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Abstract

The rapid demand for broadband wireless access with fast multimedia ser-
vices initiated a vast research on the development of new wireless systems that
will provide high spectral efficiencies and data rates. A potential candidate for
future generation wireless systems is multi-carrier code division multiple access
(MC-CDMA). To achieve higher user capacities and increase the system data
rate, various multiple-input multiple-output (MIMO) technologies such as spa-
tial multiplexing and spatial diversity techniques have been proposed recently
and combined with MC-CDMA.

This research proposes a chip level coded ordered successive spatial and mul-
tiuser interference cancellation (OSSMIC) receiver for downlink MIMO MC-CDMA
systems. As the conventional chip level OSIC receiver [1] is unable to overcome
multiple access interference (MAI) and performs poorly in multiuser scenarios,
the proposed receiver cancels both spatial and multiuser interference by requir-
ing only the knowledge of the desired user’s spreading sequence. Simulation
results show that the proposed receiver not only performs better than the ex-
isting linear detectors [2] but also outperforms both the chip and symbol level
OSIC receivers. In this work we also compare the error rate performance be-
tween our proposed system and MIMO orthogonal frequency division multiple
access (MIMO OFDMA) system and we justify the comparisons with a pairwise
error probability (PEP) analysis. MIMO MC-CDMA demonstrates a better per-
formance over MIMO OFDMA under low system loads whereas in high system
loads, MIMO OFDMA outperforms MIMO MC-CDMA. However if all users’
spreading sequences are used at the desired user receiver, MIMO MC-CDMA
performs better than MIMO OFDMA at all system loads.

In the second part of this work, user grouping algorithms are proposed to
provide power minimisation in grouped MC-CDMA and space-time block code
(STBC) MC-CDMA systems. When the allocation is performed without a fair
data rate requirement, the optimal solution to the minimisation problem is pro-
vided. However when some fairness is considered, the optimal solution requires
high computational complexity and hence we solve this problem by proposing
two suboptimal algorithms. Simulation results illustrate a significantly reduced
power consumption in comparison with other techniques.

12



Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

13



Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

14



from the Head of School of School of Electrical and Electronic Engineering

(or the Vice-President).

15



Aφιερώνεται στoυς γoνείς
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Chapter 1

Introduction

1.1 Wireless Communication & Cellular Systems

Background

The third generation partnership project (3GPP) wireless communication

technologies for mobile networks have progressed rapidly over the past decade.

Evolving from wideband code division multiple access (WCDMA) and high speed

packet access (HSPA) to long term evolution (LTE), the ultimate goal of these

standards has been to significantly increase data transfer rates in order to meet

the demand of latest wireless services such as mobile internet, video telephony,

and high quality multimedia streaming. The aforementioned goal remains the

same for the future technologies.

The recent invention of multiple input multiple output (MIMO) [3–6] system

that uses multiple transmit and receive antennas showed that capacity of MIMO

systems can grow linearly with the number of transmit antennas as long as the

number of receive antennas is greater than or equal to the number of transmit

18



CHAPTER 1. INTRODUCTION 19

antennas [7]. This discovery ensured a linear increase of data rate with the num-

ber of transmit antennas without increasing the transmission bandwidth or the

total transmitted power. In the past years a lot of research has been performed

on exploiting the available capacity of MIMO systems. In particular, the vertical

Bell laboratories layered space-time (V-BLAST) [8–10] architecture (also known

as ordered successive interference cancellation (OSIC)) can realize very high data

transfer rates by using spatial multiplexing to exploit the multiple spatial chan-

nels. In addition, laboratory experiments for V-BLAST have demonstrated an

enormous capacity of 20 − 40 bit/s/Hz in indoor conditions with realistic SNR

and error rates. Hence, V-BLAST is considered as a strong candidate for future

wireless communication systems.

A major problem in wireless communications which prohibits high data rate

transmission is the effect of multipath fading. Fading is caused by constructive

or destructive interference produced when different versions of the transmitted

signal arrive at the receiver through different paths having different time delays,

attenuations and phases. Frequency selective fading is one type of channel where

inter symbol interference (ISI) is created due to time dispersion of the transmitted

symbols within the channel. ISI causes significant performance degradation and

for this reason in order to achieve high data rates, technologies that perform well

under fading channels have to be used.

Multicarrier code division multiple access (MC-CDMA), a technology first

proposed in [11–13] and thoroughly overviewed in [14–16], performs well under

frequency selective channels. It permits multiple users to access the wireless chan-

nel simultaneously by modulating and spreading their input data signals across

the frequency domain using different spreading sequences. MC-CDMA combines

the robustness to multipath fading accomplished by orthogonal frequency divi-

sion multiplexing (OFDM) [17–19], with the enhanced frequency diversity that
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can be achieved by code division multiple access (CDMA) [17, 20, 21]. When in-

tegrated with MIMO techniques such as the V-BLAST architecture, MC-CDMA

can realise very high data transfer rates in rich multipath scattering environments

without increasing the transmission bandwidth of the system [22–28].

1.2 Motivation

The chip level OSIC (V-BLAST) receiver was originally proposed for MIMO

MC-CDMA systems in [1] where it demonstrated good performance for single

user case. However, its performance is severely degraded in multiuser case and

high error floor appears in medium SNR range due to multiple access interfer-

ence (MAI) and significant error propagation. As a result, it performs even worse

than the linear zero forcing (ZF) or minimum mean square error (MMSE) re-

ceivers. Chip level and symbol level MMSE linear receivers are presented in [2].

Although the symbol level detector has better performance over the chip level de-

tector, it needs higher computational complexity and also requires the knowledge

of all other users spreading sequence to avoid MAI. In [25], a partial MMSE-

OSIC receiver based on multiuser detection performs similarly to the symbol

level MMSE-OSIC in full system load scenario, but also the partial receiver uses

all other users spreading sequence.

As explained before, existing work on MIMO MC-CDMA has shown that the

combination of MC-CDMA systems with MIMO technology for multiuser com-

munications is not a straight forward procedure especially because of the presence

of interference arising from multiple antenna transmission as well as interference

caused by multiple users. Therefore, a major objective of this research has been to

propose ways to develop downlink MIMO MC-CDMA systems that can overcome

multi-user and multi-antenna interference, and outperform existing techniques in
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terms of system performance and complexity.

Another major goal of next generation wireless communication systems is the

need for more energy efficient technologies. Saving energy will not only reduce

operating cost but also reduces greenhouse gas emissions which is important for

combating climate change. For this reason, reducing the power consumption to a

minimum level is vital for the future wireless systems. In the past years, resource

allocation has been used to minimise the total transmitted power in MC-CDMA

systems [29, 30]. This significantly improves the energy efficiency of the system.

Although some research has been done for power minimisation in MC-CDMA

systems, resource allocation with user grouping has not been considered for power

minimisation in grouped MC-CDMA systems.

The idea of user and subcarrier grouping [31] allows different users in a group

to share the same set of subcarriers while using their distinct spreading codes.

In this way multiuser interference in each group is small and does not affect

users in the rest of the groups. Hence multiuser detectors for different groups are

practically feasible.

Hence, another important aim of this work has been to provide user grouping

algorithms to minimise the total transmitted power in grouped MC-CDMA and

space-time block code (STBC) MC-CDMA systems.

The final objective in this work is to investigate MC-CDMA for underlay

cognitive radio (CR) networks [32]. CR is a new emerging technique that can

significantly improve spectrum efficiency in future mobile networks. Underlay CR

is a spectrum sharing technique where the CR user (secondary user in the CR

network) is allowed to share the same frequency bands (gray spectral regions) for

transmission with the licensed users (primary users in the primary radio (PR)

network) as long as their transmit power is regarded as noise by the licensed

users [33]. MC-CDMA could be a potential candidate for underlay CR networks.
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In this way the signal of the cognitive user can be spread over a wider bandwidth

which will cause low interference to the primary users. Furthermore, MC-CDMA

has good interference rejection from primary users.

1.3 Achievements & Contributions

The main contributions of this work are presented below:

• The chip level ordered successive spatial and multiuser interference can-

cellation (OSSMIC) receiver is proposed for open loop downlink MIMO

MC-CDMA systems. The OSSMIC receiver performs layered space-time

processing with both spatial and multiuser interference cancellation. Un-

like [25, 26] & [2], the proposed receiver does not require the knowledge of

other users’ spreading sequence in the system and this reduces the computa-

tional complexity of the system. Also, unlike the OSIC receiver in [1], OSS-

MIC is capable for multiuser scenarios. Furthermore, the proposed scheme

invalidates the perception that linear MMSE detector performs better than

iterative detectors for MIMO MC-CDMA systems [1].

• In order to justify the use of chip level detection for OSSMIC, comparison is

made to a modified symbol level with OSIC detector. Furthermore, perfor-

mance comparison is made between MIMO MC-CDMA & MIMO OFDMA.

In order to provide an analytical comparison between these systems, their

pairwise error probabilities (PEP) are derived.

• The minimisation of the total transmitted power in downlink MC-CDMA

and space-time block code (STBC) MC-CDMA under a bit error rate (BER)

constraint for each user is studied by performing power control according to

an efficient user grouping algorithm. The optimal allocation algorithm for
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the minimisation problem is presented when there is no fairness requirement

on the data rate. On the other hand when fairness is considered, two

complexity reduced suboptimal allocation algorithms are proposed.

• The performance of MC-CDMA and OFDM is investigated in underlay

CR networks. MC-CDMA causes lower interference to the primary user

network compared to OFDM. Furthermore, MC-CDMA is capable of good

interference rejection coming from the primary user.
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1.5 Thesis Outline

The thesis is divided into seven chapters. The first chapter presents the moti-

vation for conducting this research and lists the main objectives and contributions

of this work.

Chapter 2 provides the basic theory behind radio wave propagation for wireless

channels by exploring the large-scale and small-scale wave propagations such as

path loss, shadowing multipath and fading. Multipath propagation and the main

fading channel conditions are further illustrated and various diversity techniques

are described. Furthermore the principles behind existing wireless communication

systems, important to this work, are analysed and their system models are also

presented. These systems include the OFDM, CDMA, MC-CDMA, OFDMA and

MIMO schemes. The performance of each system is also evaluated.

Chapter 3 introduces the transmitted and the received signal models for the

downlink MIMO MC-CDMA system. In addition, existing receiver architectures

for MIMO MC-CDMA systems are presented.

In Chapter 4, the novel chip-level OSSMIC receiver is proposed. The expla-

nation of co-antenna interference (CAI) and multiple access interference (MAI)

cancellation procedure and the optimum detection ordering are also described.

Finally the performance of the proposed OSSMIC receiver is evaluated through
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simulations and compared with the performance of the existing chip and symbol

level linear and OSIC MIMO MC-CDMA detectors.

PEP expressions for the chip and symbol level MIMO MC-CDMA and MIMO

OFDMA are presented in Chapter 5. The frame error rate (FER) and PEP

performance of these systems is also compared.

In Chapter 6, we propose user grouping algorithms to provide power min-

imisation in grouped MC-CDMA and STBC MC-CDMA systems. The total

transmitted power is minimised under a BER constraint.

Chapter 7 compares the performance of MC-CDMA and OFDM in underlay

cognitive radio networks.

Chapter 8 concludes and summarises the significance of this research. Fur-

thermore a number of ideas are suggested for future research and to enhance the

performance of the proposed system.



Chapter 2

Theoretical Background

This chapter introduces the basic concepts of wireless channels and presents the

background theories of the wireless systems used in this research. In particular,

the sections for multipath propagation, fading channels and different diversity

techniques are described first. Next, various multicarrier and multiple access

schemes are presented and these include OFDM, OFDMA, CDMA and MC-

CDMA wireless technologies. Finally, spatial multiplexing and spatial diversity

techniques for MIMO systems are detailed in the last section.

2.1 Wireless Communication Channels

In urban areas, a typical wireless channel between the transmitter and the

receiver contains various objects and obstacles that cause signals to be reflected,

diffracted or scattered into many directions during transmission. These effects re-

sult in multiple versions of the transmitted signal to arrive at the receiver through

different paths at different time delays and different phases. The received signal

is the constructive or destructive combination of all these signal versions. The

interaction between these waves can cause significant attenuation to the received

26
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signal. Various statistical models have been proposed to describe the effects of

the wireless channel on the transmitted signals and to predict the variability of

the received signal strength. These are called radio wave propagation models [34]

and are categorised as follows:

• Large-scale models which are based on path loss (PL) and shadowing.

• Small-scale models which are based on multipath fading.

2.1.1 Large-scale Path Loss and Shadowing

Large scale propagation models are useful in estimating radio coverage area

by modelling the signal attenuation over a large transmitter-receiver (Tx-Rx)

separation distance. Extensive studies have shown that signal power attenuates

exponentially with the increase of Tx-Rx separation distance [34]. PL is a large

scale propagation model which represents the difference (in dB) between the

effective transmitted power and the received power. Shadowing effect is another

large-scale propagation model which predicts the variation of the average signal

power at different locations of a fixed Tx-Rx separation. Shadowing is caused by

the change of environment in different locations.

Extensive studies revealed that the PL at a Tx-Rx separation distance d can

be modelled by a log-normal (normal in dB) distribution [35] expressed as

PL(d) = PL(d0) + 10nlog

(
d

d0

)
+Xσ (2.1)

where d0 denotes a reference distance, PL(d0) signifies the mean path loss at d0

and n indicates the path loss exponent. It should be noted that different path loss

exponents correspond to different types of environments. Also, if PL(d0) is not

specified, it is usually taken as free-space path loss at a distance of 1m [34]. Xσ
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represents the log-normal shadowing effect with zero mean and standard deviation

σ. Hence the path loss at distance d is considered to be a random variable with

PL mean and standard deviation σ.

2.1.2 Small-scale Multipath Fading

Contrary to large-scale, small-scale propagation models characterise the rapid

variations of the received signal power over short distances (in the order of a few

wavelengths) or short time periods (in the order of seconds). Multipath fading is

caused by interference between multiple versions of the transmitted signal that

arrive at the receiver through different propagation paths and at different times.

In urban areas, multipath fading occurs because the mobile antennas are lower

Figure 2.1: Multipath propagation.

than the height of the surrrounding structures, and so there are a lot of obstacles

between the transmitter and the receiver. In such cases the transmitted signal

is reflected, diffracted or scattered at different directions and these radio signals

arrive at the receiver at different times as shown in Figure 2.1. Also, these distinct
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multiple paths have random amplitudes, phases and angle of arrivals which cause

rapid variations in signal strength when combined at the receiver. Hence it is

important to study and establish the multipath channel model.

2.1.2.1 Multipath Channel Model

A general multipath channel model is presented in [36]. In this model the

impulse response of the time varying multipath channel h(t, τ) is a function of

t and τ . The variable t represents the time that the channel changes when the

receiver travels with a constant velocity over a short distance. The variable τ

denotes the channel multipath delay. The multipath channel delay axis is divided

into equally spaced segments, called the excess delay bins, and the excess delay bin

width is ∆τ = τl−τl−1. The first signal that arrives at the receiver is denoted as τ0.

It should be noted that the signals received within the l-th bin are represented by

a single multipath component with time delay width τl−1. The baseband impulse

response of the multipath channel is modelled by the summation of all multipath

components that arrive at the receiver with different attenuations, phase shifts

and time delays. It can be expressed as

h(t, τ) =
L−1∑
l=0

al(t, τ)exp [jθl(t, τ)] δ (τ − τl(t)) (2.2)

where al(t, τ), τl(t) and θl(t, τ) denote the attenuation factor, the excess time

delay and the phase shift of the l-th multipath component at time t respectively.

It should be noted that if an excess delay bin has no arrival path at a given time

t and delay τ , that al(t, τ) is zero. The total number of multipath components is

represented by L and δ(.) is the unit impulse function.

Assuming pulse shaping and matched filtering at the receiver, the multipath

channel could be described using the time-invariant tap delay line model shown
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in Figure 2.2. In this model, each multipath component arrives at the receiver

Figure 2.2: Tap delay line model.

after one tap delay of Z−1 and it has different amplitude and phase. Z denotes

the Z-transformation of the wideband signal. It is assumed that each tap delay

equals to one symbol period. Thus if signal d(t) is transmitted over the multipath

channel, the received signal can be expressed as

r(t) =
L−1∑
l=0

hl(t)d(t− lTd) + n(t) (2.3)

where hl(t) denotes the channel gain for the l-th tap at time t and Td represents

the symbol period. This type of channel represents a frequency selective fading

which will be explained in a later section.

In mobile radio channels with non line-of-sight (NLOS), the Rayleigh distri-

bution is usually used to model the received envelope of individual multipath

components at specific time instants. Considering a NLOS multipath channel,

the channel gain at the l-th bin with Nl arriving paths is given by

al = ale
jθl =

Nl−1∑
k=0

al,ke
jθl,k =

Nl−1∑
k=0

aIl,k + jaQl,k = aIl + jaQl (2.4)
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where aIl and aQl denote the in-phase and quadrature Gaussian distributedN (0, σ2)

components of the l-th bin. The Rayleigh distribution is formed by the magni-

tude of the channel gain al =
√
aI

2

l + aQ
2

l where the average channel power is

represented by E [a2
l ] = 2σ2. In order to compare different multipath channels,

the main parameters that quantify a multipath channel have to be analysed.

2.1.2.2 Multipath Channel Characteristics

The multipath channel is mainly characterised by the following four parame-

ters:

• RMS delay spread (στ ) and mean excess delay (τ) quantify the time dis-

persive properties of the multipath channel. These parameters can be de-

termined from a power delay profile [34]. Such profiles are produced by

averaging instantaneous power delay measurements over a given area. τ

represents the first moment of the power delay profile and στ is the square

root of the second central moment of the power delay profile.

• Coherence bandwidth (Bc) provides a statistical measure of the range of

frequencies over which the multipath channel is considered to be flat. In

general, a flat channel lets all the multipath spectral components to pass

with equal gain and linear phase.

• Doppler spread (BD) indicates an estimation of the spectral increase due

to the temporal rate of change of the mobile radio channel. Doppler spread

provides the range of frequencies over which the Doppler spectrum is not

zero.

