33 research outputs found

    Impact of Correlation and Pointing Error on Secure Outage Performance over Arbitrary Correlated Nakagami Turbulent Fading Mixed RF-FSO Channel

    Get PDF
    Funding Information: Manuscript received September 8, 2020; revised February 11, 2021; accepted February 14, 2021. Date of publication February 16, 2021; date of current version March 10, 2021. This research was supported in part by the National Research Foundation of Korea grant funded by the Korean government (Ministry of Science and ICT; 2019R1A2C1083988), in part by the Ministry of Science and ICT, Korea, under the Information Technology Research Center support program (IITP-2020-2016-0-00313) supervised by the Institute for Information & Communications Technology Planning & Evaluation, and in part by Sejong University through its faculty research program (20212023). (Sheikh Habibul Islam, A. S. M. Badrud-duza, and S. M. R. Islam contributed equally to this work and co-first authors.) Corresponding authors: A. S. M. Badrudduza; Heejung Yu (e-mail: [email protected]; [email protected]).)Peer reviewedPublisher PD

    MIMO techniques for higher data rate wireless communications

    Get PDF
    The demand for higher data rate, higher spectral efficiency and better quality of service in wireless communications is growing fast in the past few years. However, obtaining these requirements become challenging for wireless communication systems due to the problems of channel multi-path fading, higher power loss and power bandwidth limitations. A lot of research interest has been directed towards implementing new techniques in wireless communication systems, such as MIMO an OFDM, to overcome the above mentioned problems. Methods of achieving higher data rate and better spectral efficiency have been dealt with in the thesis. The work comprised three parts; the first part focuses on channel modelling, the second looks at fading mitigation techniques, and the third part deals with adaptive transmission schemes for different diversity techniques. In the first part, we present multiple-input multiple-output (MIMO) space-time geometrical channel model with hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment. The model is based on one-ring scattering assumption. This MIMO model provides statistics of the time of arrival (TOA) and direction of arrival (DOA). Our analytical results are validated with measurement data and compared to different geometrical based signal bounce macro-cell (GBSSBM) channel models including Gaussian scatterer density (GSD) channel model, the geometrical based exponential (GBE) channel model. On the other hand, for the same channel model we investigate the analytical methods which capture physical wave and antenna configuration at both ends representing in a matrix form. In the second part, we investigate the proposed channel model using joint frequency and spatial diversity system. . We combine STBC with OFDM to improve the error performance in the fading channels. We consider two different fading scenarios namely frequency selective and time selective fading channels. For the first scenario we propose a new technique to suppress the frequency error offset caused by the motion of mobile (Doppler shift). On the other hand, we examine the performance of STBC-OFDM in time selective macro-cell channel environment. In the last part, we evaluate the spectral efficiency for different receiver diversity namely maximal ratio combiner (MRC), selection combiner (SC), and Hybrid (MRC/SC). We derive closed form expressions for the single user capacity, taking into account the effect of imperfect channel estimation at the receiver. The channel considered is a slowly varying spatially independent flat Rayleigh fading channel. Three adaptive transmission schemes are analysed: 1) optimal power rate and rate adaptation (opra), constant power with optimal rate adaptation (ora), and 3) channel inversion with fixed rate (cifr). Furthermore, we derive analytical results for capacity statistics including moment generating function (MGF), complementary cumulative distribution function (CDF) and probability density function (pdf)

