

Consider the corresponding deterministic system of Equation (5.2.1) on H,

d

dt

[
y(t)−

∫ 0

−r
D(θ)y(t+ θ)dθ

]
= Ay(t) +

∫ 0

−r
dη(θ)y(t+ θ), t ∈ (0, T ],

y(0) = φ0, y0(·) = φ1(·), φ = (φ0, φ1) ∈ H. (5.2.2)

and its corresponding integral equation:

y(t, φ) =

∫ 0

−r
D(θ)y(t+ θ, φ)dθ + T (t)

[
φ0 −

∫ 0

−r
D(θ)φ1(θ)dθ

]
+

∫ t

0

T (t− s)
[ ∫ 0

−r
dη(θ)y(s+ θ, φ) +

∫ 0

−r
AD(θ)y(s+ θ, φ)dθ

]
ds,

∀ t > 0,

y(0, φ) = φ0, y0(·, φ) = φ1(·), φ = (φ0, φ1) ∈ H. (5.2.3)
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For simplicity, we denote y(t, φ) and yt(·, φ) by y(t) and yt(·) respectively, in

the sequel.

We introduce the following results: the existence and uniqueness of mild solu-

tion to Equation (5.2.3) - Proposition 5.1 (c.f. Liu (2009), Theorem 2.1); Green’s

operator - Equation (5.2.4) and (5.2.5) (c.f. Liu (2009), Page 10) and variation of

constants formula of mild solutions - Proposition 5.2 (c.f. Liu (2009), Theorem

2.2).

Proposition 5.1 For arbitrary T ≥ 0, φ = (φ0, φ1) ∈ H, (i) there exists a unique

solution y(t, φ) ∈ L2([−r, T ];H) of Equation (5.2.3); (ii) for arbitrary t ∈ [0, T ],

‖y(t, φ)‖H ≤ Ceγt‖φ‖H almost everywhere for some constants γ ∈ R and C > 0.

The solution y(t, φ) of Equation (5.2.3) is called a mild solution of Equation

(5.2.2). For any h ∈ H, let φ0 = h, φ1(θ) = 0 for θ ∈ [−r, 0] and φ = (h, 0),

the so-called Green’s operator or fundamental solution G(t) : (−∞,∞)→ L(H),

t ∈ R, of Equation (5.2.3) with such an initial datum can be defined by

G(t)h =

 y(t, φ), t ≥ 0,

0, t < 0.
(5.2.4)

The term (5.2.4) implies that G(t) is a unique solution of the equation

G(t) =


T (t) +

∫ 0

−rD(θ)G(t+ θ)dθ +
∫ t

0
T (t− s)

[ ∫ 0

−r dη(θ)G(s+ θ)

+
∫ 0

−r AD(θ)G(s+ θ)dθ

]
ds, if t ≥ 0,

O, if t < 0.

(5.2.5)

where Gt(θ) = G(t + θ), θ ∈ [−r, 0], and O denotes the null operator on H.

It turns out that G(t), t ≥ 0, is strongly continuous one-parameter family of

bounded linear operator on H such that ‖G(t)‖ ≤ Ceγt, t ≥ 0, for some constants

C > 0 and γ ∈ R.
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It is possible to find an explicit representation for the solution y(t, φ) of Equa-

tion (5.2.3) if we restrict the initial data of Equation (5.2.3) to some proper subset

of H. Let W 1,2([−r, 0];H) denote the Sobolev space of H-valued functions x(·)

on [−r, 0] such that x(·) and its weak derivative belong to L2([−r, 0];H). We

define

W1,2 = H ×W 1,2([−r, 0];H).

The following variation of constants formula provides a representation for

solutions of Equation (5.2.3) in terms of the fundamental solution G(t) ∈ L(H).

Proposition 5.2 For arbitrary φ = (φ0, φ1) ∈ W1,2, the solution y(t, φ) of Equa-

tion (5.2.3) can be represented almost everywhere by

y(t) = G(t)φ0 − V (t, 0)φ1(0) +

∫ 0

−r
U(t, θ)φ1(θ)dθ +

∫ 0

−r
V (t, θ)φ′1(θ)dθ.

where for any t ≥ 0, the kernels

U(t, θ) =

∫ θ

−r
G(t− θ + τ)dη(τ) ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0],

V (t, θ) =

∫ θ

−r
G(t− θ + τ)D(τ)dτ ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0].

For details of the proof of Proposition 5.1 and 5.2, c.f. Liu (2009), Theorem 2.1

and 2.2.

By applying the fundamental solutions (Green’s operator) to our stochastic

systems of neutral type, we are able to define the strong, weak and mild solutions

for Equation (5.2.1) as follows.

Definition 5.1 (Strong solution) A stochastic process y(t), t ∈ [−r, T ], de-

fined on (Ω,F , {Ft},P) is called a strong solution of Equation (5.2.1) if

(i) y(t) ∈ D(A), t ∈ [0, T ], almost surely and it is adapted to Ft, t ∈ [0, T ];
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(ii) y(t) has continuous paths on t ∈ [0, T ] in H and it satisfies

y(t)−
∫ 0

−r
D(θ)y(t+ θ)dθ = φ0 −

∫ 0

−r
D(θ)φ1(θ)dθ

+

∫ t

0

(
Ay(s) +

∫ 0

−r
dη(θ)y(s+ θ)

)
ds+

∫ t

0

B(s)dWQ(s)

y(0) = φ0, y0 = φ1, (5.2.6)

for arbitrary φ = (φ0, φ1) ∈ H almost surely.

In some situations, ones find that the strong solution concept is too strong to

include important examples. Therefore, a weaker concept, weak or mild solutions,

which turns out to be very useful in applications.

Definition 5.2 (Weak solution) A stochastic process y(t), t ∈ [−r, T ], defined

on (Ω,F , {Ft},P) is called a weak solution of Equation (5.2.1) if

(i) y(t) is adapted to Ft, t ∈ [0, T ] and the trajectories of y(·) are almost surely

Bochner integrable such that for arbitrary 0 ≤ t ≤ T ,

P

{
ω :

∫ t

0

‖y(s, ω)‖2
Hds <∞

}
= 1;

(ii) For arbitrary h ∈ D(A∗) and t ∈ [0, T ],〈
h, y(t)−

∫ 0

−r
D(θ)y(t+ θ)dθ

〉
H

=

〈
h, φ0 −

∫ 0

−r
D(θ)φ1(θ)dθ

〉
H

+

∫ t

0

〈A∗h, y(s)〉Hds+

〈
h,

∫ t

0

∫ 0

−r
dη(θ)y(s+ θ)ds

〉
H

+

〈
h,

∫ t

0

B(s)dWQ(s)

〉
H

(5.2.7)

almost surely with y(0) = φ0, y0 = φ1, and φ = (φ0, φ1) ∈ H.

Definition 5.3 (Mild solution) A stochastic process y(t), t ∈ [−r, T ], defined

on (Ω,F , {Ft},P) is called a mild solution of Equation (5.2.1) if
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(i) y(t) is adapted to Ft, t ∈ [0, T ] and for arbitrary 0 ≤ t ≤ T ,

P

{
ω :

∫ t

0

‖y(s, ω)‖2
Hds <∞

}
= 1;

(ii) For arbitrary t ∈ [0, T ] and φ ∈ H,

y(t) = G(t)φ0 − V (t, 0)φ1(0) +

∫ 0

−r
U(t, θ)φ1(θ)dθ +

∫ 0

−r
V (t, θ)φ′1(θ)dθ

+

∫ t

0

G(t− s)B(s)dWQ(s), t ≥ 0. (5.2.8)

almost surely where for any t ≥ 0, the kernels

U(t, θ) =

∫ θ

−r
G(t− θ + τ)dη(τ) ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0],

V (t, θ) =

∫ θ

−r
G(t− θ + τ)D(τ)dτ ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0].

5.3 Main results

In this section, we shall investigate the relationships among the strong, weak and

mild solutions of Equation (5.2.1). Firstly, we introduce the following lemma

from Liu (2009) to show that the strong solution is actually a mild one.

Lemma 5.1 Let h ∈ D(A), then
∫ t

0
G(s)Ahds ∈ H for almost all t ∈ R+, and

the relation∫ t

0

G(s)Ahds = G(t)h− h−
∫ t

0

∫ 0

−r
G(s+ θ)dη(θ)hds

−
∫ 0

−r
G(t+ θ)D(θ)hdθ, t ∈ R+, h ∈ D(A), (5.3.1)

holds almost everywhere.

Theorem 5.1 Suppose that y(t), t ∈ [−r, T ], is a strong solution of Equation

(5.2.1), then it is also a mild solution.
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Proof. By Lemma 5.1, rearrange and differentiate (5.3.1) both sides, we have

d

dt
G(t)h = G(t)Ah+

∫ 0

−r
G(t+ θ)dη(θ)h− d

dt

∫ 0

−r
G(t+ θ)D(θ)hdθ. (5.3.2)

Let v(s, h) = G(t− s)h, then by (5.3.2), we have

v′s(s, h) = −G(t−s)Ah−
∫ 0

−r
G(t−s+θ)dη(θ)h− d

dt

∫ 0

−r
G(t−s+θ)D(θ)hdθ,

v′h(s, h) = G(t− s),

v′′hh(s, h) = 0.

By using Ito’s formula, it can be deduced that for any 0 ≤ t ≤ T ,

v(t, y(t))− v(0, φ0)

= y(t)−G(t)φ0

=

∫ t

0

[
−G(t− s)Ay(s)−

∫ 0

−r
G(t− s+ θ)dη(θ)y(s)

− d

dt

∫ 0

−r
G(t− s+ θ)D(θ)y(s)dθ

]
ds

+

∫ t

0

G(t− s)
(
Ay(s) +

∫ 0

−r
dη(θ)y(s+ θ) +

∫ 0

−r
D(θ)y(s+ θ)dθ

)
ds

+

∫ t

0

G(t− s)dWQ(s), (5.3.3)

that is,

y(t) = G(t)φ0 −
∫ t

0

∫ 0

−r
G(t− s+ θ)dη(θ)y(s)ds+

∫ t

0

∫ 0

−r
G(t− s)dη(θ)y(s+ θ)ds

−
∫ t

0

d

dt

∫ 0

−r
G(t− s+ θ)D(θ)y(s)dθds+

∫ t

0

∫ 0

−r
G(t− s)D(θ)y(s+ θ)dθds

+

∫ t

0

G(t− s)dWQ(s). (5.3.4)

However, by using Fubini’s theorem and the fact that G(t) = O for any t < 0,

we have for t ≥ 0,
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∫ t

0

∫ 0

−r
G(t− s)dη(θ)y(s+ θ)ds−

∫ t

0

∫ 0

−r
G(t− s+ θ)dη(θ)y(s)ds

=

∫ 0

−r

∫ t

0

G(t− s)y(s+ θ)dsdη(θ)−
∫ 0

−r

∫ t

0

G(t− s+ θ)y(s)dsdη(θ)

=

∫ 0

−r

∫ t+θ

−r
G(t− s+ θ)y(s)dsdη(θ)−

∫ 0

−r

∫ t

0

G(t− s+ θ)y(s)dsdη(θ)

=

∫ 0

−r

∫ θ

−r
G(t− s+ θ)φ1(s)dsdη(θ) (5.3.5)

and ∫ t

0

∫ 0

−r
G(t− s)D(θ)y(s+ θ)dθds−

∫ t

0

d

dt

∫ 0

−r
G(t− s+ θ)D(θ)y(s)dθds

=

∫ 0

−r

∫ t+θ

−r
G(t− s+ θ)D(θ)y(s)dsdθ −

∫ 0

−r

d

dt

∫ t

0

G(t− s+ θ)D(θ)y(s)dsdθ

=

∫ 0

−r

d

dt

∫ θ

−r
G(t− s+ θ)D(θ)φ1(s)dsdθ

= −
∫ 0

−r

d

ds

∫ θ

−r
G(t− s+ θ)D(θ)φ1(s)dsdθ (5.3.6)

On the other hand, expanding the mild solution, Equation (5.2.8), we have:

y(t) = G(t)φ0 +

∫ t

0

G(t− s)B(s)dWQ(s)−
∫ 0

−r
G(t+ τ)D(τ)dτφ1(0)

+

∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ

+

∫ 0

−r

∫ θ

−r
G(t− θ + τ)D(τ)dτdφ1(θ)dθ. (5.3.7)

Applying differentiation by parts to the last term of (5.3.7) yields,∫ 0

−r

∫ θ

−r
G(t− θ + τ)D(τ)dτdφ1(θ)dθ

=

[ ∫ θ

−r
G(t− θ + τ)D(τ))dτφ1(θ)

]0

−r
−
∫ 0

−r

d

dθ

∫ θ

−r
G(t− θ + τ)D(τ)φ1(θ)dτdθ

=

∫ 0

−r
G(t+ τ)D(τ)dτφ1(0)−

∫ 0

−r

d

dθ

∫ θ

−r
G(t− θ + τ)D(τ)φ1(θ)dτdθ (5.3.8)
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Hence, we have:

y(t) = G(t)φ0 +

∫ 0

−r

∫ θ

−r
G(t− θ + τ)dη(τ)φ1(θ)dθ

−
∫ 0

−r

d

dθ

∫ θ

−r
G(t− θ + τ)D(τ)φ1(θ)dτdθ

+

∫ t

0

G(t− s)B(s)dWQ(s) (5.3.9)

Substitute Equation (5.3.5) and (5.3.6) into (5.3.4), we have the same result as

Equation (5.3.9). This shows that y(t), t ∈ [0, T ], is also a mild solution in the

sense of Definition 5.3.

Next, we wish to examine the relationship between the mild solution and the

weak one. Again, we introduce the following lemma from Liu (2009).