• Coherence time (Tc) gives a statistical measure of the time duration over

which the multipath channel impulse response stays constant.
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2.1.3 Fading Channels

Fading is caused by constructive or destructive interference between different

versions of the transmitted signal which arrive at the receiver at different times.

There are different types of fading which are defined according to the relationship

between the transmitted signal parameters (such as bandwidth, symbol period,

etc.) with respect to the channel parameters (such as rms delay spread, doppler

spread). Time dispersion due to multipath delay spread causes the transmitted

signal to experience either flat or frequency selective fading.

2.1.3.1 Flat Fading

The received signal undergoes flat fading channel conditions when the wireless

channel contains constant gain and linear phase response within a bandwidth

which is much greater than the signal bandwidth (i.e. Bc >> Bs). In other words,

if a change in the channel gain occurs, this will cause a constant amplitude and

linear phase change of the transmitted signal bandwidth. In the time domain,

flat fading describes a channel where the symbol period of the transmitted signal

is much larger than the multipath delay spread of the channel (Td >> στ ). This

approximates the fact that multipath channel impulse response has no excess

delay.

The flat fading channel response is represented by

h(t) = a(t)exp [jθ(t)] (2.5)

where the phase θ(t) is uniformly distributed and a(t) denotes the amplitude.
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2.1.3.2 Frequency Selective Fading

On the other hand, a signal propagates through a frequency selective fading

channel only when the channel keeps a constant gain and linear phase response

over a bandwidth which is smaller than the signal bandwidth (i.e. Bc < Bs). In

other words, the spectrum of the transmitted signal has a larger bandwidth than

the coherence bandwidth of the channel. In the time domain, the channel impulse

response has a multipath delay spread larger than the symbol period (στ > Td)

and this causes multiple versions of the transmitted signal to appear at the re-

ceiver. These versions have different gains and phase hence the detected signal

is distorted. Frequency selective fading channels induce inter symbol interference

(ISI) due to time dispersion of the transmitted symbols by the channel.

Frequency selective fading channel can be modelled with the tap delay line

filter shown in Figure 2.2. Hence the channel response is given by

h(t, τ) =
L−1∑
l=0

hl(t, τ)δ (τ − lTd) (2.6)

where hl(t, τ) denotes the channel gain for the l-th tap at time t and delay τ .

Fading effects cause deep fades to the received symbols (the channel for that

symbol period has small value). These symbols cannot be detected correctly and

this significantly degrades the system performance. For this reason, techniques

to overcome fading are very important.

2.1.4 Diversity Techniques

Diversity techniques are used to combat the multipath fading effects and to

improve the overall system performance. Diversity is implemented by transmit-

ting multiple versions of the same signal at different times, frequencies or spatial
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location. In this way, the same information data can be received multiple times

under different channel gains and hence the probability for receiving signals in

deep fades gets smaller. Furthermore, diversity techniques can improve the qual-

ity of wireless link.

The most well known diversity techniques are categorised as follows:

• Spatial diversity is achieved with the use of multiple antennas at the trans-

mitter and/or the receiver to create multiple signal observations. Spatial

diversity is classified into receive and transmit diversity techniques. In the

former, multiple receive antennas with sufficient spatial separation are used

to take multiple signal observations. To achieve transmit diversity, multi-

ple transmit antennas are considered. According to that, one antenna at a

time can be used to transmit the coded symbols of a time diversity code

successively over the different antennas.

• Time diversity is employed by transmitting data symbols in different time-

slots separated in time intervals which are more than the channel’s coher-

ence time so that multiple repetitions of the signal will be received with

different fading conditions.

• On the other hand in frequency diversity, the same data are transmitted

using more than one carrier frequencies separated by more than the coher-

ence bandwidth of the channel. As a result, the same signal experiences

different channel gains.

When multiple observations of the same signal are obtained at the receiver,

diversity combining schemes are needed to combine the different fading paths

(branches) of these received signals. The three main combining schemes are:

• Selection combining (SC) scheme which selects the branch with the highest
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SNR for detection.

• Equal gain combining (EGC) technique in which all the received signals are

multiplied by the conjugate of the channel phase before combining them.

• Maximal ratio combining (MRC) where the SNRs of all the signals from all

branches are summed before detection.

A detailed discussion on diversity combining techniques falls out of the scope of

this research and thus it will not be covered in this thesis.

2.2 Multicarrier and Multiple Access Systems

Multicarrier systems [37] convert a serial high-rate data stream into multiple

parallel low-rate substreams, each modulated on a different subcarrier. Since the

symbol rate on each subcarrier is much less than the serial data stream symbol

rate, the effects of multipath delay spread, i.e. ISI, are significantly decreased.

This research is mainly focused on two multicarrier technologies and these are

OFDM and MC-CDMA.

Multiple access (MA) [38,39] systems allow multiple users to access the wire-

less radio spectrum simultaneously. The wireless spectrum is a scarce resource

therefore a wireless system has to allocate simultaneously the available amount of

channels to multiple users in order to achieve higher system capacity. There are

various techniques available for attaining multiple access and these include fre-

quency division multiple access (FDMA), time division multiple access (TDMA),

CDMA and OFDMA. For the purpose of this work, CDMA and OFDMA are

discussed in more details later on.
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2.2.1 Orthogonal Frequency Division Multiplexing

(OFDM)

OFDM was first introduced five decades ago. The patent for OFDM was

first clarified in the mid 1960s [40] but it was only until 1985 [41] that OFDM

was suggested for wireless communications. Currently, OFDM is used for sev-

eral wireless applications including digital audio broadcasting (DAB) [42], digital

video broadcasting (DVB) [43], asymmetric digital subscriber line (ADSL) [44]

and wireless local area networks (WLANs) [45]. OFDM is a multicarrier mod-

ulation technique employed for high data rate wireless applications suitable for

combating ISI that arises in frequency selective channels. It divides an input high

rate serial datastream into multiple low rate substreams which are transmitted

over different orthogonal narrowband channels centred at different subcarrier fre-

quencies. In this way, the bandwidth of the substreams becomes less than the

coherence bandwidth of the channel. In other words, the symbol period of the

substreams is longer than the delay spread of the time dispersive radio channel.

This ensures that each individual subcarrier experiences flat fading conditions

hence the low rate substreams can avoid ISI [17].

2.2.1.1 Principle of OFDM

OFDM splits the input data into Ns parallel streams and each symbol is mod-

ulated using a separate carrier frequency. The carrier spacing is selected so that

each subcarrier is located on all the other subcarriers’ spectra zero crossing points

as shown in Figure 2.3. Although there are spectral overlaps among subcarriers,

they do not interfere with each other if each subcarrier is sampled at the time

when the main lobe occurs [46]. In other words, spectral orthogonality between

the subcarriers is maintained. Figure 2.3 illustrates the OFDM spectrum [47] in
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the frequency domain, where the subcarrier spacing is 1/Td.

Figure 2.3: OFDM spectrum.

It must be said that for large number of subcarriers, OFDM requires very ac-

curate frequency synchronisation between the receiver and the transmitter. This

is because with frequency deviation (offsets), the subcarriers lose their orthogonal-

ity and this causes inter-carrier interference (ICI). Frequency offsets are typically

caused by transmitter-receiver mismatch, or by Doppler shift due to rapid Tx-Rx

movement.

2.2.1.2 OFDM System Model

Figure 2.4 depicts the transceiver block diagram for the OFDM system. In

the transmitter, the information bits are modulated into P symbols. Thus the

symbol vector can be represented as, d =
[
d1 d2 · · · dP

]T
∈ CP×1. where

C denotes a set of complex numbers. The symbols are serial-to-parallel (S/P)

converted and then mapped onto Ns parallel orthogonal subcarriers and trans-

formed into the time domain by the inverse Fast Fourier transform (IFFT). Next

the output samples of the IFFT are parallel-to-serial (P/S) converted to form the

baseband signal which is added with cyclic prefix (CP) before transmission over

the multipath radio channel.
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Figure 2.4: OFDM system block diagram.

CP is introduced on the transmitted signal in order to combat ISI which arises

between OFDM symbols from large multipath delay spreads. CP is a cyclically

extended guard interval, where each OFDM symbol is preceded by a periodic

extension. The total symbol duration is Ttotal = Tg + Td, where Tg is the guard

interval and Td is the symbol duration. When the guard interval is longer than

the multipath delay, ISI can be avoided. CP converts the linear convolution of

the transmitted signal with the channel impulse response into a cyclic convolu-

tion. This means that the multipath fading effect on the transmitted symbols is

simplified to an element-wise multiplication between the transmitted data con-

stellations d with the channel frequency response H.

The frequency response of the channel is given by the Fourier Transform

(FT) of the channel impulse response h. As a result, the orthogonality of the

subcarriers is recovered. The channel is considered to be quasi-static frequency

selective fading corrupted by additive white Gaussian noise (AWGN).

Upon receiving the signal, the CP is removed and the Fast Fourier transform

(FFT) of size Ns is performed. The received signal model after the FFT at the

i-th subcarrier, can be characterised as

ri = Hidi + ni (2.7)
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where Hi and ni denote the channel and the AWGN signal at the i-th subcarrier.

According to [48], the subchannel frequency response at the i-th subcarrier (i =

1, 2, ..., Ns) is calculated by

Hi =
L−1∑
l=0

h(l)exp(−j2πiτ l/Ns) (2.8)

where τ l is the path arrival time normalised to the OFDM subcarrier spacing, such

that τ lTd is the delay and 1/Td is the OFDM subcarrier spacing. The significance

of (2.8) is that the path arrival time can be any positive real number. This can

be used to represent realistic channel environments.

The estimates of the transmitted symbol at the i-th subcarrier are obtained

by performing zero forcing (ZF) equalisation on each subcarrier and it is given

by

yi = H−1
i ri = H−1

i Hidi +H−1
i ni = di + ñi (2.9)

where H−1
i denotes the inverse of Hi. Finally the detection of the estimated sym-

bols is performed. In general, equalisation techniques are used to compensate for

ISI created in frequency selective channels. For convenience of presentation and

because of it’s simplicity, ZF is considered for equalisation in this chapter. How-

ever it has to be said that ZF causes poor system performance because of noise

amplification. For this reason equalisers that can provide improved performance

will be introduced later on.

2.2.1.3 Performance of OFDM

The bit error rate (BER) performance with respect to different Eb/N0 for the

coded and uncoded OFDM system is evaluated through Monte Carlo simulations

and presented in Figure 2.5. The transmitted frame is assumed to comprise 128
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QPSK modulated symbols (P=128). The coded OFDM system makes use of

rate 1/2 convolutional codes with constraint length 3 and generators {5,7}, and

Viterbi decoder in the receiver. The size of the FFT is considered to be the same

as the number of subcarriers, and is thus Ns=128. The radio channel for coded

Figure 2.5: Performance of OFDM in Rayleigh fading channels.

and uncoded OFDM is assumed to experience Rayleigh frequency selective fading

with two taps at normalised arrival times {0,1}. The maximum delay spread is

assumed to be shorter than the duration of the CP. Hence ISI is avoided and each

subcarrier experiences flat fading.

The results show 6 dB improvement at BER = 10−3 for coded OFDM over

uncoded OFDM system. Observations on the asymptotic slope of coded OFDM

show that with error correcting coding (ECC), diversity is exploited to correct
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errors.

2.2.2 Code Division Multiple Access (CDMA)

As mentioned earlier, the major MA technologies include the FDMA, TDMA,

CDMA and OFDMA systems. In FDMA, distinct frequencies are assigned to

different users so as to access the channel concurrently. TDMA allocates different

timeslots to different users in order to access the spectrum together on the same

frequency band. FDMA and TDMA technologies have mostly used in first and

second generation (1G & 2G) cellular systems as well as WLANs. On the other

hand, CDMA techniques are currently used in third generation (3G) cellular

systems. In CDMA, each user is assigned a distinct spreading sequence that

spreads the incoming data over a large bandwidth. In this way, different users

can access the available spectrum at the same frequency band and time slot. The

two main CDMA techniques for providing multiple access are frequency hopping

(FH) and direct sequence (DS). This thesis focuses on the latter.

2.2.2.1 Direct Sequence Code Division Multiple Access (DS-CDMA)

Direct sequence code division multiple access (DS-CDMA) [49–51] employs

the direct sequence spread spectrum (DSSS) technique to allow multiple users

sharing the same bandwidth at the same time. DSSS spreads the incoming data

stream with a pseudo-random (PN) code over a bandwidth much larger than

the data bandwidth. This supplies the transmitted signal with the same large

bandwidth as the spreading signal. Thus, while the transmit power remains

constant and the bandwidth of the spreading signal is large, the power spectral

density of the transmitted signal is kept below the noise power spectral density.

This allows each user to detect his own transmitted data which also ensures secure
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communications.

The transceiver of a DS-CDMA system for a single user is demonstrated in

Figure 2.6. Consider P BPSK modulated symbols with a symbol rate of Rd =

Figure 2.6: Block diagram of DS-CDMA system.

1/Td represented by d =
[
d1 d2 · · · dP

]T
∈ CP×1. In the transmitter, the

symbols are spread by the wideband PN spreading code to form the transmitted

baseband signal

x = dc (2.10)

where c =
[
c1 c2 · · · cG

]
∈ C1×G is the PN spreading sequence with chip

rate Rc = 1/Tc and G refers to the length of the spreading code. The bandwidth

of the spreading sequence, Bc ≈ 1/Tc, is approximately Td/Tc times larger than

the bandwidth of the input symbols Bd. The spreading factor of the system is

equal to the number of chips per bit indicated by SF=Bc/Bd = Td/Tc which is

equal to G. The baseband signal is next transmitted over the AWGN channel
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and the received baseband signal after demodulation can be characterized by

r = dc + n (2.11)

where n denotes the AWGN vector. The symbol decision statistic is obtained

by despreading the received signal with the PN spreading sequence. This can be

represented by

d̂ = rcT (2.12)

2.2.2.2 Performance of DS-CDMA

The performance for a three user (Nu=3) DS-CDMA system is evaluated

through Monte Carlo simulation. The transmitted frame of each user is assumed

to comprise of 1000 BPSK modulated symbols (P=1000) and the spreading se-

quence length G contains 32 chips. The channel is assumed to be corrupted by

AWGN. The BER performance of DS-CDMA system with three different spread-

ing sequences is tested and compared in Figure 2.7. These include the PN, Gold

and Walsh-Hadamard spreading sequences [12].

It can be clearly observed that when the DS-CDMA system uses Walsh-

Hadamard spreading codes, it achieves the best performance. This is because

Walsh-Hadamard sequences possess better crosscorrelation properties (equal to

0) when compared with the crosscorrelation of PN and Gold sequences. This

means that if no multipath exists, multiple access interference (MAI) arising

from different users is avoided. However in a multipath environment, the or-

thogonality of Walsh-Hadamard sequences is lost and hence the performance is

degraded. The performance of DS-CDMA with Gold sequences is better when

compared to the one with PN codes. This is because Gold sequences have better

cross correlation properties than PN codes.



CHAPTER 2. THEORETICAL BACKGROUND 44

Figure 2.7: Performance of DS-CDMA in AWGN channel.

2.2.3 Multi Carrier Code Division Multiple Access (MC-

CDMA)

MC-CDMA signifies the combined system of OFDM and CDMA technologies.

MC-CDMA was first proposed in [11,13,52] and thoroughly reviewed in [14–16].

This technique permits multiple users to access the wireless channel simultane-

ously by modulating and spreading their input data signals across the frequency

domain using different spreading sequences. MC-CDMA combines the robustness

to multipath fading of OFDM with the multi-user spectrum access of CDMA [53].
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2.2.3.1 System Model

The MC-CDMA system model forNu users is illustrated in Figure 2.8 [54]. The

information data are grouped into Nu frames and then each frame is modulated

to P symbols. Therefore the symbol matrix for user nu (nu = 1, 2, ..., Nu) can

be indicated as dnu =
[
dnu,1 dnu,2 · · · dnu,P

]T
∈ CP×1. The symbols of each

user are first serial-to-parallel converted and then spread with the corresponding

user specific spreading sequence in order to form the chip-level transmit matrix

snu =
[

snu,1 snu,2 · · · snu,PG

]
= dnu ⊗ cnu ∈ C1×PG (2.13)

where ⊗ denotes the Kronecker product and the signature sequence of user nu is

expressed as

cnu =
[
cnu,1 cnu,2 · · · cnu,G

]
∈ C1×G (2.14)

in which C refers to the spreading code chip alphabet and G is the length of the

spreading sequence. Each user is allocated a distinct spreading code to ensure

orthogonality between the different users. The chips of the frames of all users

are then combined and all the P × G parallel data sequences are mapped onto

Ns = P ×G subcarriers and transformed into the time domain by the IFFT. The

subcarrier is indexed by i, and is related to the p-th symbol (p = 1, 2, . . . , P ) and

the g-th chip (g = 1,2,...,G) by

i(p, g) = (p− 1)G+ g. (2.15)

It must be noted that throughout Chapters 2, 3, 4 and 5, the subcarrier index i,

symbol index p, and chip index g are inter-connected together by (2.15). Hence

the corresponding symbol and chip indexes are represented with respect to the
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i-th subcarrier by

p(i) = (i− 1)modG+ 1 (2.16)

and

g(i) =
⌊
i− 1

G

⌋
+ 1 (2.17)

respectively where bac denotes the largest integer that is smaller than a. The

transmitted i-th multiplexed chip of all users can be indicated as

xi =
Nu∑
nu=1

snu,i =
Nu∑
nu=1

cnu,g(i)dnu,p(i). (2.18)

The output signal from the IFFT is added with CP before transmission over

the wireless multipath channel. The channel is considered to be quasi-static

frequency selective fading corrupted by AWGN with power spectral density N0.

The duration of CP is assumed to be longer than the maximum delay spread of

the channel in order to avoid ISI.