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF

    Mitigation techniques through spatial diversity combining and relay-assisted technology in a turbulence impaired and misaligned free space optical channel.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban, 2018.In recent times, spectrum resource scarcity in Radio Frequency (RF) systems is one of the biggest and prime issues in the area of wireless communications. Owing to the cost of spectrum, increase in the bandwidth allocation as alternative solution, employed in the recent past, does no longer offer an effective means to fulfilling high demand in higher data rates. Consequently, Free Space Optical (FSO) communication systems has received considerable attention in the research community as an attractive means among other popular solutions to offering high bandwidth and high capacity compared to conventional RF systems. In addition, FSO systems have positive features which include license-free operation, cheap and ease of deployment, immunity to interference, high security, etc. Thus, FSO systems have been favoured in many areas especially, as a viable solution for the last-mile connectivity problem and a potential candidate for heterogeneous wireless backhaul network. With these attractive features, however, FSO systems are weather-dependent wireless channels. Therefore, it is usually susceptible to atmospheric induced turbulence, pointing error and attenuation under adverse weather conditions which impose severe challenges on the system performance and transmission reliability. Thus, before widespread deployment of the system will be possible, promising mitigation techniques need to be found to address these problems. In this thesis, the performance of spatial diversity combining and relay-assisted techniques with Spatial Modulation (SM) as viable mitigating tools to overcome the problem of atmospheric channel impairments along the FSO communication system link is studied. Firstly, the performance analysis of a heterodyne FSO-SM system with different diversity combiners such as Maximum Ratio Combining (MRC), Equal Gain Combining (EGC) and Selection Combining (SC) under the influence of lognormal and Gamma-Gamma atmospheric-induced turbulence fading is presented. A theoretical framework for the system error is provided by deriving the Average Pairwise Error Probability (APEP) expression for each diversity scheme under study and union bounding technique is applied to obtain their Average Bit Error Rate (ABER). Under the influence of Gamma-Gamma turbulence, an APEP expression is obtained through a generalized infinite power series expansion approach and the system performance is further enhanced by convolutional coding technique. Furthermore, the performance of proposed system under the combined effect of misalignment and Gamma-Gamma turbulence fading is also studied using the same mathematical approach. Moreover, the performance analysis of relay-assisted dual-hop heterodyne FSO-SM system with diversity combiners over a Gamma-Gamma atmospheric turbulence channel using Decode-and-Forward (DF) relay and Amplify-and-Forward (AF) relay protocols also is presented. Under DF dual-hop FSO system, power series expansion of the modified Bessel function is used to derive the closed-form expression for the end-to-end APEP expressions for each of the combiners under study over Gamma-Gamma channel, and a tight upper bound on the ABER per hop is given. Thus, the overall end-to-end ABER for the dual-hop FSO system is then evaluated. Under AF dual-hop FSO system, the statistical characteristics of AF relay in terms of Moment Generating Function (MGF), Probability Density Function (PDF) and Cumulative Distribution Function (CDF) are derived for the combined Gamma-Gamma turbulence and/or pointing error distributions channel in terms of Meijer-G function. Based on these expressions, the APEP for each of the under studied combiners is determined and the ABER for the system is given by using union bounding technique. By utilizing the derived ABER expressions, the effective capacity for the considered system is then obtained. Furthermore, the performance of a dual-hop heterodyne FSO-SM asymmetric RF/FSO relaying system with MRC as mitigation tools at the destination is evaluated. The RF link experiences Nakagami-m distribution and FSO link is subjected to Gamma-Gamma distribution with and/or without pointing error. The MGF of the system equivalent SNR is derived using the CDF of the system equivalent SNR. Utilizing the MGF, the APEP for the system is then obtained and the ABER for the system is determined. Finally, owing to the slow nature of the FSO channel, the Block Error Rate (BLER) performance of FSO Subcarrier Intensity Modulation (SIM) system with spatial diversity combiners employing Binary Phase Shift Keying (BPSK) modulation over Gamma-Gamma atmospheric turbulence with and without pointing error is studied. The channel PDF for MRC and EGC by using power series expansion of the modified Bessel function is derived. Through this, the BLER closed-form expressions for the combiners under study are obtained

    Performance Analysis, Resource Allocation and Optimization of Cooperative Communication Systems under Generalized Fading Channels