Lemma 5.2 Let h ∈ D(A∗), then
∫ t

0
G∗(s)A∗hds ∈ H for almost all t ∈ R+, and

the relation∫ t

0

G∗(s)A∗hds = G∗(t)h− h−
∫ t

0

∫ 0

−r
G∗(s+ θ)dη∗(θ)hds

−
∫ 0

−r
G∗(t+ θ)D∗(θ)hdθ, t ∈ R+, h ∈ D(A∗).

holds almost everywhere.

We shall show that the mild solution of Equation (5.2.1) is actually a weak

one. Precisely, we have the result:

Proposition 5.3 Suppose that B(t) ∈ W2([0, T ];L0
2), then Equation (5.2.1) has

a unique weak solution. Moreover, the solution is represented by

y(t) = G(t)φ0 − V (t, 0)φ1(0) +

∫ 0

−r
U(t, θ)φ1(θ)dθ +

∫ 0

−r
V (t, θ)φ′1(θ)dθ

+

∫ t

0

G(t− s)B(s)dWQ(s), T ≥ 0.
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almost surely for φ = (φ0, φ1) ∈ W1,2, where for any t ∈ [0, T ], the kernels

U(t, θ) =

∫ θ

−r
G(t− θ + τ)dη(τ) ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0],

V (t, θ) =

∫ θ

−r
G(t− θ + τ)D(τ)dτ ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0].

and y(t) = φ1(t), t ∈ [−r, 0).

Similar to the prove of Proposition 4.1 in Liu (2008), to prove this result, first

note that a process y(t) is a weak solution of Equation (5.2.1) if and only if the

process ỹ(t) given by the formula

ỹ(t) = y(t)−G(t)φ0 for t ∈ [0, T ], and

ỹ(t) = y(t)− φ1(t) for t ∈ [−r, 0), (5.3.10)

is a weak solution to the equation

d

[
ỹ(t)−

∫ 0

−r
D(θ)ỹ(t+θ)dθ

]
= Aỹ(t)dt+

∫ 0

−r
dη(θ)ỹ(t+θ)dt+B(t)dWQ(t), t ∈ (0, T ].

(5.3.11)

and ỹ(t) = 0 for t ∈ [−r, 0].

Proof. Let us put

ỹ(t) =

∫ t

0

G(t− s)B(s)dWQ(s), t ≥ 0, and ỹ(t) = 0 for t ∈ [−r, 0], (5.3.12)

then ones can deduce by using the well-known stochastic Fubini’s theorem

(c.f. Da Prato and Zabczyk (1992)) and Lemma 5.2 that for any h ∈ D(A∗),∫ t

0

〈A∗h, ỹ(s)〉Hds

=

〈
A∗h,

∫ t

0

ỹ(s)ds

〉
H

=

〈
A∗h,

∫ t

0

∫ s

0

G(s− u)B(u)dWQ(u)ds

〉
H
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=

〈
A∗h,

∫ t

0

∫ t

u

G(s− u)dsB(u)dWQ(u)

〉
H

=

〈∫ t

u

G∗(s− u)A∗hds,

∫ t

0

B(u)dWQ(u)

〉
H

=

∫ t

0

〈∫ t

u

B∗(u)G∗(s− u)A∗hds, dWQ(u)

〉
H

=

∫ t

0

〈∫ t

u

d

ds
B∗(u)G∗(s− u)hds

−
∫ t

u

d

ds
B∗(u)

∫ 0

−r
G∗(s− u+ θ)D∗(θ)hdθds

−
∫ t

u

B∗(u)

∫ 0

−r
G∗(s− u+ θ)dη∗(θ)hds, dWQ(u)

〉
H

=

∫ t

0

〈∫ t

u

d

ds
B∗(u)G∗(s− u)hds, dWQ(u)

〉
H

−
∫ t

0

〈∫ t

u

d

ds
B∗(u)

∫ 0

−r
G∗(s− u+ θ)D∗(θ)hdθds, dWQ(u)

〉
H

−
∫ t

0

〈∫ t

u

B∗(u)

∫ 0

−r
G∗(s− u+ θ)dη∗(θ)hds, dWQ(u)

〉
H

=

∫ t

0

〈
B∗(u)G∗(t− u)h, dWQ(u)

〉
H

−
∫ t

0

〈
B∗(u)h, dWQ(u)

〉
H

−
∫ t

0

〈
B∗(u)

∫ 0

−r
G∗(t− u+ θ)D∗(θ)hdθds, dWQ(u)

〉
H

−
〈
h,

∫ t

0

∫ t

u

∫ 0

−r
dη(θ)G(s− u+ θ)B(u)ds, dWQ(u)

〉
H

=

〈
h, ỹ(t)H −

∫ t

0

B(u)dWQ(u)

〉
H

−
〈∫ 0

−r
B∗(u)G∗(s− u+ θ)dη∗(θ)hds,

∫ t

0

dWQ(u)

〉
H〈

h,

∫ t

0

∫ s+θ

0

∫ 0

−r
dη(θ)G(s− u+ θ)B(u)dWQ(u)ds

〉
H

=

〈
h, ỹ(t)H −

∫ t

0

B(u)dWQ(u)

〉
H

−
〈
h,

∫ t

0

∫ 0

−r
D(θ)G(t− u+ θ)B(u)dθdWQ(u)

〉
H

−
〈
h,

∫ t

0

∫ 0

−r
dη(θ)

∫ s+θ

0

G(s− u+ θ)B(u)dWQ(u)ds

〉
H
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=

〈
h, ỹ(t)

〉
H

−
〈
h,

∫ t

0

B(u)dWQ(u)

〉
−
〈
h,

∫ t

0

∫ 0

−r
dη(θ)ỹ(s+ θ)ds

〉
H

−
〈
h,

∫ 0

−r
D(θ)

∫ t

0

G(t− u+ θ)B(u)dWQ(u)dθ

〉
H

=

〈
h, ỹ(t)

〉
H

−
〈
h,

∫ t

0

B(u)dWQ(u)

〉
−
〈
h,

∫ t

0

∫ 0

−r
dη(θ)ỹ(s+ θ)ds

〉
H

−
〈
h,

∫ 0

−r
D(θ)ỹ(t+ θ)dθ

〉
H

,

which means〈
h, ỹ(t)−

∫ 0

−r
D(θ)ỹ(t+ θ)dθ

〉
H

=

∫ t

0

〈A∗h, ỹ(s)〉Hds+

〈
h,

∫ t

0

∫ 0

−r
dη(θ)ỹ(s+ θ)ds

〉
H

+

〈
h,

∫ t

0

B(s)dWQ(s)

〉
H

.

This shows that ỹ(t) is a weak solution of Equation (5.3.11). Next, we shall show

that every weak solution ỹ(t) of (5.3.11) is the form of Equation (5.3.12). To

this end, we first show that for arbitrary z(t) ∈ C([0, T ];D(A∗)), the following

relation holds

〈z(t), ỹ(t)〉H =

∫ t

0

〈z′(s) + A∗z(s), ỹ(s)〉Hds

+

∫ t

0

〈z(s),

∫ 0

−r
dη(θ)ỹ(s+ θ)〉Hds

+

∫ t

0

〈z(s), B(s)dWQ(s)〉H . (5.3.13)

Indeed, consider functions of the form z(t) = z0ϕ(t), t ∈ [0, T ], where ϕ ∈

C([0, T ];C) and z0 ∈ D(A∗). Let us put

Jz0(t) =

∫ t

0

〈A∗z0, ỹ(s)〉Hds+
∫ t

0

〈z0,

∫ 0

−r
dη(θ)ỹ(s+θ)〉Hds+

∫ t

0

〈z0, B(s)dWQ(s)〉H .

Applying Itô’s formula to the processes Jz0(t)ϕ(t) we get

d(Jz0(t)ϕ(t)) = ϕ(t)dJz0(t) + ϕ′(t)Jz0(t)dt.
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In particular,

Jz0(t)ϕ(t) =

∫ t

0

〈z0ϕ(s), B(s)dWQ(s)〉H +

∫ t

0

〈z0ϕ(s),

∫ 0

−r
dη(θ)ỹ(s+ θ)〉Hds∫ t

0

[〈A∗z0ϕ(s), ỹ(s)〉H + ϕ′(s)〈z0, ỹ(s)〉H ]ds.

Since Jz0(·) = 〈z0, ỹ(·)〉H almost surely. Thus, (5.3.13) is proved for the function

z(t) = z0ϕ(t). Since these functions form a dense set in C([0, T ];D(A∗)), the

equality (5.3.13) is thus true for all z(t) ∈ C([0, T ];D(A∗)). Now applying (5.3.13)

to the function z(s) = G∗(t− s)z0, 0 ≤ s ≤ t ≤ T , we have

〈z0, ỹ(t)〉H =

〈
z0,

∫ t

0

G(t− s)B(s)dWQ(s)

〉
H

and since D(A∗) is dense in H, we find that ỹ(t) =
∫ t

0
G(t − s)B(s)dWQ(s),

t ∈ [0, T ]. The proof is complete.

Finally, we wish to find suitable conditions under which the mild solution of

Equation (5.2.1) is a strong one. To begin with, we introduce the following lemma

from Liu (2009) again.

Lemma 5.3 Let h ∈ H, then
∫ t

0
G(s)hds ∈ D(A) for almost all t ∈ R+, and the

relation

A

∫ t

0

G(s)hds = G(t)h− h−
∫ t

0

∫ 0

−r
dη(v)G(s+ v)hds

−
∫ 0

−r
D(v)G(t+ v)hdv, t ∈ R+, h ∈ H,

holds almost everywhere.

Theorem 5.2 Suppose that φ0 ∈ D(A) and φ1 ∈ W 1,2([−r, 0];H), for any k ∈

K,

(a) R(F (θ)) ∈ D(A) for τ ∈ [−r, 0], θ ∈ [τ, 0], R(Ai) ∈ D(A),
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(b) G(t − s)B(s)k ∈ D(A) for almost all s ≤ t ∈ [0, T ] and AG(t − ·)B(·)k ∈

L2([0, T ];H) for any t ∈ [0, T ],

(c) AG(t+ ·)D(·) ∈ L2([0, T ];H) and AG(t+ ·)φ1(·) ∈ L2([0, T ];H).

Then the mild solution of Equation (5.2.1) is also a strong one.

Proof. Suppose that y(t) = y(t, φ) is a mild solution of Equation (5.2.1), that is,

it satisfies the following variation of constants formula

y(t) = G(t)φ0 − V (t, 0)φ1(0) +

∫ 0

−r
U(t, θ)φ1(θ)dθ +

∫ 0

−r
V (t, θ)φ′1(θ)dθ

+

∫ t

0

G(t− s)B(s)dWQ(s), T ≥ 0,

almost surely where for any t ∈ [0, T ], the kernels

U(t, θ) =

∫ θ

−r
G(t− θ + τ)dη(τ) ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0],

V (t, θ) =

∫ θ

−r
G(t− θ + τ)D(τ)dτ ∈ L2([−r, 0];L(H)), θ ∈ [−r, 0].

We can deduce that
∫ θ
−rG(t − θ + τ)dη(τ)φ1(θ) ∈ D(A) by condition (a). Since

R(D(θ)) ⊂ D(A), we have
∫ 0

−rG(t + τ)D(τ)dτφ1(0) ∈ D(A) and
∫ θ
−rG(t − θ +

τ)D(τ)φ′1(θ)dτ ∈ D(A). Therefore, it can be shown that y(t) ∈ D(A) for any

t ≥ 0 by the conditions (a) - (c) in the theorem. Note that G(t) = O for t < 0

and A is a closed operator. By using Lemma 5.3, we can deduce that for the

initial datum φ0 ∈ D(A), φ1 ∈ W 1,2([−r, 0];H),

A

∫ t

0

G(s)φ0ds = G(t)φ0 − φ0 −
∫ t

0

∫ 0

−r
dη(v)G(s+ v)φ0ds

−
∫ 0

−r
D(v)G(t+ v)φ0dv. (5.3.14)
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Also, by using Fubini’s theorem and Lemma 5.3, we can deduce the following

Equations (5.3.15)-(5.3.17). Firstly,

−A
∫ t

0

∫ 0

−r
G(s+ τ)D(τ)dτφ1(0)ds

= −
∫ 0

−r
A

∫ t

0

G(s+ τ)D(τ)dsφ1(0)dτ

= −
∫ 0

−r

(
G(t+ τ)D(τ)−G(τ)D(τ)−

∫ t

0

∫ 0

−r
dη(v)G(s+ τ + v)D(τ)ds

−
∫ 0

−r
D(v)G(t+ τ + v)D(τ)dv

)
φ1(0)dτ

= −
∫ 0

−r
G(t+ τ)D(τ)φ1(0)dτ +

∫ 0

−r

∫ t

0

∫ 0

−r
dη(v)G(s+ τ + v)D(τ)φ1(0)dsdτ

+

∫ 0

−r

∫ 0

−r
D(v)G(t+ τ + v)D(τ)φ1(0)dvdτ. (5.3.15)

Secondly,

A

∫ t

0

∫ 0

−r

∫ θ

−r
G(s− θ + τ)dη(τ)φ1(θ)dθds

= A

∫ 0

−r

∫ t

0

∫ θ

−r
G(s− θ + τ)dη(τ)φ1(θ)dsdθ

=

∫ 0

−r

∫ θ

−r
A

∫ t

0

G(s− θ + τ)φ1(θ)dsdη(τ)dθ

=

∫ 0

−r

∫ θ

−r

(
G(t− θ + τ)φ1(θ)−G(−θ + τ)φ1(θ)

−
∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)φ1(θ)ds

−
∫ 0

−r
D(v)G(t− θ + τ + v)φ1(θ)dv

+

∫ 0

−r
D(v)G(−θ + τ + v)φ1(θ)dv

)
dη(τ)dθ

=

∫ 0

−r

∫ θ

−r
G(t− θ + τ)φ1(θ)dη(τ)dθ

−
∫ 0

−r

∫ θ

−r

∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)φ1(θ)dsdη(τ)dθ

−
∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(t− θ + τ + v)φ1(θ)dvdη(τ)dθ

