784 research outputs found

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ā€flockā€ whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications

    Internet of Things and Intelligent Technologies for Efficient Energy Management in a Smart Building Environment

    Get PDF
    Internet of Things (IoT) is attempting to transform modern buildings into energy efficient, smart, and connected buildings, by imparting capabilities such as real-time monitoring, situational awareness and intelligence, and intelligent control. Digitizing the modern day building environment using IoT improves asset visibility and generates energy savings. This dissertation provides a survey of the role, impact, and challenges and recommended solutions of IoT for smart buildings. It also presents an IoT-based solution to overcome the challenge of inefficient energy management in a smart building environment. The proposed solution consists of developing an Intelligent Computational Engine (ICE), composed of various IoT devices and technologies for efficient energy management in an IoT driven building environment. ICEā€™s capabilities viz. energy consumption prediction and optimized control of electric loads have been developed, deployed, and dispatched in the Real-Time Power and Intelligent Systems (RTPIS) laboratory, which serves as the IoT-driven building case study environment. Two energy consumption prediction models viz. exponential model and Elman recurrent neural network (RNN) model were developed and compared to determine the most accurate model for use in the development of ICEā€™s energy consumption prediction capability. ICEā€™s prediction model was developed in MATLAB using cellular computational network (CCN) technique, whereas the optimized control model was developed jointly in MATLAB and Metasys Building Automation System (BAS) using particle swarm optimization (PSO) algorithm and logic connector tool (LCT), respectively. It was demonstrated that the developed CCN-based energy consumption prediction model was highly accurate with low error % by comparing the predicted and the measured energy consumption data over a period of one week. The predicted energy consumption values generated from the CCN model served as a reference for the PSO algorithm to generate control parameters for the optimized control of the electric loads. The LCT model used these control parameters to regulate the electric loads to save energy (increase energy efficiency) without violating any operational constraints. Having ICEā€™s energy consumption prediction and optimized control of electric loads capabilities is extremely useful for efficient energy management as they ensure that sufficient energy is generated to meet the demands of the electric loads optimally at any time thereby reducing wasted energy due to excess generation. This, in turn, reduces carbon emissions and generates energy and cost savings. While the ICE was tested in a small case-study environment, it could be scaled to any smart building environment

    Autonomic Providing Pre-Programmed Death of Cubesats for Avoiding Space JUNK

    Get PDF

    Autonomic service configuration for telecommunication MASs with extended role-based GAIA and JADEx

    Full text link
    Autonomie Communications have attracted huge attention recently for the management of telecommunication networks in the European Network Research Community. The purpose of this research is to offer the abilities such as autonomy, scalability, adaptation as well as simplicity for management application in complex networks. The accomplished networks inspired by biological mechanisms or market-based concepts could enable agents to be of intelligence, scalablility, and interoperabliliry in the management functional domains with regards to the large volume requirements from services' fulfillment perspective in decentralized Multi-Agent Systems. In accordance with TMF and FIPA specifications and requirements, the autonomy attributes self-configuring, self-adapting, self-limiting, self-preserving, and self-optimizing are involved into our simulation. Resource allocation requests are bidded for a long session in the multi-unit Vickrey-Clarke-Groves auction. This design adopts the software development methodology-GAIA and the framework-JADEx. We have shown multiple service configuration in dynamic network can be nearly optimized by autonomie behaviors via bidding according to business objectives for getting maximum revenues. We conclude this end-to-end approach maintains self-managing capability, easy-to-implement scalability, and more incentively compatible and efficient over other common implementation so that it could achieve the optimal solution to the flexible requirements for the Service Fulfillment for advanced IP networks. Ā© 2005 IEEE
    • ā€¦
    corecore