74 research outputs found

    A Review of Cooperative Actuator and Sensor Systems Based on Dielectric Elastomer Transducers

    Get PDF
    This paper presents an overview of cooperative actuator and sensor systems based on dielectric elastomer (DE) transducers. A DE consists of a flexible capacitor made of a thin layer of soft dielectric material (e.g., acrylic, silicone) surrounded with a compliant electrode, which is able to work as an actuator or as a sensor. Features such as large deformation, high compliance, flexibility, energy efficiency, lightweight, self-sensing, and low cost make DE technology particularly attractive for the realization of mechatronic systems that are capable of performance not achievable with alternative technologies. If several DEs are arranged in an array-like configuration, new concepts of cooperative actuator/sensor systems can be enabled, in which novel applications and features are made possible by the synergistic operations among nearby elements. The goal of this paper is to review recent advances in the area of cooperative DE systems technology. After summarizing the basic operating principle of DE transducers, several applications of cooperative DE actuators and sensors from the recent literature are discussed, ranging from haptic interfaces and bio-inspired robots to micro-scale devices and tactile sensors. Finally, challenges and perspectives for the future development of cooperative DE systems are discussed

    DEFORMATION MECHANICS OF SOFT MATTER UNDER EXTERNAL STIMULI

    Get PDF
    Artificial soft matters are a class of materials which can be easily deformed by external stress, typical examples include foams, colloids, elastomers, and hydrogels. Due to their unprecedented and unique properties, such as large deformability, high resemblance to biological systems, versatile response to multi-physical stimuli, and biological compatibility, soft matters have found applications in fields like soft actuators and robots, soft sensors, bio-mimicking material systems, micro-fluidic system control, biomedical engineering, etc. In these applications, the large deformability of soft matters has taken an enabling role. The deformation theory of polymeric soft matters can date back to 1940s in the early infancy of the statistical mechanics sketch of rubbery materials, with a fast growth in the most recent decade concurring the latest progress in soft matters. However, the mechanical modeling of soft matter leaves many open questions. This doctorate research is devoted to advance the understanding of the deformation mechanics of soft matter, specifically, from the following aspects: (1) how the chemo-mechanical interaction between the solvent molecules and the polymeric network invokes anomalous behaviors of a thin-walled hydrogel structure under internal pressure, in contrast to its polymer counterpart; (2) the application of the dielectric elastomer as sensing medium in soft sensor technology; (3) the development of a novel light-responsive hydrogel material system with the application in bio-mimicking shape transform; (4) and enriching the existing theory to facilitate the mechanistic understanding of the deformational behaviors of a type of fiber-reinforce anisotropic hydrogels. For that, this dissertation (1) reveals the delayed burst of hydrogel thin-shell structures as a new failure mechanism, which is dissimilar from the instantaneous burst of a rubber shell: at a subcritical applied pressure the burst occurs with a delay in time; (2) presents a facile design of capacitive tactile force sensor using a dielectric elastomer subjected to a modest voltage and a pre-stretch; (3) develops a theoretical framework to simulate the light-responsive deformation of the proposed hybrid hydrogel system; and (4) from the perspective of micromechanics, constructs a constitutive model suitable for the microfiber-reinforced anisotropic hydrogel, with large deformation, mass transportation, and the origin of anisotropy are intrinsically captured

    Adhesion modulation In bio-inspired micropatterned adhesives by electrical fields

    Get PDF
    With steps towards Industry 4.0, it becomes imperative to the development of next-generation industrial assembly lines, to be able to modulate adhesion dynamically for handling complex and diverse substrates. The inspiration for the design and functionality of such adhesive pads comes from gecko’s remarkable ability to traverse rough and smooth topographies with great ease and agility. The emphasis in this thesis was to equip artificial micropatterned adhesives with such functionalities of tunability and devise an on-demand release mechanism. The project evaluates the potential of electric fields in this direction. The first part of this work focusses on integrating electric fields with polymeric micropatterns and studying the synergistic effect of Van der Waals and electrostatic forces. An in-house electroadhesion set up was built to measure the pull-off forces with and without electric fields. As a function of the applied voltage, adhesion forces can be tuned. The second part of the work demonstrates a novel route that exploits the in-plane actuation of the dielectric elastomeric actuators integrated with microstructure to induce peeling in them. Voltage-dependent actuation has been harnessed to generate the requisite peel force to detach the micropatterns. Overall, the findings of this thesis combine disciplines of electroadhesion, electroactuation, and reversible dry adhesives to gain dynamic control over adhesion.Im Einklang mit dem Fortschreiten in Richtung Industrie 4.0, wird es auch für die Entwicklung von industriellen Montagelinien der nächsten Generation unerlässlich sein, die Handhabung komplexer und unterschiedlicher Objekte zu flexibilisieren. Bioinspirierte Haftpads nach dem Vorbild des Gecko könnten zukünftig hierzu wesentlich beitragen. Der Schwerpunkt dieser Arbeit bestand darin, künstliche mikrostrukturierte Haftpads mit einem elektrisch schaltbaren Adhäsions- und Ablösemechanismus zu funktionalisieren, um die Grundlage für einen schnell schaltbaren, intelligenten Greifer zu schaffen. Der erste Teil dieser Arbeit konzentriert sich auf die Kombination elektrischer Felder mit elastomeren Mikrostrukturen und die Untersuchung der synergistischen Wirkung von Van der Waals- und elektrostatischen Kräften. Zur Messung der Adhäsion wurde ein individueller Aufbau realisiert und mit diesem die Feldstärkeabhängigkeit der Haftkräfte nachgewiesen. Der zweite Teil der Arbeit demonstriert einen neuartigen Ablösemechanismus unter Ausnutzung der lateralen Bewegung dielektrischer elastomerer Aktuatoren, um so ein Abschälen der Haftpads vom Substrat zu induzieren. Durch Variation der elektrischen Spannung wurde untersucht, wie sich diese auf die Ablösegeschwindigkeit der Haftpads auswirkt. Insgesamt kombinieren die Ergebnisse dieser Arbeit die Disziplinen Elektroadhäsion, Elektroaktuation und reversible trockene Klebstoffe, um so eine dynamische Kontrolle über die Adhäsion zu erhalten