+

∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(−θ + τ + v)φ1(θ)dvdη(τ)dθ, (5.3.16)
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and thirdly,

A

∫ t

0

∫ 0

−r

∫ θ

−r
G(s− θ + τ)D(τ)dτφ′1(θ)dθds

= A

∫ 0

−r

∫ t

0

∫ θ

−r
G(s− θ + τ)D(τ)dτφ′1(θ)dsdθ

=

∫ 0

−r

∫ θ

−r
A

∫ t

0

G(s− θ + τ)D(τ)dsφ′1(θ)dτdθ

=

∫ 0

−r

∫ θ

−r

(
G(t− θ + τ)D(τ)−G(−θ + τ)D(τ)

−
∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)D(τ)ds

−
∫ 0

−r
D(v)G(t− θ + τ + v)D(τ)dv

+

∫ 0

−r
D(v)G(−θ + τ + v)D(τ)dv

)
φ′1(θ)dτdθ

=

∫ 0

−r

∫ θ

−r
G(t− θ + τ)D(τ)φ′1(θ)dτdθ

−
∫ 0

−r

∫ θ

−r

∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)D(τ)φ′1(θ)dsdτdθ

−
∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(t− θ + τ + v)D(τ)φ′1(θ)dvdτdθ

+

∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(−θ + τ + v)D(τ)φ′1(θ)dvdτdθ. (5.3.17)

Using the standard stochastic Fubini’s theorem (c.f. Da Prato and Zabczyk

(1992), Theorem 4.18), ones can deduce that

A

∫ t

0

∫ s

0

G(s− u)B(u)dWQ(u)ds

=

∫ t

0

A

∫ t

u

G(s− u)B(u)dsdWQ(u)

=

∫ t

0

(
G(t− u)B(u)−B(u)−

∫ t

u

∫ 0

−r
dη(v)G(s− u+ v)B(u)ds

−
∫ 0

−r
D(v)G(t− u+ v)B(u)dv

)
dWQ(u)
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=

∫ t

0

G(t− u)B(u)dWQ(u)−
∫ t

0

B(u)dWQ(u)

−
∫ t

0

∫ t

u

∫ 0

−r
dη(v)G(s− u+ v)B(u)dsdWQ(u)

−
∫ t

0

∫ 0

−r
D(v)G(t− u+ v)B(u)dvdWQ(u). (5.3.18)

On the other hand, since y(t) is a mild solution of Equation (5.2.1), thus∫ t

0

∫ 0

−r
dη(v)y(s+ v)ds

=

∫ t

0

∫ 0

−r
dη(v)G(s+ v)φ0ds−

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r
G(s+ v + τ)D(τ)dτφ1(0)ds

+

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r

∫ θ

−r
G(s− θ + τ + u)dη(τ)φ1(θ)dθds

+

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r

∫ θ

−r
G(s− θ + τ + v)D(τ)dτφ′1(θ)dθds

+

∫ t

0

∫ 0

−r
dη(v)

∫ s

0

G(s+ v − u)B(u)dWQ(u)ds. (5.3.19)

Therefore, by the closeness of A and Equation (5.2.8), it follows that∫ t

0

(
Ay(s) +

∫ 0

−r
dη(v)y(s+ v)

)
ds

= A

∫ t

0

y(s)ds+

∫ t

0

∫ 0

−r
dη(v)y(s+ v)ds

= A

∫ t

0

(
G(s)φ0 −

∫ 0

−r
G(s+ τ)D(τ)dτφ1(0)

+

∫ 0

−r

∫ θ

−r
G(s− θ + τ)dη(τ)φ1(θ)dθ

+

∫ 0

−r

∫ θ

−r
G(s− θ + τ)D(τ)dτφ′1(θ)dθ +

∫ s

0

G(s− u)B(u)dWQ(u)

)
ds

+

∫ t

0

∫ 0

−r
dη(v)y(s+ v)ds
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= A

∫ t

0

G(s)φ0ds− A
∫ t

0

∫ 0

−r
G(s+ τ)D(τ)dτφ1(0)ds

+A

∫ t

0

∫ 0

−r

∫ θ

−r
G(s− θ + τ)dη(τ)φ1(θ)dθds

+A

∫ t

0

∫ 0

−r

∫ θ

−r
G(s− θ + τ)D(τ)dτφ′1(θ)dθds

+A

∫ t

0

∫ s

0

G(s− u)B(u)dWQ(u)ds+

∫ t

0

∫ 0

−r
dη(v)y(s+ v)ds.

which, together with Equations (5.3.14)-(5.3.19), yields that∫ t

0

(
Ay(s) +

∫ 0

−r
dη(v)y(s+ v)

)
ds

= G(t)φ0 − φ0 −
∫ t

0

∫ 0

−r
dη(v)G(s+ v)φ0ds−

∫ 0

−r
D(v)G(t+ v)φ0dv

−
∫ 0

−r
G(t+ τ)D(τ)φ1(0)dτ +

∫ 0

−r

∫ t

0

∫ 0

−r
dη(v)G(s+ τ + v)D(τ)φ1(0)dsdτ

+

∫ 0

−r

∫ 0

−r
D(v)G(t+ τ + v)D(τ)φ1(0)dvdτ

+

∫ 0

−r

∫ θ

−r
G(t− θ + τ)φ1(θ)dη(τ)dθ

−
∫ 0

−r

∫ θ

−r

∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)φ1(θ)dsdη(τ)dθ

−
∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(t− θ + τ + v)φ1(θ)dvdη(τ)dθ

+

∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(−θ + τ + v)φ1(θ)dvdη(τ)dθ

+

∫ 0

−r

∫ θ

−r
G(t− θ + τ)D(τ)φ′1(θ)dτdθ

−
∫ 0

−r

∫ θ

−r

∫ t

0

∫ 0

−r
dη(v)G(s− θ + τ + v)D(τ)φ′1(θ)dsdτdθ

−
∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(t− θ + τ + v)D(τ)φ′1(θ)dvdτdθ

+

∫ 0

−r

∫ θ

−r

∫ 0

−r
D(v)G(−θ + τ + v)D(τ)φ′1(θ)dvdτdθ

+

∫ t

0

G(t− u)B(u)dWQ(u)−
∫ t

0

B(u)dWQ(u)

−
∫ t

0

∫ t

u

∫ 0

−r
dη(v)G(s− u+ v)B(u)dsdWQ(u)
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−
∫ t

0

∫ 0

−r
D(v)G(t− u+ v)B(u)dvdWQ(u)

+

∫ t

0

∫ 0

−r
dη(v)G(s+ v)φ0ds−

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r
G(s+ v + τ)D(τ)dτφ1(0)ds

+

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r

∫ θ

−r
G(s− θ + τ + u)dη(τ)φ1(θ)dθds

+

∫ t

0

∫ 0

−r
dη(v)

∫ 0

−r

∫ θ

−r
G(s− θ + τ + v)D(τ)dτφ′1(θ)dθds

+

∫ t

0

∫ 0

−r
dη(v)

∫ s

0

G(s+ v − u)B(u)dWQ(u)ds

= y(t)− φ0 −
(∫ 0

−r
D(v)G(t+ v)φ0dv

−
∫ 0

−r

∫ 0

−r
D(v)G(t+ τ + v)D(τ)φ1(0)dτdv

+

∫ 0

−r

∫ 0

−r

∫ θ

−r
D(v)G(t− θ + τ + v)φ1(θ)dη(τ)dθdv

+

∫ 0

−r

∫ 0

−r

∫ θ

−r
D(v)G(t− θ + τ + v)D(τ)φ′1(θ)dτdθdv

+

∫ 0

−r

∫ t

0

D(v)G(t− u+ v)B(u)dWQ(u)dv

)
+

(∫ 0

−r

∫ 0

−r

∫ θ

−r
D(v)G(−θ + τ + v)φ1(θ)dη(τ)dθdv

+

∫ 0

−r

∫ 0

−r

∫ θ

−r
D(v)G(−θ + τ + v)D(τ)φ′1(θ)dτdθdv

)
−
∫ t

0

B(u)dWQ(u)

= y(t)− φ0 −
∫ 0

−r
D(v)y(t+ v)dv +

∫ 0

−r
D(v)φ1(v)dv −

∫ t

0

B(u)dWQ(u).

That is,∫ t

0

(
Ay(s) +

∫ 0

−r
dη(θ)y(s+ θ)

)
ds = y(t)− φ0 −

∫ 0

−r
D(θ)y(t+ θ)dθ

+

∫ 0

−r
D(θ)φ1(θ)dθ −

∫ t

0

B(s)dWQ(s).

Thus, the mild solution y(t) of Equation (5.2.1) is also a strong solution. The

proof is complete.
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5.4 Conclusion

In conclusion, we have studied the stochastic neutral functional differential equa-

tions in a separable Hilbert space. The theory of fundamental solutions (Green’s

operator) from Liu (2008, 2009) has been used to establish the representation

of the mild solutions. Then we investigated relations among strong, weak and

mild solutions of our SNFDEs and suitable conditions has been founded under

which mild solutions become strong ones. By suitably applying the above theo-

rem of fundamental solutions (Green’s operator), one can show that the results of

Theorem 5.1, Proposition 5.1 and Theorem 5.2 can be extended to the following

semi-linear neutral stochastic functional differential equations:

for any T > 0, t ∈ (0, T ]

d

[
y(t)−

∫ 0

−r
D(θ)y(t+ θ)dθ

]
= Ay(t)dt+

∫ 0

−r
dη(θ)y(t+ θ)dt

+G(yt)dt+B(yt)dWQ(t),

y(0) = φ0, y0 = φ1, φ = (φ0, φ1) ∈ H,
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Chapter 6

Fixed point theory and

asymptotic stability

6.1 Asymptotic stability of impulsive stochas-

tic partial delay differential equations with

Poisson jumps

6.1.1 Introduction

Many evolution processes are characterized by the fact that they experience a

change of state abruptly at certain moments of time. It is natural to assume

that these perturbations act instantaneously, that is, in the form of impulsive.

It is known that many models in sciences and economics exhibit impulse effects.

For example, bursting rhythm models in medicine and biology, optimal control

models in economics, pharmacokinetics. Impulsive differential equations (IDEs)

are often used to describe such systems. For instance, in Lakshmikantham et al.

(1989), a mathematical model of a simple impulsive differential system in which
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impulses occur at fixed times may be described by
dx
dt

= f(t, x), t 6= tk, k = 1, 2, · · ·

4x = Ik(x), t = tk

where {tk} is a sequence of times such that tk → ∞ as k → ∞, for t = tk,

4x(tk) = x(t+k )−x(tk) and x(t+k ) = limh→0+ x(tk +h), f : R+×Ω→ Rn, Ω ⊂ Rn

is a open set, Ik : Ω→ Ω.

In recent years, significant progress has been made in the theory of impulsive

differential equations, please refer to Lakshmikantham et al. (1989) and references

therein. For the abrupt change, there may emerge jumps in the evolution, which

lead to the non-smooth effects of the system. Thus, the qualitative properties

of impulsive differential systems are very important and many results have been

obtained in analysis of systems with impulse effect or design of control systems

via impulsive control laws. For example, in Lakshmikantham et al. (1989), some

basic theories including the theory of stability of an impulsive control scheme is

equivalent to the stability of trivial solution of an impulsive differential equation

are given; Yang (2001) studied the problem of impulsive control and impulsive

synchronization by using the comparison method of impulsive differential equa-

tions to judge whether the system under consideration is stable or not. In Shen

(1999) and Zhang and Sun (2008), Lyapunov-Razumikhin stability theorems for

impulsive functional differential equations (IFDEs) are presented. Meanwhile,

the studies of impulsive differential equations with delays (IDDEs) have received

significant attention. For example, the stability of zero solution of IDDEs has

been investigated by Liu and Ballinger (2001), Xu and Yang (2005) and Zhang

and Sun (2008).

However, besides delay and impulsive effects, stochastic effects likewise ex-

ist in real systems. A lot of dynamical systems have variable structures subject
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to abrupt changes, which may result from abrupt phenomena such as stochastic

failures and repairs of the components, changes in the interconnections of subsys-

tems, sudden environment changes, etc. So it is necessary to study the impulsive

system with stochastic factor i.e. impulsive stochastic differential equations with

delays (ISDDEs). For example, Yang et al. (2006) studied the p-moment stability

of ISDDEs and established stability criteria of the system. Wu et al. (2004) in-

vestigated the p-moment stability of stochastic differential equations with jumps

and a theory of the p-moment stability was constructed. By applying fixed point

theory, a few researchers, for instance, J. Luo, T. Taniguchi and R. Sakthivel (Luo

(2007, 2008), Luo and Taniguchi (2009), and Sakthivel and Luo (2009a,b)) have

obtained the asymptotic behavior of solutions of stochastic differential equations.

In particular, Sakthivel and Luo (2009b) studied the existence and asymptotic

in p-th moment of mild solutions of nonlinear impulsive stochastic differential

equations in a real separable Hilbert space H,

dx(t) = [Ax(t) + f(t, x(t))]dt+ g(t, x(t))dw(t), t ≥ 0, t 6= tk,

4x(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), t = tk, 1, 2, · · · ,m,

x(0) = x0,

where f : R+ × H → H, g : R+ × H → L(K,H) are all Borel measurable;

Ik : H → H; A is the infinitesimal generator of a semigroup of bounded linear

operator T (t), t ≥ 0 in H; Furthermore the fixed moments of time tk satisfies

0 < t1 < · · · < tm < limk→∞ = ∞, x(t+k ) and x(t−k ) represent the right and left

limits of x(t) at t = tk, respectively; 4x(tk) = x(t+k )−x(t−k ), represents the jump

in the state x at time tk with Ik determining the size of jump; w is a K-valued

Wiener process.