Figure 2.8: Multiuser MC-CDMA system.
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Upon receiving the signal, CP is removed and the FFT of size Ns is per-

formed. The received signal model at the i-th multiplexed chip after FFT can be

characterised as

ri = Hixi + ni. (2.19)

The estimates of the transmitted chips at the i-th subcarrier can be obtained by

performing ZF equalization on each subcarrier as shown by

yi = H−1
i ri = H−1

i Hixi +H−1
i ni = xi + ñi. (2.20)

The symbol decision statistics is acquired when the chip estimates are despread

by the desired user’s spreading sequence expressed as

znu,p =
G∑
g=1

cnu,gyi = dnu,p +
G∑
g=1

cnu,gñi. (2.21)

The estimated p-th symbol detection for the nu-th user is performed by slicing

znu,p using the quantization operation Q(.) with respect to the type of constella-

tion in use

d̂nu,p = Q (znu,p) . (2.22)

It is well known that the ZF technique amplifies the noise and this degrades the

system performance. For this reason, the ZF equalisation in (2.20) can be easily

extended to the minimum mean square error (MMSE) equaliser. The MMSE

filter aims to minimise the MSE between the transmitted symbol and the filtered

received signal. This is formed by

HMMSE
i = argmin

H̃i

{
E
[∣∣∣d− H̃ir

∣∣∣2]} = (H∗iHi + σ2
n)−1H∗i (2.23)

where H∗i gives the complex conjugate of Hi and E[.] denotes the expectation
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operator. The MMSE equalisation is used to evaluate the performance of MC-

CDMA in the next section.

2.2.3.2 Performance of MC-CDMA

The performance of the coded and uncoded MMSE MC-CDMA system with

chip level block interleaving and eight users (Nu = 8) is evaluated under Rayleigh

frequency selective fading channels and is demonstrated in Figure 2.9. The trans-

mitted frame is assumed to consist 64 QPSK modulated symbols (P = 64) and

each spreading sequence contains eight chips (G = 8). Walsh-Hadamard spread-

ing sequences are used for each user. The coded MC-CDMA system uses rate 1/2

convolutional codes with constraint length 3 and generators {5,7}, and Viterbi

decoder at the receiver. Hence the number of chips for the encoded frame is 1024

and 512 for the uncoded frame. The FFT size is considered to be the same as the

number of subcarriers i.e. Ns = 1024 and 512 respectively. The block interleaver

has a size of 32× 32 for the coded and 16× 32 for the uncoded MC-CDMA. The

Delay(µs) 0.0 0.2 0.6 1.6 2.4 5.0
Rel. Power (dB) -3.0 0.0 -2.0 -6.0 -8.0 -10.0

Table 2.1: Relative powers of delay profile [55].

radio channel is assumed to be a typical urban area propagation model specified

in [55], with 6 taps and the parameters are listed in Table 2.1. It is also assumed

that the excess delay bin width is equal to 0.2 µs and the maximum delay spread

is shorter than the duration of the cyclic prefix. Hence, ISI is avoided and each

chip experiences flat fading.

The results illustrate that the coded MC-CDMA outperforms the uncoded

case by 16 dB at BER = 10−4. The reason is because when block interleaving is

applied, consecutive chips will be transmitted at interleaved subcarriers, which
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Figure 2.9: Performance of coded and uncoded MC-CDMA in fading channels.

have more diverse channel gains. With ECC, this diversity can be exploited to

correct errors and produce significant performance advantage.

2.2.4 Orthogonal Frequency Division Multiple Access

(OFDMA)

Multiuser OFDM or OFDMA [56,57], a scheme originally proposed for cable

TV (CATV) networks in Europe [58] and recently adopted in the IEEE 802.16

wireless MAN (WMAN) system [59], is the technology which combines OFDM

with FDMA. In this way OFDMA allows multiple users to transmit information

simultaneously by allocating different subcarriers to each user.
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2.2.4.1 System Model

Consider an OFDMA system with Nu users. The information data are grouped

into Nu frames and then each frame is modulated into P symbols. In OFDMA

system, each user is allocated P subcarriers so that one subcarrier is used for

one symbol transmission. The combined signals of all users have an index i and

relate to the p-th symbol (p = 1, 2, . . . , P ) and the nu-th user (nu = 1, 2, ..., Nu)

by i = (nu − 1)P + p. Thus the symbol vector at the i-th subcarrier can be

represented as di =
[
d1 d2 · · · dPNu

]T
∈ CPNu×1. The symbols are then

mapped onto Ns = P × Nu subcarriers and transformed into time domain by

IFFT. Upon receiving the signal, the CP is removed and FFT of size P ×Nu is

performed. The received signal of OFDMA for the i-th subcarrier, after the FFT

can be written as

ri = Hidi + ni. (2.24)

The estimates of the transmitted symbols at the i-th subcarrier can be obtained

by performing ZF equalisation on each subcarrier as shown by

yi = H−1
i ri = di + ñi. (2.25)

The i-th symbol detection is performed by slicing yi and it is represented by

d̂i = Q (yi) . (2.26)

2.2.4.2 Performance of OFDMA

The BER performance for coded and uncoded OFDMA system with 4 users

(Nu = 4) is illustrated in Figure 2.10. The transmitted frame for the nu-th user is

assumed to comprise 32 QPSK modulated symbols (P = 32) which are mapped
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Figure 2.10: Performance of OFDMA in Rayleigh fading channels.

onto the same number of subcarriers. The FFT size is considered to be the

same as the total number of subcarriers for all users, i.e. Ns = 128. The encoded

frames for OFDMA system make use of the same codes as with the OFDM system

discussed in Section 2.2.1.3. Also the radio channel used here is assumed to be

the same as for OFDM in section 2.2.1.3. As expected, it is clear that the results

for OFDMA have shown the same performance with the OFDM system.

2.3 Multiple Input Multiple Output (MIMO)

MIMO system [7,60,61] is a scheme based on multiple transmitting and mul-

tiple receiving antennas which can achieve very high data rates in rich multipath
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scattering environments without increasing the transmission bandwidth or the

total transmitted power of the system. The point-to-point MIMO channel of four

transmit (Nt = 4) and four receive (Nr = 4) antennas is depicted in Figure 2.11.

Figure 2.11: 4x4 MIMO channel.

MIMO techniques realise high data rates through spatial multiplexing and

increase the spectral efficiency of the system in rich scattering environments by

providing spatial diversity. In addition, the MIMO system capacity increases

linearly with the number of transmit-receive antenna pairs. This explains the

reason why a great interest has risen for spatial multiplexing architectures. The

received signal for the MIMO system is characterised by


r1

...

rNr

 =


h1,1 . . . h1,Nt

...
. . .

...

hNr,1 . . . hNr,Nt




d1

...

dNt

+


n1

...

nNr

 ∈ CNr×Nt (2.27)
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The channel model in (2.27) can be simplified to a matrix equation indicated as

r = Hd + n (2.28)

where d denotes the Nt dimensional transmitted symbol, n is the Nr dimensional

noise vector with zero mean and variance σ2
n and H indicates the Nr×Nt complex

matrix of channel gains hi,j from transmit antenna j to receive antenna i.

2.3.1 Spatial Multiplexing

Figure 2.12 depicts the block diagram for a spatial multiplexing (SM) [54,62]

technique with parallel symbol mapping. Spatial multiplexing divides a single

bit stream into Nt substreams which are next mapped into symbol streams by

the appropriate constellation before simultaneous transmission over the wireless

channel. The collection of the Nt substreams forms the vertical vector

d =
[
d1 d2 · · · dNt

]T
∈ CNt×1 (2.29)

which contains the mapped symbols. This process illustrates the encoding of

the input serial data into a vertical vector and is referred to as vertical encod-

ing [5]. As Nt parallel transmit antennas are used for spatial multiplexing, the

transmission rate is Nt times higher than systems with a single transmit antenna.

2.3.1.1 Linear Detection (Nulling)

Linear filtering (or nulling) suppresses the spatial interference which arises

when multiple antennas transmit multiple substreams simultaneously. This inter-

ference is called co-antenna interference (CAI). With nulling, one of the received
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Figure 2.12: Spatial multiplexing architecture.

substreams is considered to be the desired signal while the remaining substreams

are suppressed. This is repeated for each of the received substreams. Two dif-

ferent linear filters are used for the purpose of this research and these include

the ZF and the minimum mean square error (MMSE) filters. Provided that the

number of transmit antenna is not greater than the number of receive antenna

(Nt ≤ Nr), their corresponding spatial transform matrices are given by [1]

GZF = H+ = (HHH)−1HH (2.30)

GMMSE =
[
HHH +N0INt

]−1
HH (2.31)

respectively, where H+ and HH represent the pseudoinverse and Hermitian ma-

trices of H respectively, and INt signifies the Nt × Nt identity matrix. After

nulling, the decision statistics of the transmitted symbols can be represented as

y = Gr = Gd + Gn (2.32)
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where G denotes the ZF or MMSE spatial suppression matrix given by (2.30) or

(2.31) respectively.

2.3.1.2 OSIC Detection (V-BLAST)

The V-BLAST architecture [9] is a MIMO technique that employs a layered

detection architecture with interference suppression, symbol detection, and in-

terference cancellation. V-BLAST has recently gained major research interest

because it can realize very high data transfer rates by using spatial multiplexing

to exploit the multiple spatial channels. The block diagram for the V-BLAST

scheme is illustrated in Figure 2.13. At the receiver, the received substreams with

Figure 2.13: V-BLAST architecture.

the highest post detection SNR is considered first to be the desired signal for de-

tection while the remaining substreams are suppressed. Next, the interference

from the detected substream is subtracted from the received signal and the result

is a modified received vector with less interferers. The layered detection process

is performed using an optimum selection ordering. This ordering is given by the

set S ∈ {k1, k2, ..., kNt} where k signifies the row of the linear transform matrix

G with the highest post detection SNR. The general detection procedure can be
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described in the following three steps:

• The nulling vector wk1 represents the k1-th column of G and is used to

form the decision statistic of the desired substream expressed as

yk1 = wT
k1

r1 (2.33)

• An estimated value of the detected symbol is obtained by slicing yk1 using

the quantization operation Q(.) with respect to the type of constellation in

use

d̂k1 = Q(yk1) (2.34)

• The interference from the detected symbol is cancelled from the received

signal resulting in the modified vector

r2 = r1 − d̂k1 (H)k1 (2.35)

where (A)k1 indicates the k1-th column of matrix A.

The previous steps are repeated for the remaining components of the set S and

each time a new modified version of the received vector is used. The full V-BLAST

detection algorithm with ZF nulling can be expressed as a recursive procedure,

which also includes the computational of optimal ordering as follows:

Initialisation:

i← 1 (2.36)

G1 = H+ (2.37)

k1 = arg min
∥∥∥(G1)j

∥∥∥2
(2.38)
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Recursion:

wT
k1

= (Gi)ki
(2.39)

yki
= wT

ki
ri (2.40)

d̂ki
= Q(yki

) (2.41)

ri+1 = ri − d̂ki
(H)ki

(2.42)

Gi+1 =
(
H+

)
k̄i

(2.43)

ki+1 = arg min
∥∥∥(Gi+1)j

∥∥∥2
(2.44)

i← i+ 1 (2.45)

where (A)j denotes the j-th column of matrix A, Hk̄i
represents the matrix

obtained when zeroing columns (k1, k2, ..., ki) of H. Also, ‖a‖ stands for the mag-

nitude of the vector a. To summarise the recursive algorithm, (2.38) and (2.44)

determine the elements of the ordered set S ∈ {k1, k2, ..., kNt}, (2.39), (2.40) and

(2.41) resolve the ZF nulling vector, the decision statistic and the estimated com-

ponent of d respectively. Furthermore, (2.42) is responsible for the cancellation

of the detected signal from the received vector. Lastly, (2.43) computes the new

pseudoinverse value of the channel response for the next iteration. It must be

noted that the above procedure can be easily extended to use the MMSE filter

where the spatial transform matrix is calculated by (2.31).

The performance of ZF OSIC receiver with 2×2 and 4×4 antenna configura-

tions is evaluated through Monte Carlo simulation. Each transmitted frame con-

sists of 100 uncoded QPSK modulated symbols. The MIMO channel is assumed

to experience quasi-static flat fading. Figure 2.14 depicts the BER performance

for different Eb/N0 for the ZF OSIC detector. It is evident that the ZF OSIC
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Figure 2.14: Performance of ZF/MMSE OSIC detectors in Rayleigh flat fading
channel.

detector performs very similar in 2 × 2 and 4 × 4 MIMO channels until 20 dB.

In the higher SNR region the performance of 4 × 4 ZF OSIC detector becomes

better than the 2× 2 case.

2.3.2 Spatial Diversity

An alternative approach to spatial multiplexing is to achieve transmit and/or

receive diversity by transmiting and receiving multiple copies of the same data

streams under independent fading paths using multiple transmit and multiple
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receive antennas. In this way detection of signals in deep fades is avoided and

hence spatial diversity increases the system performance. This method is called

space-time coding (STC) [63] and it is illustrated in Figure 2.15. There are two

Figure 2.15: Space-time coding (STC).

main STC schemes that provide spatial diversity and these are: (i) space-time

trellis code (STTC) [64–67] and (ii) space-time block code (STBC) [68]. STTC

introduces spatial correlation into the signals transmitted from different antennas,

in order to provide spatial diversity and coding gain without sacrificing extra

bandwidth. However, STTC requires trellis decoding which is a high complexity

detection process that grows exponentially as a function of the transmit antennas

and the transmission rate. However, this work is focused on the STBC, which is

explained in the following.

2.3.2.1 Space-Time Block Code (STBC)

Instead of the complex STTC, a low complexity system that achieves transmit

diversity was proposed by Alamouti for 2 transmit antennas in [69]. This scheme

is the well known STBC and is later generalised to an arbitary number of antennas

[70].

In the Alamouti’s transmission scheme, consider two symbols d0 and d1 in

two consecutive symbol periods transmitted over two consecutive transmissions.
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During the first transmission, d0 and d1 are transmitted simultaneously at time

t from the two transmit antennas. During the second transmission, −d1∗ and d0∗

are transmitted at time t + Td where Td denotes the symbol period. Hence, the

transmission matrix is represented by

D =

 d0 d1

−d1∗ d0∗

 . (2.46)

It has to be noted that the transmission matrix is orthogonal and this means that

DDH =

 d0 d1

−d1∗ d0∗


 d0∗ −d1

d1∗ d0

 =

 |d0|2 + |d1|2 0

0 |d0|2 + |d1|2


=

(∣∣∣d0
∣∣∣2 +

∣∣∣d1
∣∣∣2) I (2.47)

The received signals at the first and second symbol periods are given by

r(1) = h1d
0 + h2d

1 + n(1) (2.48)

r(2) = −h1d
1∗ + h2d

0∗ + n(2) (2.49)

where h1 and h2 denote the channel gains from transmit antenna 1 and 2 to

receive antennas respectively and it is assumed that h1 and h2 are constant over

two consecutive symbol periods. Furthermore, n(1) and n(2) represent the AWGN

components with zero mean and variance N0. The received signal matrix can be

represented as follows

r =

 r(1)

r∗(2)

 =

 h1 h2

h∗2 −h∗1


 d0

d1

+

 n(1)

n∗(2)

 = Hd + n. (2.50)
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Similar to (2.47), the channel matrix H is orthogonal such that

HHH =

 |h1|2 + |h2|2 0

0 |h1|2 + |h2|2

 . (2.51)

The transmitted signal could be separated by pre-multiplying the received signal

in (2.50) with HH as shown by

y = HHr =

 |h1|2 + |h2|2 0

0 |h1|2 + |h2|2

d + HHn =
(
|h1|2 + |h2|2

)
d + ñ.

(2.52)

The modified noise ñ is still AWGN with zero mean but with power equal to

Figure 2.16: Performance of STBC in Rayleigh flat fading channel.
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(
|h1|2 + |h2|2

)
N0I. Next, maximum likelihood (ML) symbol-by-symbol detection

can be used to derive the estimated data. The above analyis has shown that the

Alamuti’s STBC scheme achieves a rate of 1 (R=1) as it transmits two symbols

in two symbol periods.

The performance of STBC system with 2×1 and 2×2 antenna configurations

is evaluated through Monte Carlo simulation. Each transmitted frame consists

of 100 uncoded QPSK modulated symbols. The MIMO channel is assumed to

experience quasi-static flat fading. Figure 2.16 depicts the BER performance

for different Eb/N0 for the STBC system. It is evident that the 2 × 2 STBC

system significantly outperforms the SISO QPSK system by 10 dB at BER =

10−3. As the number of transmit and receive antennas increases to 4, a further

4 dB improvement is observed for the STBC system at the same BER. This is

because as the number of antennas increases, spatial diversity is better exploited

to improve performance.



Chapter 3

Downlink MIMO MC-CDMA

In this chapter we introduce the basic signal model for the downlink MIMO

MC-CDMA system, and existing receiver architectures. These include the chip

and symbol level linear and OSIC receivers.

3.1 Transmit Signal Model

Consider the single cell downlink MIMO MC-CDMA transmitter model with

Nu users depicted in Figure 3.1. The information data are grouped into Nt

substreams and then each substream is encoded and modulated to P symbols.