    Get PDF
    The increasing demands for high-speed data transmission, efficient wireless access, high quality of service (QoS) and reliable network coverage with reduced power consumption impose demanding intensive research efforts on the design of novel wireless communication system architectures. A notable development in the area of communication theory is the introduction of cooperative communication systems. These technologies become promising solution for the next-generation wireless transmission systems due to their applicability in size, power, hardware and price constrained devices, such as cellular mobile devices, wireless sensors, ad-hoc networks and military communications, being able to provide, e.g., diversity gain against fading channels without the need for installing multiple antennas in a single terminal. The performance of the cooperative systems can in general be signiïŹcantly increased by allocating the limited power efficiently. In this thesis, we address in detail the performance analysis, resource allocation and optimization of such cooperative communication systems under generalized fading channels. We focus ïŹrst on energy-efficiency (EE) optimization and optimal power allocation (OPA) of regenerative cooperative network with spatial correlation effects under given power constraint and QoS requirement. The thesis also investigates the end-to-end performance and power allocation of a regenerative multi-relay cooperative network over non-homogeneous scattering environment, which is realistic case in practical wireless communication scenarios. Furthermore, the study investigates the end-to-end performance, OPA and energy optimization analysis under total power constraint and performance requirement of full-duplex (FD) relaying transmission scheme over asymmetric generalized fading models with relay self-interference (SI) effects.The study ïŹrst focuses on exact error analysis and EE optimization of regenerative relay systems under spatial correlation effects. It ïŹrst derives novel exact and asymptotic expressions for the symbol-error-rates (SERs) of M -ary quadrature amplitude and M -ary phase-shift keying (M -QAM) and (M -PSK) modulations, respectively, assuming a dual-hop decode-and-forward relay system, spatial correlation, path-loss effects and maximum-ratio-combing (MRC) at the destination. Based on this, EEoptimization and OPA are carried out under certain QoS requirement and transmit power constraints.Furthermore, the second part of the study investigates the end-to-end performance and power allocation of MRC based regenerative multi-relay cooperative system over non-homogeneous scattering environment. Novel exact and asymptotic expressions are derived for the end-to-end average SER for M -QAM and M -PSK modulations.The offered results are employed in performance investigations and power allocation formulations under total transmit power constraints.Finally, the thesis investigates outage performance, OPA and energy optimization analysis under certain system constraints for the FD and half-duplex (HD) relaying systems. Unlike the previous studies that considered the scenario of information transmission over symmetric fading conditions, in this study we considered the scenario of information transmission over the most generalized asymmetric fading environments.The obtained results indicate that depending on the severity of multipath fading, the spatial correlation between the direct and relayed paths and the relay location, the direct transmission is more energy-efficient only for rather short transmission distances and until a certain threshold. Beyond this, the system beneïŹts substantially from the cooperative transmission approach where the cooperation gain increases as the transmission distance increases. Furthermore, the investigations on the power allocation for the multi-relay system over the generalized small-scale fading model show that substantial performance gain can be achieved by the proposed power allocation scheme over the conventional equal power allocation (EPA) scheme when the source-relay and relay-destination paths are highly unbalanced. Extensive studies on the FD relay system also show that OPA provides signiïŹcant performance gain over the EPA scheme when the relay SI level is relatively strong. In addition, it is shown that the FD relaying scheme is more energy-efficient than the reference HD relaying scheme at long transmission distances and for moderate relay SI levels.In general, the investigations in this thesis provide tools, results and useful insights for implementing space-efficient, low-cost and energy-efficient cooperative networks, speciïŹcally, towards the future green communication era where the optimization of the scarce resources is critical

    Contributions to the Performance Analysis of Intervehicular Communications Systems and Schemes

