13 research outputs found

    Multicarrier CDMA systems with MIMO technology

    Get PDF
    The rapid demand for broadband wireless access with fast multimedia services initiated a vast research on the development of new wireless systems that will provide high spectral efficiencies and data rates. A potential candidate for future generation wireless systems is multi-carrier code division multiple access (MC-CDMA). To achieve higher user capacities and increase the system data rate, various multiple-input multiple-output (MIMO) technologies such as spatial multiplexing and spatial diversity techniques have been proposed recently and combined with MC-CDMA.This research proposes a chip level coded ordered successive spatial and multiuser interference cancellation (OSSMIC) receiver for downlink MIMO MC-CDMA systems. As the conventional chip level OSIC receiver [1] is unable to overcome multiple access interference (MAI) and performs poorly in multiuser scenarios, the proposed receiver cancels both spatial and multiuser interference by requiring only the knowledge of the desired user's spreading sequence. Simulation results show that the proposed receiver not only performs better than the existing linear detectors [2] but also outperforms both the chip and symbol level OSIC receivers. In this work we also compare the error rate performance between our proposed system and MIMO orthogonal frequency division multiple access (MIMO OFDMA) system and we justify the comparisons with a pairwise error probability (PEP) analysis. MIMO MC-CDMA demonstrates a better performance over MIMO OFDMA under low system loads whereas in high system loads, MIMO OFDMA outperforms MIMO MC-CDMA. However if all users' spreading sequences are used at the desired user receiver, MIMO MC-CDMA performs better than MIMO OFDMA at all system loads.In the second part of this work, user grouping algorithms are proposed to provide power minimisation in grouped MC-CDMA and space-time block code (STBC) MC-CDMA systems. When the allocation is performed without a fair data rate requirement, the optimal solution to the minimisation problem is provided. However when some fairness is considered, the optimal solution requires high computational complexity and hence we solve this problem by proposing two suboptimal algorithms. Simulation results illustrate a significantly reduced power consumption in comparison with other techniques.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Adaptive interference cancelation techniques for multicarrier modulated systems

    Get PDF
    Current wireline systems and wireless broadcasting systems employ multicarrier modulation (MCM). This includes the high-rate digital subscriber line (HDSL), digital audio broadcasting system (DAB) and the digital terrestrial television broadcasting system (dTTb). Multicarrier modulation is also envisioned for high-speed indoor wireless local area networks (WLAN). Additionally, multicarrier code division multiple access (MC-CDMA), a hybrid of orthogonal frequency division multiplexing (OFDM) and CDMA, is proposed for the downlink (base-to-mobile) of a 3rd generation wireless system as part of the IMT-2000 standardization process. The performance of an MC-CDMA system--similar to a direct sequence CDMA (DS-CDMA) system--is limited by the presence of multiple access interference (MAI) . Downlink communications also suffers from MAI as a result of the multipath channel effect, even if it implements orthogonal code multiplexing. Additionally, transmissions aimed at different mobile users may be assigned different powers in order to increase the system capacity, essentially creating a near-far problem for some users. Due to the MC-CDMA signal structure the conventional decorrelator (based on the inverse of the correlation matrix) is dependent on the channel coefficients, suggesting the use of an adaptive multiuser detector, which can track a time-variant channel. The performance of a blind adaptive multiuser detector for MC-CDMA, based on the bootstrap algorithm, is investigated and compared to the performance of the conventional decorrelator. Additionally, the performance is investigated for different channel conditions. First, for a non-faded flat additive white Gaussian noise (AWGN) channel. Second, for a frequency selective channel with and without correlation between the channel coefficients at the different subcarriers. In general, the mobile terminal suffers from limited available resources such as computing power or battery life and, therefore, cannot accommodate the same level of receiver complexity as the base station. For the downlink, however, the received signal structure is less complex due to the assumed synchronized transmission. Moreover, the mobile receiver is merely required to detect the desired user\u27s data stream. To reduce the complexity, detectors are proposed that do not require knowledge of the active users nor their respective codes, but rather use a combined code to represent all the interfering users at once. The performance of the reduced complexity conventional decorrelator is compared to the performance of an adaptive reduced complexity detector using the bootstrap algorithm. The performance of these detectors is also investigated for the aforementioned channel types. For spectral-efficiency, closely spaced subcarriers are used in a multicarrier modulated system. A resulting drawback is a high sensitivity of the performance to a frequency offset. This results from a Doppler shift, due to mobile movement, as well as from a mismatch between the carrier frequencies at the transmitter and receiver. To mitigate this problem an adaptive decorrelator based frequency offset correction scheme is developed for OFDM and its performance is investigated. Additionally, a blind frequency offset estimation and correction structure is proposed based on a stochastic gradient method. The convergence and statistical properties of this estimator are investigated. A blind adaptive joint multiuser detection and frequency offset correction structure for downlink MC-CDMA is developed. This detector is a combination of the structures for multiuser detection for MC-CDMA and frequency offset correction for OFDM. Moreover, the performance of this detector is investigated and compared to a joint detector based on a minimum mean square error (MMSE) criterion