The uncoded symbol matrix for user nu (nu = 1,2,...,Nu) is defined as

Dnu =
[

d1
nu

d2
nu
· · · dNt

nu

]T
∈ CNt×P (3.1)

where the column vector dnt
nu

denotes the data stream that is transmitted by the

nt-th antenna (nt = 1, 2, ..., Nt), represented as

dnt
nu

=
[
dnt
nu,1 dnt

nu,2 · · · dnt
nu,P

]T
∈ CP×1. (3.2)

63
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Each user is allocated a distinct spreading code. The spreading sequence of user

nu is indicated as

cnu =
[
cnu,1 cnu,2 · · · cnu,G

]
∈ C1×G (3.3)

where C refers to the spreading code chip alphabet and G is the spreading code

length. The spreading sequence is used to spread the symbols of the nu-th user

Figure 3.1: MIMO MC-CDMA transmitter.

in order to form the chip-level transmit matrix

Snu =
[

snu,1 snu,2 · · · snu,Ns

]
= Dnu ⊗ cnu ∈ CNt×Ns (3.4)

where Ns = P × G represents the total number of subcarriers. The combined

CDMA chip of all users at the i-th subcarrier is defined as

xi =
[
x1
i x2

i · · · xNt
i

]T
=

Nu∑
nu=1

snu,i ∈ CNt×1 (3.5)
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where xnt
i is the combined chip transmitted by the nt-th antenna, and can be

expressed as

xnt
i =

Nu∑
nu=1

snt
nu,i =

Nu∑
nu=1

cnu,g(i)d
nt

nu,p(i)
(3.6)

in which snt
nu,i denotes the nu-th user transmitted chip by the nt-th antenna at the

i-th subcarrier. The combined chip sequence for each transmit antenna is trans-

formed into time domain by the IFFT. The output signal from the IFFT follows

the same procedure as with the MC-CDMA system in Chapter 2. Furthermore,

the channel is considered to be the same with the MC-CDMA system. Other

assumptions made include no channel state information (CSI) at the transmitter

and perfect CSI at the receiver. It must be noted that if an interleaver is used for

MIMO MC-CDMA the performance will become better. This is because consecu-

tive chips will be transmitted at interleaved subcarriers, which have more diverse

channel gains. However for brevity of presentation, the following analysis con-

siders a system with no interleaving. It can easily be extended to an interleaved

system, which is also used in the simulations.

3.2 Receive Signal Model

Consider the receiver of the desired user with Nr receive antennas. Upon

receiving the signal, CP is removed and FFT of size Ns is performed. The received

signal model at the i-th subcarrier after FFT is expressed as

ri = Hixi + ni (3.7)

where the received signal is characterised by

ri =
[
r1
i r2

i · · · rNr
i

]T
∈ CNr×1. (3.8)
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The channel and the AWGN vector with σ2
n power are represented respectively

as

Hi =
[

h1
i h2

i · · · hNt
i

]
=


h

(1,1)
i . . . h

(1,Nt)
i

...
. . .

...

h
(Nr,1)
i . . . h

(Nr,Nt)
i

 ∈ CNr×Nt (3.9)

ni =
[
n1
i n2

i · · · nNr
i

]T
∈ CNr×1 (3.10)

where h
(nr,nt)
i denotes the channel response at the i-th subcarrier between transmit

antenna nt and receive antenna nr (nr = 1,2,...,Nr), and ni signifies the Nr × 1

AWGN noise vector at the i-th subcarrier. The received signal in (3.7) can be

further expanded to

ri =

desired︷ ︸︸ ︷
hnt
i s

nt
nu,i +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

h
n′t
i s

n′t
nu,i +

MAI 1︷ ︸︸ ︷
Nu∑

n′u 6=nu

hnt
i s

nt
n′u,i

+

MAI 2︷ ︸︸ ︷
Nu∑

n′u 6=nu

Nt∑
n′t 6=nt

h
n′t
i s

n′t
n′u,i

+ni. (3.11)

Considering the right hand side of (3.11), the first term corresponds to the trans-

mitted chips from the desired substream nt of the desired user nu. The second

term represents the CAI arising from other substreams of the desired user. The

third (MAI 1) and the fourth term (MAI 2) express MAI coming from other

users’ nt-th substream and all other substreams respectively. The visual repre-

sentation of the terms in (3.11) that arrive at the the receiver of the nu-th user

are illustrated in Figure 3.2.



CHAPTER 3. DOWNLINK MIMO MC-CDMA 67

Figure 3.2: Illustration of the desired / CAI / MAI 1 / MAI 2 signals.

3.3 Existing receiver architectures

3.3.1 Chip level Linear & OSIC Receivers

In [1] and [2], chip level linear detectors are presented for downlink MIMO

MC-CDMA system. Linear filtering suppresses CAI arising from multi-antenna

transmission. It is performed by considering in turn each of the received sub-

streams to be the desired signal while suppressing the remaining substreams.

The receiver with linear ZF / MMSE filters is depicted in Figure 3.3. Their cor-

responding spatial transform matrices at the i-th subcarrier can be represented

by [1]

HZF
i = H+

i = (HH
i Hi)

−1HH
i (3.12)

HMMSE
i =

[
HH
i Hi + (G/Nu)σ

2
nINt

]−1
HH
i (3.13)
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respectively. Considering the ZF case, the filtered received signal at the i-th

subcarrier for the nu-th user can be expressed as

ynu,i = HZF
i ri = H+

i Hixi + H+
i ni = xi + ñi. (3.14)

Next, the chip estimates in (3.14) are despread by the desired user’s spreading

sequence to obtain the symbol decision statistic,

znu,p =
G∑
g=1

cnu,gynu,i(p,g). (3.15)

Detection is then performed to obtain the symbol estimates.

Figure 3.3: Linear & OSIC receivers for MIMO MC-CDMA.

The chip level OSIC (V-BLAST) receiver was originally proposed for MIMO

MC-CDMA systems in [1] and studied further in [26–28]. The receiver in [1]
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combines the OSIC detector with chip level despreading and symbol detection as

shown in Figure 3.3. This receiver demonstrated good performance for single user

case. However, its performance is severely degraded in multiuser case as shown

next.

Figure 3.4 demonstrates the BER performance with respect to different Eb/N0

for the linear chip level ZF and MMSE detectors [2] and the chip level OSIC de-

tectors [1] for the half loaded four user (Nu = 4) case. As multiple antennas

Figure 3.4: BER performance of linear and non linear detectors at half load for
downlink MIMO MC-CDMA system.
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are used by all systems, the word ”MIMO” is omitted to ease the comparative

discussion in Chapters 3 - 5. Consider a downlink communication system with

4 × 4 antenna configuration. Each transmitted frame comprises eight 1/2 rate

convolutional coded QPSK modulated symbols (P = 8) with generators {5,7}.

Each spreading sequence in the MC-CDMA system consists of eight chips (G = 8)

and Walsh-Hadamard spreading sequences are used for each user. The FFT size

is considered to be the same as the number of the subcarriers, i.e. Ns= 128 sub-

carriers are available per frame in which one subcarrier per one encoded symbol

is used. The block interleaver has a size of G× P . Each of the MIMO channels

experiences frequency selective Rayleigh fading with two taps at arrival times

{0, 1} normalized to the chip period of the MC-CDMA system. It is assumed

that the maximum delay spread is shorter than the duration of the cyclic prefix.

Hence, ISI is avoided and each chip experiences flat fading.

The performance of ZF and MMSE OSIC detectors illustrate significant error

floors in the higher SNR region due to MAI and error propagation. As a result,

it performs even worse than the linear ZF and MMSE receivers. It can also be

observed that the MMSE significantly outperforms the ZF counterpart. This is

because the MMSE filter will not amplify the noise as in ZF filter, and hence a

reduced error rate occurs.

3.3.2 Symbol level Linear & SIC Receivers

In this subsection we present the symbol level MMSE with SIC detector [2].

The p-th received symbol after the IFFT operation is

rp = Wpdp + np (3.16)
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where the received symbols, transmitted symbols and noise vector of the p-th

symbol are represented respectively as

rp =
[
r1

1 · · · r1
G · · · rNr

1 · · · rNr
G

]T
∈ CNrG×1 (3.17)

dp =
[
d1

1 · · · dNt
1 · · · d1

K · · · dNt
K

]T
∈ CNtK×1 (3.18)

np =
[
n1

1 · · ·n1
G · · · nNr

1 · · ·nNr
G

]T
∈ CNrG×1. (3.19)

The combined channel-spreading matrix can be expressed as

Wp =
[

w1
1,p · · ·wNt

1,p · · · w1
Nu,p · · ·w

Nt
Nu,p

]
=

=



h
(1,1)
i(p,1)c1,1 · · ·h(1,Nt)

i(p,1) c1,1 · · · h
(1,1)
i(p,1)cNu,1 · · ·h

(1,Nt)
i(p,1) cNu,1

...
...

...

h
(1,1)
i(p,G)c1,G · · ·h(1,Nt)

i(p,G)c1,G · · · h
(1,1)
i(p,G)cNu,G · · ·h

(1,Nt)
i(p,G)cNu,G

...
...

...

h
(Nr,1)
i(p,1) c1,1 · · ·h(Nr,Nt)

i(p,1) c1,1 · · · h
(Nr,1)
i(p,1) cNu,1 · · ·h

(Nr,Nt)
i(p,1) cNu,1

...
...

...

h
(Nr,1)
i(p,G) c1,G · · ·h(Nr,Nt)

i(p,G) c1,G · · · h
(Nr,1)
i(p,G) cNu,G · · ·h

(Nr,Nt)
i(p,G) cNu,G



.

(3.20)

Next, the received signal passes through the symbol level MMSE filter and the es-

timate of the p-th transmitted symbol for the nt-th substream can be represented
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by

ynt
p =

[
WMMSE

p

]
nt

rp =

desired︷ ︸︸ ︷[
WMMSE

p

]
nt

wnt
nu,pd

nt
p +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

[
WMMSE

p

]
nt

wn′t
nu,pd

n′t
p

+

MAI 1︷ ︸︸ ︷
Nu∑

n′u 6=nu

[
WMMSE

p

]
nt

wnt
n′u,p

dnt
p +

MAI 2︷ ︸︸ ︷
Nu∑

n′u 6=nu

Nt∑
n′t 6=nt

[
WMMSE

p

]
nt

w
n′t
n′u,p

dn
′
t
p

+
[
WMMSE

p

]
nt

np (3.21)

where the spatial suppression matrix is given by [2]

WMMSE
p =

[
WpRddW

H
p + σ2

nINrG

]−1
WpRdd (3.22)

in which Rdd = EdINt and Ed denotes the symbol energy. Detection is then

performed to obtain the symbol estimate d̂nt
p . The modified received signal for

the next detection layer can be obtained by

r′p = rp −
(
wnt
nu,pd̂

nt
p

)
(3.23)

where r′p contains the CAI and noise terms and some form of residual CAI and

MAI for the next detection layer. The above stated steps are repeated until all

remaining substreams are detected.

In Figure 3.5 we consider the BER performance for the linear chip level MMSE

detector, the chip level OSIC detector and the symbol level MMSE with OSIC

for the half loaded case. It must be noted that the symbol level MMSE with SIC

detector is modified with a novel detection ordering. Consider the same system

parameters and assumptions as in the previous subsection. From the results, it

is evident that the symbol level OSIC detector performs 2 dB better than the
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Figure 3.5: BER performance of chip and symbol level MIMO MC-CDMA at half
load.

linear detector at BER = 10−3.

Although the symbol level detector performs better than the chip level detec-

tors, it requires higher computational complexity and also it requires the knowl-

edge of all other users’ spreading sequence to avoid MAI. For these reasons, the

symbol detector is not so practical for downlink MC-CDMA systems.



Chapter 4

OSSMIC Receiver

This chapter first proposes the ordered successive spatial and multiuser in-

terference cancellation (OSSMIC) receiver for the downlink MIMO MC-CDMA

system. Next, the performance of the OSSMIC receiver is evaluated and com-

pared to that of existing MIMO MC-CDMA receivers.

In the OSIC receiver for MIMO MC-CDMA systems shown in Figure 3.3 [1],

the chip level nulling filter removes CAI and MAI 2 in (3.11). The next step

in the OSIC algorithm is chip level hard detection of the selected substream.

Then, interference from the detected symbols is cancelled from the received signal

and this process comes before the despreading operation. For this reason, the

MAI 1 in (3.11) is not suppressed before detection which leads to significant

error propagation and severe performance degradation with a high error floor.

Alternatively, we propose the novel OSSMIC receiver that can remove this MAI

1 term and avoid the severe degradation in performance. This receiver structure

is capable of removing both the spatial and multiuser interference. The three

major procedures of this receiver are detailed in the following three sections.

74
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4.1 Spatial Interference Suppression & Cancel-

lation

Without loss of generality, we consider first the nt-th substream. For ease

of presentation, the analysis of OSSMIC receiver with ZF filtering is discussed

first and it is extended to the MMSE case later on. Figure 4.1 depicts the block

diagram of the novel receiver architecture for the desired user nu-th user. For

ease of presentation, the received signal model in (3.11) is revisited here

ri =

desired︷ ︸︸ ︷
hnt
i s

nt
nu,i +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

h
n′t
i s

n′t
nu,i +

MAI 1︷ ︸︸ ︷
Nu∑

n′u 6=nu

hnt
i s

nt
n′u,i

+

MAI 2︷ ︸︸ ︷
Nu∑

n′u 6=nu

Nt∑
n′t

h
n′t
i s

n′t
n′u,i

+ni. (4.1)

Considering this received signal passing through a linear ZF filter, the estimates

of the i-th subcarrier for the nu-th user’s nt-th substream can be expressed as

ynt
nu,i =

[
H+
i

]
nt

ri =
[
H+
i

]
nt

Hixi +
[
H+
i

]
nt

ni = snt
nu,i +

Nu∑
n′u 6=nu

snt
n′u,i

+ ñi (4.2)

where [A]n denotes the n-th row of matrix A. The p-th symbol decision statistic

is obtained when the chip estimates in (4.2) are despread by the desired user’s

spreading sequence represented by

znt
nu,p =

G∑
g=1

cnu,gy
nt

nu,i(p,g)
=

G∑
g=1

cnu,gs
nt

nu,i(p,g)
+

Nu∑
n′u 6=nu

G∑
g=1

cnu,gs
nt

n′u,i(p,g)

+
G∑
g=1

cnu,gñi(p,g) = dnt
nu,p + ηnu,p. (4.3)

where ηnu,p =
∑G
g=1 cnu,gñi(p,g). As the spatial & multiple access interferences

(CAI, MAI1 & MAI2) are removed, detection is then performed to obtain the

symbol estimate d̂nt
nu,p.
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Figure 4.1: Block diagram of OSSMIC receiver for downlink MIMO MC-CDMA.

The next step in the conventional OSIC receiver, is to remove the contri-

bution of the nt-th detected substream (i.e. the ”desired” term in (4.1)) from

the received signal. Then, the modified channel matrix is formed by setting the

detected substream’s channel response to zero, i.e. the nt-th column of Hi is

zeroed [9]. This modified channel matrix is used to compute the nulling filter for
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the subsequent stage. However, the multiuser interference from this nt-th trans-

mit antenna (i.e MAI 1 in (4.1)) is not removed from the received signal and it

will not be suppressed by the subsequent nulling processes. For this reason, error

propagation is produced and it significantly deteriorates the system performance.

Therefore, the MAI 1 term must be eliminated from the received signal. The pro-

posed OSSMIC receiver removes this interference term with only the knowledge

of the desired user’s spreading sequence as explained next.

4.2 Multiple Access Interference Calculation &

Cancellation

For downlink communications, receivers are usually assumed to know only the

desired user’s spreading sequence and not all the other users’ sequences. Thus,

without knowing the spreading sequence of other users, it is difficult to perfectly

remove the MAI 1 term in (4.1). Nonetheless, we propose a novel approach that

can perfectly compute this MAI term at the expense of noise enhancement.

First, the symbol decision statistic znt
nu,p in (4.3) is respread with the desired

user’s spreading sequence to obtain

vnt
nu,p =

[
vnt

nu,i(p,1) vnt

nu,i(p,2) · · · vnt

nu,i(p,G)

]T
= cnuz

nt
nu,p ∈ CG×1. (4.4)

The respread signal at the i-th subcarrier vnt
nu,i (where i relates to p and g accord-

ing to (2.15)) contains the desired user’s signal snt
nu,i and the modified noise term

cnu,g(i)ηnu,p(i). The respread signal is then subtracted from the chip estimate ynt
nu,i

in (4.2) so as to obtain the signal contribution in the MAI 1 term and a second
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term which contains the enhanced noise as shown by

Inu,i = ynt
nu,i − v

nt
nu,i =

Nu∑
n′u 6=nu

snt
n′u,i

+
(
ñi − cnu,g(i)ηnu,p(i)

)
. (4.5)

The whole cancellation procedure for the nt-th substream from the received signal

at the i-th subcarrier can be characterized by

r′i = ri − hnt
i

(
cnu,g(i)d̂

nt

nu,p(i)
+ Inu,i

)
(4.6)

where r′i is the modified received signal containing the CAI, MAI 2 and noise

terms for the next detection layer. The above stated steps are repeated until all

the remaining substreams are detected.

To ease the derivation of error bound for chip level MIMO MC-CDMA in

Chapter 5, the above derivation is extended to use the MMSE filter. Hence, the

MMSE filtered received signal is presented as

ynt
nu,i =

[
HMMSE
i

]
nt

ri =

desired︷ ︸︸ ︷[
HMMSE
i

]
nt

hnt
i s

nt
nu,i +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

[
HMMSE
i

]
nt

h
n′t
i s

n′t
nu,i

+

MAI 1︷ ︸︸ ︷
Nu∑

n′u 6=nu

[
HMMSE
i

]
nt

hnt
i s

nt
n′u,i

+

MAI 2︷ ︸︸ ︷
Nu∑

n′u 6=nu

Nt∑
n′t 6=nt

[
HMMSE
i

]
nt

h
n′t
i s

n′t
n′u,i

+
[
HMMSE
i

]
nt

ni (4.7)

where the MMSE spatial suppression matrix at the i-th subcarrier is HMMSE
i =

[HH
i Hi+ (G/K)σ2

nINt ]
−1HH

i . It must be noted that when the MMSE filter is

used, the interference calculated in (4.5) (i.e. Inu,i) contains not only the MAI 1

and the noise terms, but also some form of residual CAI and MAI. This happens

because when the received signal is filtered using MMSE, the CAI and MAI 2 in



CHAPTER 4. OSSMIC RECEIVER 79

(4.1) are not completely removed.