Also, Sakthivel and Luo (2009a) studied the asymptotic stability in p-th mo-
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ment of mild solutions to nonlinear impulsive stochastic partial differential equa-

tions with infinite delay on H,

dx(t) = [Ax(t) + f(t, x(t− τ(t)))]dt+ g(t, x(t− δ(t)))dw(t), t ≥ 0, t 6= tk,

4x(tk) = x(t+k )− x(t−k ) = Ik(x(tk)), t = tk, 1, 2, · · · ,m,

x0(·) = ϕ ∈ Db
F0

([m̃(0), 0], H),

where τ(t), δ(t) ∈ C(R+,R+) satisfy t− τ(t)→∞, t− δ(t)→∞ as t→∞ and

m̃(0) = max{inf(s− τ(s), s ≥ 0), inf(s− δ(s), s ≥ 0)}.

To the best of our knowledge, there are a few work about the asymptotic sta-

bility for mild solutions to impulsive stochastic partial delay differential equations

with Poisson jumps. In this section, we shall apply fixed point theorem to inves-

tigate the asymptotic stability in mean square of mild solution to the following

equations,

dX(t) =
[
AX(t) + F

(
t,X(t), X(t− δ(t))

)]
dt+G

(
t,X(t), X(t− ρ(t))

)
dWQ(t)

+
∫
Z L
(
t,X(t− θ(t)), u

)
Ñ(dt, du), t ≥ 0, t 6= tk,

4X(tk) = X(t+k )−X(t−k ) = Ik(X(t−k )), t = tk, k = 1, 2, · · · ,m,

X0(·) = ϕ ∈ Db
F0

([−r, 0];H), −r ≤ t < 0,

where δ(t), ρ(t) and θ(t) : [0,∞)→ [0, r], r > 0 are continuous functions. Details

of this equations are explained in Section 6.1.2.

The rest of this section is organized as follows. In section 6.1.2, we briefly

present some basic notations and preliminaries for impulsive stochastic partial

delay differential equations with Poisson jumps. Section 6.1.3 is devoted to the

study of asymptotic stability in mean square of mild solutions to our ISPDDEs
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with jumps. By employing a fixed point approach, sufficient conditions are de-

rived for achieving the required result. These conditions do not require the mono-

tone decreasing behavior of the delays.

6.1.2 Impulsive stochastic partial delay differential equa-

tions with Poisson jumps

Let (Ω,F ,P) be a complete probability space with probability measure P on Ω

and a filtration {Ft}t≥0 satisfying the usual conditions, that is the filtration is

right-continuous and F0 contains all the P-null sets.

Let H, K be two real separable Hilbert spaces with their norms and inner

products denoted by ‖ · ‖H , ‖ · ‖K and 〈·, ·〉H , 〈·, ·〉K respectively. We denote by

L(K,H) the set of all linear bounded operators from K into H, equipped with

the usual operator norm ‖ · ‖. In this work, we always use the same symbol

‖ · ‖ to denote norms of operators regardless of the spaces potentially involved

when no confusion may arise. Let r > 0 and D := D([−r, 0];H) denote the

family of all right-continuous functions with left-hand limits ϕ from [−r, 0] to

H. The space D([−r, 0];H) is assumed to be equipped with the supremum norm

‖ϕ‖D = sup−r≤θ≤0 ‖ϕ(θ)‖H . We also use DFb
0
([−r, 0];H) to denote the family of

all almost surely bounded, F0-measurable, D([−r, 0];H)-valued random variables.

Let WQ(t) be a Wiener process and
∫ t

0
Φ(s)dWQ(s) be the stochastic integral

with respect to WQ(t), which is a continuous square-integrable martingale (c.f.

Section 2.2). Let Ñ(dt, du) := N(dt, du) − dtλ(du) be the compensated Poisson

random measures and
∫ T

0

∫
Z L(t, u)Ñ(dt, du) the stochastic integral with respect

to Ñ(dt, du) which is a centered square-integrable martingale, where Z ∈ B(K −

{0}) with 0 /∈ Z̄, the closure of Z in K and B(K −{0}) denotes the Borel σ-filed

of K − {0} (c.f. Section 2.3). We always assume in this chapter that WQ and Ñ

are independent of the F0 and of each other.
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In this section, we consider a mathematical model given by the following

impulsive stochastic delay differential equations with Poisson jumps,

dX(t) =
[
AX(t) + F

(
t,X(t− δ(t))

)]
dt+G

(
t,X(t− ρ(t))

)
dWQ(t)

+
∫
Z L
(
t,X(t− θ(t)), u

)
Ñ(dt, du), t ≥ 0, t 6= tk,

4X(tk) = X(t+k )−X(t−k ) = Ik(X(t−k )), t = tk, k = 1, 2, · · · ,m,

X0(·) = ϕ ∈ Db
F0

([−r, 0];H), −r ≤ t < 0.

(6.1.1)

where F : R+ × H → H, G : R+ × H → L(K,H) and L : R+ × H × Z →

H are all Borel measurable; A is the infinitesimal generator of a semigroup of

bounded linear operators T (t), t ≥ 0, in H; Ik : H → H. Furthermore the fixed

moments of time tk satisfies 0 < t1 < · · · < tm < limk→∞ tk = ∞, X(t+k ) and

X(t−k ) represent the right and left limits of X(t) at t = tk, respectively. Also

4X(tk) = X(t+k ) − X(t−k ) = Ik(X(t−k )) represents the jump in the state X at

time tk with Ik determining the size of the jump. Moreover, for r > 0, let δ(t),

ρ(t) and θ(t) be continuous functions from [0,∞) to [0, r].

Let us recall the definition of mild solution of impulsive stochastic delay dif-

ferential equations (6.1.1) and the definitions of mean square stability.

Definition 6.1 (Mild solution) A stochastic process {x(t), t ∈ [0, T ]}, 0 ≤

T <∞, is called a mild solution of Equation (6.1.1) if

(i) X(t) is adapted to Ft and has càdlàg path on t ≥ 0 almost surely and
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(ii) for arbitrary t ∈ [0, T ], P{ω :
∫ t

0
‖X(t)‖2

Hds <∞} = 1 and almost surely

X(t) = T (t)ϕ(0) +

∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

+

∫ t

0

T (t− s)G
(
s,X(s− ρ(s))

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)L

(
s,X(s− θ(s)), u

)
Ñ(ds, du)

+
∑

0<tk<t

T (t− s)Ik(X(t−k )) (6.1.2)

and

X0(·) = ϕ ∈ Db
F0

([−r, 0];H), −r ≤ t < 0.

Definition 6.2 (Mean square stability) The Equation (6.1.1) is said to be

stable in mean square if for arbitrarily given ε > 0, there exists δ > 0 such that

‖ϕ‖D < δ guarantees that

E
{

sup
t≥0
‖X(t)‖2

H

}
< ε.

Definition 6.3 (Asymptotic mean square stability) The Equation (6.1.1)

is said to be mean square asymptotically stable if it is stable in mean square and

for any ϕ ∈ Db
F0

([−r, 0];H),

lim
T→∞

E
{

sup
t≥T
‖X(t)‖2

H

}
= 0.

6.1.3 Asymptotic stability

In this section, we shall formulate and prove the conditions for the asymptotic

stability in mean square of mild solution to Equation (6.1.1) by using fixed point

theorem. For the purpose of stability, we shall assume that F (t, 0) = 0, G(t, 0) =

0, L(t, 0, u) = 0 and Ik(0) = 0 (k = 1, 2, · · · ,m). Then Equation (6.1.1) has a

trivial solution when ϕ = 0.

In order to obtain our main result, we impose the following assumptions:
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Assumption 6.1 A is the infinitesimal generator of a C0-semigroup of bounded

linear operators T (t), t ≥ 0, in H satisfying

‖T (t)‖ ≤Me−αt, t ≥ 0 (6.1.3)

for some constants M ≥ 1 and 0 < α ∈ R+.

Assumption 6.2 For all x, y ∈ H and t ≥ 0, the functions F , G and L satisfy

the following Lipschitz conditions:

‖F (t, x)− F (t, y)‖2
H ≤ C1‖x− y‖2

H , C1 > 0; (6.1.4)

‖G(t, x)−G(t, y)‖2
L02
≤ C2‖x− y‖2

H , C2 > 0; (6.1.5)

∫
Z
‖L(t, x, u)−G(t, y, u)‖2

Hλ(du) ≤ C3‖x− y‖2
H , C3 > 0. (6.1.6)

Assumption 6.3 Ik ∈ C(H,H) and there exists a constant qk > 0 such that for

each x, y ∈ H and k = 1, 2, · · · ,m,

‖Ik(x)− Ik(y)‖ ≤ qk‖x− y‖. (6.1.7)

Theorem 6.1 Suppose that Assumptions (6.1) - (6.3) hold. If the following

inequality is satisfied:

5M2
(
C2

1α
−2 + C2

2(2α)−1 + C2
3(2α)−1 + C4

)
< 1, (6.1.8)

where C4 = e−αTE
(∑m

k=1 ‖qk‖
2
H

)
, then the mild solution to Equation (6.1.1) is

mean square asymptotically stable.

Proof. Let B denote the Banach space of all bounded and mean square contin-

uous (c.f. definition of mean square continuity on Page 17) F0-adapted process

φ(t, ω) : [−r,∞)× Ω→ H equipped with the supremum norm

‖φ‖B := sup
t≥0

E‖φ(t)‖2
H for φ ∈ B.
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Denoted by S the complete metric space with the supremum metric consisting

of function φ ∈ B such that φ(t) = ϕ(t) for t ∈ [−r, 0] and E‖φ(t, ω)‖2
H → 0 as

t→∞.

Let the operator Φ : S → S be the operator defined by Φ(X)(t) = ϕ(t) for

t ∈ [−r, 0] and for t ≥ 0 defined as follows:

Φ(X)(t) := T (t)ϕ(0) +

∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

+

∫ t

0

T (t− s)G
(
s,X(s), X(s− ρ(s))

)
dWQ(s)

+

∫ t

0

∫
Z
T (t− s)

(
L(s,X(s− θ(s))), u

)
Ñ(ds, du)

+
∑

0<tk<t

T (t− s)Ik(X(t−k ))

:=
5∑
i=1

Ji(t). (6.1.9)

As mentioned in Luo (2008), in order to obtain asymptotic stability result, it

is enough to show that the operator Φ has a fixed point in S. To prove this

result, we use the contraction mapping principle. We first verify the mean square

continuity of Φ on [0,∞).

Let X ∈ S, u1 ≥ 0 and |r| be sufficiently small, then

E‖Φ(X)(u1 + r)− Φ(X)(u1)‖2
H ≤ 5

5∑
i=1

E‖Ji(u1 + r)− Ji(u1)‖2
H .

By the strongly continuous property of T (t) and Lebesgue’s dominated conver-

gence theorem, it can be easily obtained that E‖Ji(u1 + r)− Ji(u1)‖2
H → 0,

i = 1, 2, 3, 4, 5. Let us firstly verify the result for i = 1, we have

E‖J1(u1 + r)− J1(u1)‖2
H

= E‖T (u1 + r)ϕ(0)− T (u1)ϕ(0)‖2
H

= E‖T (u1)[T (r)− I]ϕ(0)‖2
H

→ 0 as r → 0.
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For i = 2, it can be shown that

E‖J2(u1 + r)− J2(u1)‖2
H

= E
∥∥∥∫ u1+r

0

T (u1 + r − s)F
(
s,X(s− δ(s))

)
ds

−
∫ u1

0

T (u1 − s)F
(
s,X(s− δ(s))

)
ds
∥∥∥2

H

= E
∥∥∥∫ u1

0

T (u1 + r − s)F (s,X
(
s− δ(s))

)
ds

+

∫ u1+r

u1

T (u1 + r − s)F
(
s,X(s− δ(s))

)
ds

−
∫ u1

0

T (u1 − s)F
(
s,X(s− δ(s))

)
ds
∥∥∥2

H

= E
∥∥∥∫ u1

0

[T (u1 + r − s)− T (u1 − s)]F
(
s,X(s− δ(s))

)
ds

+

∫ u1+r

u1

T (u1 + r − s)F (s,X
(
s− δ(s))

)
ds
∥∥∥2

H

≤ 2E
∫ u1

0

‖[T (u1 + r − s)− T (u1 − s)]F
(
s,X(s− δ(s))

)
‖2

H
ds

+2E
∫ u1+r

u1

‖T (u1 + r − s)F
(
s,X(s− δ(s))

)
‖2

H
ds

→ 0 as r → 0.

Moreover, for i = 3, by the Hölder inequality and the Burkholder-Davis-Gundy

inequality we have

E‖J3(u1 + r)− J3(u1)‖2
H

= E
∥∥∥∫ u1+r

0

T (u1 + r − s)G
(
s,X(s− ρ(s))

)
dWQ(s)

−
∫ u1

0

T (u1 − s)G
(
s,X(s− ρ(s))

)
dWQ(s)

∥∥∥2

H

≤ 2E
∥∥∥∥∫ u1

0

[T (u1 + r − s)− T (u1 − s)]G
(
s,X(s− ρ(s))

)
dWQ(s)

∥∥∥∥2

H

+ 2E
∥∥∥∥∫ u1+r

u1

T (u1 + r − s)G
(
s,X(s− ρ(s))

)
dWQ(s)

∥∥∥∥2

H
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≤ 2

∫ u1

0

E‖T [(u1 + r − s)− T (u1 − s)]G
(
s,X(s− ρ(s))

)
‖2

L02
ds

+ 2

∫ u1+r

u1

E‖T (u1 + r − s)G
(
s,X(s− ρ(s))

)
‖2

L02
ds

→ 0 as r → 0.

Similarly, for i = 4, we have

E‖J4(u1 + r)− J4(u1)‖2
H

= E
∥∥∥∫ u1+r

0

T (u1 + r − s)L
(
s,X(s− θ(s), u)

)
Ñ(ds, du)

−
∫ u1

0

T (u1 − s)L
(
s,X(s− θ(s), u)

)
Ñ(ds, du)

∥∥∥2

H

≤ 2E
∥∥∥∥∫ u1

0

∫
Z
[T (u1 + r − s)− T (u1 − s)]L

(
s,X(s− θ(s), u)

)
Ñ(ds, du)

∥∥∥∥2

H

+ 2E
∥∥∥∥∫ u1+r

0

∫
Z
T (u1 + r − s)L

(
s,X(s− θ(s), u)

)
Ñ(ds, du)

∥∥∥∥2

H

→ 0 as r → 0.