    Get PDF
    RÉSUMÉ Le but des systĂšmes de communication intervĂ©hicule (Inter-Vehicle Communication – IVC) est d'amĂ©liorer la sĂ©curitĂ© de conduite en utilisant des capteurs et des techniques de communication sans fil pour ĂȘtre en mesure de communiquer mutuellement sans aucune intervention extĂ©rieure. Avec l'utilisation de ces systĂšmes, les communications vĂ©hicule Ă  vĂ©hicule (V2V) peuvent ĂȘtre plus efficaces dans la prĂ©vention des accidents et la dĂ©congestion de la circulation que si chaque vĂ©hicule travaillait individuellement. Une des solutions proposĂ©es pour les systĂšmes IVC est l’utilisation des systĂšmes de communication coopĂ©rative, qui en principe, augmentent l'efficacitĂ© spectrale et Ă©nergĂ©tique, la couverture du rĂ©seau, et rĂ©duit la probabilitĂ© de dĂ©faillance. La diversitĂ© d'antenne (entrĂ©es multiples sorties multiples « Multiple-Input Multiple-Output » ou MIMO) peut Ă©galement ĂȘtre une alternative pour les systĂšmes IVC pour amĂ©liorer la capacitĂ© du canal et la diversitĂ© (fiabilitĂ©), mais en Ă©change d’une complexitĂ© accrue. Toutefois, l'application de telles solutions est difficile, car les communications sans fil entre les vĂ©hicules sont soumises Ă  d’importants effets d'Ă©vanouissements des canaux appelĂ©s (canaux sujets aux Ă©vanouissements de n*Rayleigh, « n*Rayleigh fading channels»), ce qui conduit Ă  la dĂ©gradation des performances. Par consĂ©quent, dans cette thĂšse, nous proposons une analyse de la performance globale des systĂšmes de transmission coopĂ©ratifs et MIMO sur des canaux sujets aux Ă©vanouissements de n*Rayleigh. Cette analyse permettra d’aider les chercheurs pour la conception et la mise en Ɠuvre de systĂšmes de communication V2V avec une complexitĂ© moindre. En particulier, nous Ă©tudions d'abord la performance de la sĂ©lection du relais de coopĂ©ration avec les systĂšmes IVC, on suppose que la transmission via « Amplify-and-Forward» (AF) ou bien «Decode-and-Forward» (DF) est assurĂ©e par N relais pour transfĂ©rer le message de la source Ă  la destination. La performance du systĂšme est analysĂ©e en termes de probabilitĂ© de dĂ©faillance, la probabilitĂ© d'erreur de symbole, et la capacitĂ© moyenne du canal. Les rĂ©sultats numĂ©riques dĂ©montrent que la sĂ©lection de relais rĂ©alise une diversitĂ© de l'ordre de (d≈mN/n) pour les deux types de relais, oĂč m est un paramĂštre Ă©vanouissement de Rayleigh en cascade. Nous Ă©tudions ensuite la performance des systĂšmes IVC Ă  sauts multiples avec et sans relais rĂ©gĂ©nĂ©ratifs. Dans cette Ă©tude, nous dĂ©rivons des expressions approximatives pour la probabilitĂ© de dĂ©faillance et le niveau d’évanouissement lorsque la diversitĂ© en rĂ©ception basĂ©e sur le ratio maximum de combinaison (MRC) est employĂ©e. En outre, nous analysons la rĂ©partition de puissance pour le systĂšme sous-jacent afin de minimiser la probabilitĂ© globale de dĂ©faillance. Nous montrons que la performance des systĂšmes rĂ©gĂ©nĂ©ratifs est meilleure que celle des systĂšmes non rĂ©gĂ©nĂ©ratifs lorsque l’ordre de cascade n est faible, tandis qu’ils ont des performances similaires lorsque n est Ă©levĂ©. Ensuite, nous considĂ©rons le problĂšme de la dĂ©tection de puissance des signaux inconnus aux n* canaux de Rayleigh. Dans ce travail, de nouvelles expressions approximatives sont dĂ©rivĂ©es de la probabilitĂ© de dĂ©tection moyenne avec et sans diversitĂ© en rĂ©ception MRC. En outre, la performance du systĂšme est analysĂ©e lorsque la dĂ©tection de spectre coopĂ©rative (CSS) est considĂ©rĂ©e sous diverses contraintes de canaux (par exemple, les canaux de communication parfaits et imparfaits). Les rĂ©sultats numĂ©riques ont montrĂ© que la fiabilitĂ© de dĂ©tection diminue Ă  mesure que l'ordre n augmente et s’amĂ©liore sensiblement lorsque CSS emploie le schĂ©ma MRC. Il est dĂ©montrĂ© que CSS avec le schĂ©ma MRC maintient la probabilitĂ© de fausse alarme minimale dans les canaux d’information imparfaite plutĂŽt que d'augmenter le nombre d'utilisateurs en coopĂ©ration. Enfin, nous prĂ©sentons une nouvelle approche pour l'analyse des performances des systĂšmes IVC sur n*canaux de Rayleigh, en utilisant n_T antennes d'Ă©mission et n_R antennes de rĂ©ception pour lutter contre l'effet d’évanouissement. Dans ce contexte, nous Ă©valuons la performance des systĂšmes MIMO-V2V basĂ©s sur la sĂ©lection des antennes d'Ă©mission avec un ratio maximum de combinaison (TAS/MRC) et la sĂ©lection combinant (TAS/SC). Dans cette Ă©tude, nous dĂ©rivons des expressions analytiques plus prĂ©cises pour la probabilitĂ© de dĂ©faillance, la probabilitĂ© d'erreur de symbole, et l’évanouissement sur n*canaux Rayleigh. Il est montrĂ© que les deux rĂ©gimes ont le mĂȘme ordre de diversitĂ© maximale Ă©quivalent Ă  (d≈mn_T n_R /n) . En outre, TAS / MRC offre un gain de performance mieux que TAS/ SC lorsque le nombre d'antennes de rĂ©ception est plus que celle des antennes d’émission, mais l’amĂ©lioration de la performance est limitĂ©e lorsque n augmente.