Despite the presence of residual interference, the additional noise and interfer-

ence power after (4.6) can be included to the MMSE filter for the next detection

stage. From (4.5) and (4.6) the additional noise is given by

n̂i = hnt
i

(
ñi − cnu,g(i)ηnu,p(i)

)
(4.8)

and its variance is derived as follows,

σ2
n̂i

= E
[∥∥∥hnt

i

(
ñi − cnu,g(i)ηnu,p(i)

)∥∥∥2
]

= ‖hnt
i ‖

2
F E

‖ñi‖2︸ ︷︷ ︸
Φ

+
∥∥∥cnu,g(i)ηnu,p(i)

∥∥∥2

︸ ︷︷ ︸
Ξ

− 2ñicnu,g(i)η
∗
nu,p(i)︸ ︷︷ ︸

Ψ


(4.9)

where ñi =
[
HMMSE
i

]
nt

ni, E [.] refers to the expectation operator and ‖.‖2
F de-

notes the Frobenious norm. The conditional expectations of the three terms in

(4.9) are evaluated independently as

E [Φ] = N0

∥∥∥∥[HMMSE
i

]
nt

∥∥∥∥2

F
(4.10)

E [Ξ] = E
[∥∥∥cnu,g(i)

(
cnu,1ñi(p(i),1) + ...+ cnu,Gñi(p(i),G)

)∥∥∥2
]

= E

c2
nu,g(i)

G∑
g=1

c2
nu,gñi(p(i),g)ñ

∗
i(p(i),g)


=

N0

G2

G∑
g=1

∥∥∥∥[HMMSE
i(p(i),g)

]
nt

∥∥∥∥2

F
(4.11)
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E [Ψ] = E
[
2ñicnu,g(i)

(
cnu,1ñ

∗
i(p(i),1) + ...+ cnu,Gñ

∗
i(p(i),G)

)]
= E

[
2cnu,g(i)cnu,g(i)ñiñ

∗
i

]
=

2N0

G

∥∥∥∥[HMMSE
i

]
nt

∥∥∥∥2

F
. (4.12)

where c2
i = 1

G
and

E
[
ñiñ

∗
j

]
=

 N0, if i = j,

0, if i 6= j
(4.13)

assuming ñi and ñj are independent and the AWGN noise term has zero mean

and N0 power spectral density. By substituting (4.10), (4.11) and (4.12) in (4.9),

the variance of the enhanced noise is simplified to

σ2
n̂i

= N0 ‖hnt
i ‖

2
F

∥∥∥∥[HMMSE
i

]
nt

∥∥∥∥2

F

(
1− 2

G

)
+

1

G2

G∑
g=1

∥∥∥∥[HMMSE
i(p(i),g)

]
nt

∥∥∥∥2

F

 . (4.14)

Hence the new MMSE filter for the next detection stage can be computed by

Ĥ
MMSE

i =
[
H
H

i Hi + (G/K)
(
INtσ

2
n + INtσ

2
n̂i

)]−1
H
H

i (4.15)

where Hi represents the modified channel matrix where the detected substream’s

channel response is set to zero.

4.3 OSSMIC with all users’ spreading sequences

The OSSMIC receiver is also investigated when all the other users’ spreading

sequences are available at the desired user receiver. This approach is also used in

[26] and [25]. Although knowing all the other users’ spreading sequences increases

the computational complexity of the system as shown in Section 4.5, it helps to

remove the MAI 1 term without noise enhancement. This improves the system
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performance as shown in Section 4.6. The symbol decision statistics for each user

form the decision statistic vector

znt
p =

[
znt

1,p znt
2,p · · · znt

Nu,p

]
∈ C1×Nu . (4.16)

The p-th symbol detection for the nt-th substream for all the users is then per-

formed to obtain the detected symbol vector

d̂
nt

p =
[
d̂nt

1,p d̂nt
2,p · · · d̂nt

Nu,p

]
∈ C1×Nu . (4.17)

The cancellation procedure for the nt-th substream from the received signal at

the i-th subcarrier can then characterized by

r′i = ri − hnt
i

Nu∑
nu=1

cnu,gd̂
nt
nu,p. (4.18)

The same procedure is followed until all the remaining substreams are detected.

It must be noted that if the other users’ detected symbols are in error, the MAI

1 term cannot be perfectly computed. However without the noise enhancement

in (4.5) and if all other users’ spreading sequences are known, the performance

of OSSMIC can be improved as it will be shown in Section 4.6.

4.4 Detection Ordering

The optimal detection order for the novel OSSMIC receiver is determined

according to the substream which produces the smallest total mean square er-

ror (MSE). The MSE matrix for the MMSE receiver with respect to the i-th
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subcarrier is given by

Ji =
[

Ji(1) Ji(2) · · · Ji(Nt)

]T
= diag

(
HH
i Hi + R−1

xxN0INt

)−1
(4.19)

where Rxx = Ex(Nu/G)INt with Ex being the chip energy. The total MSE of the

nt-th substream is represented by

MSETOTAL(nt) =
Ns∑
i=1

Ji(nt). (4.20)

The substream with the smallest total MSE will be detected at that stage.

4.5 Complexity Evaluation

The computational complexity of the proposed chip level OSSMIC and symbol

level OSIC receivers are compared in this section. In addition, the complexity

of the OSSMIC when all other users’ spreading sequences are known is also con-

sidered for comparison. The complexity evaluation is based on the total number

of additions and multiplications in the receivers. As shown in [2], a (Nr × L)

and (L×Nt) matrix multiplication requires NrLNt additions and NrLNt multi-

plications whereas a (Nr × Nr) matrix inversion requires 5Nr
3/6 − Nr

2 + Nr/6

additions, 5Nr
3/6− 5Nr/6 multiplications and Nr

2 divisions.

Table 4.1 lists the number of linear algebraic operations per frame for each

procedure. A practical example to evaluate the number of computations for these

systems is discussed in the following section. From Table 4.1, it is evident that the

complexity for symbol level OSIC detector is much higher than the complexity

of the chip level OSSMIC receiver. This is because in symbol level receiver,

the complexity is significantly affected by the channel-spreading matrix inversion

which draws a complexity order of O((NrG)3). Alternatively in the chip level
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MMSE Filtering

Operations Additions

Symbol level OSIC P (5(NrG)3/6− (NrG)2 + 13NrG/6 +NrNt
2GN2

u +NtNr
2NuG2)

Chip level OSSMIC P (5Nt
3G/6−Nt

2G+ 7NtG/6 +NrG+NtNr
2G+NrNt

2G)

Chip level OSSMIC / all user spr. seq. P (5Nt
3G/6−Nt

2G+ 7NtG/6 +NrG+NtNr
2G+NrNt

2G)

Operations Multiplications

Symbol level OSIC P (5(NrG)3/6 + (NrG)2 +NrG/6 +NrNt
2GN2

u +NtNr
2NuG2)

Chip level OSSMIC P (5Nt
3G/6 +Nt

2G− 5NtG/6 +NrG+NtNr
2G+NrNt

2G)

Chip level OSSMIC / all user spr. seq. P (5Nt
3G/6 +Nt

2G− 5NtG/6 +NrG+NtNr
2G+NrNt

2G)

Despreading

Operations Additions

Chip level OSSMIC PG

Chip level OSSMIC / all user spr. seq. PNuG

Operations Multiplications

Chip level OSSMIC PG

Chip level OSSMIC / all user spr. seq. PNuG

Respreading & Interference Calculation

Operations Additions

Chip level OSSMIC 2PG

Operations Multiplications

Chip level OSSMIC PG

Additional Noise Calculation

Operations Additions

Chip level OSSMIC P (2NrG+ 4G)

Operations Multiplications

Chip level OSSMIC P (2NrG+ 2G)

Total number of operations per frame

Symbol level OSIC P (5(NrG)3/3 + 7NrG/3 + 2NrNt
2GN2

u + 2NtNr
2NuG2)

Chip level OSSMIC P (5(Nt)3G/3 +NtG/3 + 6NrG+ 11G+ 2NtNr
2G+ 2NrNt

2G)

Chip level OSSMIC / all user spr. seq. P (5(Nt)3G/3 +NtG/3 + 2NrG+ 2NuG+ 2NtNr
2G+ 2NrNt

2G)

Table 4.1: Computational Complexity for chip and symbol level MIMO MC-
CDMA receivers: Total number of operations per frame

OSSMIC receiver, only the channel matrix inversion is required which produces

a complexity in the order of O(G(Nt)
3).

The complexity of symbol level OSIC detector is much higher than the chip

level OSSMIC receiver therefore, it is not included in the simulation results.

Figure 4.2 depicts a practical example for the complexity evaluation of OSSMIC

detectors. If all the other users spreading sequences are known, the computational
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Figure 4.2: Complexity evaluation for chip level MIMO MC-CDMA systems.

complexity of the OSSMIC receiver is doubled for Nu = 1. This complexity in-

creases with the increasing number of users. This is because the spreading matrix

of all users is used to perform the despreading operation, and hence increases the

complexity.

4.6 Simulation Results & Discussions

In this section, the performance of the proposed coded ZF / MMSE OSSMIC

receiver with chip level block interleaving for downlink MC-CDMA systems is

evaluated through Monte Carlo simulations. Furthermore, the performance of

other detectors for MIMO MC-CDMA are evaluated for comparison. As multiple

antennas are used for all systems, the word ”MIMO” is omitted to ease the
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comparative discussion in this chapter. For the simulation results, consider the

same system parameters and assumptions as in Section 3.3.1.

Figure 4.3: BER performance of proposed OSSMIC and linear detectors at half
load for downlink MIMO MC-CDMA system.

4.6.1 OSSMIC vs Linear & OSIC detectors

Figures 4.3 and 4.4 demonstrate the BER performance with respect to dif-

ferent Eb/N0 for the linear chip level ZF and MMSE detectors [2], the chip level

OSIC detectors [1] and our proposed ZF and MMSE OSSMIC detectors for the
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Figure 4.4: BER performance of proposed OSSMIC and linear detectors at full
load for downlink MIMO MC-CDMA system.

half loaded four user (Nu = 4) case and the full loaded eight user (Nu = 8) case.

The performance of ZF and MMSE OSIC detectors illustrate significant error

floors in the higher SNR region due to MAI and error propagation as discussed

in Section 4.2. From our results, it is evident that the proposed OSSMIC re-

ceiver overcomes the problem of MAI resulting in a superior performance over

the OSIC detectors. Comparing to the linear detectors in half load case, the

MMSE OSSMIC detector shows 4.2 dB improvement at BER = 10−3 over linear

MMSE detector. In addition, if the other users’ spreading sequences are known,
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the MMSE OSSMIC receiver shows further 0.5 dB improvement at BER = 10−4.

It can also be observed that the MMSE OSSMIC significantly outperforms the

ZF counterpart. This is because the MMSE filter will not amplify the noise as in

ZF filter, and hence a reduced error rate occurs.

In the full load case, the performance improvement by MMSE OSSMIC with

all users’ spreading sequence knowledge over MMSE OSSMIC is increased to 1.5

dB at BER = 10−4. This is because the noise enhancement in (4.14) increases

with the increasing number of users and hence the performance improvement of

MMSE OSSMIC is reduced.

Figure 4.5: BER performance of chip and symbol level MIMO MC-CDMA at half
and full load.
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4.6.2 Chip vs Symbol level MIMO MC-CDMA

In [25], it is shown that symbol level OSIC detectors perform better than

the chip level OSIC detectors. In order to invalidate this perception, the chip

level OSSMIC detector is compared with the symbol level OSIC detector in this

subsection.

In Figure 4.5 we consider the BER performance for the chip and symbol level

MMSE MC-CDMA for the half loaded and the full loaded cases. For half-load

case, OSSMIC and symbol level OSIC perform 1.3 dB and 1 dB better respectively

than their corresponding full-load cases at BER = 10−3. More importantly, for

half-load case, OSSMIC performs 1.8 dB better than the symbol level MMSE

MC-CDMA system at the same BER. In addition, if the other users’ spreading

sequences are known in the OSSMIC detector, OSSMIC achieves a further 1.2

dB improvement for both half and full load cases respectively.



Chapter 5

Performance Analysis &

Comparisons

In this chapter, we compare the error rate performance between the proposed

MIMO MC-CDMA with OSSMIC receiver, the symbol level MIMO MC-CDMA

with OSIC receiver and the MIMO OFDMA system. The performance compar-

isons between these systems are justified by deriving and analysing their pairwise

error probability (PEP).

5.1 Chip level MIMO MC-CDMA with OSS-

MIC

To formulate the general PEP equation, the codeword d is being transmitted

but the erroneous sequence e is detected. The PEP conditioned on a fixed set of

channel impulse responses can be calculated by [35]

P (d→ e|h) = Q

√d2
E(d, e)

2N0

 (5.1)

89
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where Q(.) is the complementary Gaussian cumulative distribution function, h

denotes the channel impulse response vector, N0 the noise spectral density and

d2
E(d, e) the squared Euclidean distance between codewords d and e. To derive

the error bound for chip level MIMO MC-CDMA, the MMSE filtered received

signal in (4.7) is despread and shown to be

znt
nu,p =

G∑
g=1

cnu,gy
nt

nu,i(p,g)
=

desired︷ ︸︸ ︷
G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)s
nt

nu,i(p,g)

+

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

h
n′t
i(p,g)s

n′t
nu,i(p,g)

+

MAI 1︷ ︸︸ ︷
Nu∑

n′u 6=nu

G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)s
nt

n′u,i(p,g)

+

MAI 2︷ ︸︸ ︷
Nu∑

n′u 6=nu

Nt∑
n′t 6=nt

G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

h
n′t
i(p,g)s

n′t
n′u,i(p,g)

+
G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

ni(p,g). (5.2)

According to (5.2), the conditional variance on the channel for the Gaussian noise

term is derived as follows

σ2
ñ,p = E


∣∣∣∣∣∣
G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

ni(p,g)

∣∣∣∣∣∣
2


=
N0

G

G∑
g=1

∥∥∥∥[HMMSE
i(p,g)

]
nt

∥∥∥∥2

F
(5.3)
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The conditional variance on the channel for the additional noise term (4.14) after

MMSE filtering and despreading is given by

σ2
n,p =

N0

G

G∑
g=1

 ∥∥∥∥∥
[
Ĥ
MMSE

i(p,g)

]
nt

hnt

i(p,g)

∥∥∥∥∥
2

F

×
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i(p,g)

]
nt
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F

(
1− 2

G

)
+

1

G2

G∑
g′=1

∥∥∥∥[HMMSE
i(p,g′)

]
nt

∥∥∥∥2

F

. (5.4)

In a similar way as with (5.3), the conditional variances on the channel for the

CAI and the multiuser MAI 1 and MAI 2 in (5.2) can be approximated by the

Gaussian random variables respectively as

σ2
CAI,p = E


∣∣∣∣∣∣
Nt∑

n′t 6=nt

G∑
g=1

cnu,g

[
HMMSE
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2
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EbRc

G2
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 G∑
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nt

h
n′t
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2

(5.5)

σ2
MAI1,p = E


∣∣∣∣∣∣
Nu∑

n′u 6=nu

G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)cn′u,gd
nt
n′u,p

∣∣∣∣∣∣
2


= EbRc

Nu∑
n′u 6=nu

 G∑
g=1

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)cn′u,gcnu,g

2

(5.6)

σ2
MAI2,p = E


∣∣∣∣∣∣
Nu∑

n′u 6=nu

Nt∑
n′t 6=nt

G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

h
n′t
i(p,g)cn′u,gd

n′t
n′u,p

∣∣∣∣∣∣
2


= EbRc

Nu∑
n′u 6=nu

Nt∑
n′t 6=nt

 G∑
g=1

[
HMMSE
i(p,g)

]
nt

h
n′t
i(p,g)cn′u,gcnu,g

2

(5.7)
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where Eb refers to the bit energy and Rc denotes the ECC rate. Without loss

of generality we assume that the first dH (Hamming distance) symbols are in

error which relates to the channel subcarriers i ∈ {1, . . . , dH}. Under this as-

sumption, the squared Euclidean distance between two QPSK modulated and

convolutionally encoded codewords separated by dH can be represented as

d2
E =

dH∑
p=1

 G∑
g=1

cnu,g

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)cnu,g

2 ∣∣∣dnt
nu,p − d̃

nt
nu,p

∣∣∣2

=
4EbRc

G2

dH∑
p=1

 G∑
g=1

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)

2

(5.8)

where d̃nt
nu,p denotes the erroneous detected symbol. By substituting (5.8) into

(5.1) and including (5.4)−(5.7), the average PEP of MIMO MC-CDMA with

OSSMIC for the nt-th substream under no error propagation is defined as

P (d→ e) = E

Q

√√√√√√√2EbRc

dH∑
p=1

1
G2

[∑G
g=1

[
HMMSE
i(p,g)

]
nt

hnt

i(p,g)

]2

(
σ2
ñ,p + σ2

n,p + σ2
CAI,p + σ2

MAI1,p + σ2
MAI2,p

)



(5.9)

where E [.] refers to the expectation operator over the channel gains. The lower

bound of (5.9) can be calculated by replacing dH with the minimum Hamming

distance dHmin
of the ECC. It must be said that the closed form solution of (5.9)

is not derived because it’s very difficult to derive the probability distribution for[
HMMSE
i(p,g)

]
nt

. For this reason simulation results in Section 5.4 evaluate the PEP

performance. The PEP analysis based on MMSE filtering can be easily extended

to the ZF case when HMMSE
i(p,g) is replaced by H+

i(p,g). In the ZF case, the interference

terms in equations (5.5), (5.6) and (5.7) become zero and d2
E = 4EbRc. Hence
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the argument of the Q function in (5.9) becomes

√√√√√ dH∑
p=1

2EbRc(
σ2
ñ,p + σ2

n,p

) =
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1
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i(p,g)

]
nt
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F
+

σ2
n,p

N0

) . (5.10)

If the other users’ spreading sequences are known at the receiver, then the

MAI 1 term can be eliminated without noise amplification. Assuming perfect

detection on the other users’ signal, the average PEP of MIMO MC-CDMA with

OSSMIC for the nt-th substream is simplified to

P (d→ e) = E

Q

√√√√√√√2EbRc

dH∑
p=1

1
G2

[∑G
g=1

[
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i(p,g)

]
nt
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i(p,g)

]2

(
σ2
ñ,p + σ2

CAI,p + σ2
MAI2,p

)

 . (5.11)

Similarly, the PEP analysis with ZF filtering can be formed when not only (5.5),

(5.6) and (5.7) but also (5.4) become zero and hence the argument of the Q

function in (5.11) becomes

√√√√√√
dH∑
p=1

2EbRc

N0

G

∑G
g=1

∥∥∥∥[H+
i(p,g)

]
nt

∥∥∥∥2

F

. (5.12)

5.2 Symbol level MIMO MC-CDMA with OSIC

In order to justify the use of chip level detection for OSSMIC, comparison is

made to the symbol level MMSE with SIC detector [2]. For fairer comparison,

the PEP analysis of a modified symbol level detector with OSIC based on the

detection ordering in Section 4.3 is presented here.
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5.2.1 PEP bound for symbol level MIMO MC-CDMA

Following a similar procedure as for chip level MIMO MC-CDMA, the PEP

for the symbol level MIMO MC-CDMA based on (3.21) is formed as

P (d→ e) = E

Q

√√√√√√√2EbRc

dH∑
p=1

([
WMMSE

p

]
nt

wnt
nu,p

)2

(
σ2
ñ,p + σ2

CAI,p + σ2
MAI1,p + σ2

MAI2,p

)

 (5.13)

where the conditional variance for the Gaussian noise, the CAI and the multiuser

interference are represented respectively by

σ2
ñ,p = N0

∥∥∥∥[WMMSE
p

]
nt

∥∥∥∥2

F
(5.14)

σ2
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(5.16)
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Nu∑
n′u 6=nu

Nt∑
n′t 6=nt
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WMMSE
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nt

w
n′t
n′u,p
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(5.17)

and the squared Euclidean distance between two codewords separated by dH is

denoted as

d2
E = 4EbRc

dH∑
p=1

([
WMMSE

p

]
nt

wnt
nu,p

)2

. (5.18)

To extend the PEP analysis with MMSE filtering into the ZF case, WMMSE
p has

to be replaced by W+
p . In the ZF case (5.15), (5.16) and (5.17) become zero and

hence the argument of the Q function in (5.13) becomes

√√√√√√
dH∑
p=1

2EbRc

N0

∥∥∥∥[W+
p

]
nt

∥∥∥∥2

F

. (5.19)
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5.3 MIMO OFDMA

Due to the lack of proper receiver structure for downlink chip level MIMO

MC-CDMA, its error rate performance comparison with MIMO OFDMA has not

clearly been conducted yet in existing literature. With our proposed OSSMIC

receiver, a fair error rate performance comparison can be accomplished. In this

section we first present the system model of MIMO OFDMA with OSIC detection

and then we derive the PEP equation. Similar to the previous derivations, a non-

interleaved system is considered. However, in practice interleaving should be used

in order to improve performance.