    Packet data communications over coded CDMA with hybrid type-II ARQ

    Get PDF
    This dissertation presents in-depth investigation of turbo-coded CDNIA systems in packet data communication terminology. It is divided into three parts; (1) CDMA with hybrid FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random access environment and (3) an implementation issue on turbo decoding. As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated in deterministic environment. It highlights the practically achievable spectral efficiency of CDMA system with turbo codes and the effect of code rates on the performance of systems with MF and LMMSE receivers, respectively. For given ensemble distance spectra of punctured turbo codes, an improved union bound is used to evaluate the error probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end and, then, the corresponding spectral efficiency is computed as a function of system load. In the second part, a generalized analytical framework is first provided to analyze hybrid type-11 ARQ in random access environment. When applying hybrid type-11 ARQ, probability of packet success and packet length is generally different from attempt to attempt. Since the conventional analytical model, customarily employed for ALOHA system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded analytical model is introduced. It can be regarded as a network of queues and Jackson and Burke\u27s theorems can be applied to simplify the analysis. The second part is further divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-11 ARQ using packet combining and CDMA unslotted ALOHA with hybrid type-11 ARQ using code combining. For code combining, the rate compatible punctured turbo (RCPT) codes are examined. In the third part, noticing that the decoding delay is crucial to the fast ARQ, a parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo codes. It utilizes the forward and backward variables computed in the previous iteration to provide boundary distributions for each sub-block MAP decoder. It has at least two advantages over the existing parallel scheme; No performance degradation and No additional computation

    Random Beamforming over Correlated Fading Channels

    Full text link
    We study a multiple-input multiple-output (MIMO) multiple access channel (MAC) from several multi-antenna transmitters to a multi-antenna receiver. The fading channels between the transmitters and the receiver are modeled by random matrices, composed of independent column vectors with zero mean and different covariance matrices. Each transmitter is assumed to send multiple data streams with a random precoding matrix extracted from a Haar-distributed matrix. For this general channel model, we derive deterministic approximations of the normalized mutual information, the normalized sum-rate with minimum-mean-square-error (MMSE) detection and the signal-to-interference-plus-noise-ratio (SINR) of the MMSE decoder, which become arbitrarily tight as all system parameters grow infinitely large at the same speed. In addition, we derive the asymptotically optimal power allocation under individual or sum-power constraints. Our results allow us to tackle the problem of optimal stream control in interference channels which would be intractable in any finite setting. Numerical results corroborate our analysis and verify its accuracy for realistic system dimensions. Moreover, the techniques applied in this paper constitute a novel contribution to the field of large random matrix theory and could be used to study even more involved channel models.Comment: 35 pages, 5 figure

    Code design based on metric-spectrum and applications

    Get PDF
    We introduced nested search methods to design (n, k) block codes for arbitrary channels by optimizing an appropriate metric spectrum in each iteration. For a given k, the methods start with a good high rate code, say k/(k + 1), and successively design lower rate codes up to rate k/2^k corresponding to a Hadamard code. Using a full search for small binary codes we found that optimal or near-optimal codes of increasing length can be obtained in a nested manner by utilizing Hadamard matrix columns. The codes can be linear if the Hadamard matrix is linear and non-linear otherwise. The design methodology was extended to the generic complex codes by utilizing columns of newly derived or existing unitary codes. The inherent nested nature of the codes make them ideal for progressive transmission. Extensive comparisons to metric bounds and to previously designed codes show the optimality or near-optimality of the new codes, designed for the fading and the additive white Gaussian noise channel (AWGN). It was also shown that linear codes can be optimal or at least meeting the metric bounds; one example is the systematic pilot-based code of rate k/(k + 1) which was proved to meet the lower bound on the maximum cross-correlation. Further, the method was generalized such that good codes for arbitrary channels can be designed given the corresponding metric or the pairwise error probability. In synchronous multiple-access schemes it is common to use unitary block codes to transmit the multiple users information, especially in the downlink. In this work we suggest the use of newly designed non-unitary block codes, resulting in increased throughput efficiency, while the performance is shown not to be substantially sacrificed. The non-unitary codes are again developed through suitable nested searches. In addition, new multiple-access codes are introduced that optimize certain criteria, such as the sum-rate capacity. Finally, the introduction of the asymptotically optimum convolutional codes for a given constraint length, reduces dramatically the search size for good convolutional codes of a certain asymptotic performance, and the consequences to coded code-division multiple access (CDMA) system design are highlighted

    Random Beamforming over Quasi-Static and Fading Channels: A Deterministic Equivalent Approach

    Full text link
    In this work, we study the performance of random isometric precoders over quasi-static and correlated fading channels. We derive deterministic approximations of the mutual information and the signal-to-interference-plus-noise ratio (SINR) at the output of the minimum-mean-square-error (MMSE) receiver and provide simple provably converging fixed-point algorithms for their computation. Although these approximations are only proven exact in the asymptotic regime with infinitely many antennas at the transmitters and receivers, simulations suggest that they closely match the performance of small-dimensional systems. We exemplarily apply our results to the performance analysis of multi-cellular communication systems, multiple-input multiple-output multiple-access channels (MIMO-MAC), and MIMO interference channels. The mathematical analysis is based on the Stieltjes transform method. This enables the derivation of deterministic equivalents of functionals of large-dimensional random matrices. In contrast to previous works, our analysis does not rely on arguments from free probability theory which enables the consideration of random matrix models for which asymptotic freeness does not hold. Thus, the results of this work are also a novel contribution to the field of random matrix theory and applicable to a wide spectrum of practical systems.Comment: to appear in IEEE Transactions on Information Theory, 201

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure
    corecore