Finally, for i = 5 we deduce that

E‖J5(u1 + r)− J5(u1)‖2
H

=

∥∥∥∥ ∑
0<tk<t

T (u1 + r − tk)Ik(X(t−k ))−
∑

0<tk<t

T (u1 − tk)Ik(X(t−k ))

∥∥∥∥2

H

=

∥∥∥∥ ∑
0<tk<t

T (u1 − tk)[T (r)− I]Ik(X(t−k ))

∥∥∥∥2

H

→ 0 as r → 0.

Therefore,

E‖Ji(u1 + r)− Ji(u1)‖2
H → 0, i = 1, 2, 3, 4, 5, as r → 0,

which means Φ is mean square continuous on [0,∞).

Next, we show that Φ(S) ⊂ S, i.e. Φ maps S into S. Let X ∈ S, from (6.1.9)

we have that
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E‖(ΦX)(t)‖2
H ≤ 5E‖T (t)ϕ(0)‖2

H + 5E
∥∥∥∥∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

∥∥∥∥2

H

+ 5E
∥∥∥∥∫ t

0

T (t− s)G
(
s,X(s− ρ(s))

)
dWQ(s)

∥∥∥∥2

H

+ 5E
∥∥∥∥∫ t

0

∫
Z
T (t− s)L

(
s,X(s− δ(s), u)

)
Ñ(ds, du)

∥∥∥∥2

H

+ 5
∑

0<tk<t

E‖T (t− tk)Ik(X(t−k ))‖2

H . (6.1.10)

Now we estimate the terms on the right-hand side of (6.1.10). First using (6.1.3)

and (6.1.7) we get

5E‖T (t)ϕ(0)‖2
H ≤ 5M2e−2αt‖ϕ‖2

D → 0 as t→∞, (6.1.11)

and

5
∑

0<tk<t

E‖T (t− tk)Ik(X(t−k ))‖2

H

≤ 5M2e−2αt‖Ik(X(t−k ))‖2

H → 0 as t→∞. (6.1.12)

Second, using Hölder inequality, Assumption 6.1 and 6.2 yield

5E
∥∥∥∥∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

∥∥∥∥2

H

≤ E
[ ∫ t

0

‖T (t− s)F
(
s,X(s− δ(s))

)
‖
H
ds

]2

≤ E
[ ∫ t

0

Me−α(t−s)‖F
(
s,X(s− δ(s))

)
‖
H
ds

]2

≤ M2C2
1E
[ ∫ t

0

e−α(t−s)‖X(s)− δ(s)‖Hds
]2

= M2C2
1E
[ ∫ t

0

e−
1
2
α(t−s)e−

1
2
α(t−s)‖X(s)− δ(s)‖Hds

]2

≤ 5M2C2
1

[ ∫ t

0

e−α(t−s)ds

][ ∫ t

0

e−α(t−s)E‖X(s)− δ(s)‖2
Hds

]
≤ 5M2C2

1α
−1

∫ t

0

e−α(t−s)E‖X(s)− δ(s)‖2
Hds.

Since X(t) ∈ S, for any ε > 0 there exists a u1 > 0 such that E‖X(s− δ(s))‖2
H < ε
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for t ≥ u1. Thus we obtain

5E
∥∥∥∥∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

∥∥∥∥2

H

≤ 5M2C2
1α
−1

∫ u1

0

e−α(t−s)E‖X(s)− δ(s)‖2
Hds

+ 5M2C2
1α
−1

∫ t

u1

e−α(t−s)E‖X(s)− δ(s)‖2
Hds

≤ 5M2C2
1α
−1
(∫ u1

0

eαsE‖X(s)− δ(s)‖2
Hds

)
e−αt

+ 5M2C2
1α
−1

∫ t

u1

ε e−α(t−s)ds

≤ 5M2C2
1α
−1e−αt

∫ u1

0

eαsE‖X(s− δ(s))‖2
Hds+ 5M2C2

1α
−2ε.

As e−αt → 0 as t → ∞ and by condition (6.1.8) on Theorem 6.1, there exists

u2 ≥ u1 such that for any t ≥ u2 we have that

5M2C2
1α
−1e−αt

∫ u1

0

eαsE‖X(s− δ(s))‖2
Hds ≤ ε− 5M2C2

1α
−2ε.

Thus, we obtain for any t ≥ u2,

5E
∥∥∥∥∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

∥∥∥∥2

H

≤ ε.

That is to say,

5E
∥∥∥∥∫ t

0

T (t− s)F
(
s,X(s− δ(s))

)
ds

∥∥∥∥2

H

→ 0 as t→∞. (6.1.13)

Third, using Hölder inequality, Assumption 6.1 and 6.2 yield

5E
∥∥∥∥T (t− s)G

(
s,X(s− ρ(s))

)
dW (s)

∥∥∥∥2

H

≤ 5M2

∫ t

0

e−2α(t−s)E‖G
(
s,X(s− ρ(s))

)
‖2

L02
ds

≤ 5M2C2
2

∫ t

0

e−2α(t−s)E‖X(s− ρ(s))‖2
Hds.
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Similarly, it follows that

5E
∥∥∥∥∫ t

0

∫
Z
T (t− s)L

(
s,X(s− δ(s), u)

)
Ñ(ds, du)

∥∥∥∥2

H

≤ 5M2

∫ t

0

e−2α(t−s)E
∫
Z
‖L
(
s,X(s− δ(s), u)

)
‖2

H
λ(du)ds

≤ 5M2C2
3

∫ t

0

e−2α(t−s)E‖X(s− δ(s))‖2
Hds.

Thus, similar to the proof of (6.1.13), we have

5E
∥∥∥∥∫ t

0

T (t− s)G
(
s,X(s− ρ(s))

)
dWQ(s)

∥∥∥∥2

H

→ 0 as t→∞. (6.1.14)

and

5E
∥∥∥∥∫ t

0

∫
Z
T (t− s)L

(
s,X(s− θ, u)

)
Ñ(ds, du)

∥∥∥∥2

H

→ 0 as t→∞. (6.1.15)

Thus, from (6.1.11) through (6.1.15), we have that

E‖Φ(X)(t)‖2
H → 0 as t→∞. So, we conclude that Φ(S) ⊂ S.

Finally, we will show that the mapping Φ : S → S is contractive. For X, Y ∈

S, by (6.1.4), (6.1.5) and (6.1.6) we get

sup
t∈[0,T ]

E‖(ΦX)(t)− (ΦY )(t)‖2
H

≤ 4 sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

T (t− s)
[
F
(
s,X(s− δ(s))

)
− F

(
s, Y (s− δ(s))

)]
ds

∥∥∥∥2

H

+ 4 sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

T (t− s)
[
G
(
s,X(s− ρ(s))

)
−G

(
s, Y (s− ρ(s))

)]
dWQ(s)

∥∥∥∥2

H

+ 4 sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

∫
Z
T (t− s)

[
L
(
s,X(s− δ(s), u)

)
−L
(
s, Y (s− δ(s), u)

)]
Ñ(ds, du)

∥∥∥∥2

H

+ 4 sup
t∈[0,T ]

E
∑

0<tk<t

E‖T (t− tk)
(
Ik(X(t−k ))− Ik(Y (t−k ))

)
‖

2

H
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≤ 4M2C2
1α
−2

(
sup
t∈[0,T ]

E‖X(t)− Y (t)‖2
H

)
+ 4M2C2

2(2α)−1

(
sup
t∈[0,T ]

E‖X(t)− Y (t)‖2
H

)
+ 4M2C2

3(2α)−1

(
sup
t∈[0,T ]

E‖X(t)− Y (t)‖2
H

)
+ 4M2C4

(
sup
t∈[0,T ]

E‖X(t)− Y (t)‖2
H

)
≤ 4M2

[
C2

1α
−2 + (C2

2 + C2
3)(2α)−1 + C4

](
sup
t∈[0,T ]

E‖X(t)− Y (t)‖2
H

)
(6.1.16)

where

C4 = e−αTE
( m∑
k=1

‖qk‖2
H

)
.

Thus, by condition (6.1.8) it follows that the mapping Φ is contractive. Hence, by

the Banach fixed point theorem we have a fixed point X(t) of Φ which is a unique

solution to Equation (6.1.1) with X(s) = ϕ(s) on [−r, 0] such that E‖X(t)‖2
H → 0

as t→∞.

Next, we show that the solution X(t) is stable in mean square. For any fixed

positive real number ε, we can choose a δε ∈ (0, ε) satisfying

5M2(C2
1α
−2 + C2

2(2α)−1 + C2
3(2α)−1 + C4)ε < ε− 5M2δε.

Let X(t) = X(t, 0;ϕ) is a mild solution to Equation (6.1.1) with ‖ϕ‖2
D < δε. We

claim that E‖X(t)‖2
H < ε for all t ≥ 0. Notice that E‖X(t)‖2

H < ε on t ∈ [−r, 0].

If there exists a time t∗ > 0 such that E‖X(t∗)‖2
H = ε and E‖X(t)‖2

H < ε for

0 ≤ t < t∗, then it follows from (6.1.10) that

E‖X(t∗)‖2
H < 5M2e−2αt∗δε + 5M2(C2

1α
−2 +C2

2(2α)−1 +C2
3(2α)−1 +C4)ε < ε,

which contradicts the definition of t∗. Thus, since the mild solution is stable in

mean square, the mild solution of Equation (6.1.1) is mean square asymptotically
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stable if assumption in Theorem 6.1 hold. The proof is complete.

6.2 Asymptotic stability of stochastic retarded

evolution equations with jumps

6.2.1 Introduction

There exists a wide literature devoted to various problems of distributed param-

eter systems with time delays in infinite dimensional spaces. Particularly, in

control and approximation theory, it was found very convenient to choose the

state space in an appropriate product Hilbert space and then use semigroup the-

ory or variational method, which usually give a unified treatment of a variety of

parabolic, hyperbolic and functional differential equations.

For any fixed constant r > 0 and the Hilbert space H, we denote by L2
r =

L2([−r, 0];H) the usual Hilbert space of all H-valued equivalence classes of mea-

surable functions which are square integrable on [−r, 0]. LetH denote the Hilbert

space H × L2
r, with the norm

‖φ‖H =
√
‖φ0‖2

H + ‖φ1‖2
L2
r
, for all φ = (φ0, φ1) ∈ H.

Liu (2008) studied the fundamental problems of the following class of stochastic

retarded differential equations in Hilbert spaces. For any T > 0,

dy(t) = Ay(t)dt+ Fytdt+B(t)dWQ(t), t ∈ (0, T ],

y(0) = φ0, y0 = φ1, φ = (φ0, φ1) ∈ H.

where A is the infinitesimal generator of a strongly continuous semigroup T (t),
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t ≥ 0, on H. B(t) ∈ W([0, T ];L0
2), yt(θ) = y(t + θ), θ ∈ [−r, 0] and F :

L2([−r, 0];H)→ H is a linear, generally unbounded operator having the property

that F : C([−r, 0]);H) → H is bounded. Liu (2008) has constructed the fun-

damental solutions and established a stochastic version of variation of constants

formula of mild solutions to the above equations. Furthermore, Liu (2008) also

investigated the relations among strong, weak and mild solutions for infinite di-

mensional stochastic retarded systems and studied strong solution approximation

of mild solutions which was used to establish the Burkholder’s type of inequalities

of stochastic convolutions for linear stochastic retarded systems.

In recent years, stochastic differential equations driven by Poisson jumps is an

emerging field drawing attention from both theoretical and applied disciplines,

which has been successfully applied to problems in mechanics, economics, physics

and several fields in engineering (c.f. Bertoin (1996), Protter (2004), Applebaum

(2004) and references therein). Taking into account the Poisson jumps effect, we

intend to study the following class of stochastic retarded evolution equations with

Poisson jumps,

dx(t) = Ax(t)dt+ Fxt(t) +B(t, x(t))dWQ(t) +

∫
Z
L(t, x(t), u)Ñ(dt, du),

t ∈ (0, T ],

x(0) = φ0, x0 = φ1, φ = (φ0, φ1) ∈ H

The details of this equation are explained in Section 6.2.2.

We wish to adopt the theory of fundamental solutions which established in Liu

(2008), then construct a variation of constants formula of mild solution to our

equation. We shall investigate the mean square asymptotic stability of the equa-

tion which we are interested by using the method of fixed point theorem.

The rest of this section is organized as follows. In Section 6.2.2, we shall

give the statement of problem formulation and introduce some basic notations

and preliminaries. Section 6.2.3 is devoted to the topic of approximations of
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strong solutions. In Section 6.2.4, we shall establish a basic tool in stochastic

analysis, that is the Burkholder-Davis-Gundy’s inequality of stochastic convolu-

tions involving the Green’s operator. In Section 6.2.5, we shall study the mean

square asymptotic stability of stochastic retarded evolution equations with Pois-

son jumps by fixed point theorem.

6.2.2 Stochastic retarded evolution equations with jumps

The stochastic integral with respect toK-valuedQ-Wiener process {WQ(t), t ≥ 0}

and stochastic integral with respect to compensated Poisson random measure

Ñ(dt, du) are defined as in Section 2.2 and 2.3.

For any fixed constant r > 0 and the Hilbert space H, we denote by L2
r =

L2([−r, 0];H) the usual Hilbert space of all H-valued equivalence classes of mea-

surable functions which are square integrable on [−r, 0]. LetH denote the Hilbert

space H × L2
r, with the norm

‖φ‖H =
√
‖φ0‖2

H + ‖φ1‖2
L2
r
, for all φ = (φ0, φ1) ∈ H.