5.3.1 System Model

The downlink MIMO OFDMA system with Nu users is considered. It has to be

noted that the transmitter of MIMO OFDMA is similar to the SISO OFDMA case

presented in Section 2.2.4. The information data are grouped into Nt substreams

and then each substream is convolutionally encoded and QPSK modulated to P

symbols. The received signal at the i-th subcarrier, after the FFT operation can

be written as

ri =

desired︷ ︸︸ ︷
hnt
i d

nt
i +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

h
n′t
i d

n′t
i +ni. (5.20)

Considering the received signal passing through a linear MMSE filter, the

estimate for the nt-th substream at the i-th subcarrier is expressed as

ynt
i =

desired︷ ︸︸ ︷[
HMMSE
i

]
nt

hnt
i d

nt
i +

CAI︷ ︸︸ ︷
Nt∑

n′t 6=nt

[
HMMSE
i

]
nt

h
n′t
i d

n′t
i +

[
HMMSE
i

]
nt

ni. (5.21)

Symbol detection is then performed to obtain d̂nt
i . The cancellation procedure
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can be characterised by

r′i = ri −
(
hnt
i d̂

nt
i

)
(5.22)

where the modified received signal contains the undetected substreams and noise

for the next detection layer. The above stated steps are repeated in order to

detect all the remaining substreams.

5.3.2 PEP bound for MIMO OFDMA

The PEP for MIMO OFDMA can be derived in a similar way as for MIMO

MC-CDMA. Considering the detector output for MIMO OFDMA at the i-th

subcarrier in (5.21), the conditional variance for the Gaussian noise and the CAI

term are represented respectively by

σ2
ñ,i = N0

∥∥∥∥[HMMSE
i

]
nt

∥∥∥∥2

F
(5.23)

σ2
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. (5.24)

The squared Euclidean distance between two codewords separated by Hamming

distance dH can be represented as

d2
E = 4EbRc

dH∑
i=1

([
HMMSE
i

]
nt

hnt
i

)2

. (5.25)

The average PEP of MIMO OFDMA can be obtained by substituting (5.25) into

(5.1) and including (5.23) and (5.24) as

P (d→ e) = E

Q

√√√√√√√2EbRc
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HMMSE
i

]
nt
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)

 . (5.26)
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Following a similar approach to the MIMO MC-CDMA system, the PEP analysis

for MMSE MIMO OFDMA can be extended to the ZF case where (5.24) becomes

zero and the argument of the Q function in (5.26) is given by

√√√√√√
dH∑
i=1

2EbRc

N0

∥∥∥∥[H+
i

]
nt

∥∥∥∥2

F

. (5.27)

5.4 Simulation Results & Discussions

In this section, the FER and PEP performance of the proposed chip level

MMSE OSSMIC and the symbol level MMSE OSIC receiver are compared through

Monte Carlo simulations. Next we compare the BER, FER and PEP performance

of the chip level MMSE MC-CDMA system with OSSMIC receiver and the MMSE

OFDMA system with OSIC receiver. Finally, the BER performance of different

systems is evaluated with respect to different number of users. Because of the

use of multiple antennas by all the systems, the word ”MIMO” is omitted to ease

the comparative discussion in this section.

5.4.1 Chip vs Symbol level MIMO MC-CDMA

The simulated FER and PEP performance of the previous systems with eight

users (full-load) are presented in Figure 5.1. It can be noted that the asymp-

totic slope for FER and PEP results is similar. The results show that both

MMSE OFDMA and MMSE OSSMIC receivers outperform the symbol level

MMSE OSIC receiver. Since the size of
[
WMMSE

p

]
nt

is much larger than the

size of the MMSE filter matrix for OFDMA and chip level MC-CDMA, the noise

and interference terms in (5.13) are larger and hence the system performance is
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worst. Therefore, this supports the use of chip level detection for MIMO MC-

CDMA over symbol level detection.

Figure 5.1: FER and PEP performance of chip and symbol level MIMO MC-
CDMA at full load.

5.4.2 MIMO MC-CDMA vs MIMO OFDMA

Following the same system parameters for MIMO MC-CDMA as in Section

4.6, the number of chips in an encoded frame for MC-CDMA and the number

of symbols per frame for OFDMA is 128. The size of the FFT is considered to

be the same as the number of subcarriers, and is thus Ns = 128. The block

interleaver has a size of P ×K for OFDMA and G× P for MC-CDMA.
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In Figure 5.2 we consider the BER performance for the chip level MC-CDMA

and OFDMA systems for the half loaded and full loaded case. The results show a

better BER performance of ZF OFDMA over ZF OSSMIC. This is because when

Figure 5.2: BER performance of chip level MIMO MC-CDMA and MIMO
OFDMA at half and full load.

block interleaving is applied to OFDMA, consecutive symbols will be transmitted

at interleaved subcarriers, which have more diverse channel gains. These channel

gains affect the SNR for each symbol as in (5.27). With ECC, this diversity can be

exploited to correct errors. However for MC-CDMA, the effects of these diverse

channel gains are averaged for each symbol as in (5.10). Hence while diversity

is achieved for each symbol, the instantaneous symbol SNR will be similar for

all symbols and thus the effect of ECC will be reduced. Another reason is that
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the noise in the ZF OSSMIC receiver is amplified by the presence of σ2
n,p as

shown in (5.10). Further observations illustrate that the system performance of

MMSE OFDMA is independent of the number of users. This can be explained

from the PEP analysis in Section 5.3.2, where the argument in the Q function of

(5.26) is independent of the number of user Nu. However, the performance for

the OSSMIC receiver depends on the number of active users. For half-load case,

OSSMIC performs 0.5 dB better than the MMSE OFDMA at BER = 10−3. In

addition, if the other users’ spreading sequences are known, OSSMIC achieves a

further 0.5 dB and 1 dB improvement for both half and full load cases respectively.

Figure 5.3: FER and PEP performance of chip level MIMO MC-CDMA and
MIMO OFDMA at full load.

The simulated FER and PEP performance of MIMO MC-CDMA and MIMO
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OFDMA systems with eight users (full-load) are presented in Figure 5.3. It can

be observed that the asymptotic slope for FER and PEP results are similar.

The BER performances of different systems are also evaluated over different

number of users at Eb/N0 = 8 dB, and are shown in Figure 5.4. It is also

observed that at low system load, the performance of MMSE OSSMIC is better

than MMSE OFDMA. However the performance of OSSMIC deteriorates as the

number of user increases towards the full load case. It performs worse than

OFDMA when there are 5 or more users. This can also be explained from the

Figure 5.4: BER performance of MIMO MC-CDMA and MIMO OFDMA for
different number of users.

PEP analysis. When the system load is low, the multiple access interference terms

in (5.9) for MC-CDMA remain small. On the other hand as more subcarriers
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contribute to the Euclidean distance for MC-CDMA in (5.8), frequency diversity

is better exploited and it outperforms OFDMA. However as the number of user

increases towards the full load case, the multiple access interference becomes

higher which causes MC-CDMA to perform worse than OFDMA. It should be

noted that if the other users’ spreading sequences are known in the OSSMIC

detector as in [25], the OSSMIC receiver outperforms OFDMA both in low and

high system loads. This is because both (5.6) and (5.4) equal to zero such that the

interference terms in (5.9) is smaller. Hence this result differs from the one in SISO

MC-CDMA where OFDMA has better performance in higher loaded system [71].

However, this receiver requires the knowledge of all users spreading sequence,

which might not be feasible in practice as well as an increased computational

complexity.



Chapter 6

Resource Allocation for Power

Minimisation

6.1 Introduction

In the past years, resource allocation has been investigated for MC-CDMA sys-

tems in order to improve the quality-of-service (QoS) and system performance.

In [72], the authors consider power allocation among the sub-carriers of each

user to improve each users BER performance in a single cell MC-CDMA sys-

tem. In [73], the optimal transmit power allocation is developed to improve the

BER performance of a multicarrier system with receive antenna diversity. Fur-

thermore, a novel power allocation algorithm is proposed in [74] to minimise the

average BER of all the users in MIMO MC-CDMA systems with two dimensional

spreading. Also, subcarrier and power allocation is developed in [75] to reduce

the MAI and enhance BER in MC-CDMA systems. Existing work so far on

resource allocation for MC-CDMA is mostly focused in minimising the BER or

maximising the total capacity [30,76–78].

On the other hand, resource allocation is also used for energy reduction in

103
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MC-CDMA. Saving energy will not only reduce operating cost but also reduces

greenhouse gas emissions which is important for combating climate change. For

this reason, reducing the power consumption to a minimum level is vital for the

future wireless systems. Especially when using resource allocation to minimise

the total transmitted power in MC-CDMA, the energy efficiency of the system

can be improved significantly. In [29], rate, sub-carrier and power allocations are

proposed for a multi-rate uplink MC-CDMA system with linear minimum mean

square error (LMMSE) multiuser detection (MUD) to minimise total transmitted

power based on different users’ data rate and BER requirements. Also in [30],

a joint precoding and power allocation method is proposed for downlink MISO

MC-CDMA systems which minimises the total transmitted power of the system

under a constraint on the signal-to-interference and noise ratio (SINR) of each

user.

Although some research has been done for power minimisation in MC-CDMA

systems, resource allocation with user grouping has not been considered for power

minimisation in grouped MC-CDMA systems. Hence, the work in this chapter

focuses on resource allocation for grouped MC-CDMA and STBC MC-CDMA

systems. The idea of user and subcarrier grouping [31] allows different users in

a group to share the same set of subcarriers while using their distinct spread-

ing codes. In this way multiuser interference in each group is small and does

not affect users in the rest of the groups. Hence multiuser detectors for differ-

ent groups are practically feasible. In [79], Huang et al. proposed a suboptimal

user grouping and subcarrier allocation algorithm to maximise the total system

throughput in grouped MC-CDMA. Also the optimal power allocation for max-

imising the overall capacity in grouped MC-CDMA is given in [80]. Existing work

on resource allocation in grouped MC-CDMA focuses on the maximisation of the

total capacity. For this reason in this work we consider resource allocation with
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user grouping to minimise the total transmitted power in grouped MC-CDMA

and STBC MC-CDMA systems.

6.2 Power Minimisation in MC-CDMA systems

In this section, we study the minimisation of the total transmitted power in

downlink MC-CDMA under a BER constraint for each user. This is achieved

by performing power control according to an efficient user grouping algorithm

which will be discussed in Section 6.4. It has to be said that perfect channel

information of the users are assumed both at the transmitter and the receiver.

First, the signal model of grouped MC-CDMA is presented. Next, we formulate

the minimisation problem without fairness criteria.

6.2.1 Grouped MC-CDMA Signal Model

Consider the downlink MC-CDMA system with Nu users and Rayleigh fading

channel. The channel is divided into Ns subcarriers which are further grouped

consecutively into K groups. Each group uses a set of Walsh-Hadamard spreading

sequences, with length G = Ns/K. Assuming multicode transmission is not used,

each user in a group can only transmit one symbol over G subcarriers. Thus the

maximum number of users per group U , equals to the spreading code length G.

The total number of allocatable resource units is therefore K × G which equals

to Ns. The same set of spreading sequence is used in all other groups. Hence in

any one group the signature sequence of user u in that group (u = 1,2,...,U) is

expressed as

cu =
[
cu,1 cu,2 · · · cu,G

]T
∈ CG×1. (6.1)

To illustrate the concept of grouped MC-CDMA systems we consider a system
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with six users (Nu = 6). The channel consists of 16 subcarriers (Ns = 16) which

are grouped consecutively into four groups (K = 4). Each group uses a set of

Walsh-Hadamard spreading sequences, with length of four (G = 4). Each user in

a group can only transmit one symbol over four subcarriers. Thus the maximum

number of users per group, equals to four (U = 4). Figure 6.1 demonstrates an

example of how the six users can be allocated in different groups. It has to be

noted that a user can only be assigned in a group once, but could be allocated in

another group (e.g. User 1 is allocated once in group 1, 2 & 4).

Figure 6.1: Illustration of codes vs subcarriers in grouped MC-CDMA.

The received signal model at the u-th user terminal of the k-th group (k =

1,2,...,K) can be characterised as

rku = Hk
uC
√

Pkdk + nku (6.2)

where the users’ symbol vector and AWGN vector with power N0 are represented

respectively by

dk =
[
dk1 dk2 · · · dkU

]T
∈ CU×1 (6.3)
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and

nku =
[
nku,1 nku,2 · · · nku,G

]T
∈ CG×1. (6.4)

The transmit power and spreading code matrices are given respectively by

Pk = diag(ρk1, ρ
k
2, ..., ρ

k
U) ∈ CU×U (6.5)

and

C =
[

c1 c2 · · · cU

]
∈ CG×U . (6.6)

The channel response matrix at the u-th user terminal of the k-th group is denoted

as

Hk
u = diag(hku,1, h

k
u,2, ..., h

k
u,G) ∈ CG×G (6.7)

where hku,g represents the channel gain of the u-th user in the k-th group at the

g-th subcarrier (g = 1,2,...,G). The received signal vector can be symbolised as

rku =
[
rku,1 rku,2 · · · rku,G

]T
(6.8)

in which rku,g is the received signal of the u-th user in the k-th group at the g-th

subcarrier and it can be expressed as

rku,g = hku,g

U∑
u′=1

cu′,g
√
ρku′d

k
u′ + nku,g. (6.9)

When the signal in (6.9) passess through a linear ZF filter, the estimates of the
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u-th user in the k-th group at the g-th subcarrier can be represented as

yku,g =
(
hku,g

)−1
rku,g

= cu,g
√
ρkud

k
u +

U∑
u′=1,u′ 6=u

cu′,g
√
ρku′d

k
u′ + ñku,g.

(6.10)

where ñku,g = (hku,g)
−1nku,g. The u-th user’s symbol decision statistic is obtained

when the chip estimates in (6.10) are despread by the corresponding spreading

sequence, given by

zku =
G∑
g=1

cu,gy
k
u,g =

√
ρkud

k
u +

G∑
g=1

cu,gñ
k
u,g. (6.11)

According to (6.11), it is obvious that MAI from other users in the group is can-

celled by despreading. Thus power allocation for the u-th user can be performed

by requiring only the u-th user’s power information ρku. From (6.11), the received

SINR for the u-th user of the k-th group is calculated by

SINRk
u =

ρkuEd∑G
g=1 Eh

[
cu,g(hku,g)

−1nku,gn
k∗
u,g(h

k
u,g)
−1∗c∗u,g

]
=

GρkuEd

N0
∑G
g=1

[
(hku,g)

−1(hku,g)
−1∗
] (6.12)

where Eh [.] and (.)∗ refer to the conditional expectation on the channel gain h

and the complex conjugate operators respectively, and Ed refers to the symbol

energy. Hence if there is a certain target SINR, denoted as γku, the transmitted

power for the u-th user of the k-th group is expressed as

ρku =
γkuN0

EdG

G∑
g=1

[
(hku,g)

−1(hku,g)
−1∗
]
. (6.13)
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6.2.2 Problem Formulation in MC-CDMA

In this section we consider the minimisation of system’s total transmitted

power under a BER constraint by performing user grouping and power control.