    A tutorial on the stability and bifurcation analysis of the electromechanical behaviour of soft materials

    Full text link
    Soft materials, such as liquids, polymers, foams, gels, colloids, granular materials, and most soft biological materials, play an important role in our daily lives. From a mechanical viewpoint, soft materials can easily achieve large deformations due to their low elastic moduli; meanwhile, surface instabilities, including wrinkles, creases, folds, and ridges, among others, are often observed. In particular, soft dielectrics when subjected to electrical stimuli can achieve significantly large deformations that are often accompanied by instabilities. While instabilities are conventionally thought to cause failures in the engineering context and carry a negative connotation, they can also be harnessed for various applications such as surface patterning, giant actuation strain, and energy harvesting. In the biological world, instability and bifurcation phenomena often precede important events such as endocytosis, cell fusion, among others. Stability and bifurcation analysis (especially for soft materials) is challenging and often presents a formidable barrier to entry in this important field. A multidisciplinary audience may lack the background in one or more areas that are needed to carry out the requisite modeling or even understand papers in the literature. Furthermore, combining electrostatics together with large deformations brings its own challenges. In this article, we provide a tutorial on the basics of stability and bifurcation analysis in the context of soft electromechanical materials. The aim of the article is to use simple examples and gently lead a reader, unfamiliar with either stability analysis or electrostatics of deformable media, to develop the ability to understand the pertinent literature that already exists and position them to embark on the state-of-the-art research on this topic

    Danish Polymer Centre annual report 2001

    Get PDF

    Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics

    Get PDF
    Cephalopods, such as cuttlefish, demonstrate remarkable adaptability to the coloration and texture of their surroundings by modulating their skin color and surface morphology simultaneously, for the purpose of adaptive camouflage and signal communication. Inspired by this unique feature of cuttlefish skins, we present a general approach to remote-controlled, smart films that undergo simultaneous changes of surface color and morphology upon infrared (IR) actuation. The smart film has a reconfigurable laminated structure that comprises an IR-responsive nanocomposite actuator layer and a mechanochromic elastomeric photonic crystal layer. Upon global or localized IR irradiation, the actuator layer exhibits fast, large, and reversible strain in the irradiated region, which causes a synergistically coupled change in the shape of the laminated film and color of the mechanochromic elastomeric photonic crystal layer in the same region. Bending and twisting deformations can be created under IR irradiation, through modulating the strain direction in the actuator layer of the laminated film. Furthermore, the laminated film has been used in a remote-controlled inchworm walker that can directly couple a color-changing skin with the robotic movements. Such remote-controlled, smart films may open up new application possibilities in soft robotics and wearable devices

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation

    Electroosmotic Soft Actuators

    Get PDF
    This dissertation details the research involved in creating the first paper-based soft actuator driven by electroosmosis. To accomplish this, research breakthroughs were made in the fields of electrokinetic pumping and device manufacturing using soft materials. Electroosmosis is an electrically induced microfluidic flow phenomenon. When an electric field is applied to the fluid, across the microchannels, electroosmotic flow occurs in the direction of the applied electric field. In this work, liquid was electroosmotically displaced within a flexible microfluidic device to actuate an elastomeric membrane. The goal of this work was to create a fully sealed fluidic actuator. It was therefore necessary to encapsulate the pumping fluid within the device, and to maximize pressure it was necessary to eliminate compliance caused by trapped gases. Electrolytic gas formation is well known to disrupt pumping in DC electroosmotic systems that use water as the pumping liquid. In this work, electrolysis was eliminated by replacing water with propylene carbonate (PC): PC was determined to be electrochemically stable up to at least 10 kV, in the absence of moisture or salt contaminants. Bubble-free electroosmotic pumping with PC was achieved within sealed miniature actuators, which could be continuously operated for at least one hour. Benchtop fabrication techniques were developed to build encapsulated fluidic actuators composed entirely of soft, flexible materials. Stretchable electrochemically stable electrodes were made using a conductive paint made by mixing carbon nanoparticles into a silicone base. High-density microchannel networks were incorporated by using paper and other flexible porous materials, instead of conventional planar replica-molded microchannels. The device was filled with pumping fluid without the use of external tubing, and then encapsulated by casting a film of elastomer over the filled reservoir to form the actuating membrane. The resulting actuators were flexible and stretchable, demonstrating significant membrane deformations (hundreds of micrometers) within seconds of applying the electric field and ability to lift large loads (tens of grams). These polymeric electroosmotic actuators are unique among electroactive polymer actuators because they are able to simultaneously generate high force as well as large stroke. It is envisioned that this research will pave the way for the creation of artificial muscles and smart shape-changing materials that can be actuated by electroosmosis
    • …
    corecore