15,345 research outputs found

    Nonlinear stability of source defects in the complex Ginzburg-Landau equation

    Full text link
    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction-diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg-Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for the Green's function, which allow one to close a nonlinear iteration scheme.Comment: 53 pages, 5 figure

    Propagation and Structure of Planar Streamer Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations. In the present long paper, you find the physics of the model and the interfacial approach further explained. As a first ingredient of this approach, we here analyze planar fronts, their profile and velocity. We encounter a selection problem, recall some knowledge about such problems and apply it to planar streamer fronts. We make analytical predictions on the selected front profile and velocity and confirm them numerically. (abbreviated abstract)Comment: 23 pages, revtex, 14 ps file

    A topological approximation of the nonlinear Anderson model

    Full text link
    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrodinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance-overlap in phase space, ranging from a fully developed chaos involving Levy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on a Cayley tree. It is found in vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t\rightarrow+\infty. The second moment grows with time as a powerlaw t^\alpha, with \alpha = 1/3. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of stripes propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.Comment: 20 pages, 2 figures; improved text with revisions; accepted for publication in Physical Review

    Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation

    Full text link
    In a companion paper, we established nonlinear stability with detailed diffusive rates of decay of spectrally stable periodic traveling-wave solutions of reaction diffusion systems under small perturbations consisting of a nonlocalized modulation plus a localized perturbation. Here, we determine time-asymptotic behavior under such perturbations, showing that solutions consist to leading order of a modulation whose parameter evolution is governed by an associated Whitham averaged equation

    Pattern forming pulled fronts: bounds and universal convergence

    Get PDF
    We analyze the dynamics of pattern forming fronts which propagate into an unstable state, and whose dynamics is of the pulled type, so that their asymptotic speed is equal to the linear spreading speed v^*. We discuss a method that allows to derive bounds on the front velocity, and which hence can be used to prove for, among others, the Swift-Hohenberg equation, the Extended Fisher-Kolmogorov equation and the cubic Complex Ginzburg-Landau equation, that the dynamically relevant fronts are of the pulled type. In addition, we generalize the derivation of the universal power law convergence of the dynamics of uniformly translating pulled fronts to both coherent and incoherent pattern forming fronts. The analysis is based on a matching analysis of the dynamics in the leading edge of the front, to the behavior imposed by the nonlinear region behind it. Numerical simulations of fronts in the Swift-Hohenberg equation are in full accord with our analytical predictions.Comment: 27 pages, 9 figure

    Space-modulated Stability and Averaged Dynamics

    Full text link
    In this brief note we give a brief overview of the comprehensive theory, recently obtained by the author jointly with Johnson, Noble and Zumbrun, that describes the nonlinear dynamics about spectrally stable periodic waves of parabolic systems and announce parallel results for the linearized dynamics near cnoidal waves of the Korteweg-de Vries equation. The latter are expected to contribute to the development of a dispersive theory, still to come.Comment: Proceedings of the "Journ\'ees \'Equations aux d\'eriv\'ees partielles", Roscoff 201
    corecore