The minimisation problem is formulated with and without fairness criteria. Fair-

ness is applied to ensure some bandwidth is allocated to each user. The total

transmitted power of the system can be expressed as

PT =
K∑
k=1

U∑
u=1

ρku =
K∑
k=1

U∑
u=1

γkuN0

EdG
ωku (6.14)

where ωku represents a channel related factor of the u-th user in the k-th group

given by

ωku =
G∑
g=1

[
(hku,g)

−1(hku,g)
−1∗
]
. (6.15)

To group users for power minimisation, the following channel related factor for

all system users (nu = 1, ..., Nu) has to be considered,

ωknu
=

G∑
g=1

[
(hknu,g)

−1(hknu,g)
−1∗
]
. (6.16)

Using the probability of error for BPSK modulation in [81], the target SINR

can be represented with respect to a target BER as

γku = 1/2
[
Q−1

(
BERk

u/2
)]2

. (6.17)

Hence the optimization problem without any fairness criteria can be formulated

mathematically as

min
ξk
nu

K∑
k=1

Nu∑
nu=1

N0

[
Q−1

(
BERk

u/2
)]2

2EdG
ωknu

ξknu
(6.18)
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s.t. BERk
u ≤ BER (6.19)

Nu∑
nu=1

ξknu
= G ∀k = 1, 2, ..., K. (6.20)

in which ξknu
∈ {0, 1} is an indicator function with ’1’ denoting user nu being

allocated to group k and ’0’ otherwise. Constraint (6.19) requires that the in-

stantaneous BER for the u-th user of the k-th group is equal to or smaller than

the minimum BER value BER, whereas constraint (6.20) ensures that each group

consists of G users.

6.3 Power Minimisation in STBC MC-CDMA

systems

To further exploit both spatial diversity and channel coding in MIMO systems

and with low complexity receiver implementation, STBC has been combined with

MC-CDMA systems in the past years [82–87]. In this section we follow similar

approach as for MC-CDMA to study the minimisation of the total transmitted

power in downlink STBC MC-CDMA under a BER constraint for each user.

6.3.1 Grouped STBC MC-CDMA Signal Model

Consider a downlink MIMO MC-CDMA system based on Alamouti’s STBC

with Nt = 2 transmit and Nr receive antennas. The system consists of Nu users

and each user experiences a Rayleigh fading channel. The available bandwidth

is divided into groups in the same way as in the analysis for the MC-CDMA

system. Each group uses the same spreading sequences as above. Furthermore,

no multicode transmission is assumed, and hence each user in a group can only

transmit one symbol over G subcarriers. Thus the maximum number of users per
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group U equals to the spreading code length G. The total number of allocatable

resource units is therefore K ×G which equals to Ns.

During the Alamouti’s transmission scheme, the u-th user transmits two sym-

bols d0
u and d1

u over two consecutive transmissions. During the first transmission,

d0
u and d1

u are transmitted simultaneously at time t from the two transmit anten-

nas. During the second transmission, −d1∗
u and d0∗

u are transmitted at time t+Td

from the two transmit antennas where Td denotes the OFDM symbol duration.

The received signal model at the u-th user terminal of the k-th group for the

nr-th antenna (nr = 1,2,...,Nr) can be expressed as

 rnr
u,k (1)

rnrH
u,k (2)


︸ ︷︷ ︸

Rnr
u,k

=

 H1,nr

u,k H2,nr

u,k

H2,nr∗
u,k −H1,nr∗

u,k


︸ ︷︷ ︸

Hnr
u,k

 C 0

0 C


︸ ︷︷ ︸

C

 ρk 0

0 ρk


︸ ︷︷ ︸

Pk

 d0
k

d1
k


︸ ︷︷ ︸

Dk

+

 nnr
u,k (1)

nnrH
u,k (2)


︸ ︷︷ ︸

Nnr
u,k

(6.21)

where the received signal vector after the i-th transmission is expressed as

rnr
u,k (i) =

[
rnr
u,k,1 (i) rnr

u,k,2 (i) · · · rnr
u,k,G (i)

]T
∈ CG×1 (6.22)

in which rnr
u,k,g(i) symbolizes the received signal of the u-th user in the k-th group

at the g-th subcarrier for the nr-th antenna that is received after the i-th trans-

mission. The channel response matrix of the u-th user terminal in the k-th group

at the nt-th transmit and nr-th receive antenna is denoted as

Hnt,nr

u,k = diag(hnt,nr

u,k,1 , h
nt,nr

u,k,2 , ..., h
nt,nr

u,k,G) ∈ CG×G (6.23)
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where hnt,nr

u,k,g represents the channel gain of the u-th user in the k-th group for

the g-th subcarrier at the nt-th transmit and nr-th receive antennas. The users’

symbol vector is represented by

djk =
[
dj1,k dj2,k · · · djU,k

]T
∈ CU×1 (6.24)

and the AWGN vector with power N0 is represented by

nnr
u,k (i) =

[
nnr
u,k,1 (i) nnr

u,k,2 (i) · · · nnr
u,k,G (i)

]T
∈ CG×1. (6.25)

The transmit power vector and spreading code matrix are given respectively by

ρk =
[ √

ρ1,k/2
√
ρ2,k/2 · · ·

√
ρU,k/2

]
∈ C1×U (6.26)

and

C =
[

c1 c2 · · · cU

]
∈ CG×U . (6.27)

When the signal in (6.21) passess through a space-time filter, the output signal

can be expressed by

 ynr
u,k (1)

ynr
u,k (2)


︸ ︷︷ ︸

Ynr
u,k

=

Gnr
u,k︷ ︸︸ ︷ H1,nr∗

u,k H2,nr

u,k

H2,nr∗
u,k −H1,nr

u,k


 H1,nr

u,k H2,nr

u,k

H2,nr∗
u,k −H1,nr∗

u,k


︸ ︷︷ ︸(

|H1,nr
u,k |

2
+|H2,nr

u,k |
2
)
I2

 C 0

0 C



×

 ρk 0

0 ρk


 d0

k

d1
k

+

Gnr
u,k︷ ︸︸ ︷ H1,nr∗

u,k H2,nr

u,k

H2,nr∗
u,k −H1,nr

u,k


 nnr

u,k (1)

nnrH
u,k (2)


(6.28)
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where the equalised signal of the u-th user in the k-th group at the nr-th antenna

is given by

ynr
u,k (i) =

[
ynr
u,k,1 (i) ynr

u,k,2 (i) · · · ynr
u,k,G (i)

]T
∈ CG×1. (6.29)

The u-th user’s symbols decision statistic is obtained when the two successive

equalised signals in (6.28) are space-time combined and despread by the corre-

sponding spreading sequence. This is represented by

zu,k =
(
I2 ⊗ cTu

) Nr∑
nr=1

Ynr
u,k

=

√
ρu,k
2

 G∑
g=1

Nr∑
nr=1

∣∣∣h1,nr

u,k,g

∣∣∣2 +
∣∣∣h2,nr

u,k,g

∣∣∣2

 d0

u,k

d1
u,k


+

(
I2 ⊗ cTu

) Nr∑
nr=1

Gnr
u,kN

nr
u,k (6.30)

where zu,k =
[
zu,k (1) zu,k (2)

]T
∈ C2×1. According to (6.30), MAI from other

users in the group is cancelled by despreading. The power allocation for the u-th

user can be performed by requiring only the u-th user’s power information ρu,k.

From (6.30) we calculate the received SINR for the u-th user of the k-th group

as shown by

SINRk
u =

ρu,k

2
Ed

[∑G
g=1

∑Nr
nr=1

∣∣∣h1,nr

u,k,g

∣∣∣2 +
∣∣∣h2,nr

u,k,g

∣∣∣2]2

N0

G

∑G
g=1

∑Nr
nr=1

∣∣∣h1,nr

u,k,g

∣∣∣2 +
∣∣∣h2,nr

u,k,g

∣∣∣2
=

ρu,kGEd
2N0

G∑
g=1

Nr∑
nr=1

∣∣∣h1,nr

u,k,g

∣∣∣2 +
∣∣∣h2,nr

u,k,g

∣∣∣2

=
ρu,kGEd

2N0

G∑
g=1

tr
(
H
H

u,k,gHu,k,g

)
(6.31)
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where

Hu,k,g =



h1,1
u,k,g h2,1

u,k,g

h1,2
u,k,g h2,2

u,k,g

...
...

h1,nr

u,k,g h2,nr

u,k,g


. (6.32)

and tr(A) denotes the trace of matrix A. Hence if there is a certain target

SINR, denoted as γku, the transmitted power for the u-th user of the k-th group

is expressed as

ρu,k =
2γkuN0

GEd
∑G
g=1 tr

(
H
H

u,k,gHu,k,g

) . (6.33)

6.3.2 Problem Formulation in STBC MC-CDMA

In this section, the power minimisation problem for STBC MC-CDMA is

formulated in a similar way as for MC-CDMA. By performing user grouping and

power control we consider the minimisation of system’s total transmitted power

under a BER constraint. The total transmitted power of the system can be

characterised as

PT =
K∑
k=1

U∑
u=1

ρu,k =
K∑
k=1

U∑
u=1

2γkuN0

GEd
ωku (6.34)

where ωku is denoted by

ωku =
1∑G

g=1 tr
(
H
H

u,k,gHu,k,g

) (6.35)

The channel related factor for all system users can be expressed as

ωknu
=

1∑G
g=1 tr

(
H
H

nu,k,gHnu,k,g

) . (6.36)

Similar to the MC-CDMA analysis, the optimisation problem without any
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fairness criteria can be formulated mathematically as

min
ξk
nu

K∑
k=1

Nu∑
nu=1

N0

[
Q−1

(
BERk

u/2
)]2

GEd
ωknu

ξknu
(6.37)

s.t. BERk
u ≤ BER (6.38)

Nu∑
nu=1

ξknu
= G ∀k = 1, 2, ..., K. (6.39)

in which ξknu
and the two constraints are the same as in the problem formulation

for MC-CDMA.

6.4 Optimisation Problem

Having formulated the problem for MC-CDMA and STBC MC-CDMA in the

previous sections, we propose several power minimising user grouping algorithms

in this section. First, the optimal algorithm based on Greedy approach is pro-

posed when there is no fairness criterion in the data rate. However when fairness

is applied, the optimal solution requires high computational complexity and is

not favourable for practical applications. Therefore, we propose two complexity

reduced suboptimal allocation algorithms. The performance of these algorithms

are evaluated in Section 6.5.

6.4.1 Greedy Allocation

The optimal solution to the minimisation problem with no fairness criterion

is first presented. Consider an example of a MC-CDMA system with five users

(Nu = 5). The channel is divided into eight subcarriers (Ns = 8) which are

further grouped consecutively into two groups (K = 2). Each group uses a set
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of Walsh-Hadamard spreading sequences, with length of four (G = 4). Assuming

multicode transmission is not used, each user in a group can only transmit one

symbol over four subcarriers. Furthermore, the maximum number of users per

group is four (U = 4). Figure 6.2 shows the instantaneous channel gains for each

of the Nu users over the whole bandwidth. The respective ωknu
of these users at

Figure 6.2: An example of channel gains for 5 users.

each group is depicted in Figure 6.3. Since we assume that users can be allocated

to more than one group of subcarriers, the optimum solution to the minimisation

problem in (6.18) or (6.37) would be to allocate users with the smallest ωknu
to the

corresponding k-th group. Hence the total transmitted power can be minimised if

we only allow users with the largest channel gains to use the available subcarriers.

From Figure 6.3, it is evident that the Greedy algorithm will not assign user 2

in the first group and user 5 in the second group. The Greedy algorithm can be
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Figure 6.3: ωknu
for 5 users in 2 groups.

described as follows.

Greedy

Step 1: Divide the available bandwidth into K = Ns/G groups. Each

group consists of U = G available positions for user assignment.

Step 2: For all K groups, calculate ωknu
for every nu-th user according to

(6.16) for MC-CDMA and (6.36) for STBC MC-CDMA.

Step 3: Allocate the U users with the smallest ωknu
in the k-th group.

Step 4: Repeat Step 3 until all groups are assigned with U users.

Step 5: Calculate the total transmitted power according to (6.14) for MC-

CDMA and (6.34) for STBC MC-CDMA by setting BERk
u = BER.
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By selecting users with the lowest ωknu
, it is evident from (6.14) and (6.34) that

the total transmitted power for every group and hence for the system will be

minimised. This satisfies both minimisation problems in (6.18) and (6.37) with

the constraints in (6.19), (6.20) and (6.38), (6.39) respectively.

6.4.2 Allocation with Fairness Criterion

When there is no fairness requirement, users with low channel gains, i.e. weaker

users in the system, may not be allocated to any group and hence not be able to

transmit their data. For this reason the fairness criterion is considered such that

each user has to be assigned to a group at least once, i.e. each user can transmit

using at least one resource unit before the Greedy allocation is applied. In this

way it is possible for all users to transmit their data. The fairness constraint for

the problem in MC-CDMA or STBC MC-CDMA can be imposed as

K∑
k=1

ξknu
≥ 1 ∀nu = 1, 2, ..., Nu. (6.40)

The optimal solution to the minimisation problem with this additional fairness

constraint is given by calculating the total transmitted power for all possible

combinations of user allocations, and choosing the one that gives the minimum

total power. However this method requires very high computational complexity.

Hence we propose a simple suboptimal algorithm that requires less complexity

and we call this Fairness A algorithm.

Fairness A

Step 1: Follow Steps 1 and 2 in Greedy algorithm.

Step 2: Set up the list L ∈ {1, ..., Nu} that contains unallocated users.

Step 3: Allocate the user with the smallest ωknu
from L, in the k-th group.
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Remove this allocated user from L.

Step 4: Repeat Step 3 until each user is assigned in a group once, i.e. until

L becomes a null set. If a group has already been allocated with U

users, this group is filled and will not be allocated anymore users.

Step 5: If not all groups are assigned with U users, follow Steps 3 and 4

of the Greedy algorithm.

Step 6: Calculate the total transmitted power as in Step 5 of the Greedy

algorithm.

The Fairness A algorithm is a simple and low complexity solution. However,

as will be shown in Section 6.5, it has poor performance when the number of users

approaches the maximum supportable by the system, i.e., Nu → KG. This is

because this algorithm first allocates users with large channel gains to the group

containing their best subcarriers. When a group is filled, the remaining users will

be allocated to other groups, even though their best subcarriers may lie in this

group. Thus these remaining users could be allocated with poorer subcarriers,

and this requires a larger transmission power. As the number of users increases,

the groups will be filled more quickly and hence this situation occurs more often.

Therefore, the total system transmission power will be significantly increased.

To overcome this problem, we propose a second suboptimal algorithm (Fair-

ness B) that considers the amount of channel variation over the entire bandwidth.

Consider a scenario in Figure 6.4 where two users have their best subcarriers in

the same group, but there is only one resource unit left in that group. User 1

has a larger but relatively flatter channel gain over the entire bandwidth, while

User 2 has a smaller gain but with larger channel variation. Their corresponding

ωknu
are shown in Figure 6.5. The Fairness A algorithm will assign User 1 to

this group due to its larger gain. User 2 will then be allocated to another group,
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Figure 6.4: An example of channel gains for 2 users.

which might have a much lower channel gain due to the large channel variation.

On the contrary if User 2 was allocated to this group, User 1 will be allocated

to another group having a similarly large channel gain due to its relatively flat

channel response. Hence, both users will be allocated to good channels, and the

total transmission power can be significantly reduced. Therefore, it is important

to group users with large channel variation first, such that their best subcarriers

are used. Users with flatter channel responses should be allocated later as the

difference between the subcarriers is not significant. The proposed Fairness B

algorithm measures channel variation by the standard deviation of the channel

related factor ωknu
for each user, and is detailed below.

Fairness B
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Figure 6.5: ωknu
for 2 users in 2 groups.

Step 1: Same as Step 1 & 2 in Greedy algorithm.

Step 2: For each user, calculate the standard deviation of ωknu
over the

K groups. Rank the users in a descending order of this standard

deviation.

Step 3: Follow the ranking order to allocate the next user to the group

with its lowest ωknu
. Remove this allocated user from the ranking list.

Step 4: Repeat Step 3 until each user is assigned one resource unit. If a

group is filled, no more users can be assigned to that group.
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Step 5: Same as Step 5 in Greedy algorithm.

6.5 Performance Evaluation and Discussions

In this section, the performance of the proposed algorithms are evaluated

through Monte Carlo simulations. Consider a SISO MC-CDMA system, and a

2× 1 and 2× 2 antenna configuration for the STBC MC-CDMA system. Each of

the spreading sequences is assumed to comprise eight chips (G = 8) and Walsh-

Hadamard spreading sequences are used for each user. The FFT size is considered

to be the same as the number of subcarriers and is set to be 64 (Ns = 64). Thus

the available bandwidth is divided into eight groups (K = 8), each consisting of

eight users (U = 8) and eight subcarriers. The channel is assumed to be a typical

urban area propagation model specified in [55], with 6 taps and the parameters

are listed in Table 2.1 in Section 2.2.3.2. It is also assumed that the maximum

delay spread is shorter than the duration of the cyclic prefix. Hence, ISI is avoided

and each chip experiences flat fading. As power minimisation is the aim of the

proposed schemes, the performance measure is chosen to be the total transmit

power over the noise level (PT/N0) in dB.

6.5.1 Power Consumption in MC-CDMA

Figure 6.6 demonstrates the PT/N0 with respect to different number of users

for our proposed algorithms and the random user grouping algorithm in MC-

CDMA systems. For these results we assume a target BER value of 10−4 (BER =

10−4). The results show that Fairness A & B significantly outperform the random

allocation algorithm. Further power reduction can be obtained when the Greedy

algorithm is performed. Hence when there is no fairness requirement in the user

selection process, more power can be saved since we only assign subcarriers to
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the stronger users. However weaker users in the system will not be able to send

their data. Furthermore the results for Greedy algorithm depict that the total

transmitted power decreases as the number of users increases. This is because

with more users in the system, there will be higher multiuser diversity. Thus, it

is more likely to assign users onto better subcarriers and hence the total power

becomes smaller.

Figure 6.6: Total system transmitted power for different number of users.

When the total number of users increases towards the total number of sub-

carriers, a significant increase in power consumption is observed for Fairness A

algorithm. As explained in Section 6.4.2, the assignment of weaker users into

groups with deep faded subcarriers increases the total power consumption. With

the use of Fairness B algorithm, this increase in power is avoided. This is because
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Fairness B first allocates the users with higher standard deviation with respect

to ωknu
, i.e. the users with larger channel variation. Hence these users are allo-

cated to the group where they will require less power. Users with lower channel

variation are subsequently assigned, which do not require significantly different

transmission power. The results validated the proposed approach for Fairness B

algorithm.