In this section, we consider the following stochastic retarded evolution equa-

tions with Poisson jumps: for any T > 0,

dx(t) = Ax(t)dt+ Fxt(t) +B(t, x(t))dWQ(t) +

∫
Z
L(t, x(t), u)Ñ(dt, du),

t ∈ (0, T ], (6.2.1)

x(0) = φ0, x0 = φ1, φ = (φ0, φ1) ∈ H

where A is the infinitesimal generator of a strongly continuous semigroup T (t)

or etA, t ≥ 0 on H. B : [0,∞] × H → L0
2(K,H), L : [0,∞] × H × Z → H

and F : L2([−r, 0] : H) → H is a bounded linear operator such that the map F

allows for a bounded linear extension F : L2([−r, T ];H)→ L2([0, T ;H]) which is

defined by (Fx)(t) = Fxt, x ∈ L2([0, T ];H) with xt(θ) := x(t+ θ). That is there
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exists a real number K > 0 such that∫ T

0

‖(Fx)(t)‖2
Hdt ≤ K

∫ T

−r
‖x(t)‖2

Hdt. (6.2.2)

for any x(t) ∈ L2([−r, T ];H).

The existence and uniqueness of mild solution to the corresponding determin-

istic system of Equation (6.2.1) have been studied in Liu (2008). Furthermore,

a strongly continuous one-parameter family of bounded linear operators which

will completely describe the corresponding deterministic systematical dynamics

with time delays was introduced. This family, which constitutes the fundamental

solutions (also called the Green’s operator G(t) ∈ L(H)) is applied subsequently

to defining mild solutions of the stochastic retarded differential equation (c.f. Liu

(2008) and Chapter 5, Section 5.2).

Let us firstly introduce the Green’s operator G(t). Let x(t, φ) be the mild

solution of the corresponding deterministic system of Equation (6.2.1). For any

h ∈ H, let φ0 = h, φ1(θ) = 0 for θ ∈ [−r, 0] and φ = (h, 0), we define the

fundamental solution G(t) of the corresponding deterministic system of Equation

(6.2.1) by

G(t)h =

 x(t, φ), t ≥ 0,

0, t < 0.
(6.2.3)

This relation implies that G(t) is a unique solution of

G(t) =

 T (t) +
∫ t

0
T (t− s)FG(s+ ·)ds, if t ≥ 0,

O, if t < 0.
(6.2.4)

where Gt(θ) = G(t+ θ), θ ∈ [−r, 0], and O denotes the null operator on H.

For simplicity, we denote x(t, φ) and xt(·, φ) by x(t) and xt(·) respectively, in

the sequel.

The following theorem from Liu (2008), Theorem 3.2 gives the variation of
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constants formula which describes the representation of mild solution to the cor-

responding deterministic system of Equation (6.2.1) by the fundamental solutions

G(t).

Theorem 6.2 Let φ = (φ0, φ1) ∈ H, then the solution of the corresponding

deterministic system of Equation (6.2.1) may be represented by

x(t) = G(t)φ0 +

∫ t

0

G(t− s)F ~φsds, t ≥ 0,

x(t) = φ1(t), t ∈ [−r, 0), (6.2.5)

where ~φ : [−r,∞)→ H is defined by

~φ(t) =

 φ1(t) if t ∈ [−r, 0],

0 if t ∈ (0,∞).
(6.2.6)

and ~φs = ~φ(s+ θ), θ ∈ [−r, 0].

Definition 6.4 (Strong solution) A stochastic process x(t), t ∈ [−r, T ], de-

fined on (Ω,F , {Ft},P) is called a strong solution of Equation (6.2.1) if

(i) x(t) ∈ D(A), 0 ≤ t ≤ T , almost surely and is adapted to Ft, t ∈ [0, T ];

(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, T ] and satisfies

x(t) = φ0 +

∫ t

0

[Ax(s) + Fxs]ds+

∫ t

0

B(s, x(s))dWQ(s)

+

∫ t

0

∫
Z
L(s, x(s), u)Ñ(ds, du)

x(0) = φ0, x0 = φ1, (6.2.7)

for arbitrary φ = (φ0, φ1) ∈ H and 0 ≤ t ≤ T almost surely.

Generally speaking, the above solution concept is too strong to include impor-

tant examples. The weaker one described below is more appropriate for practical

purposes. Adopting the solution concepts from Liu (2008), we give the following
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definition of mild solution of our stochastic retarded evolution equations with

jumps.

Definition 6.5 (Mild solution) A stochastic process x(t), t ∈ [−t, T ], defined

on (Ω,F , {Ft},P) is called a mild solution of Equation (6.2.1) if

(i) x(t) is adapted to Ft, t ∈ [0, T ] and for arbitrary 0 ≤ t ≤ T ,

P
{
ω :

∫ t

0

‖x(t, ω)‖2
Hds <∞

}
= 1;

(ii) x(t) ∈ H has càdlàg paths on t ∈ [0, T ] almost surely, for arbitrary 0 ≤ t ≤

T and φ ∈ H,

x(t) = G(t)φ0 +

∫ t

0

G(t− s) ~φsds+

∫ t

0

G(t− s)B(s, x(s))dWQ(s)

+

∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du) (6.2.8)

where ~φ is defined as in (6.2.6).

Proposition 6.1 Suppose that the following conditions hold:

(a) φ0 ∈ D(A) and φ1(θ) ∈ L2([−r, 0];H) for any θ ∈ [−r, 0];

(b) G(t − s)F ~φs ∈ D(A), G(t − s)B(x(s))k ∈ D(A), G(t − s)L(x(s), u) ∈ D(A)

for any k ∈ K, u ∈ K and almost all s ≤ t ∈ [0, T ];

(c) ‖AG(t− s) ~φs‖H ∈ L2([0, T ];H);

(d) ‖AG(t− s)B(s, x)‖2
L02
≤ z1(t− s)‖x‖2

D, z1(·) ∈  L2(0, T ;R+);

(e)
∫
Z ‖AG(t− s)L(s, x, u)‖2

Hλ(du) ≤ z2(t− s)‖x‖2
D, z2(·) ∈ L2(0, T ;R+).

Then a mild solution x(t) of Equation (6.2.1) is also a strong solution almost

surely.
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Proof. Suppose that x(t) = x(t, φ) is a mild solution of Equation (6.2.1), that

is, it satisfies the following variation of constants formula

x(t) = G(t)φ0 +

∫ t

0

G(t− s)F ~φsds+

∫ t

0

G(t− s)B(s, x(s))dWQ(s)

+

∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du).

It is not difficult to see that x(t) ∈ D(A) for any t ≥ 0 by the above conditions in

the theorem. By using the following proposition, Proposition 3.2 from Liu (2008)

which states that for h ∈ H and
∫ t

0
G(s)hds ∈ D(A) for almost all t ∈ R+, the

following holds:

A

∫ t

0

G(s)hds = G(s)h− h−
∫ t

0

FGshds, t ∈ R+, h ∈ H,

we can deduce that for the initial datum φ0 ∈ D(A) and φ1 ∈ L2([−r, 0];H),

A

∫ t

0

G(s)φ0ds = G(t)φ0 − φ0 −
∫ t

0

FGsφ0ds, (6.2.9)

and

A

∫ t

0

∫ s

0

G(s− v)F ~φvdvds

= A

∫ t

0

∫ t

u

G(s− v)F ~φvdsdv

=

∫ t

0

G(t− v)F ~φvdv −
∫ t

0

F ~φvdv −
∫ t

0

∫ s

0

FGs−vF ~φvdvds.

(6.2.10)

Note that G(t) = O for t < 0 and A is a closed operator. Using the standard

stochastic Fubini’s theorem (c.f. Theorem 4.18 in Da Prato and Zabczyk (1992)

and Applebaum (2006)), ones can deduce that
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A

∫ t

0

∫ s

0

G(s− v)B(s, x(s))dWQ(v)ds

=

∫ t

0

G(t− v)B(v, x(v))dWQ(v)−
∫ t

0

B(v, x(v))dWQ(v)

−
∫ t

0

∫ t

v

FGs−vB(v, x(v))dsdWQ(v)

=

∫ t

0

G(t− v)B(v, x(v))dWQ(v)−
∫ t

0

B(v, x(v))dWQ(v)

−
∫ t

0

∫ s

0

FGs−vB(v, x(v))dWQ(v)ds,

(6.2.11)

and

A

∫ t

0

∫ s

0

∫
Z
G(s− v)L(v, x(v), u)Ñ(dv, du)ds

= A

∫ t

0

∫ t

v

∫
Z
G(s− v)L(v, x(v), u)dsÑ(dv, du)

=

∫ t

0

∫
Z
G(t− v)L(v, x(v), u)Ñ(dv, du)−

∫ t

0

∫
Z
L(v, x(v), u)Ñ(dv, du)

−
∫ t

0

∫ s

0

∫
Z
FGs−vL(v, x(v), u)Ñ(dv, du)ds.

(6.2.12)

On the other hand, since x(t) is a mild solution of Equation (6.2.1), thus∫ t

0

Fxsds =

∫ t

0

FGsφ0ds+

∫ t

0

F ~φsds+

∫ t

0

∫ s

0

FGs−vF ~φvdvds

+

∫ t

0

∫ s

0

FGs−vB(v, x(v))dWQ(v)ds

+

∫ t

0

∫ s

0

∫
Z
FGs−vL(v, x(v), u)Ñ(dv, du)ds.

Therefore, by the closeness of A and (6.2.8), it follows that∫ t

0

[Ax(s) + Fxs]ds = A

∫ t

0

x(s)ds+

∫ t

0

Fxsds
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= A

∫ t

0

G(s)φ0ds+ A

∫ t

0

∫ s

0

G(s− v)F ~φvdvds

+A

∫ t

0

∫ s

0

G(s− v)B(v, x(v))dWQ(v)ds

+A

∫ t

0

∫ s

0

∫
Z
G(s− v)L(v, x(v), u)Ñ(dv, du)ds

+

∫ t

0

Fxsds (6.2.13)

which, together with (6.2.9)-(6.2.13), yields that∫ t

0

[Ax(s) + Fxs]ds

= G(t)φ0 − φ0 −
∫ t

0

FGsφ0ds

+

∫ t

0

G(t− v)F ~φvdv −
∫ t

0

F ~φvdv

−
∫ t

0

∫ s

0

FGt−sF ~φvdvds

+

∫ t

0

G(t− v)B(v, x(v))dWQ(v)−
∫ t

0

B(v, x(v))dWQ(v)

−
∫ t

0

∫ s

0

FGs−vB(v, x(v))dWQ(v)ds

+

∫ t

0

∫
Z
G(t− v)L(v, x(v), u)Ñ(dv, du)−

∫ t

0

∫
Z
L(v, x(v), u)Ñ(dv, du)

−
∫ t

0

∫ s

0

∫
Z
FGs−vL(v, x(v), u)Ñ(dv, du)ds

+

∫ t

0

FGsφ0ds+

∫ t

0

F ~φsds+

∫ t

0

∫ s

0

FGs−vF ~φvdvds

+

∫ t

0

∫ s

0

FGs−vB(v, x(v))dWQ(v)ds

+

∫ t

0

∫ s

0

∫
Z
FGs−vL(v, x(v), u)Ñ(dv, du)ds

= x(t)− φ0 −
∫ t

0

B(s, x(s))dWQ(s)−
∫ t

0

∫
Z
L(s, x(s), u)Ñ(ds, du).

Thus, the mild solution x(t) of Equation (6.2.1) is also a strong solution. The

proof is complete.

164



6.2.3 Approximation of strong solutions

In association with the Equation (6.2.1), we shall investigate in this section a

family of stochastic retarded evolution equations which have strong solutions

converging to the mild solutions of Equation (6.2.1). Firstly, we introduce a

closed linear operator 4(n,A, F ) on H from Liu (2008), which is defined by

4(n,A, F ) = nI − A− F (en·),

for each n ∈ C. Then the retarded resolvent set ρ(A,F ) is defined as the set of all

values n in C for which the operator 4(n,A, F ) has a bounded inverse, denoted

by R(n,A, F ), on H. Moreover, if R(n) > γ0, γ0 ∈ R, then n ∈ ρ(A,F ) and the

retarded resolvent R(n,A, F ) is given by the Laplace transform of G(t):

R(n,A, F ) =

∫ ∞
0

e−ntG(t)dt. (6.2.14)

To this end, we introduce an approximation system of Equation (6.2.1) as follows:

x(t) =

∫ t

0

[Ax(s) + Fxs]ds+

∫ t

0

R(n)B(s, x(s))dWQ(s)

+

∫ t

0

∫
Z
R(n)L(s, x(s), u)Ñ(ds, du), t ∈ [0, T ],

x(0) = R(n)φ0, x(t) = R(n)φ1(t), t ∈ [−r, 0), φ ∈ H, (6.2.15)

where n ∈ ρ(A,F ), the resolvent set of the pair (A,F ) and R(n) := nR(n,A, F ),

R(n,A, F ) is the retarded resolvent of A. Recall that ‖etA‖ ≤ Meµt, µ ∈ R, for

all t ≥ 0. Then it can be shown by (6.2.14) that ‖R(n)‖ ≤ 2M when n is large

enough and

R(n)
s−→ I as n→∞. (6.2.16)

Denote by M2
λ([0, T ]×Z;H) the space of H-valued mappings L(t, u), progres-
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sively measurable with respect to {Ft}t≥0 such that

E
{∫ T

0

∫
Z
‖L(t, u)‖2

Hλ(du)dt

}
<∞. (6.2.17)

Proposition 6.2 Let φ = (φ0, φ1) ∈ H and L(t, u) ∈ M2
λ([0, T ] × Z;H). Then,

for each n ∈ ρ(A,F ), the stochastic retarded differential equation (6.2.15) has a

unique strong solution xn(t) ∈ D(A), which has almost surely continuous paths,

such that for arbitrary t ∈ [0, T ], xn(t) → x(t), the mild solution of (6.2.1), in

mean square sense as n→∞.

