2,475 research outputs found

    Energy decay for solutions of the wave equation with general memory boundary conditions

    Full text link
    We consider the wave equation in a smooth domain subject to Dirichlet boundary conditions on one part of the boundary and dissipative boundary conditions of memory-delay type on the remainder part of the boundary, where a general borelian measure is involved. Under quite weak assumptions on this measure, using the multiplier method and a standard integral inequality we show the exponential stability of the system. Some examples of measures satisfying our hypotheses are given, recovering and extending some of the results from the literature.Comment: 14 pages, submitted to Diff. Int. Eq

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Control and stabilization of waves on 1-d networks

    Get PDF
    We present some recent results on control and stabilization of waves on 1-d networks.The fine time-evolution of solutions of wave equations on networks and, consequently, their control theoretical properties, depend in a subtle manner on the topology of the network under consideration and also on the number theoretical properties of the lengths of the strings entering in it. Therefore, the overall picture is quite complex.In this paper we summarize some of the existing results on the problem of controllability that, by classical duality arguments in control theory, can be reduced to that of observability of the adjoint uncontrolled system. The problem of observability refers to that of recovering the total energy of solutions by means of measurements made on some internal or external nodes of the network. They lead, by duality, to controllability results guaranteeing that L 2-controls located on those nodes may drive sufficiently smooth solutions to equilibrium at a final time. Most of our results in this context, obtained in collaboration with R. DĂĄger, refer to the problem of controlling the network from one single external node. It is, to some extent, the most complex situation since, obviously, increasing the number of controllers enhances the controllability properties of the system. Our methods of proof combine sidewise energy estimates (that in the particular case under consideration can be derived by simply applying the classical d'Alembert's formula), Fourier series representations, non-harmonic Fourier analysis, and number theoretical tools.These control results belong to the class of the so-called open-loop control systems.We then discuss the problem of closed-loop control or stabilization by feedback. We present a recent result, obtained in collaboration with J. Valein, showing that the observability results previously derived, regardless of the method of proof employed, can also be recast a posteriori in the context of stabilization, so to derive explicit decay rates (as) for the energy of smooth solutions. The decay rate depends in a very sensitive manner on the topology of the network and the number theoretical properties of the lengths of the strings entering in it.In the end of the article we also present some challenging open problems

    On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates

    Full text link
    In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending compoment is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovski\u{i} operator for irrotational vector fields which we discuss in the appendix.Comment: 27 page

    Energy decay rate of a transmission system governed by degenerate wave equation with drift and under heat conduction with memory effect

    Full text link
    In this paper, we investigate the stabilization of transmission problem of degenerate wave equation and heat equation under Coleman-Gurtin heat conduction law or Gurtin-Pipkin law with memory effect. We investigate the polynomial stability of this system when employing the Coleman-Gurtin heat conduction, establishing a decay rate of type t−4t^{-4}. Next, we demonstrate exponential stability in the case when Gurtin-Pipkin heat conduction is applied
    • 

    corecore