Figure 6.7: Total system transmitted power for different BERs.

In Figure 6.7, we evaluate the total transmitted power ratio for our proposed

algorithms with respect to different target BER values. We also compare our

results with the random user grouping algorithm. For these results we assume a

full load system of Nu = 64. It can be observed that at a target BER of 10−4,

Fairness A can save 9 dB of transmission power in comparison to the Random
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allocation. A further 4 dB of power reduction can be obtained when Fairness B

is utilised. Further observations show that if no fairness constraint is considered

and the Greedy algorithm is used, a 4 dB decrement in power is achieved in

comparison to the Fairness B algorithm. Thus the Fairness B algorithm achieves

good performance even though the fairness criterion is considered.

Figure 6.8: Total system transmitted power over total sum rate for different
BERs.

Since no previous work has been done on user grouping for power minimisation

in MC-CDMA, we compare our proposed algorithms with the user and subcarrier

grouping algorithm proposed in [79]. This algorithm maximises the total system

sum rate in MC-CDMA for different received SINR values. Thus to obtain a fair

comparison between the proposed power minimisation problem and the sum rate

maximisation problem [79], the performance measure is chosen to be the total
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transmitted power ratio over the total sum rate for different BER values and the

results are presented in Figure 6.8. This performance measure is important as it

shows how much power should be invested in the system per b/s/Hz. In [79], the

total system sum rate is maximised assuming equal transmitted power allocation

for each user. Hence the total system transmitted power can be calculated when

the received SINR is known. For our proposed algorithms, the total transmitted

power is minimised under an equal target SINR for each user. Thus the sum

rate for each user remains fixed and the total system sum rate can be calculated.

Assuming a system with Nu = 64, observations at a BER of 10−4 illustrate that

the algorithm in [79] outperforms Fairness A by 2 dB/b/s/Hz. However when

Fairness B is considered, 4 dB of less power per b/s/Hz are obtained in comparison

with the algorithm in [79]. Furthermore, 4 dB reduction in power per b/s/Hz is

observed when the Greedy algorithm is used. Thus, the proposed Fairness B &

Greedy algorithms are more power efficient.

6.5.2 Power Consumption in STBC MC-CDMA

Figure 6.9 demonstrates the PT/N0 with respect to different number of users

when the proposed algorithms and the random user grouping algorithm are ap-

plied in STBC MC-CDMA systems. The results show that when multiple trans-

mit and multiple receive antennas are applied in MC-CDMA systems, the use

of STBC can exploit spatial diversity to significantly reduce power consumption.

Further observations show that Fairness A & B outperform the random allocation

algorithm. Also when Greedy algorithm is performed, further power reduction

can be obtained. Similar to the MC-CDMA system, the results for Greedy algo-

rithm depict that the total transmitted power decreases as the number of users

increases.
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Figure 6.9: Total system transmitted power for different number of users.

When the number of receive antennas increases to 2, a decrease in power con-

sumption is observed for all the algorithms. This is because with more receiving

antennas there will be higher spatial diversity. Thus ωknu
in (6.36) gets smaller

and the total power consumption is decreased.

In Figure 6.10, we evaluate the total transmitted power ratio for our proposed

algorithms with respect to different target BER values. We also compare our

results with the random user grouping algorithm. For these results we assume a

full load system of Nu = 64. It can be observed that at a target BER of 10−4 and

when Nr = 1, Fairness A can save 4 dB of transmission power in comparison to the

Random allocation. A further 0.5 dB of power reduction can be obtained when

Fairness B is utilised. Further observations show that if no fairness constraint
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Figure 6.10: Total system transmitted power for different SINRs.

is considered and the Greedy algorithm is used, a 2 dB decrement in power is

achieved in comparison to the Fairness B algorithm. It has to be noticed that

as the number of receive antennas increases, the power reduction between the

different algorithms decreases.



Chapter 7

MC-CDMA in Underlay

Cognitive Radio

7.1 Introduction to Cognitive Radio

The increasing number of high data rate wireless applications and users tend

to limit the available spectrum and increase spectrum congestion. Recent studies

suggest that these problems are mainly caused by inefficient spectrum usage [88,

89]. Cognitive Radio (CR) [32] is a new emerging technique that can reduce

spectrum crowding and improve spectrum efficiency. It is believed that CR will

enable users in a network to: (1) determine which portions of the spectrum are

available and detect the presence of licensed users when a user operates in a

licensed band (spectrum sensing), (2) select the best available channel (spectrum

management), (3) coordinate access to this channel with other users (spectrum

sharing), and (4) vacate the channel when a licensed user is detected (spectrum

mobility). Spectrum sharing is further categorised into two sections: (i) Overlay

and (ii) Underlay techniques [90]. With overlay spectrum sharing, the cognitive

radio users access the white spectral regions i.e. the portion of spectrum that
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is not used by the licensed users. On the other hand, for underlay spectrum

sharing, the cognitive radio users are allowed to share the same frequency bands

(gray spectral regions) for transmission with the licensed users as long as their

transmit power can be regarded as noise by the licensed users [33].

Multi-carrier modulations such as OFDM and MC-CDMA are promising can-

didates [91, 92] for overlay CR networks. In [93], OFDM has been exploited for

implementing a spectrum pooling method to enhance spectrum efficiency in over-

lay CR. Spectrum pooling uses a vector of zeros and ones for the bins of the IFFT

block at the OFDM transmitter to null desired portions of the band and miti-

gate interference. Also, in [94] the proposed non-contiguous OFDM (NC-OFDM)

system deactivates fixed-bandwidth subcarriers to mitigate interference with the

primary user bands. Further work in [95–97] has considered other physical layer

parameters in NC-OFDM such as power, modulation and coding to optimize the

overlay CR physical layer. A comparison of NC-OFDM and non-contiguous MC-

CDMA (NC MC-CDMA) has been investigated in [98]. It is shown that as the

number of deactivated sub-bands increases, the BER performance degradation of

NC MC-CDMA becomes more than NC-OFDM approach. However, even after

sub-band deactivation in NC-OFDM, there is a possibility of leaked interference

from the active subbands into the nulled sub-bands. Instead of deactivating the

fixed-bandwidth sub-bands, a cognitive MC-CDMA is proposed in [99] which

can adaptively change its transmission parameters according to the interference

pattern in that sub-band.

The majority of early research is focused on OFDM modulation as a suitable

candidate for overlay CR networks. However, OFDM suffers from interference

leakage problems [94] which can degrade the network performance. Moreover,

although suitable for overlay CR, OFDM will have poor performance in the un-

derlay approach. In this chapter we investigate the performance of MC-CDMA
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and OFDM in underlay CR networks. As MC-CDMA spreads the cognitive user

signal over a wider bandwidth, it is expected to cause lower interference to the

primary system compared to OFDM. Furthermore, MC-CDMA has good inter-

ference rejection from the primary system.

7.2 Signal Model & Power Control

Consider the scenario in Figure 7.1 where the primary radio (PR) transmitter

(TP ) transmits the modulated symbols using OFDM modulation. The primary

receiver (RP ) is situated at a distance lpr from TP . Similarly, the secondary trans-

mitter (cognitive transmitter, TC) transmits the data to the cognitive receiver

(RC) over a distance lcr. The goal in this work is to justify that MC-CDMA is

Figure 7.1: Cognitive Radio system.

more suitable for underlay CR networks than OFDM. Hence both schemes are

considered for the CR system. It must be noted that since underlay spectrum

sharing is assumed, the same frequency bands are used for both communication

links. Therefore the signal coming from TC must be low enough such that it can

be regarded as noise at the primary receiver. Also at the cognitive receiver, the
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signal coming from TP is considered as narrowband interference. Furthermore,

TC has to be kept at a certain distance from RP (also the same for TP and RC)

so as to keep low interference level and maintain good communication links for

both systems.

The received signal model at RP for the i-th subcarrier is characterised as

ripr =
1√
PLpr

H i
prd

i
pr +

1√
PLcp

H i
crd

i
cr + ni (7.1)

where H i
pr, H

i
cr, d

i
pr and dipr denote the channel and the symbol at the i-th sub-

carrier for the primary and cognitive radio respectivelly. The AWGN signal at

the i-th subcarrier is represented by ni. Furthermore, the interference power of

the signal coming from the cognitive user is given by

Icr

N0

=
P cr
T

PLcpN0

(7.2)

and PLpr and PLcp denote the path loss at distances lpr and lcp respectively. The

path loss at distance lx is calculated by [34]

PLx =
(4π)2

GtGrλ2
(lx)

α (7.3)

whereGt andGr denote the transmitting and receiving antenna gains respectively,

λ is the wavelength of the transmission and α represents the path loss exponent.

Furthermore, the transmitted power at TC is represented by

P cr
T

N0

= SNRcrPLcr (7.4)

where SNRcr and PLcr denote the SNR and path loss over the distance lcr at

the cognitive receiver respectively. Next, the symbol estimates for the primary



CHAPTER 7. MC-CDMA IN UNDERLAY COGNITIVE RADIO 133

user are obtained by performing ZF equalisation on each subcarrier. Finally the

detection of the estimated symbols is performed.

A similar procedure is followed to calculate the received signal model at RC

which is represented by

ricr =
1√
PLpc

H i
prd

i
pr +

1√
PLcr

H i
crd

i
cr + ni (7.5)

where the interference power of the signal from the primary user is given by

Ipr

N0

=
P pr
T

PLpcN0

(7.6)

and PLcr and PLpc denote the path loss over distances lcr and lpc respectively.

The transmitted power at TP is represented by

P pr
T

N0

= SNRprPLpr (7.7)

where SNRpr and PLpr represent the SNR and path loss over the distance lpr at

the primary receiver respectively.

7.3 Simulation Results & Discussions

In this section, the performance of MC-CDMA and OFDM techniques are eval-

uated in underlay CR networks under frequency selective fading. In this section

CR MC-CDMA and CR OFDM refer to cognitive radio MC-CDMA and OFDM

systems respectively. The transmitted frame is assumed to consist 64 QPSK mod-

ulated symbols. The FFT size for OFDM or CR OFDM is considered to be the

same as the number of subcarriers and is set to be 64. The channel is assumed to

be the typical urban area propagation model specified in [55], with 6 taps and the
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parameters are listed in Table 2.1 in Section 2.2.3.2. It is also assumed that the

maximum delay spread is shorter than the duration of the cyclic prefix. Hence,

Figure 7.2: BER vs lcp distance when SNRpr is fixed at 30 dB.

ISI is avoided and each symbol experiences flat fading. Furthermore the CR MC-

CDMA system spreads the data using the Walsh-Hadamard spreading sequence

of length 512 chips (G = 512). The FFT size for CR MC-CDMA is considered to

be the same as the code length and this is 512. It must be noted that in order to

test the performance of CR MC-CDMA, the same portion of bandwidth as with

OFDM is used. The path loss exponent for an urban cellular network is assumed

to be 3.5, and the transmitting and receiving antenna gains are 10 dBi and 5 dBi

respectively (Gt = 10 / Gr = 5). Also, the system operates at a frequency of 2.5

GHz.
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Figure 7.3: BER at RP for CR OFDM and CR MC-CDMA.

The SNR for the desired signal at the primary and cognitive systems is as-

sumed to be 30 dB and lpr and lcr are kept at 1 km. On the other hand, the

distance lcp is varied (hence this varies the SINR of the primary system). Figure

7.2 demonstrates the BER performance at RP with respect to different distances

of lcp for the primary system. The results for CR MC-CDMA illustrate that at

lcp = 1.6 km the BER starts to become flat. This means that if TC is greater or

equal to 1.6 km from RP , the interference caused by the cognitive system remains

low and hence the performance of the primary system will not degrade. Simi-

larly for CR OFDM, performance degradation of the primary system is avoided

if lcp ≥ 3.7 km. These results show that at the same distance from RP , CR



CHAPTER 7. MC-CDMA IN UNDERLAY COGNITIVE RADIO 136

MC-CDMA causes much lower interference to the PR network than CR OFDM.

Figure 7.4: BER vs lpc distance when SNRcr is fixed at 30 dB.

Figure 7.3 demonstrates the BER performance with respect to different Eb/N0

for the primary system. From the results it is evident that when lcp = 1.6 km

CR MC-CDMA outperforms CR OFDM by 16 dB at BER = 10−3. Furthermore,

the results illustrate that with CR MC-CDMA, the performance of the primary

system is almost the same as that with no CR. This ensures that the communi-

cation link at the primary system is maintained and the CR interference can be

regarded as noise.

In order to test the performance of the CR MC-CDMA and CR OFDM sys-

tems, the BER at RC is measured for different distances of lpc. In Figure 7.4, it

is observed that at lpc = 1.6 km the BER for CR MC-CDMA starts to become
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Figure 7.5: BER at RC for CR MC-CDMA.

flat. Thus at this distance, the interference from the primary system remains

low. Instead, for CR OFDM the interference becomes low and the BER starts to

become flat at lpc = 3.5 km. Finally, Figure 7.5 verifies that the communication

at CR MC-CDMA is successfull if lpc ≥ 1.6 km.

Overall, the results in this work justify that MC-CDMA is much more favourable

than OFDM for underlay CR networks.



Chapter 8

Conclusions & Future work

8.1 Conclusions & Discussions

This thesis studies the combination of MC-CDMA systems with MIMO tech-

nology. It is known that in multiuser downlink MIMO MC-CDMA systems with

OSIC receivers, significant error floor appears in the higher SNR region because

the system suffers from MAI and error propagation. Therefore, this research de-

velops downlink MIMO MC-CDMA systems that can overcome multi-user and

multi-antenna interference, and outperform existing techniques in terms of system

performance and complexity.

A chip level coded OSSMIC receiver architecture with ZF or MMSE filtering is

proposed for downlink MIMO MC-CDMA systems. The proposed scheme cancels

both CAI and MAI that arise within the system during multiuser transmission.

Furthermore, the proposed receiver is able to operate with only the desired user’s

signature sequence during the detection process. Simulation results demonstrate

that the proposed OSSMIC receiver significantly outperforms the OSIC receiver

which suffers from high residual MAI. It is also shown that with the enhanced
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noise estimation, the MMSE OSSMIC significantly outperforms its ZF counter-

part. The use of chip level detection in favour of symbol level detection is justified

by the significant performance and complexity difference between the proposed

OSSMIC receiver and the modified symbol level OSIC detector. On the other

hand, when comparing to MIMO OFDMA system, the proposed MMSE OSS-

MIC receiver shows better performance in low system load. When the system

load is increased, multiple access interference causes the performance of MIMO

MC-CDMA to deteriorate. If all other users spreading sequences are available at

the receiver, the impact of MAI is minimised and MIMO MC-CDMA performs

better than MIMO OFDMA even in high system load. However in this case the

computational complexity of the OSSMIC receiver increases with the increasing

number of users.

In addition to this work, expressions of the PEP bounds for all the systems are

derived and justified that the system performance depends on the type of filtering

and the number of users. Thus the proposed receiver permits layered space-time

processing with good performance for spatially multiplexed MC-CDMA systems,

which could outperform its OFDMA counterpart.

In the second part of this work, low complexity user grouping algorithms for

power minimisation are proposed for grouped MC-CDMA and grouped STBC

MC-CDMA systems. The optimal solution for minimising the total transmitted

power with respect to a target BER is proposed when no fairness requirement on

the data rate is needed. When a fairness requirement is considered in the user

grouping process, we propose two suboptimal algorithms for the optimisation

problem. The first algorithm is a simple approach based on the subcarrier channel

gains, while the second algorithm is based on the channel variation. Simulation

results justify that our proposed algorithms provide a significant reduction in

power consumption when compared with the random user allocation algorithm
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and the algorithm in [79].

To briefly summarise, a chip level coded OSSMIC receiver with ZF/MMSE

filtering is proposed for downlink MIMO MC-CDMA systems. The proposed re-

ceiver permits layered space-time processing with good performance for spatially

multiplexed MC-CDMA systems, which could outperform its OFDMA counter-

part. Furthermore, low complexity user grouping algorithms are proposed for

grouped MC-CDMA and STBC MC-CDMA systems which can significantly re-

duce power consumption.

8.2 Future work

From this research, we conclude that MC-CDMA can provide a significant

performance improvement when combined with MIMO systems. This is quite

promising for future developments. Furthermore, the proposed user grouping

algorithms have shown a significant reducton in power consumption. Saving

energy is vital nowadays and hence this work could be further extended to achieve

power minimisation in scenarios with more requirements. Therefore, several new

ideas are listed below and indicate how to extend this work in the future.

1. A future goal would be to extend the current single-cell MIMO MC-CDMA

system with OSSMIC receiver into a multi-cell environment. This will re-

quire to take into account inter-cell interference which arises to the system

from neighbouring cells. Furthermore, the performance of MIMO MC-

CDMA with OSSMIC in multi-cell scenario could be compared with the

MIMO OFDMA system with OSIC. Without perfect knowledge of the in-

terference at the base station, MC-CDMA would be more robust to inter-

ference than OFDMA due to its interference rejection capability.
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2. Power minimisation for grouped MC-CDMA and STBC MC-CDMA sys-

tems could be extended in a scenario where adaptive modulation is con-

sidered in order to satisfy fixed rate requirements for each user. In this

scenario, multi-code could be used to allow users to be assigned in the same

group more times.

3. Chapter 7 demonstrated that MC-CDMA is a potential candidate for un-

derlay cognitive radio networks. This work could be extended to test the

performance of CR MC-CDMA with an OFDMA primary radio network

i.e. include a multi-user scenario for the primary system. Furthermore,

other multicarrier modulations such as MC-CDMA with carrier interferom-

etry codes (CI/MC-CDMA) [100] and transform-domain communication

system (TDCS) [101] could be tested for underlay CR and compared with

CR MC-CDMA. A future goal would also be to apply multiple antennas in

CR MC-CDMA to test the performance of MIMO MC-CDMA in underlay

CR networks.
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