Proof. Recall Proposition 3.2 from Liu (2008), G(t) acquires the following

strongly differentiable properties:

d

dt
G(t)h = AG(t)h+ FGth = G(t)Ah+GtFh, (6.2.18)

for h ∈ D(A) and G(t)h ∈ D(A) for almost all t ∈ R+. The existence of a

unique strong solution xn(t) of Equation (6.2.15) is an immediate consequence of

Proposition 6.1, (6.2.18) and the fact that

AR(n) = n2R(n,A, F )− nI − F (en·)R(n) ∈ L(H), ∀n ∈ ρ(A,F ).

To prove the remainder of the proposition, note that for any t ∈ [0, T ],

x(t)− xn(t)

= G(t)[φ0 −R(n)φ0] +

∫ t

0

G(t− s)[F ~φs − F ~φns ]ds

+

∫ t

0

G(t− s)[B(s, x(s))−R(n)B(s, x(s))]dWQ(s)

+

∫ t

0

∫
Z
G(t− s)[L(s, x(s), u)−R(n)L(s, x(s), u)]Ñ(ds, du)

(6.2.19)

where ~φns = R(n)~φs. This immediately yields that for any t ∈ [0, T ],
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E‖x(t)− xn(t)‖2
H

≤ 42

{
E‖G(t)[φ0 −R(n)φ0]‖2

H + E
∥∥∥∥∫ t

0

G(t− s)[F ~φs − F ~φns ]ds

∥∥∥∥2

H

+E
∥∥∥∥∫ t

0

G(t− s)[I −R(n)]B(s, x(s))dWQ(s)

∥∥∥∥2

H

+E
∥∥∥∥∫ t

0

∫
Z
G(t− s)[I −R(n)]L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

}
:= 16[I1 + I2 + I3 + I4]. (6.2.20)

Note that G(t) ≤ C eγt, γ ∈ R and (6.2.16), we can deduce that for any t ∈ [0, T ],

I1 = E‖G(t)[φ0 −R(n)φ0]‖2
H

≤ C2e2γT‖[I −R(n)]φ0‖2
H → 0 as n→∞. (6.2.21)

By using the Hölder inequality, dominated convergence theorem and (6.2.2), we

can obtain that for any t ∈ [0, T ],

I2 = E
∥∥∥∥∫ t

0

G(t− s)[F ~φs − F ~φns ]ds

∥∥∥∥2

H

≤ C2e2γTK

∫ 0

−r
‖[I −R(n)]φ1(θ)‖2

Hdθ → 0 as n→∞. (6.2.22)

for some constant K > 0. On the other hand, by virtue of the definition of

stochastic integrals and dominated convergence theorem, we have that for any

t ∈ [0, T ],

I3 = E
∥∥∥∥∫ t

0

G(t− s)[I −R(n)]B(s, x(s))dWQ(s)

∥∥∥∥2

H

≤ C2e2γT

∫ T

0

E‖[I −R(n)]B(s, x(s))‖2
L02
ds→ 0, as n→∞.

(6.2.23)
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Similarly,

I4 = E
∥∥∥∥∫ t

0

∫
Z
G(t− s)[I −R(n)L(s, x(s), u)]Ñ(ds, du)

∥∥∥∥2

H

≤ E
∫ t

0

∫
Z
‖G(t− s)[I −R(n)]L(s, x(s), u)Ñ(ds, du)‖

2

H

≤ C2e2γT E
∫ T

0

∫
Z
‖[I −R(n)]L(s, x(s), u)‖2

Hλ(du)ds→ 0, as n→∞.

(6.2.24)

Combining (6.2.21), (6.2.22), (6.2.23) and (6.2.24), it is to deduce that

E‖x(t)− xn(t)‖2
H → 0 as n→∞. The proof is now complete.

6.2.4 Burkholder-Davis-Gundy’s inequality

We shall derive a retarded version of the classical Burkholder-Davis-Gundy’s in-

equality for the stochastic convolution

W Ñ
G =

∫ t

0

∫
Z
G(t− s)L(s, u)Ñ(ds, du).

We impose the following assumptions:

Assumption 6.4 A : D(A) ⊂ H → H is the infinitesimal generator of a C0-

semigroup T (t), t ≥ 0, on H such that

〈Ah, h〉H ≤ α‖h‖2
H , ∀h ∈ D(A),

for some constant α ∈ R+.

Assumption 6.5 For any x(t) ∈ L2([−r, T ];H), there exists some constant K >

0 such that∫ T

0

‖Fxt‖2
H dt ≤ K

∫ T

−r
‖x(t)‖2

H .
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Theorem 6.3 Suppose that Assumption 6.4 and 6.5 hold, and there exists a

number δ > 0 such that∫
Z
‖L(ξ, u)− L(η, u)‖2

H λ(du) ≤ δ‖ξ − η‖2
H , (6.2.25)

then for any L(·, ·) ∈M2
λ([0, T ]×Z;H), there exists some positive constant Cα,T,K,

dependent on α, T and K, such that

E
[

sup
0≤t≤T

∥∥∥∥∫ t

0

∫
Z
G(t− s)L(s, u)Ñ(ds, du)

∥∥∥∥2

H

]
≤ Cα,T,K E

∫ T

0

∫
Z
‖L(s, u)‖2

H dsλ(du). (6.2.26)

Proof. Step 1: We first suppose that L(t, u) ∈ M2
λ([0, T ] × Z;D(A)), and x(t)

is a strong solution of the following equation

x(t) =

∫ t

0

[Ay(s) + Fxs] ds+

∫ t

0

∫
Z
L(s, u)Ñ(ds, du), t > 0, (6.2.27)

with x(t) = 0 for t ∈ [−r, 0]. By applying Itô’s formula to the function ‖h‖2
H ,

h ∈ H, and the strong solution x(t) of Equation (6.2.27), we obtain that

‖x(t)‖2
H = 2

∫ t

0

〈Ay(s) + Fxs, x(s)〉H ds+

∫ t

0

∫
Z
‖L(s, u)‖2

H λ(du)ds

+

∫ t

0

∫
Z
[2〈x(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du), (6.2.28)

by using Assumption 6.4 and 6.5 yields that

‖x(t)‖2
H ≤ 2α

∫ t

0

‖x(s)‖2
Hds+

∫ t

0

‖x(s)‖2
Hds+

∫ t

0

‖xs‖2
Hds

+

∫ t

0

∫
Z
‖L(s, u)‖2

H λ(du)ds

+

∫ t

0

∫
Z
[2〈x(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du)

≤ (2α + 1 +K)

∫ t

0

‖x(s)‖2
Hds+

∫ t

0

∫
Z
‖L(s, u)‖2

H λ(dy)ds

+

∫ t

0

∫
Z
[2〈x(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du).

(6.2.29)
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Let us denote

M(t) :=

∫ t

0

∫
Z
[2〈x(s−), L(s, u)〉H + ‖L(s, u)‖2

H ]Ñ(ds, du)

and [M(t)] the corresponding quadratic variation.

By Burkholder-Davis-Gundy inequality (c.f. Protter (2004), Theorem 48), it

follows that there is a constant C̄ > 0 such that

E
(

sup
0≤s≤t

‖M(s)‖2
H

)
≤ C̄ E[M(t)]

1
2 . (6.2.30)

In what follows, we compute

[M(t)]
1
2 =

{ ∑
s∈Dp,0≤s≤t

(2〈x(s), L(s, p(s))〉H + ‖L(s, p(s))‖2
H)2

} 1
2

≤
√

2

{ ∑
s∈Dp,0≤s≤t

‖L(s, p(s))‖4
H

} 1
2

+ 2
√

2

{ ∑
s∈Dp,0≤s≤t

‖x(s)‖2
H‖L(s, p(s))‖2

H

} 1
2

≤
√

2
∑

s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H

+ 2
√

2 sup
0≤s≤t

‖x(s)‖H

{ ∑
s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H

} 1
2

≤ 1

2C̄
sup

0≤s≤t
‖x(s)‖2

H + (
√

2 + 4C̄)
∑

s∈Dp,0≤s≤t

‖L(s, p(s))‖2
H ,

(6.2.31)

where C̄ is the positive constant appearing in the right-hand side of (6.2.30).
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Consequently,

E
(

sup
0≤t≤T

‖x(t)‖2
H

)
≤ 2(2α + 1 +K)E

∫ T

0

‖x(t)‖2
Hdt

+2[1 + (
√

2 + 4C̄)C̄]E
∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt

≤ 2(2α + 1 +K)

∫ T

0

E
(

sup
0≤s≤t

‖x(s)‖2
H

)
dt

+2[1 + (
√

2 + 4C̄)C̄]E
∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt (6.2.32)

which, combining with Gronwall’s inequality, immediately implies that

E
(

sup
0≤t≤T

‖x(t)‖2
H

)
≤ Cα,T,K E

∫ T

0

∫
Z
‖L(t, u)‖2

H λ(du)dt,

where

Cα,T,K = 2[1 + (
√

2 + 4C̄)C̄]e2(2α+1+K)T > 0.

Step 2: In the general case that x(t) is a mild solution of the Equation

(6.2.27), let Ln(t, u) = nR(n,A, F ) where R(n,A, F ), n ∈ ρ(A,F ), is the retarded

resolvent of A. Define

xn(t) =

∫ t

0

∫
Z
G(t− s)Ln(s, u)Ñ(ds, du), t ∈ (0, T ],

it is obvious that xn(t), together with xn(t) = 0 for t ∈ [−r, 0], is a strong solution

of

x(t) =

∫
[Ax(s) + Fxs]ds+

∫ t

0

∫
Z
Ln(s, u)Ñ(ds, du), t ∈ (0, T ],

with x(t) = 0 for t ∈ [−r, 0]. Moreover, by virtue of Proposition 6.2 we know

that xn(t) → x(t) in L2(Ω,F ,P;H) for any t ∈ [0, T ] as n → ∞. Now we can

apply (6.2.26) to the difference xn(t)−xm(t) with L(·, ·) replaced by the difference
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Ln − Lm from which we deduce that

E
(

sup
0≤t≤T

‖x(t)− xn(t)‖2
H

)
→ 0, as n→∞,

hence (6.2.26) is true for any such a L ∈ M2
λ([0, T ] × Z,D(A)) in the theorem.

The proof is now complete.

6.2.5 Asymptotic stability

In this section, we shall formulate and prove the conditions for the asymptotic

stability in mean square of mild solutions to Equation (6.2.1) by using a fixed

point approach. To prove the result, on the functions B and L we impose some

Lipschitz and linear growth conditions. Also for the purpose of stability, we shall

assume that B(t, 0) = 0 and
∫
Z L(t, 0, u)Ñ(ds, du) = 0. Then Equation (6.2.1)

has a trivial solution when x0 = φ1 = 0 and x(0) = φ0 = 0.

We impose the following assumptions:

Assumption 6.6 G(t), t ≥ 0, the strongly continuous one-parameter family of

bounded linear operator satisfies that ‖G(t)‖H ≤Me−αt, t ≥ 0 for some constants

M ≥ 1 and 0 < α ∈ R+.

Assumption 6.7 The functions B and L satisfy the Lipschitz condition and

there exists constants C1 and C2 for every t ≥ 0 and x, y ∈ H such that

‖B(t, x)−B(t, y)‖2
H ≤ C1‖x− y‖2

H ,∫
Z
‖L(t, x, u)− L(t, y, u)‖2

Hλ(du) ≤ C2‖x− y‖2
H

Theorem 6.4 Suppose that Assumption 6.6 and 6.7 hold. If the following in-

equality is satisfied:

4M2(C2
1(2a)−1 + C2

2(2a)−1) < 1, (6.2.33)
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then the mild solution to Equation (6.2.1) is mean square asymptotically stable.

Proof. Let B denote the Banach space of all bounded and mean square continu-

ous F0-adapted process ϕ(t, ω) : [−r, T )× Ω→ H equipped with the supremum

norm

‖ϕ‖B := sup
t≥0

E‖ϕ(t)‖2
H for ϕ ∈ B.

Denoted by S the complete metric space with the supremum metric consisting

of function ϕ ∈ B such that ϕ(t) = φ1(t) for t ∈ [−r, 0] and E‖ϕ(t, ω)‖2
H → 0 as

t→∞.

Let the operator Φ : S → S be the operator defined by Φ(x)(t) = φ1(t) for

t ∈ [−r, 0] and for t ≥ 0 defined as follows:

Φ(x)(t) := G(t)φ0 +

∫ t

0

G(t− s)F ~φsds+

∫ t

0

G(t− s)B(s, x(s))dWQ(s)

+

∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du)

:=
4∑
i=1

Ji(t). (6.2.34)

We first verify the mean square continuity of Φ on [0,∞). Let x ∈ S, t1 ≥ 0 and

|r| be sufficiently small, then

E‖Φ(x)(t1 + r)− Φ(x)(t1)‖2
H ≤ 4

4∑
i=1

E‖Ji(t1 + r)− Ji(t1)‖2
H .

By the strongly continuous property of G(t) and Lebesgue’s dominated conver-

gence theorem, it can be obtained that E‖Ji(t+ r)− Ji(t1)‖2
H → 0, i = 1, 2, 3, 4.

The case for i = 1 is obvious.

For i = 2, it can be shown that

E‖J2(t1 + r)− J2(t1)‖2
H

= E
∥∥∥∥∫ t1+r

0

G(t1 + r − s)F ~φsds−
∫ t1

0

G(t1 − s)F ~φsds
∥∥∥∥2

H
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= E
∥∥∥∫ t1

0

G(t1 + r − s)F ~φsds+

∫ t1+r

t1

G(t1 + r − s)F ~φsds

−
∫ t1

0

G(t1 − s)F ~φsds
∥∥∥2

H

= E
∥∥∥∫ t1

0

[G(t1 + r − s)−G(t1 − s)]F ~φsds

+

∫ t1+r

t1

G(t1 + r − s)F ~φsds
∥∥∥2

H

≤ 2E
∫ t1

0

‖[G(t1 + r − s)−G(t1 − s)]F ~φs‖
2

Hds

+2E
∫ t1+r

t1

‖G(t1 + r − s)F ~φs‖
2

Hds

→ 0 as r → 0.

