28,660 research outputs found

    Asymptotic Expansions of exp-log Functions

    Get PDF
    We give an algorithm to compute asymptotic expansions of exp-log functions. This algorithm automatically computes the necessary asymptotic scale and does not suffer from problems of indefinite cancellation. In particular, an asymptotic equivalent can always be computed for a given exp-log function

    A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics

    Get PDF
    A ``hybrid method'', dedicated to asymptotic coefficient extraction in combinatorial generating functions, is presented, which combines Darboux's method and singularity analysis theory. This hybrid method applies to functions that remain of moderate growth near the unit circle and satisfy suitable smoothness assumptions--this, even in the case when the unit circle is a natural boundary. A prime application is to coefficients of several types of infinite product generating functions, for which full asymptotic expansions (involving periodic fluctuations at higher orders) can be derived. Examples relative to permutations, trees, and polynomials over finite fields are treated in this way.Comment: 31 page

    Probing Quantized Einstein-Rosen Waves with Massless Scalar Matter

    Get PDF
    The purpose of this paper is to discuss in detail the use of scalar matter coupled to linearly polarized Einstein-Rosen waves as a probe to study quantum gravity in the restricted setting provided by this symmetry reduction of general relativity. We will obtain the relevant Hamiltonian and quantize it with the techniques already used for the purely gravitational case. Finally we will discuss the use of particle-like modes of the quantized fields to operationally explore some of the features of quantum gravity within this framework. Specifically we will study two-point functions, the Newton-Wigner propagator, and radial wave functions for one-particle states.Comment: Accepted for publication in Physical Review

    Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems

    Full text link
    We study the Plancherel--Rotach asymptotics of four families of orthogonal polynomials, the Chen--Ismail polynomials, the Berg-Letessier-Valent polynomials, the Conrad--Flajolet polynomials I and II. All these polynomials arise in indeterminate moment problems and three of them are birth and death process polynomials with cubic or quartic rates. We employ a difference equation asymptotic technique due to Z. Wang and R. Wong. Our analysis leads to a conjecture about large degree behavior of polynomials orthogonal with respect to solutions of indeterminate moment problems.Comment: 34 pages, typos corrected and references update

    Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal

    Full text link
    In (Boyd, Proc. R. Soc. Lond. A 447 (1994) 609--630), W. G. C. Boyd derived a resurgence representation for the gamma function, exploiting the reformulation of the method of steepest descents by M. Berry and C. Howls (Berry and Howls, Proc. R. Soc. Lond. A 434 (1991) 657--675). Using this representation, he was able to derive a number of properties of the asymptotic expansion for the gamma function, including explicit and realistic error bounds, the smooth transition of the Stokes discontinuities, and asymptotics for the late coefficients. The main aim of this paper is to modify the resurgence formula of Boyd making it suitable for deriving better error estimates for the asymptotic expansions of the gamma function and its reciprocal. We also prove the exponentially improved versions of these expansions complete with error terms. Finally, we provide new (formal) asymptotic expansions for the coefficients appearing in the asymptotic series and compare their numerical efficacy with the results of earlier authors.Comment: 22 pages, accepted for publication in Proceedings of the Royal Society of Edinburgh, Section A: Mathematical and Physical Science
    corecore