4,164 research outputs found

    The State of the Art of Medical Imaging Technology: from Creation to Archive and Back

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    The state of the art of medical imaging technology: from creation to archive and back.

    Get PDF
    Medical imaging has learnt itself well into modern medicine and revolutionized medical industry in the last 30 years. Stemming from the discovery of X-ray by Nobel laureate Wilhelm Roentgen, radiology was born, leading to the creation of large quantities of digital images as opposed to film-based medium. While this rich supply of images provides immeasurable information that would otherwise not be possible to obtain, medical images pose great challenges in archiving them safe from corrupted, lost and misuse, retrievable from databases of huge sizes with varying forms of metadata, and reusable when new tools for data mining and new media for data storing become available. This paper provides a summative account on the creation of medical imaging tomography, the development of image archiving systems and the innovation from the existing acquired image data pools. The focus of this paper is on content-based image retrieval (CBIR), in particular, for 3D images, which is exemplified by our developed online e-learning system, MIRAGE, home to a repository of medical images with variety of domains and different dimensions. In terms of novelties, the facilities of CBIR for 3D images coupled with image annotation in a fully automatic fashion have been developed and implemented in the system, resonating with future versatile, flexible and sustainable medical image databases that can reap new innovations

    Highly focused document retrieval in aerospace engineering : user interaction design and evaluation

    Get PDF
    Purpose – This paper seeks to describe the preliminary studies (on both users and data), the design and evaluation of the K-Search system for searching legacy documents in aerospace engineering. Real-world reports of jet engine maintenance challenge the current indexing practice, while real users’ tasks require retrieving the information in the proper context. K-Search is currently in use in Rolls-Royce plc and has evolved to include other tools for knowledge capture and management. Design/methodology/approach – Semantic Web techniques have been used to automatically extract information from the reports while maintaining the original context, allowing a more focused retrieval than with more traditional techniques. The paper combines semantic search with classical information retrieval to increase search effectiveness. An innovative user interface has been designed to take advantage of this hybrid search technique. The interface is designed to allow a flexible and personal approach to searching legacy data. Findings – The user evaluation showed that the system is effective and well received by users. It also shows that different people look at the same data in different ways and make different use of the same system depending on their individual needs, influenced by their job profile and personal attitude. Research limitations/implications – This study focuses on a specific case of an enterprise working in aerospace engineering. Although the findings are likely to be shared with other engineering domains (e.g. mechanical, electronic), the study does not expand the evaluation to different settings. Originality/value – The study shows how real context of use can provide new and unexpected challenges to researchers and how effective solutions can then be adopted and used in organizations.</p

    Case-oriented computer-based-training in radiology: concept, implementation and evaluation

    Get PDF
    BACKGROUND: Providing high-quality clinical cases is important for teaching radiology. We developed, implemented and evaluated a program for a university hospital to support this task. METHODS: The system was built with Intranet technology and connected to the Picture Archiving and Communications System (PACS). It contains cases for every user group from students to attendants and is structured according to the ACR-code (American College of Radiology) [2]. Each department member was given an individual account, could gather his teaching cases and put the completed cases into the common database. RESULTS: During 18 months 583 cases containing 4136 images involving all radiological techniques were compiled and 350 cases put into the common case repository. Workflow integration as well as individual interest influenced the personal efforts to participate but an increasing number of cases and minor modifications of the program improved user acceptance continuously. 101 students went through an evaluation which showed a high level of acceptance and a special interest in elaborate documentation. CONCLUSION: Electronic access to reference cases for all department members anytime anywhere is feasible. Critical success factors are workflow integration, reliability, efficient retrieval strategies and incentives for case authoring

    Models of information systems devoted to medical-imaging labs: an experience in the CNR clinical physiology institute

    Get PDF
    At the end of the 1990s, the SPERIGEST project, supported by the Italian Health Ministry, and fully developed at the Institute of Clinical Physiology, established an operative integrated clinical and healthcare information system. Continuously evolving and dynamically optimising procedures and protocols solve problems of: harmonisation of instrumentation of different brands; management of multimedia data provided by different medical imaging labs; satisfaction of both clinical and research needs; legal and economical requirements; user-friendship of the system. A ten years experience shows positive approach by medical and healthcare operators, coordinated activity, higher efficiency, simplified procedures, major concentration on medical decision-making

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network
    • …
    corecore