Furthermore, for i = 3, by the Hölder inequality an the Burkholder-Davis-Gundy

inequality we have we deduce that

E‖J3(t1 + r)− J3(t1)‖2
H

= E
∥∥∥∥∫ t1+r

0

G(t1 + r − s)B(s, x(s))dWQ(s)−
∫ t1

0

G(t1 − s)B(s, x(s))dWQ(s)
)∥∥∥∥2

H

= E
∥∥∥∫ t1

0

G(t1 + r − s)B(s, x(s))dWQ(s) +

∫ t1+r

t1

G(t1 + r − s)B(s, x(s))dWQ(s)

−
∫ t1

0

G(t1 − s)B(s, x(s))dWQ(s)
∥∥∥2

H

≤ 2E
∥∥∥∥∫ t1

0

[G(t1 + r − s)−G(t1 − s)]B(s, x(s))dWQ(s)

∥∥∥∥2

H

+ 2E
∥∥∥∥∫ t1+r

t1

G(t1 + r − s)B(s, x(s))dWQ(s)

∥∥∥∥2

H

≤ 2

∫ t1

0

E‖[G(t1 + r − s)−G(t1 − s)B(s, x(s))]‖2
L02
ds

+ 2

∫ t1+r

t1

E‖G(t1 + r − s)B(s, x(s))‖2
L02
ds

→ 0 as r → 0.
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Similarly, for i = 4, we get

E‖J4(t1 + r)− J4(t1)‖2
H

= E
∥∥∥∫ t1+r

0

G(t1 + r − s)L(s, x(s), u)Ñ(ds, du)

−
∫ t1

0

G(t1 − s)L(s, x(s), u)Ñ(ds, du)
∥∥∥2

H

≤ 2E
∥∥∥∥∫ t1

0

∫
Z
[G(t1 + r − s)−G(t1 − s)]L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

+ 2E
∥∥∥∥∫ t1+r

0

∫
Z
G(t1 + r − s)L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

≤ 2

∫ t1

0

∫
Z
E‖[G(t1 + r − s)−G(t1 − s)]L(s, x(s), u)‖2

Hλ(du)ds

+ 2

∫ t1+r

t1

∫
Z
E‖G(t1 + r − s)L(s, x(s), u)‖2

Hλ(du)ds

→ 0 as r → 0.

Therefore,

E‖Ji(t1 + r)− Ji(t1)‖2
H → 0, i = 1, 2, 3, 4, as r → 0,

which means Φ is mean square continuous on [0,∞).

Next, we show that Φ(S) ⊂ S. Let x ∈ S, from (6.2.34) we have that

E‖Φ(x)(t)‖2
H ≤ 4E‖G(t)φ0‖2

H + 4E
∫ t

0

‖G(t− s)F ~φs‖
2

Hds

+ 4E
∥∥∥∥∫ t

0

G(t− s)B(s, x(s))dWQ(s)

∥∥∥∥2

H

+ 4E
∥∥∥∥∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

.

(6.2.35)

Now we estimate the terms on the right-hand side of (6.2.35). First, using As-

sumption 6.6 and 6.7 we get

4E‖G(t)φ0‖2
H ≤ 4M2e−2αt‖φ0‖2

H → 0 as t→∞, (6.2.36)
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Second, using Hölder inequality yields that

4E
∥∥∥∥∫ t

0

G(t− s)F ~φs
∥∥∥∥2

H

≤ 4M2K2

∫ t

0

e−α(t−s)ds

∫ t

0

e−α(t−s)E‖ ~φs‖
2

Hds

≤ 4M2K2α−1

∫ t

0

e−α(t−s)E‖ ~φs‖
2

Hds. (6.2.37)

For any x(t) ∈ S and any ε > 0 there exists a t1 > 0 such that E‖ ~φs‖
2

H < ε for

t ≥ t1. Thus from (6.2.37) we obtain

4E
∥∥∥∥∫ t

0

G(t− s)F ~φsds
∥∥∥∥2

H

≤ 4M2K2α−1e−αt
∫ t1

0

eαsE‖ ~φs‖
2

Hds+ 4M2L2α−1ε. (6.2.38)

As e−αt → 0 as t → ∞ and by assumption (6.2.33) in Theorem 6.4, there exists

t2 ≥ t1 such that for any t ≥ t2 we obtain

4M2L2α−1e−αt
∫ t1

0

eαsE‖ ~φs‖
2

Hds ≤ ε− 4M2L2α−1ε. (6.2.39)

Thus, from (6.2.38) and (6.2.39) we obtain for any t ≥ t2,

4E
∥∥∥∥∫ t

0

G(t− s)F ~φsds
∥∥∥∥2

H

≤ ε.

That is to say,

4E
∥∥∥∥∫ t

0

G(t− s)F ~φsds
∥∥∥∥2

H

→ 0 as t→∞. (6.2.40)

Third, using Hölder inequality and Assumption 6.6 and 6.7 yield

4E
∥∥∥∥G(t− s)B(s, x(s))dWQ(s)

∥∥∥∥2

H

≤ 4M2C2
1

∫ t

0

e−2α(t−s)E‖B(s, x(s))‖2
L02
ds. (6.2.41)

176



Similarly, it follows that

4E
∥∥∥∥∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

≤ 4M2C2
2

∫ t

0

e−2α(t−s)E‖L(s, x(s), u)‖2
Hλ(du)ds

Further, similar to the proof of (6.2.40), from (6.2.41) we get

4E
∥∥∥∥∫ t

0

G(t− s)B(s, x(s))dWQ(s)

∥∥∥∥2

H

→ 0 as t→∞. (6.2.42)

and

E
∥∥∥∥∫ t

0

∫
Z
G(t− s)L(s, x(s), u)Ñ(ds, du)

∥∥∥∥2

H

→ 0 as t→∞. (6.2.43)

Thus, using (6.2.36), (6.2.40), (6.2.42) and (6.2.43), we have E‖Φ(x)(t)‖2
H → 0

as t→∞. So we conclude that Φ(S) ⊂ S.

Finally, we will show that the mapping Φ : S → S is contractive. For x, y ∈ S,

by Assumption 6.7 we get

sup
s∈[0,T ]

E‖(Φx)(t)− (Φy)(t)‖2
H

≤ 2 sup
s∈[0,T ]

∥∥∥∥∫ t

0

G(t− s)[B(s, x(s))−B(s, y(s))]dWQ(s)

∥∥∥∥2

H

+2 sup
s∈[0,T ]

∥∥∥∥∫ t

0

∫
Z
G(t− s)[L(s, x(s), u)− L(s, y(s), u)]Ñ(ds, du)

∥∥∥∥2

H

≤ [2M(C2
1(2a)−1 + C2

2(2a)−1)]
(

sup
s∈[0,T ]

E‖x(t)− y(t)‖2
H

)
. (6.2.44)

Next, we show that the solution x(t) is stable in mean square. For any fixed

positive real number ε, we can choose a δε ∈ (0, ε) satisfying

4M2(C2
1(2a)−1 + C2

2(2a)−1)ε < ε− 4M2δε.

Let x(t) = x(t, 0;ϕ) is a mild solution to Equation (6.2.1) with ‖ϕ‖2
H < δε. We

claim that E‖X(t)‖2
H < ε for all t ≥ 0. Notice that E‖X(t)‖2

H < ε on t ∈ [−r, 0].

If there exists a time t∗ > 0 such that E‖X(t∗)‖2
H = ε and E‖X(t)‖2

H < ε for
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0 ≤ t < t∗, then it follows from (6.2.35) that

E‖X(t∗)‖2
H < 4M2e−2αt∗δε + 4M2C2

1(2a)−1 + 4M2C2
2(2a)−1)ε < ε,

which contradicts the definition of t∗. Thus, since the mild solution is stable in

mean square, the mild solution of Equation (6.2.1) is mean square asymptotically

stable if assumption in Theorem 6.4 hold. The proof is complete.

6.3 Conclusion

To sum up, in this chapter, we have focussed on the mean square asymptotic

stability of impulsive stochastic partial delay differential equations with Poisson

jumps and stochastic retarded evolution equations with Poisson jumps. Since

the Lyapunov direct method has some difficulties with the theory and applica-

tion to specific problems when discussing the asymptotic behavior of solutions in

stochastic differential equations, we adopt the fixed point theory which recently

has been successfully applied in Sakthivel and Luo (2009a,b), in order to obtain

the desire asymptotic stability results under some suitable conditions. It should

be pointed out that for the impulsive stochastic partial delay differential equa-

tions with Poisson jumps, we do not require the monotone decreasing behavior

of the delays (i.e. δ′(t) ≤ 0, ρ′(t) ≤ 0 and θ′(t) ≤ 0, ∀ t ≥ 0) when obtaining the

asymptotic stability. Furthermore, in Section 6.2.4, we have derived a retarded

version of the classical Burkholder-Davis-Gundy’s inequality for the stochastic

convolution involving the Green’s operator, which plays an important role in

the study of asymptotic stability of stochastic retarded evolution equations with

jumps.
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Chapter 7

General Conclusion

We have studied and analyzed five different stochastic models: stochastic delay

differential equations with Poisson jumps, stochastic partial differential equations

with Markovian switching and Poisson jumps, stochastic neutral functional dif-

ferential equations, impulsive stochastic partial delay differential equations with

Poisson jumps and stochastic retarded evolution equations with Poisson jumps.

In Chapter 3, we have studied the stability of mild solutions to stochastic

delay differential equations with Poisson jumps. We have showed by using the

strong solution approximation and by constructing a metric between transition

probability of mild solutions, the stability in distribution of mild solutions can

be obtained under some suitable conditions. The results of stability in distri-

bution have been obtained under some different criteria compares to the study

of some other types of equations in Basak et al. (1996), Yuan and Mao (2003)

and Bao et al. (2010, 2009b). In contrast with Basak et al. (1996) and Yuan

and Mao (2003), we have studied this stability result in the case of infinite di-

mensions, which is more complicated. Comparing to Bao et al. (2010, 2009b),

we have studied a more general type of equations which includes Poisson jumps

with a slightly different form of delay term. Furthermore, we have improved the

sufficient conditions (Assumption 3.2) for the stability in distribution of mild solu-
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tions by improving the estimations of Burkholder type of inequality for stochastic

convolution driven by compensated Poisson random measures in Lemma 3.1.

In Chapter 4, we have studied the exponential stability and almost sure ex-

ponential stability of energy solutions to stochastic partial differential equations

with Markovian switching and Poisson jumps. Taniguchi (2007) firstly studied

the exponential stability and almost sure exponential stability of energy solu-

tions to stochastic delay differential equations with finite delays. Defining the

energy solution (c.f. Theorem 4.1) in the same way as in Taniguchi (2007), we

have showed the existence and uniqueness of energy solutions together with the

stochastic energy equality in Theorem 4.1. It is worth noting that the stochastic

energy equality (4.3.3) has played an key role in the study of exponential stability

of our equations. By estimating the coefficients in the stochastic energy equality,

we have derived the desired stability results. At last, comparing to Taniguchi

(2007), Wan and Duan (2008) and Hou et al. (2010), we have improved the ex-

isting result to cover a more general class of stochastic partial delay differentia

equations in Theorem 4.2 and 4.3. Moreover, unlike in Taniguchi (2007), we do

not require the functions in the delay terms to be differentiable.

In Chapter 5, we have discussed the relationship among strong, weak and

mild solutions to a stochastic functional differential equations of neutral type.

Both fundamental solutions and variation of constants formula of mild solutions

are introduced in the same way as in Liu (2008, 2009). We have extended the

deterministic neutral systems in Liu (2009) to the stochastic systems driven by

Wiener processes. By using the fundamental solutions (Green’s operator), the

mild solutions can be represented by the variation of constants formula (5.3.5).

Hence we have showed the strong solution actually is a mild one in Theorem 5.1;

the weak solution can be represented by the variation of constants formula of

mild solutions in Proposition 5.1; and the mild solution is a strong one under

some conditions in Theorem 5.2.
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Finally, in Chapter 6, we have obtained the mean square asymptotic stability

of two types of equations, impulsive stochastic delay differential equations with

Poisson jumps and stochastic retarded evolution equations with Poisson jumps by

using fixed point theorem under some suitable criteria. It is worth pointing out

that the use of fixed point theorem method is quite concise (c.f. Luo (2007, 2008)

and Luo and Taniguchi (2009)). We have generalized the results in Luo (2007) to

a class of impulsive stochastic delay differential equations with Poisson jumps. In

many applications, due to the complex random nature of situation, the stochas-

tic problem should be considered in a stochastic integro-differential framework.

Such stochastic integro-differential equations allow some long-range dependence

of the noise, hence they are more general type of equations. It is important

to note that one can easily prove that by adopting and employing the method

used in Theorem 6.1, impulsive stochastic integro-differential equations are mean

squared asymptotically stable. In addition, in the study of stochastic retarded

evolution equations with Poisson jumps, an approximation of strong solutions has

been established in Section 6.2.3 and consequently, a retarded Burkholder-Davis-

Gundy’s inequality for the stochastic convolution involving the Green’s operator

W Ñ
G =

∫ t
0

∫
ZG(t− s)L(s, u)Ñ(ds, du) has been derived (c.f. Section 6.2.4).
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J. Bertoin. Lévy processes. Cambridge University Press, Cambridge, 1996.

B. Boufoussi and S. Hajji. Successive approximation of neutral functional stochas-

tic differential equations in Hilbert spaces. Ann. Math. Blaise Pascal, 17(1):

183–197, 2010a.

B. Boufoussi and S. Hajji. Successive approximation of neutral functional stochas-

tic differential equations with jumps. Statist. Probab. Lett., 80(5-6):324–332,

2010b.

E. K. Boukas and Z. K. Liu. Deterministic and stochastic time delay systems.
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