----------Abstract The purpose of intervehicular communication (IVC) systems is to enhance driving safety, in which vehicles use sensors and wireless communication techniques to talk to each other without any roadside intervention. Using these systems, vehicle-to-vehicle (V2V) communications can be more effective in avoiding accidents and traffic congestion than if each vehicle works individually. A potential solution can be implemented in this research area using cooperative communications systems which, in principle, increase spectral and power efficiency, network coverage, and reduce the outage probability. Antenna diversity (i.e., multiple-input multiple output (MIMO) systems) can also be an alternative solution for IVC systems to enhance channel capacity and diversity (reliability) but in exchange of an increased complexity. However, applying such solutions is challenging since wireless communications among vehicles is subject to harsh fading channels called ‘n*Rayleigh fading channels’, which leads to performance degradation. Therefore, in this thesis we provide a comprehensive performance analysis of cooperative transmission and MIMO systems over n*Rayleigh fading channels that help researchers for the design and implementation of V2V communication systems with lower complexity. Specifically, we first investigate the performance of cooperative IVC systems with relay selection over n*Rayleigh fading channels, assuming that both the decode-and-forward and the amplify-and-forward relaying protocols are achieved by N relays to transfer the source message to the destination. System performance is analyzed in terms of outage probability, symbol error probability, and average channel capacity. The numerical results have shown that the best relay selection approach achieves the diversity order of (d≈mN/n) where m is a cascaded Rayleigh fading parameter. Second, we investigate the performance of multihop-IVC systems with regenerative and non-regenerative relays. In this study, we derive approximate closed-form expressions for the outage probability and amount of fading when the maximum ratio combining (MRC) diversity reception is employed. Further, we analyze the power allocation for the underlying scheme in order to minimize the overall outage probability. We show that the performance of regenerative systems is better than that of non-regenerative systems when the cascading order n is low and they have similar performance when n is high. Third, we consider the problem of energy detection of unknown signals over n*Rayleigh fading channels. In this work, novel approximate expressions are derived for the average probability of detection with and without MRC diversity reception. Moreover, the system performance is analyzed when cooperative spectrum sensing (CSS) is considered under various channel constraints (e.g, perfect and imperfect reporting channels). The numerical results show that the detection reliability decreases as the cascading order n increases and substantially improves when CSS employs MRC schemes. It is demonstrated that CSS with MRC scheme keeps the probability of false alarm minimal under imperfect reporting channels rather than increasing the number of cooperative users. Finally, we present a new approach for the performance analysis of IVC systems over n*Rayleigh fading channels, using n_T transmit and n_R receive antennas to combat fading influence. In this context, we evaluate the performance of MIMO-V2V systems based on the transmit antenna selection with maximum ratio combining (TAS/MRC) and selection combining (TAS/SC) schemes. In this study, we derive tight analytical expressions for the outage probability, the symbol error probability, and the amount of fading over n*Rayleigh fading channels. It is shown that both schemes have the same maximum diversity order equivalent to (d≈mn_T n_R /n). In addition, TAS/MRC offers a better performance gain than TAS/SC scheme when the number of receive antennas is more than that of transmit antennas, but the performance improvement is limited as n increases
    corecore