368 research outputs found

    Effect of lower limb exoskeleton on the modulation of neural activity and gait classification

    Get PDF
    : Neurorehabilitation with robotic devices requires a paradigm shift to enhance human-robot interaction. The coupling of robot assisted gait training (RAGT) with a brain-machine interface (BMI) represents an important step in this direction but requires better elucidation of the effect of RAGT on the user's neural modulation. Here, we investigated how different exoskeleton walking modes modify brain and muscular activity during exoskeleton assisted gait. We recorded electroencephalographic (EEG) and electromyographic (EMG) activity from ten able-bodied volunteers walking with an exoskeleton with three modes of user assistance (i.e., transparent, adaptive and full assistance) and during free overground gait. Results identified that exoskeleton walking (irrespective of the exoskeleton mode) induces a stronger modulation of central mid-line mu (8-13 Hz) and low-beta (14-20 Hz) rhythms compared to free overground walking. These modifications are accompanied by a significant re-organization of the EMG patterns in exoskeleton walking. On the other hand, we observed no significant differences in neural activity during exoskeleton walking with the different assistance levels. We subsequently implemented four gait classifiers based on deep neural networks trained on the EEG data during the different walking conditions. Our hypothesis was that exoskeleton modes could impact the creation of a BMI-driven RAGT. We demonstrated that all classifiers achieved an average accuracy of 84.13 ± 3.49% in classifying swing and stance phases on their respective datasets. In addition, we demonstrated that the classifier trained on the transparent mode exoskeleton data can classify gait phases during adaptive and full modes with an accuracy of 78.3 ± 4.8%, while the classifier trained on free overground walking data fails to classify the gait during exoskeleton walking (accuracy of 59.4 ± 11.8%). These findings provide important insights into the effect of robotic training on neural activity and contribute to the advancement of BMI technology for improving robotic gait rehabilitation therapy

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Surface EMG pattern recognition for real-time control of a wrist exoskeleton

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopenia. While using sEMG for position control, estimation of the intended torque of the user could also provide sufficient information for an effective force control of the hand prosthesis or assistive device. This paper presents the use of pattern recognition to estimate the torque applied by a human wrist and its real-time implementation to control a novel two degree of freedom wrist exoskeleton prototype (WEP), which was specifically developed for this work.</p> <p>Methods</p> <p>Both sEMG data from four muscles of the forearm and wrist torque were collected from eight volunteers by using a custom-made testing rig. The features that were extracted from the sEMG signals included root mean square (rms) EMG amplitude, autoregressive (AR) model coefficients and waveform length. Support Vector Machines (SVM) was employed to extract classes of different force intensity from the sEMG signals. After assessing the off-line performance of the used classification technique, the WEP was used to validate in real-time the proposed classification scheme.</p> <p>Results</p> <p>The data gathered from the volunteers were divided into two sets, one with nineteen classes and the second with thirteen classes. Each set of data was further divided into training and testing data. It was observed that the average testing accuracy in the case of nineteen classes was about 88% whereas the average accuracy in the case of thirteen classes reached about 96%. Classification and control algorithm implemented in the WEP was executed in less than 125 ms.</p> <p>Conclusions</p> <p>The results of this study showed that classification of EMG signals by separating different levels of torque is possible for wrist motion and the use of only four EMG channels is suitable. The study also showed that SVM classification technique is suitable for real-time classification of sEMG signals and can be effectively implemented for controlling an exoskeleton device for assisting the wrist.</p

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    The Development of an assistive chair for elderly with sit to stand problems

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyStanding up from a seated position, known as sit-to-stand (STS) movement, is one of the most frequently performed activities of daily living (ADLs). However, the aging generation are often encountered with STS issues owning to their declined motor functions and sensory capacity for postural control. The motivated is rooted from the contemporary market available STS assistive devices that are lack of genuine interaction with elderly users. Prior to the software implementation, the robot chair platform with integrated sensing footmat is developed with STS biomechanical concerns for the elderly. The work has its main emphasis on recognising the personalised behavioural patterns from the elderly users’ STS movements, namely the STS intentions and personalised STS feature prediction. The former is known as intention recognition while the latter is defined as assistance prediction, both achieved by innovative machine learning techniques. The proposed intention recognition performs well in multiple subjects scenarios with different postures involved thanks to its competence of handling these uncertainties. To the provision of providing the assistance needed by the elderly user, a time series prediction model is presented, aiming to configure the personalised ground reaction force (GRF) curve over time which suggests successful movement. This enables the computation of deficits between the predicted oncoming GRF curve and the personalised one. A multiple steps ahead prediction into the future is also implemented so that the completion time of actuation in reality is taken into account
    • …
    corecore